1
|
Wang Q, Huang N, Psaltis JB, Gahtani RM, Yan G, Lu D, Cahalan SR, Shi X, Copeland RL, Haddad BR, Martin MB. Activation of estrogen-related receptor γ by calcium and cadmium. Front Endocrinol (Lausanne) 2024; 15:1400022. [PMID: 39507056 PMCID: PMC11537906 DOI: 10.3389/fendo.2024.1400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Estrogen-related receptor γ (ERRγ) is a metabolic regulator with no identified physiological ligands. This study investigates whether calcium is an ERRγ ligand that mediates the effects of glucagon and whether cadmium, which mimics the effects of calcium, disrupts metabolism through ERRγ. Method HepG2, MCF-7, and HEK293T transfected with ERRγ were treated with glucagon, calcium, cadmium, ERRγ agonist, or ERRγ inhibitor. Cells were then collected for in vitro assays including real-time qPCR, Western blot, ChIP, immunofluorescence, mutational analysis, or gene set enrichment analysis. Molecular dynamics simulations were performed to study mutation sites. Results In HepG2 cells, treatment with glucagon, calcium, or cadmium re-localized ERRγ to the cell nucleus, recruited ERRγ to estrogen-related response elements, induced the expression of ERRγ-regulated genes, and increased extracellular glucose that was blocked by an ERRγ antagonist. In MCF-7 cells and HEK293T cells transfected with ERRγ, similar treatments induced the expression of metabolic genes. Mutational analysis identified S303, T429, and E452 in the ligand-binding domain as potential interaction sites. Molecular dynamics simulations showed that calcium induced changes in ERRγ similar to ERRγ agonist. Conclusion The results suggest that calcium is a potential ligand of ERRγ that mediates the effects of glucagon and cadmium disrupts metabolism through ERRγ.
Collapse
Affiliation(s)
- Qiaochu Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Nanxi Huang
- Oncology, Georgetown University, Washington DC, United States
| | - John B. Psaltis
- Oncology, Georgetown University, Washington DC, United States
| | - Reem M. Gahtani
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Gai Yan
- Oncology, Georgetown University, Washington DC, United States
| | - Dajun Lu
- Oncology, Georgetown University, Washington DC, United States
| | | | - Xu Shi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Robert L. Copeland
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC, United States
| | | | - Mary Beth Martin
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
- Oncology, Georgetown University, Washington DC, United States
| |
Collapse
|
2
|
Jung YS, Radhakrishnan K, Kim HJ, Kim YH, Lee CH, Choi HS. Macrophage stimulating protein is a novel transcriptional target of estrogen related receptor gamma in alcohol-intoxicated mice. Cell Signal 2024; 116:111059. [PMID: 38237793 DOI: 10.1016/j.cellsig.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Macrophage stimulating protein (MSP) is a multifunctional serum protein produced in the liver, belonging to the plasminogen-related kringle protein family. It exerts diverse biological functions by activating a transmembrane receptor protein-tyrosine kinase known as RON in humans and SKT in mice. MSP plays a pivotal role in innate immunity and is involved in various activities such as cell survival, migration, and phagocytosis. Elucidating the regulatory mechanisms governing MSP gene expression is of great importance. In this study, we comprehensively elucidate the molecular mechanism underlying hepatic MSP gene expression in response to alcoholism. Exposure to ethanol specifically upregulated the expression of ERRγ and MSP in the liver, while not in other organs. Liver-specific knockout of the cannabinoid receptor type 1 (CB1R), an upstream regulator of ERRγ, inhibited the alcohol-induced upregulation of MSP expression. Overexpression of ERRγ alone was sufficient to enhance MSP expression in hepatic cell lines and in mice. Conversely, knockdown of ERRγ in cell lines or liver-specific knockout of ERRγ in mice reversed ethanol-induced MSP gene expression. Promoter studies revealed the direct binding of ERRγ to the MSP gene promoter at the ERR response element (ERRE), resulting in the positive regulation of MSP gene expression in response to alcohol. This finding was further supported by ERRE-mutated MSP-luciferase reporter assays. Notably, treatment with GSK5182, an ERRγ-specific inverse agonist, significantly suppressed alcohol-induced hepatic MSP expression. Collectively, we exposed a novel mechanistic understanding of how alcohol-induced ERRγ controls the transcriptional regulation of MSP gene expression in the liver.
Collapse
Affiliation(s)
- Yoon Seok Jung
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyo-Jin Kim
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Fan Y, Kim HJ, Jung YS, Na SY, Radhakrishnan K, Choi HS. Chenodeoxycholic acid regulates fibroblast growth factor 23 gene expression via estrogen-related receptor γ in human hepatoma Huh7 cells. Steroids 2023; 197:109257. [DOI: https:/doi.org/10.1016/j.steroids.2023.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
|
4
|
Fan Y, Kim HJ, Seok Jung Y, Na SY, Radhakrishnan K, Sik Choi H. Chenodeoxycholic acid regulates fibroblast growth factor 23 gene expression via estrogen-related receptor γ in human hepatoma Huh7 cells. Steroids 2023:109257. [PMID: 37301529 DOI: 10.1016/j.steroids.2023.109257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Fibroblast growth factor 23 (FGF23) is a glycoprotein that belongs to the FGF19 subfamily and participates in phosphate and vitamin D homeostasis. Chenodeoxycholic acid (CDCA), one of the primary bile acids, is reported to induce the secretion of FGF19 subfamily members, FGF21 and FGF19, in hepatocytes. However, whether and how CDCA influences FGF23 gene expression are largely unknown. Thus, we performed real-time polymerase chain reaction and Western blot analyses to determine the mRNA and protein expression levels of FGF23 in Huh7 cells. CDCA upregulated estrogen-related receptor γ (ERRγ) alongside FGF23 mRNA and protein levels, while, the knockdown of ERRγ ablated the induction effect of CDCA on FGF23 expression. Promoter studies showed that CDCA-induced FGF23 promoter activity occurred partly through ERRγ binding directly to the ERR response element (ERRE) in the human FGF23 gene promoter. Finally, the inverse agonist of ERRγ, GSK5182 inhibited the induction of FGF23 by CDCA. Overall, our results revealed the mechanism of CDCA-mediated FGF23 gene upregulation in the human hepatoma cell line. Moreover, the ability of GSK5182 to reduce CDCA-induced FGF23 gene expression might represent a therapeutic strategy to control abnormal FGF23 induction in conditions that involve elevated levels of bile acids, such as nonalcoholic fatty liver disease and biliary atresia.
Collapse
Affiliation(s)
- Yiwen Fan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyo-Jin Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Seok Jung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soon-Young Na
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hueng Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
5
|
Sasidharan S, Radhakrishnan K, Lee JY, Saudagar P, Gosu V, Shin D. Molecular dynamics of the ERRγ ligand-binding domain bound with agonist and inverse agonist. PLoS One 2023; 18:e0283364. [DOI: doi.org/10.1371/journal.pone.0283364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Estrogen-related receptor gamma (ERRγ), the latest member of the ERR family, does not have any known reported natural ligands. Although the crystal structures of the apo, agonist-bound, and inverse agonist-bound ligand-binding domain (LBD) of ERRγ have been solved previously, their dynamic behavior has not been studied. Hence, to explore the intrinsic dynamics of the apo and ligand-bound forms of ERRγ, we applied long-range molecular dynamics (MD) simulations to the crystal structures of the apo and ligand-bound forms of the LBD of ERRγ. Using the MD trajectories, we performed hydrogen bond and binding free energy analysis, which suggested that the agonist displayed more hydrogen bonds with ERRγ than the inverse agonist 4-OHT. However, the binding energy of 4-OHT was higher than that of the agonist GSK4716, indicating that hydrophobic interactions are crucial for the binding of the inverse agonist. From principal component analysis, we observed that the AF-2 helix conformation at the C-terminal domain was similar to the initial structures during simulations, indicating that the AF-2 helix conformation is crucial with respect to the agonist or inverse agonist for further functional activity of ERRγ. In addition, we performed residue network analysis to understand intramolecular signal transduction within the protein. The betweenness centrality suggested that few of the amino acids are important for residue signal transduction in apo and ligand-bound forms. The results from this study may assist in designing better therapeutic compounds against ERRγ associated diseases.
Collapse
|
6
|
Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:ijms24032907. [PMID: 36769229 PMCID: PMC9917820 DOI: 10.3390/ijms24032907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
|
7
|
Sadasivam N, Radhakrishnan K, Choi HS, Kim DK. Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:2907. [DOI: https:/doi.org/10.3390/ijms24032907 academic] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Clinical Vaccine R&D Centre, Department of Microbiology, Combinatorial Tumour Immunotheraphy MRC, Medical School, Chonnam National University, Gwangju 58128, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Epigallocatechin-3-Gallate Suppresses BMP-6-Mediated SMAD1/5/8 Transactivation of Hepcidin Gene by Inducing SMILE in Hepatocytes. Antioxidants (Basel) 2021; 10:antiox10101590. [PMID: 34679725 PMCID: PMC8533173 DOI: 10.3390/antiox10101590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Hepcidin, a major regulator of systemic iron homeostasis, is mainly induced in hepatocytes by activating bone morphogenetic protein 6 (BMP-6) signaling in response to changes in the iron status. Small heterodimer partner-interacting leucine zipper protein (SMILE), a polyphenol-inducible transcriptional co-repressor, regulates hepatic gluconeogenesis and lipogenesis. Here, we examine the epigallocatechin-3-gallate (EGCG) effect on BMP-6-mediated SMAD1/5/8 transactivation of the hepcidin gene. EGCG treatment significantly decreased BMP-6-induced hepcidin gene expression and secretion in hepatocytes, which, in turn, abated ferroportin degradation. SMILE overexpression significantly decreased BMP receptor-induced hepcidin promoter activity. SMILE overexpression also significantly suppressed BMP-6-mediated induction of hepcidin mRNA and its secretion in HepG2 and AML12 cells. EGCG treatment inhibited BMP-6-mediated hepcidin gene expression and secretion, which were significantly reversed by SMILE knockdown in hepatocytes. Interestingly, SMILE physically interacted with SMAD1 in the nucleus and significantly blocked DNA binding of the SMAD complex to the BMP-response element on the hepcidin gene promoter. Taken together, these findings suggest that SMILE is a novel transcriptional repressor of BMP-6-mediated hepcidin gene expression, thus contributing to the control of iron homeostasis.
Collapse
|
9
|
Yang S, Park JS, Hwang SH, Cho KH, Na HS, Choi J, Jhun J, Kim SJ, Lee BI, Park SH, Cho ML. Metformin-Inducible Small Heterodimer Partner Interacting Leucine Zipper Protein Ameliorates Intestinal Inflammation. Front Immunol 2021; 12:652709. [PMID: 34211461 PMCID: PMC8239434 DOI: 10.3389/fimmu.2021.652709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. We investigated the mechanism by which SMILE suppressed the development of inflammatory bowel disease (IBD) using a DSS-induced colitis mouse model and peripheral blood mononuclear cells (PBMCs) from patients with ulcerative colitis (UC). Metformin, an antidiabetic drug and an inducer of AMPK, upregulated the level of SMILE in human intestinal epithelial cells and the number of SMILE-expressing cells in colon tissues from DSS-induced colitis mice compared to control mice. Overexpression of SMILE using a DNA vector reduced the severity of DSS-induced colitis and colitis-associated intestinal fibrosis compared to mock vector. Furthermore, SMILE transgenic mice showed ameliorated DSS-induced colitis compared with wild-type mice. The mRNA levels of SMILE and Foxp3 were downregulated and SMILE expression was positively correlated with Foxp3 in PBMCs from patients with UC and an inflamed mucosa. Metformin increased the levels of SMILE, AMPK, and Foxp3 but decreased the number of interleukin (IL)-17–producing T cells among PBMCs from patients with UC. These data suggest that SMILE exerts a therapeutic effect on IBD by modulating IL-17 production.
Collapse
Affiliation(s)
- SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jooyeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Jun Kim
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Bo-In Lee
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
10
|
Kim KS, Kim DK, Na SY, Jung YS, Cho SJ, Kim J, Lee IK, Kim YH, Lee CH, Jeong WI, Jo EK, Choi HS. Frontline Science: Estrogen-related receptor γ increases poly(I:C)-mediated type I IFN expression in mouse macrophages. J Leukoc Biol 2021; 109:865-875. [PMID: 33615540 DOI: 10.1002/jlb.2hi1219-762r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Although type I IFNs (IFN-I) are important for the innate and adaptive immune responses to suppress viral replication, prolonged IFN-I signaling in macrophages suppresses the immune response. Nuclear receptor estrogen-related receptor γ (ERRγ) regulates the transcription of genes involved in endocrine and metabolic functions. However, the role of ERRγ in macrophage immune responses to viruses remains largely unknown. ERRγ expression was significantly induced in mouse bone marrow-derived macrophages (BMDMs) treated with polyinosinic-polycytidylic acid (poly(I:C)). Our results indicated that the induction of ERRγ expression by poly(I:C) is mediated through activation of the cytoplasmic dsRNA receptors, retinoic acid-inducible gene I and melanoma differentiation-associated protein 5. In BMDMs, overexpression of ERRγ significantly increased gene expression and secretion of the IFN-I genes, IFN-α and IFN-β, whereas abolition of ERRγ significantly attenuated poly(I:C)-mediated IFN-I secretion. Chromatin immunoprecipitation assays and mutation analyses of the IFN-I promoters revealed that ERRγ regulates the transcription of IFN-α and IFN-β by binding to a conserved ERR response element in each promoter region. Finally, GSK5182 significantly suppressed poly(I:C)-mediated induction of IFN-I gene expression and secretion in BMDMs. Taken together, these findings reveal a previously unrecognized role for ERRγ in the transcriptional control of innate and adaptive immune response to dsRNA virus replication.
Collapse
Affiliation(s)
- Ki-Sun Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Soon-Young Na
- National Creative Research Initiatives Center for Nuclear Receptor Signals, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yoon Seok Jung
- National Creative Research Initiatives Center for Nuclear Receptor Signals, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Young-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Connexin 43 prevents the progression of diabetic renal tubulointerstitial fibrosis by regulating the SIRT1-HIF-1α signaling pathway. Clin Sci (Lond) 2021; 134:1573-1592. [PMID: 32558900 DOI: 10.1042/cs20200171] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Hyperglycemia-induced renal epithelial-to-mesenchymal transition (EMT) is a key pathological factor in diabetic renal tubulointerstitial fibrosis (RIF). Our previous studies have shown that connexin 43 (Cx43) activation attenuated the development of diabetic renal fibrosis. However, whether Cx43 regulates the EMT of renal tubular epithelial cells (TECs) and the pathological process of RIF under the diabetic conditions remains to be elucidated. In the present study, we identified that Cx43 protein expression was down-regulated in the kidney tissues of db/db mice as well as in high glucose (HG)-induced NRK-52E cells. Overexpression of Cx43 improved renal function in db/db spontaneous diabetic model mice, increased SIRT1 levels, decreased hypoxia-inducible factor (HIF)-1α expression, and reduced production of EMT markers and extracellular matrix (ECM) components. Additionally, Cx43 overexpression inhibited the EMT process and reduced the expression of ECM components such as fibronectin (FN), Collagen I, and Collagen IV in HG-induced NRK-52E cells, whereas Cx43 deficiency had the opposite effects. Mechanistically, Cx43 in a carboxyl-terminal signal transduction-dependent manner could up-regulate SIRT1 expression and enhance SIRT1-dependent deacetylation of HIF-1α to reduce HIF-1α activity, which eventually ameliorated renal EMT and diabetic RIF. Our study indicates the essential role of Cx43 in regulating renal EMT and diabetic RIF via regulating the SIRT1-HIF-1α signaling pathway and provides an experimental basis for Cx43 as a potential target for diabetic nephropathy (DN).
Collapse
|
12
|
Min Y, Kim D, Suminda GGD, Zhao X, Kim M, Zhao Y, Son YO. GSK5182, 4-Hydroxytamoxifen Analog, a New Potential Therapeutic Drug for Osteoarthritis. Pharmaceuticals (Basel) 2020; 13:ph13120429. [PMID: 33261216 PMCID: PMC7761342 DOI: 10.3390/ph13120429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Estrogen-related receptors (ERRs) are the first identified orphan nuclear receptors. The ERR family consists of ERRα, ERRβ, and ERRγ, regulating diverse isoform-specific functions. We have reported the importance of ERRγ in osteoarthritis (OA) pathogenesis. However, therapeutic approaches with ERRγ against OA associated with inflammatory mechanisms remain limited. Herein, we examined the therapeutic potential of a small-molecule ERRγ inverse agonist, GSK5182 (4-hydroxytamoxifen analog), in OA, to assess the relationship between ERRγ expression and pro-inflammatory cytokines in mouse articular chondrocyte cultures. ERRγ expression increased following chondrocyte exposure to various pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Pro-inflammatory cytokines dose-dependently increased ERRγ protein levels. In mouse articular chondrocytes, adenovirus-mediated ERRγ overexpression upregulated matrix metalloproteinase (MMP)-3 and MMP-13, which participate in cartilage destruction during OA. Adenovirus-mediated ERRγ overexpression in mouse knee joints or ERRγ transgenic mice resulted in OA. In mouse joint tissues, genetic ablation of Esrrg obscured experimental OA. These results indicate that ERRγ is involved in OA pathogenesis. In mouse articular chondrocytes, GSK5182 inhibited pro-inflammatory cytokine-induced catabolic factors. Consistent with the in vitro results, GSK5182 significantly reduced cartilage degeneration in ERRγ-overexpressing mice administered intra-articular Ad-Esrrg. Overall, the ERRγ inverse agonist GSK5182 represents a promising therapeutic small molecule for OA.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City 63243, Korea; (Y.M.); (G.G.D.S.); (X.Z.)
| | - Dahye Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City 63243, Korea; (D.K.); (M.K.)
| | - Godagama Gamaarachchige Dinesh Suminda
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City 63243, Korea; (Y.M.); (G.G.D.S.); (X.Z.)
| | - Xiangyu Zhao
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City 63243, Korea; (Y.M.); (G.G.D.S.); (X.Z.)
| | - Mangeun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City 63243, Korea; (D.K.); (M.K.)
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City 63243, Korea; (Y.M.); (G.G.D.S.); (X.Z.)
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City 63243, Korea; (D.K.); (M.K.)
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju City 63243, Korea
- Practical Translational Research Center, Jeju National University, Jeju City 63243, Korea
- Correspondence: ; Tel.: +82-(64)-754-3331
| |
Collapse
|
13
|
Radhakrishnan K, Kim YH, Jung YS, Kim J, Kim DK, Cho SJ, Lee IK, Dooley S, Lee CH, Choi HS. Orphan Nuclear Receptor ERRγ Is a Novel Transcriptional Regulator of IL-6 Mediated Hepatic BMP6 Gene Expression in Mice. Int J Mol Sci 2020; 21:7148. [PMID: 32998264 PMCID: PMC7582774 DOI: 10.3390/ijms21197148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenetic protein 6 (BMP6) is a multifunctional growth factor involved in organ development and homeostasis. BMP6 controls expression of the liver hormone, hepcidin, and thereby plays a crucial role in regulating iron homeostasis. BMP6 gene transcriptional regulation in liver is largely unknown, but would be of great help to externally modulate iron load in pathologic conditions. Here, we describe a detailed molecular mechanism of hepatic BMP6 gene expression by an orphan nuclear receptor, estrogen-related receptor γ (ERRγ), in response to the pro-inflammatory cytokine interleukin 6 (IL-6). Recombinant IL-6 treatment increases hepatic ERRγ and BMP6 expression. Overexpression of ERRγ is sufficient to increase BMP6 gene expression in hepatocytes, suggesting that IL-6 is upstream of ERRγ. In line, knock-down of ERRγ in cell lines or a hepatocyte specific knock-out of ERRγ in mice significantly decreases IL-6 mediated BMP6 expression. Promoter studies show that ERRγ directly binds to the ERR response element (ERRE) in the mouse BMP6 gene promoter and positively regulates BMP6 gene transcription in IL-6 treatment conditions, which is further confirmed by ERRE mutated mBMP6-luciferase reporter assays. Finally, an inverse agonist of ERRγ, GSK5182, markedly inhibits IL-6 induced hepatic BMP6 expression in vitro and in vivo. Taken together, these results reveal a novel molecular mechanism on ERRγ mediated transcriptional regulation of hepatic BMP6 gene expression in response to IL-6.
Collapse
Affiliation(s)
- Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.R.); (Y.S.J.)
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Yoon Seok Jung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.R.); (Y.S.J.)
| | - Jina Kim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (J.K.); (S.J.C.)
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Sung Jin Cho
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (J.K.); (S.J.C.)
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.R.); (Y.S.J.)
| |
Collapse
|
14
|
Hao L, Bang IH, Wang J, Mao Y, Yang JD, Na SY, Seo JK, Choi HS, Bae EJ, Park BH. ERRγ suppression by Sirt6 alleviates cholestatic liver injury and fibrosis. JCI Insight 2020; 5:137566. [PMID: 32701506 PMCID: PMC7526444 DOI: 10.1172/jci.insight.137566] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/16/2020] [Indexed: 01/11/2023] Open
Abstract
Orphan nuclear receptor estrogen-related receptor γ (ERRγ) stimulates bile acid production; however, the role and the regulatory mechanism of ERRγ in cholestatic liver disease are largely unknown. This study identifies that Sirt6 is a deacetylase of ERRγ and suggests a potentially novel mechanism by which Sirt6 activation alleviates cholestatic liver damage and fibrosis through regulating ERRγ. We observed that hepatic expression of Sirt6 is repressed, whereas hepatic expression of ERRγ is upregulated in murine cholestasis models. Hepatocyte-specific Sirt6-KO mice were more severely injured after a bile duct ligation (BDL) than WT mice, and adenoviral reexpression of Sirt6 reversed liver damage and fibrosis as demonstrated by biochemical and histological analyses. Mechanistically, Sirt6 deacetylated ERRγ, thereby destabilizing ERRγ and inhibiting its transcriptional activity. Elimination of hepatic ERRγ using Ad-shERRγ abolished the deleterious effects of Sirt6 deficiency, whereas ERRγ overexpression aggravated cholestatic liver injury. Administration of a Sirt6 deacetylase activator prevented BDL-induced liver damage and fibrosis. In patients with cholestasis, Sirt6 expression was decreased, whereas total ERRγ and acetylated ERRγ levels were increased, confirming negative regulation of ERRγ by Sirt6. Thus, Sirt6 activation represents a potentially novel therapeutic strategy for treating cholestatic liver injury. Sirt6 activation alleviates cholestatic liver damage and fibrosis in murine cholestasis models by deacetylation of ERRγ.
Collapse
Affiliation(s)
| | | | | | | | - Jae Do Yang
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Jeonbuk, South Korea
| | - Soon-Young Na
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities, UNIST, Ulsan, South Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Eun Ju Bae
- College of Pharmacy, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | | |
Collapse
|
15
|
Kim YJ, Kim KS, Lim D, Yang DJ, Park JI, Kim KW, Jeong JH, Choi HS, Kim DK. Epigallocatechin-3-Gallate (EGCG)-Inducible SMILE Inhibits STAT3-Mediated Hepcidin Gene Expression. Antioxidants (Basel) 2020; 9:antiox9060514. [PMID: 32545266 PMCID: PMC7346121 DOI: 10.3390/antiox9060514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic peptide hormone hepcidin, a key regulator of iron metabolism, is induced by inflammatory cytokine interleukin-6 (IL-6) in the pathogenesis of anemia of inflammation or microbial infections. Small heterodimer partner-interacting leucine zipper protein (SMILE)/CREBZF is a transcriptional corepressor of nuclear receptors that control hepatic glucose and lipid metabolism. Here, we examined the role of SMILE in regulating iron metabolism by inflammatory signals. Overexpression of SMILE significantly decreased activation of the Janus kinase 2-signal transducer and activator of transcription 3 (STAT3)-mediated hepcidin production and secretion that is triggered by the IL-6 signal in human and mouse hepatocytes. Moreover, SMILE co-localized and physically interacted with STAT3 in the nucleus in the presence of IL-6, which significantly suppressed binding of STAT3 to the hepcidin gene promoter. Interestingly, epigallocatechin-3-gallate (EGCG), a major component of green tea, induced SMILE expression through forkhead box protein O1 (FoxO1), as demonstrated in FoxO1 knockout primary hepatocytes. In addition, EGCG inhibited IL-6-induced hepcidin expression, which was reversed by SMILE knockdown. Finally, EGCG significantly suppressed lipopolysaccharide-induced hepcidin secretion and hypoferremia through induction of SMILE expression in mice. These results reveal a previously unrecognized role of EGCG-inducible SMILE in the IL-6-dependent transcriptional regulation of iron metabolism.
Collapse
Affiliation(s)
- Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Ki-Sun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.-S.K.); (H.-S.C.)
| | - Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Korea; (D.L.); (J.-H.J.)
| | - Dong Ju Yang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul, 03722, Korea; (D.J.Y.); (K.W.K.)
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju 61186, Korea;
| | - Ki Woo Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul, 03722, Korea; (D.J.Y.); (K.W.K.)
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Korea; (D.L.); (J.-H.J.)
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.-S.K.); (H.-S.C.)
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: ; Tel.: +82-62-530-2166; Fax: +82-62-530-2160
| |
Collapse
|
16
|
Jung YS, Kim YH, Radhakrishnan K, kim J, Kim DK, Lee JH, Oh H, Lee IK, Kim W, Cho SJ, Choi CS, Dooley S, Egan JM, Lee CH, Choi HS. An inverse agonist of estrogen-related receptor γ regulates 2-arachidonoylglycerol synthesis by modulating diacylglycerol lipase expression in alcohol-intoxicated mice. Arch Toxicol 2020; 94:427-438. [DOI: https:/doi.org/10.1007/s00204-019-02648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/12/2019] [Indexed: 09/18/2023]
|
17
|
An inverse agonist of estrogen-related receptor γ regulates 2-arachidonoylglycerol synthesis by modulating diacylglycerol lipase expression in alcohol-intoxicated mice. Arch Toxicol 2020; 94:427-438. [PMID: 31912162 PMCID: PMC10131092 DOI: 10.1007/s00204-019-02648-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023]
Abstract
Chronic alcohol feeding increases the levels of 2-arachidonoylglycerol (2-AG) in the liver, which activates hepatic cannabinoid receptor type 1 (CB1R), leading to oxidative liver injury. 2-AG biosynthesis is catalyzed by diacylglycerol lipase (DAGL). However, the mechanisms regulating hepatic DAGL gene expression and 2-AG production are largely unknown. In this study, we show that CB1R-induced estrogen-related receptor γ (ERRγ) controls hepatic DAGL gene expression and 2-AG levels. Arachidonyl-2'-chloroethylamide (ACEA), a synthetic CB1R agonist, significantly upregulated ERRγ, DAGLα, and DAGLβ, and increased 2-AG levels in the liver (10 mg/kg) and hepatocytes (10 μM) of wild-type (WT) mice. ERRγ overexpression upregulated DAGLα and DAGLβ expressions and increased 2-AG levels, whereas ERRγ knockdown abolished ACEA-induced DAGLα, DAGLβ, and 2-AG in vitro and in vivo. Promoter assays showed that ERRγ positively regulated DAGLα and DAGLβ transcription by binding to the ERR response element in the DAGLα and DAGLβ promoters. Chronic alcohol feeding (27.5% of total calories) induced hepatic steatosis and upregulated ERRγ, leading to increased DAGLα, DAGLβ, or 2-AG in WT mice, whereas these alcohol-induced effects did not occur in hepatocyte-specific CB1R knockout mice or in those treated with the ERRγ inverse agonist GSK5182 (40 mg/kg in mice and 10 μM in vitro). Taken together, these results indicate that suppression of alcohol-induced DAGLα and DAGLβ gene expressions and 2-AG levels by an ERRγ-specific inverse agonist may be a novel and attractive therapeutic approach for the treatment of alcoholic liver disease.
Collapse
|
18
|
Kim DK, Kim YH, Lee JH, Jung YS, Kim J, Feng R, Jeon TI, Lee IK, Cho SJ, Im SS, Dooley S, Osborne TF, Lee CH, Choi HS. Estrogen-related receptor γ controls sterol regulatory element-binding protein-1c expression and alcoholic fatty liver. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158521. [PMID: 31479733 DOI: 10.1016/j.bbalip.2019.158521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
Although SREBP-1c regulates key enzymes required for hepatic de novo lipogenesis, the mechanisms underlying transcriptional regulation of SREBP-1c in pathogenesis of alcoholic fatty liver is still incompletely understood. In this study, we investigated the role of ERRγ in alcohol-mediated hepatic lipogenesis and examined the possibility to ameliorate alcoholic fatty liver through its inverse agonist. Hepatic ERRγ and SREBP-1c expression was increased by alcohol-mediated activation of CB1 receptor signaling. Deletion and mutation analyses of the Srebp-1c gene promoter showed that ERRγ directly regulates Srebp-1c gene transcription via binding to an ERR-response element. Overexpression of ERRγ significantly induced SREBP-1c expression and fat accumulation in liver of mice, which were blocked in Srebp-1c-knockout hepatocytes. Conversely, liver-specific ablation of ERRγ gene expression attenuated alcohol-mediated induction of SREBP-1c expression. Finally, an ERRγ inverse agonist, GSK5182, significantly ameliorates fatty liver disease in chronically alcohol-fed mice through inhibition of SREBP-1c-mediated fat accumulation. ERRγ mediates alcohol-induced hepatic lipogenesis by upregulating SREBP-1c expression, which can be blunted by the inverse agonist for ERRγ, which may be an attractive therapeutic strategy for the treatment of alcoholic fatty liver disease in human.
Collapse
Affiliation(s)
- Don-Kyu Kim
- Department of Molecular Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Yoon Seok Jung
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Rilu Feng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim 105760, Germany
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim 105760, Germany
| | - Timothy F Osborne
- Institute for Fundamental Biomedical Research, Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, FL 33701, USA
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
19
|
Emerging role of the orphan nuclear receptor estrogen-related receptor gamma in liver metabolic diseases. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Lu M, Zhang R, Yu T, Wang L, Liu S, Cai R, Guo X, Jia Y, Wang A, Jin Y, Lin P. CREBZF regulates testosterone production in mouse Leydig cells. J Cell Physiol 2019; 234:22819-22832. [PMID: 31124138 DOI: 10.1002/jcp.28846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
CREBZF, including the two isoforms SMILE (long isoform of CREBZF) and Zhangfei (short isoform of CREBZF), has been identified as a novel transcriptional coregulator of a variety of nuclear receptors. Our previous studies found that SMILE is expressed in the mouse uterine luminal and glandular epithelium and is upregulated by estrogen. In the present study, CREBZF was age-dependently and -specifically expressed in mouse interstitial Leydig cells during sexual maturation. The expression pattern of CREBZF exhibited an age-related increase, and SMILE was the dominant isoform in the mouse testis. Although hCG did not affect CREBZF expression, CREBZF silencing significantly inhibited hCG-stimulated testosterone production in primary Leydig cells and MLTC-1 cells. Meanwhile, the serum concentration of testosterone was significantly decreased after microinjection of lentiviral-mediated shRNA-CREBZF into the mature mouse testis. In addition, CREBZF silencing markedly decreased P450c17, 17β-HSD, and 3β-HSD expression following hCG stimulation in primary Leydig cells, and this inhibitory effect was obviously reversed by overexpression of CREBZF. Furthermore, CREBZF significantly upregulated the mRNA levels of Nr4a1 and Nr5a1, which are the essential orphan nuclear receptors for steroidogenic gene expression. Together our data indicate that CREBZF promotes hCG-induced testosterone production in mouse Leydig cells by affecting Nr4a1 and Nr5a1 expression levels and subsequently increasing the expression of steroidogenic genes such as 3β-HSD, 17β-HSD, and P450c17, suggesting a potential important role of CREBZF in testicular testosterone synthesis.
Collapse
Affiliation(s)
- Minjie Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruixue Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Shouqin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Cai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyan Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Kim J, Song J, Ji HD, Yoo EK, Lee JE, Lee SB, Oh JM, Lee S, Hwang JS, Yoon H, Kim DS, Lee SJ, Jeong M, Lee S, Kim KH, Choi HS, Lee SW, Park KG, Lee IK, Kim SH, Hwang H, Jeon YH, Chin J, Cho SJ. Discovery of Potent, Selective, and Orally Bioavailable Estrogen-Related Receptor-γ Inverse Agonists To Restore the Sodium Iodide Symporter Function in Anaplastic Thyroid Cancer. J Med Chem 2019; 62:1837-1858. [DOI: 10.1021/acs.jmedchem.8b01296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Jaeyoung Song
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | | | | | - Jae-Eon Lee
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Pusan 50463, South Korea
| | - Sang Bong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | | | | | - Ji Sun Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Heeseok Yoon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Dong-Su Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Minseon Jeong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Sungwoo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Kyung-Hee Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | | | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Seong Heon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| |
Collapse
|
22
|
Lee JM, Han HS, Jung YS, Harris RA, Koo SH, Choi HS. The SMILE transcriptional corepressor inhibits cAMP response element-binding protein (CREB)-mediated transactivation of gluconeogenic genes. J Biol Chem 2018; 293:13125-13133. [PMID: 29950523 DOI: 10.1074/jbc.ra118.002196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Under fasting conditions, activation of several hepatic genes sets the stage for gluconeogenesis in the liver. cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 2 (CRTC2), and peroxisome proliferator-activated receptor γ coactivator 1-alpha (PGC-1α) are essential for this transcriptional induction of gluconeogenic genes. PGC-1α induction is mediated by activation of a CREB/CRTC2 signaling complex, and recent findings have revealed that small heterodimer partner-interacting leucine zipper protein (SMILE), a member of the CREB/ATF family of basic region-leucine zipper (bZIP) transcription factors, is an insulin-inducible corepressor that decreases PGC-1α expression and abrogates its stimulatory effect on hepatic gluconeogenesis. However, the molecular mechanism whereby SMILE suppresses PGC-1α expression is unknown. Here, we investigated SMILE's effects on the CREB/CRTC2 signaling pathway and glucose metabolism. We found that SMILE significantly inhibits CREB/CRTC2-induced PGC-1α expression by interacting with and disrupting the CREB/CRTC2 complex. Consequently, SMILE decreased PGC-1α-induced hepatic gluconeogenic gene expression. Furthermore, SMILE inhibited CREB/CRTC2-induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene expression by directly repressing the expression of these genes and by indirectly inhibiting the expression of PGC-1α via CREB/CRTC2 repression. Indeed, enhanced gluconeogenesis and circulating blood glucose levels in mice injected with an adenovirus construct containing a constitutively active CRTC2 variant (CRTC2-S171A) were significantly reduced by WT SMILE, but not by leucine zipper-mutated SMILE. These results reveal that SMILE represses CREB/CRTC2-induced PGC-1α expression, an insight that may help inform potential therapeutic approaches targeting PGC-1α-mediated regulation of hepatic glucose metabolism.
Collapse
Affiliation(s)
- Ji-Min Lee
- From the National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hye-Sook Han
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 136-713, Republic of Korea, and
| | - Yoon Seok Jung
- From the National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 136-713, Republic of Korea, and
| | - Hueng-Sik Choi
- From the National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea,
| |
Collapse
|
23
|
Park E, Kumar S, Lee B, Kim KJ, Seo JE, Choi HS, Lee K. Estrogen receptor-related receptor γ regulates testicular steroidogenesis through direct and indirect regulation of steroidogenic gene expression. Mol Cell Endocrinol 2017; 452:15-24. [PMID: 28479375 DOI: 10.1016/j.mce.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/11/2017] [Accepted: 05/02/2017] [Indexed: 01/24/2023]
Abstract
Biosynthesis of testosterone, which mainly occurs in testicular Leydig cells, is controlled by steroidogenic proteins, such as StAR and P450c17. Although estrogen-related receptor gamma (ERRγ), an orphan nuclear receptor, is expressed in the testis, its role is not well understood. In this study, we investigated the expression of ERRγ in Leydig cells and its molecular action on testicular steroidogenesis. ERRγ is expressed in mouse Leydig cells from pre-pubertal stages. ERRγ overexpression in primary Leydig cells elevated the production of testosterone with a marked increase of P450c17 expression at both mRNA and protein levels, albeit decreased expression of StAR. Promoter-reporter analyses showed that ERRγ directly regulated the P450c17 promoter. Further deletion mutant analyses of the P450c17 promoter revealed that ERRγ activated expression of the P450c17 gene by binding to an ERRγ response element within the P450c17 promoter. Meanwhile, ERRγ suppressed cAMP-induced activation of the StAR promoter, which was likely due to ERRγ-mediated inhibition of the transcriptional activity of Nur77, which is induced by cAMP and regulates StAR gene expression in Leydig cells. Interestingly, ERRγ coexpression also decreased the protein level of Nur77, which occurred through proteasomal degradation, suggesting ERRγ-mediated regulation of steroidogenesis at another level. Taken together, these findings suggest that ERRγ regulates testicular steroidogenesis, both directly controlling and indirectly fine-tuning the expression of steroidogenic genes.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Chloroquine/pharmacology
- Cyclic AMP/pharmacology
- Cycloheximide/pharmacology
- Gene Expression/drug effects
- Gene Expression Regulation
- HEK293 Cells
- Humans
- Leydig Cells/drug effects
- Leydig Cells/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phosphoproteins/genetics
- Promoter Regions, Genetic
- Proteasome Endopeptidase Complex/metabolism
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Sequence Deletion
- Steroid 17-alpha-Hydroxylase/genetics
- Testosterone/biosynthesis
- Testosterone/genetics
Collapse
Affiliation(s)
- Eunsook Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea; K-herb Research Group, Korea Institute of Oriental Medicine, Deajeon, Republic of Korea
| | - Sudeep Kumar
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Bobae Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Kyung-Jin Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Eun Seo
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hueng-Sik Choi
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Keesook Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
24
|
Lee EJ, Kwon JE, Park MJ, Jung KA, Kim DS, Kim EK, Lee SH, Choi JY, Park SH, Cho ML. Ursodeoxycholic acid attenuates experimental autoimmune arthritis by targeting Th17 and inducing pAMPK and transcriptional corepressor SMILE. Immunol Lett 2017; 188:1-8. [PMID: 28539269 DOI: 10.1016/j.imlet.2017.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) has been known that UDCA has prominent effects on liver, however, there is little known about its influence on autoimmune disease. Here, the benefit of UDCA on arthritis rheumatoid (RA) in vivo was tested. METHODS RA mouse were induced using collagen II (CIA, collagen induced arthritis) where the disease severity or UDCA-related signaling pathway such as AMP-activated protein kinase (AMPK) or small heterodimer partner interacting leucine zipper protein (SMILE) was evaluated by westerblot and immunohistochemical staining. Gene expression was measured by realtime-polymerase chain reaction (PCR). RESULTS The administration of UDCA effectively alleviated the arthritic score and incidence with decreased cartilage damage and lipid metabolic parameters. UDCA also suppressed the secretion of pro-inflammatory cytokines. It was confirmed that UDCA upregulated the expression of SMILE and transcriptional activity of PPARγ via controlling AMPK or p38 activity. CONCLUSIONS In the present study, the therapeutic effect of UDCA inducing SMILE through AMPK activation in rheumatoid arthritis mouse as well as other autoimmune disease was proposed.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea; Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Eun Kwon
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea; Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Jung Park
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea; Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyung-Ah Jung
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea; IMPACT Biotech, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Da-Som Kim
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea; Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Kyung Kim
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea; Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea; Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- Division of Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea; Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea; IMPACT Biotech, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea; Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea; IMPACT Biotech, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
25
|
Misra J, Kim DK, Choi HS. ERRγ: a Junior Orphan with a Senior Role in Metabolism. Trends Endocrinol Metab 2017; 28:261-272. [PMID: 28209382 DOI: 10.1016/j.tem.2016.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/18/2016] [Accepted: 12/22/2016] [Indexed: 01/01/2023]
Abstract
Estrogen-related receptor (ERR)γ is an orphan nuclear hormone receptor that belongs to the ERR subfamily of transcription factors. No endogenous ligand has been identified to date. ERRγ possesses ligand-independent transcriptional activity that is regulated by co-regulator interactions, and post-translational modifications (PTMs). Recent data from animal models have established ERRγ as a crucial mediator of multiple endocrine and metabolic signals. ERRγ plays important roles in pathological conditions such as insulin resistance, alcoholic liver injury, and cardiac hypertrophy, and controls energy metabolism in the heart, skeletal muscle, and pancreatic β cells. These findings corroborate the importance of ERRγ in metabolic homeostasis, and suggest that ERRγ is a good target for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Jagannath Misra
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Molecular Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
26
|
Misra J, Kim DK, Jung YS, Kim HB, Kim YH, Yoo EK, Kim BG, Kim S, Lee IK, Harris RA, Kim JS, Lee CH, Cho JW, Choi HS. O-GlcNAcylation of Orphan Nuclear Receptor Estrogen-Related Receptor γ Promotes Hepatic Gluconeogenesis. Diabetes 2016; 65:2835-48. [PMID: 27335230 DOI: 10.2337/db15-1523] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/15/2016] [Indexed: 11/13/2022]
Abstract
Estrogen-related receptor γ (ERRγ) is a major positive regulator of hepatic gluconeogenesis. Its transcriptional activity is suppressed by phosphorylation signaled by insulin in the fed state, but whether posttranslational modification alters its gluconeogenic activity in the fasted state is not known. Metabolically active hepatocytes direct a small amount of glucose into the hexosamine biosynthetic pathway, leading to protein O-GlcNAcylation. In this study, we demonstrate that ERRγ is O-GlcNAcylated by O-GlcNAc transferase in the fasted state. This stabilizes the protein by inhibiting proteasome-mediated protein degradation, increasing ERRγ recruitment to gluconeogenic gene promoters. Mass spectrometry identifies two serine residues (S317, S319) present in the ERRγ ligand-binding domain that are O-GlcNAcylated. Mutation of these residues destabilizes ERRγ protein and blocks the ability of ERRγ to induce gluconeogenesis in vivo. The impact of this pathway on gluconeogenesis in vivo was confirmed by the observation that decreasing the amount of O-GlcNAcylated ERRγ by overexpressing the deglycosylating enzyme O-GlcNAcase decreases ERRγ-dependent glucose production in fasted mice. We conclude that O-GlcNAcylation of ERRγ serves as a major signal to promote hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Jagannath Misra
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yoon Seok Jung
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Han Byeol Kim
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eun-Kyung Yoo
- Department of Internal Medicine, Kyungpook National University School of Medicine, Deagu, Republic of Korea
| | - Byung Gyu Kim
- Leading-edge Research Center for Drug Discovery and Development and Metabolic Disease, Kyungpook National University, Daegu, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center Department of Molecular Medicine and Biopharmaceutical Sciences Graduate School of Convergence Science and Technology College of Pharmacy, Seoul National University, Seoul, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Deagu, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and the Roudebush VA Medical Center, Indianapolis, IN
| | - Jeong-Sun Kim
- Department of Chemistry and Institute of Basic Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin Won Cho
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Jung YS, Lee JM, Kim DK, Lee YS, Kim KS, Kim YH, Kim J, Lee MS, Lee IK, Kim SH, Cho SJ, Jeong WI, Lee CH, Harris RA, Choi HS. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression. PLoS One 2016; 11:e0159425. [PMID: 27455076 PMCID: PMC4959684 DOI: 10.1371/journal.pone.0159425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion.
Collapse
MESH Headings
- Animals
- Cell Line
- Fibroblast Growth Factors/genetics
- Gene Expression Regulation/drug effects
- Gene Knockdown Techniques
- Hepatocytes/metabolism
- Humans
- Male
- Mice
- Mice, Knockout
- Orphan Nuclear Receptors/genetics
- Orphan Nuclear Receptors/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Yoon Seok Jung
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Soo Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki-Sun Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Seong Heon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
- Boryung Central Research Institute, Ansan, 15425, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Robert A. Harris
- Richard Roudebush Veterans Affairs Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, Indiana, United States of America
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Salminen A, Kauppinen A, Kaarniranta K. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions. Cell Signal 2016; 28:887-95. [PMID: 27010499 DOI: 10.1016/j.cellsig.2016.03.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
AMP-activated protein kinase (AMPK) and its yeast homolog, Snf1, are critical regulators in the maintenance of energy metabolic balance not only stimulating energy production but also inhibiting energy-consuming processes. The AMPK/Snf1 signaling controls energy metabolism by specific phosphorylation of many metabolic enzymes and transcription factors, enhancing or suppressing their functions. The AMPK/Snf1 complexes can be translocated from cytoplasm into nuclei where they are involved in the regulation of transcription. Recent studies have indicated that AMPK/Snf1 activation can control histone acetylation through different mechanisms affecting not only gene transcription but also many other epigenetic functions. For instance, AMPK/Snf1 enzymes can phosphorylate the histone H3S10 (yeast) and H2BS36 (mammalian) sites which activate specific histone acetyltransferases (HAT), consequently enhancing histone acetylation. Moreover, nuclear AMPK can phosphorylate type 2A histone deacetylases (HDAC), e.g. HDAC4 and HDAC5, triggering their export from nuclei thus promoting histone acetylation reactions. AMPK activation can also increase the level of acetyl CoA, e.g. by inhibiting fatty acid and cholesterol syntheses. Acetyl CoA is a substrate for HATs, thus increasing their capacity for histone acetylation. On the other hand, AMPK can stimulate the activity of nicotinamide phosphoribosyltransferase (NAMPT) which increases the level of NAD(+). NAD(+) is a substrate for nuclear sirtuins, especially for SIRT1 and SIRT6, which deacetylate histones and transcription factors, e.g. those regulating ribosome synthesis and circadian clocks. Histone acetylation is an important epigenetic modification which subsequently can affect chromatin remodeling, e.g. via bromodomain proteins. We will review the signaling mechanisms of AMPK/Snf1 in the control of histone acetylation and subsequently clarify their role in the epigenetic regulation of ribosome synthesis and circadian clocks.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
29
|
Kim MY, Ahn YH. SMILE Is an Insulin-Inducible Transcriptional Corepressor of Hepatic Gluconeogenic Gene Programs. Diabetes 2016; 65:14-5. [PMID: 26696634 DOI: 10.2337/dbi15-0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mi-Young Kim
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Ho Ahn
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Lee JM, Seo WY, Han HS, Oh KJ, Lee YS, Kim DK, Choi S, Choi BH, Harris RA, Lee CH, Koo SH, Choi HS. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis. Diabetes 2016; 65:62-73. [PMID: 26340929 DOI: 10.2337/db15-0249] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/26/2015] [Indexed: 11/13/2022]
Abstract
The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes.
Collapse
Affiliation(s)
- Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Woo-Young Seo
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hye-Sook Han
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyoung-Jin Oh
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong-Soo Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Seri Choi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Byeong Hun Choi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Robert A Harris
- Richard Roudebush Veterans Affairs Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
31
|
WANG MIN, ZHAO SHUIPING, TAN MINGYUE. bZIP transmembrane transcription factor CREBH: Potential role in non-alcoholic fatty liver disease (Review). Mol Med Rep 2015; 13:1455-62. [DOI: 10.3892/mmr.2015.4749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
|
32
|
Zhang Y, Kim DK, Lee JM, Park SB, Jeong WI, Kim SH, Lee IK, Lee CH, Chiang JYL, Choi HS. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression. Biochem J 2015; 470:181-93. [PMID: 26348907 PMCID: PMC5333639 DOI: 10.1042/bj20141494] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/29/2015] [Indexed: 12/30/2022]
Abstract
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Cells, Cultured
- Cholesterol 7-alpha-Hydroxylase/biosynthesis
- Cholesterol 7-alpha-Hydroxylase/genetics
- Drug Inverse Agonism
- Ethanol/pharmacology
- Gene Expression
- Glycerides/pharmacology
- HEK293 Cells
- Hepatocytes/metabolism
- Humans
- Liver/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Promoter Regions, Genetic
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Yaochen Zhang
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Bum Park
- Chemical Biology Laboratory, School of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-338, Republic of Korea
| | - Seong Heon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeastern Ohio University's Colleges of Medicine and Pharmacy, Rootstown, Ohio 44272, U.S.A
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
33
|
Wang Y, Jiang Y, Fan X, Tan H, Zeng H, Wang Y, Chen P, Huang M, Bi H. Hepato-protective effect of resveratrol against acetaminophen-induced liver injury is associated with inhibition of CYP-mediated bioactivation and regulation of SIRT1-p53 signaling pathways. Toxicol Lett 2015; 236:82-9. [PMID: 25956474 DOI: 10.1016/j.toxlet.2015.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/29/2015] [Accepted: 05/03/2015] [Indexed: 12/22/2022]
Abstract
Resveratrol (RES) has been shown to possess many pharmacological activities including protective effect against liver damage induced by hepatotoxins. In the present study, the hepato-protective effect of RES against acetaminophen (APAP)-induced liver injury in mice and the involved mechanisms was investigated. This study clearly demonstrated that administration of RES three days before APAP treatment significantly alleviated APAP-induced hepatotoxicity, as evidenced by morphological, histopathological, and biochemical assessments such as GSH content and serum ALT/AST activity. Treatment with RES resulted in significant inhibition of CYP2E1, CYP3A11, and CYP1A2 activities, and then caused significant inhibition of the bioactivation of APAP into toxic metabolite NAPQI. Pretreatment with RES significantly reduced APAP-induced JNK activation to protect against mitochondrial injury. Additionally, RES treatment significantly induced SIRT1 and then negatively regulated p53 signaling to induce cell proliferation-associated proteins including cyclin D1, CDK4, and PCNA to promote hepatocyte proliferation. This study demonstrated that RES prevents APAP-induced hepatotoxicity by inhibition of CYP-mediated APAP bioactivation and regulation of SIRT1, p53, cyclin D1 and PCNA to facilitate liver regeneration following APAP-induced liver injury.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huasen Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongtao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
34
|
Jang H, Kim HJ, Kim DH, Park JK, Sun WS, Hwang S, Oh KB, Jang WG, Lee JW. Small heterodimer partner-interacting leucine zipper protein inhibits adipogenesis by regulating peroxisome proliferator-activated receptor γ activity. Life Sci 2015; 132:49-54. [PMID: 25896661 DOI: 10.1016/j.lfs.2015.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/10/2015] [Accepted: 03/20/2015] [Indexed: 01/28/2023]
Abstract
AIMS Adipocytes play a critical role in energy balance. Growth of fat tissue is achieved via an increase in adipocyte mass and the formation of newly differentiated adipocytes from precursor cells. Understanding the cellular and molecular mechanisms of adipocyte differentiation is crucial for the study of obesity- and fat-related diseases. The present study was designed to study whether small heterodimer partner-interacting leucine zipper protein (SMILE), a novel co-repressor, could regulate differentiation of adipocyte in 3T3-L1 cells. MATERIALS AND METHODS Treatment of endoplasmic stress inducers, thapsigargin and tunicamycin, inhibited adipocyte differentiation, stimulated Smile mRNA expression, and repressed the expression of adiponectin (Adipoq) in 3T3-L1 pre-adipocyte. Overexpression of SMILE in 3T3-L1 cells decreased the expression of the mRNA encoding Adipoq, a major marker of adipocytes, significantly. Furthermore, knockdown of SMILE recovered the thapsigargin-mediated repression of Adipoq transcription. Co-immunoprecipitation experiments revealed that SMILE interacted physically with PPARγ in 3T3-L1 cells. In addition, chromatin immunoprecipitation experiments revealed that SMILE suppressed the binding affinity of PPARγ for the Adipoq promoter. KEY FINDINGS We demonstrate that SMILE controls adipocyte differentiation by regulating the transactivity of peroxisome proliferator-activated receptor γ (PPARγ). SIGNIFICANCE These findings demonstrate that SMILE represses adipocyte differentiation by regulating PPARγ transactivity; hence, SMILE is a potential regulator of PPARγ-related diseases.
Collapse
Affiliation(s)
- Hoon Jang
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Functional Genomics, School of Engineering, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Hyoung-Joo Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dong-Hwan Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Functional Genomics, School of Engineering, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Jae-Kyung Park
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Wu-Sheng Sun
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Keon-Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 712-714, Republic of Korea.
| | - Jeong-Woong Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Functional Genomics, School of Engineering, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea.
| |
Collapse
|
35
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
36
|
Lee SY, Song CH, Xie YB, Jung C, Choi HS, Lee K. SMILE upregulated by metformin inhibits the function of androgen receptor in prostate cancer cells. Cancer Lett 2014; 354:390-7. [DOI: 10.1016/j.canlet.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
37
|
Chen F, Lin PF, Li X, Sun J, Zhang Z, Du E, Wang A, Jin YP. Construction and expression of lentiviral vectors encoding recombinant mouse CREBZF in NIH 3T3 cells. Plasmid 2014; 76:24-31. [PMID: 25195838 DOI: 10.1016/j.plasmid.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/27/2022]
Abstract
CREBZF, also known as Zhangfei or SMILE, is a member of the CREB/ATF protein family. CREBZF has mainly been considered as a basic region-leucine zipper transcription factor that functions in coordination with other transcription factors and plays a role in latent HSV-1 infection, apoptosis and the mammalian endoplasmic reticulum stress and unfolded protein response. In this study, we constructed recombinant lentiviral vectors for CREBZF short hairpin RNA (shRNA) expression and over-expression to improve understanding of the mechanisms regulating CREBZF. The CREBZF ORF sequence was cloned into the lentiviral shuttle plasmid pCD513B-1, and various shRNA oligonucleotides and one negative control (shN) were cloned into the pCD513B-U6 expression vector. The recombinant lentivirus was packaged and transduced into NIH 3T3 cells. CREBZF mRNA and protein expression were examined using real-time reverse transcription-polymerase chain reaction (RT-qPCR) and western blotting, respectively. The over-expression vector and the most effective shRNA vector significantly affected the expression of CREBZF mRNA and protein. Both of the CREBZF recombinant lentiviral vectors were successfully constructed. The over-expression vector significantly increased the expression of exogenous CREBZF and inhibited the growth of NIH 3T3 cells compared to controls. The most effective shRNA lentiviral vector, pCD513B-U6-CREBZF-shRNA-3, was transformed, leading to significant knockdown of the CREBZF gene. We conclude that CREBZF the recombinant lentiviral vectors are promising tools for regulating the expression of CREBZF in NIH 3T3 cells.
Collapse
Affiliation(s)
- Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Fei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Sun
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhe Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Ping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
38
|
Kim YD, Kim SG, Hwang SL, Choi HS, Bae JH, Song DK, Im SS. B-cell translocation gene 2 regulates hepatic glucose homeostasis via induction of orphan nuclear receptor Nur77 in diabetic mouse model. Diabetes 2014; 63:1870-1880. [PMID: 24647738 DOI: 10.2337/db13-1368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell translocation gene 2 (BTG2) is a member of an emerging gene family that is involved in cellular functions. In this study, we demonstrate that BTG2 regulates glucose homeostasis via upregulation of Nur77 in diabetic mice. Hepatic BTG2 gene expression was elevated by fasting and forskolin. Overexpression of Btg2 increased the expression of hepatic gluconeogenic genes and blood glucose output and subsequently impaired glucose and insulin tolerance. Upregulation of the transcriptional activity of Nur77, gluconeogenic genes, and glucose production by forskolin was observed by Btg2 transduction, but not in Btg2 knockdown. BTG2-stimulated glucose production and glucose-6-phosphatase promoter activity were attenuated by dominant-negative Nur77. Coimmunoprecipitation and chromatin immunoprecipitation assays showed that BTG2 induced Nur77 occupancy on the glucose-6-phosphatase promoter via a physical interaction. Btg2 gene expression was increased in streptozotocin-treated and db/db mice. Finally, impairment of glucose homeostasis, such as the increase of blood glucose, glucose intolerance, and insulin intolerance, was elevated in diabetic mice, whereas this phenomenon was abolished in knockdown of Btg2. Together, these data suggest that BTG2 participates in the regulation of hepatic glucose homeostasis, which means that BTG2 might serve as a potential therapeutic target for combating metabolic dysfunction.
Collapse
Affiliation(s)
- Yong Deuk Kim
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sun-Gyun Kim
- Neuroscience Section, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR
| | - Seung-Lark Hwang
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
39
|
Jang H, Kim EJ, Park JK, Kim DE, Kim HJ, Sun WS, Hwang S, Oh KB, Koh JT, Jang WG, Lee JW. SMILE inhibits BMP-2-induced expression of osteocalcin by suppressing the activity of the RUNX2 transcription factor in MC3T3E1 cells. Bone 2014; 61:10-8. [PMID: 24389415 DOI: 10.1016/j.bone.2013.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/27/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022]
Abstract
Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. Several recent studies have suggested that SMILE is a novel co-repressor that is involved in nuclear receptor signaling; however, the role of SMILE in osteoblast differentiation has not yet been elucidated. This study demonstrates that SMILE inhibits osteoblast differentiation by regulating the activity of Runt-related transcription factor-2 (RUNX2). Tunicamycin, an inducer of endoplasmic reticulum stress, stimulated SMILE expression. Bone morphogenetic protein-2-induced expression of alkaline phosphatase and osteocalcin, both of which are osteogenic genes, was suppressed by SMILE. The molecular mechanism by which SMILE affects osteocalcin expression was also determined. An immunoprecipitation assay revealed a physical interaction between SMILE and RUNX2 that significantly impaired the RUNX2-dependent activation of the osteocalcin gene. A ChIP assay revealed that SMILE repressed the ability of RUNX2 to bind to the osteocalcin gene promoter. Taken together, these findings demonstrate that SMILE negatively regulates osteocalcin via a direct interaction with RUNX2.
Collapse
Affiliation(s)
- Hoon Jang
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Functional Genomics, School of Engineering, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Eun-Jung Kim
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jae-Kyung Park
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dong-Ern Kim
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Hyoung-Joo Kim
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Wu-Sheng Sun
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Keon-Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics and Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 712-714, Republic of Korea.
| | - Jeong-Woong Lee
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Functional Genomics, School of Engineering, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea.
| |
Collapse
|
40
|
Misra J, Chanda D, Kim DK, Cho SR, Koo SH, Lee CH, Back SH, Choi HS. Orphan nuclear receptor Errγ induces C-reactive protein gene expression through induction of ER-bound Bzip transmembrane transcription factor CREBH. PLoS One 2014; 9:e86342. [PMID: 24466039 PMCID: PMC3899246 DOI: 10.1371/journal.pone.0086342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/12/2013] [Indexed: 12/15/2022] Open
Abstract
The orphan nuclear receptor estrogen-related receptor-γ (ERRγ) is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER) stress response. cAMP responsive element-binding protein H (CREBH) is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE) in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP), whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP) assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions.
Collapse
Affiliation(s)
- Jagannath Misra
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Dipanjan Chanda
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Rye Cho
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Research Institute of Medical Sciences, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
41
|
Lin P, Chen F, Wang N, Wang X, Li X, Zhou J, Jin Y, Wang A. CREBZF expression and hormonal regulation in the mouse uterus. Reprod Biol Endocrinol 2013; 11:110. [PMID: 24325733 PMCID: PMC3878900 DOI: 10.1186/1477-7827-11-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/02/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND CREBZF is a member of the mammalian ATF/CREB family of the basic region-leucine zipper (bZIP) transcription factors. Two isoforms of CREBZF have been identified from the alternative usage of initiation codons, SMILE (long isoform of CREBZF) and Zhangfei (short isoform of CREBZF). Until recently, the physiological function of CREBZF in mammalian reproductions has not been reported. METHODS Multiple techniques were performed to investigate the spatiotemporal expression and hormonal regulation of the CREBZF gene in the mouse uterus and its role in embryo implantation. RESULTS Zhangfei was not detected in the mouse uterus. SMILE immunostaining was mainly expressed in the uterine luminal and glandular epithelium, and the expression levels of both SMILE mRNA and protein gradually decreased from days 1-3 of pregnancy, peaked on day 4, and then declined again on day 6. On day 5 of pregnancy, SMILE protein expression was detected only in the luminal epithelium at implantation sites compared with the expression at inter-implantation sites. SMILE protein was not detected in decidual cells from days 6-8 of pregnancy or artificial decidualisation. Furthermore, SMILE protein was not detected in the mouse uterus on days 3-6 of pseudopregnancy, and SMILE expression was also induced in the delayed-implantation uterus, indicating that the presence of an active blastocyst was required for SMILE expression at the implantation site. Oestrogen significantly stimulated SMILE expression in the ovariectomised mouse uterus. In addition, in cycling mice, high levels of SMILE protein and mRNA expression were also observed in proestrus and oestrus uteri. CONCLUSIONS Taken together, these results suggested that SMILE expression was closely related to mouse implantation and up-regulated by oestrogen.
Collapse
Affiliation(s)
- Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangguo Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinhua Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
42
|
Huang K, Huang J, Xie X, Wang S, Chen C, Shen X, Liu P, Huang H. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic Biol Med 2013; 65:528-540. [PMID: 23891678 DOI: 10.1016/j.freeradbiomed.2013.07.029] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/20/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
Advanced glycation end products (AGEs) boost the generation of reactive oxygen species (ROS) in glomerular mesangial cells (GMCs), and thereby play important roles in diabetic nephropathy (DN). Sirtuin 1 (Sirt1), a protein deacetylase, is known to markedly protect cells from oxidative stress (OSS) injury. Based on the critical involvements of AGEs and Sirt1 in OSS, Sirt1 is postulated to resist AGEs-induced diabetic renal fibrosis through its antioxidative effects. The current study was designed to explore the inhibitory effect of Sirt1 on the expressions of fibronectin (FN) and transforming growth factor-β1 (TGF-β1) induced by AGEs in GMCs. The molecular mechanism by which Sirt1 promoted the activation of the antioxidative pathway was further investigated. The following findings were obtained: (1) the treatment of GMCs with AGEs decreased Sirt1 levels in terms of protein expression and activity but increased FN and TGF-β1 levels in a dose- and time-dependent manner; (2) resveratrol or Sirt1 overexpression markedly increased Sirt1 levels and reduced FN and TGF-β1 expressions; (3) inhibition of Sirt1 activity further induced the productions of FN and TGF-β1; (4) Sirt1 promoted the nuclear accumulation, DNA binding, and transcriptional activities of Nrf2 and upregulated the expressions of Nrf2 downstream genes, heme oxygenase-1, and superoxide dismutase 1; ROS levels induced by AGEs eventually reduced in a deacetylase-dependent manner; and (5) with the deposition of AGEs in the kidneys, the diabetic rats suffered severe renal dysfunction and high OSS levels; resveratrol treatment evidently diminished the OSS levels, ameliorated renal injury, and prevented the expressions of FN and TGF-β1 in the kidneys of diabetic rats. This work supports a negative role of Sirt1 in AGE-induced overproductions of FN and TGF-β1. The molecular mechanisms that underlie the beneficial effects of Sirt1 on DN correlate well with the activation of the Nrf2/ARE antioxidative pathway.
Collapse
Affiliation(s)
- Kaipeng Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou, 510006, China
| | - Juan Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou, 510006, China
| | - Xi Xie
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou, 510006, China
| | - Shaogui Wang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou, 510006, China
| | - Cheng Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou, 510006, China
| | - Xiaoyan Shen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou, 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou, 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou, 510006, China.
| |
Collapse
|
43
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
44
|
Lee JM, Gang GT, Kim DK, Kim YD, Koo SH, Lee CH, Choi HS. Ursodeoxycholic acid inhibits liver X receptor α-mediated hepatic lipogenesis via induction of the nuclear corepressor SMILE. J Biol Chem 2013; 289:1079-91. [PMID: 24265317 DOI: 10.1074/jbc.m113.491522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small heterodimer partner interacting leucine zipper protein (SMILE) has been identified as a nuclear corepressor of the nuclear receptor (NRs) family. Here, we examined the role of SMILE in the regulation of nuclear receptor liver X receptor (LXR)-mediated sterol regulatory element binding protein-1c (SREBP-1c) gene expression. We found that SMILE inhibited T0901317 (T7)-induced transcriptional activity of LXR, which functions as a major regulator of lipid metabolism by inducing SREBP-1c, fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) gene expression. Moreover, we demonstrated that SMILE physically interacts with LXR and represses T7-induced LXR transcriptional activity by competing with coactivator SRC-1. Adenoviral overexpression of SMILE (Ad-SMILE) attenuated fat accumulation and lipogenic gene induction in the liver of T7 administered or of high fat diet (HFD)-fed mice. Furthermore, we investigated the mechanism by which ursodeoxycholic acid (UDCA) inhibits LXR-induced lipogenic gene expression. Interestingly, UDCA treatment significantly increased SMILE promoter activity and gene expression in an adenosine monophosphate-activated kinase-dependent manner. Furthermore, UDCA treatment repressed T7-induced SREBP-1c, FAS, and ACC protein levels, whereas knockdown of endogenous SMILE gene expression by adenovirus SMILE shRNA (Ad-shSMILE) significantly reversed UDCA-mediated repression of SREBP-1c, FAS, and ACC protein levels. Collectively, these results demonstrate that UDCA activates SMILE gene expression through adenosine monophosphate-activated kinase phosphorylation, which leads to repression of LXR-mediated hepatic lipogenic enzyme gene expression.
Collapse
Affiliation(s)
- Ji-Min Lee
- From the National Creative Research Initiatives Center for Nuclear Receptor Signals and
| | | | | | | | | | | | | |
Collapse
|
45
|
Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology. Semin Immunopathol 2013; 36:27-53. [DOI: 10.1007/s00281-013-0406-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023]
|
46
|
Zhang R, Misra V. Effects of cyclic AMP response element binding protein-Zhangfei (CREBZF) on the unfolded protein response and cell growth are exerted through the tumor suppressor p53. Cell Cycle 2013; 13:279-92. [PMID: 24200963 DOI: 10.4161/cc.27053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zhangfei/CREBZF, a basic region-leucine zipper (bLZip) transcription factor, is a potent suppressor of growth and the unfolded protein response (UPR) in some cancer cell lines, including the canine osteosarcoma cell line, D-17. However, the effects of Zhangfei are not universal, and it has no obvious effects on untransformed cells and some cancer cell lines, suggesting that Zhangfei may act through an intermediary that is either not induced or is defective in cells that it does not affect. Here we identify the tumor suppressor protein p53 as this intermediary. We show the following: in cells ectopically expressing Zhangfei, the protein stabilizes p53 and co-localizes with it in cellular nuclei; the bLZip domain of Zhangfei is required for its profound effects on cell growth and interaction with p53. Suppression of p53 by siRNA at least partially inhibits the effects of Zhangfei on the UPR and cell growth. The effects of Zhangfei on D-17 cells is mirrored by its effects on the p53-expressing human osteosarcoma cell line U2OS, while Zhangfei has no effect on the p53-null osteosarcoma cell line MG63. In U2OS cells, Zhangfei displaces the E3 ubiquitin ligase mouse double minute homolog 2 (Mdm2) from its association with p53, suggesting a mechanism for the effects of Zhangfei on p53.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Microbiology; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| | - Vikram Misra
- Department of Microbiology; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| |
Collapse
|
47
|
Zhangfei/CREB-ZF - a potential regulator of the unfolded protein response. PLoS One 2013; 8:e77256. [PMID: 24155933 PMCID: PMC3796484 DOI: 10.1371/journal.pone.0077256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/02/2013] [Indexed: 12/27/2022] Open
Abstract
Cells respond to perturbations in the microenvironment of the endoplasmic reticulum (ER), and to the overloading of its capacity to process secretory and membrane-associate proteins, by activating the Unfolded Protein Response (UPR). Genes that mediate the UPR are regulated by three basic leucine-zipper (bLZip) motif-containing transcription factors – Xbp1s, ATF4 and ATF6. A failure of the UPR to achieve homeostasis and its continued stimulation leads to apoptosis. Mechanisms must therefore exist to turn off the UPR if it successfully restores normalcy. The bLZip protein Zhangfei/CREBZF/SMILE is known to suppress the ability of several, seemingly structurally unrelated, transcription factors. These targets include Luman/CREB3 and CREBH, ER-resident bLZip proteins known to activate the UPR in some cell types. Here we show that Zhangfei had a suppressive effect on most UPR genes activated by the calcium ionophore thapsigargin. This effect was at least partially due to the interaction of Zhangfei with Xbp1s. The leucine zipper of Zhangfei was required for this interaction, which led to the subsequent proteasomal degradation of Xbp1s. Zhangfei suppressed the ability of Xbp1s to activate transcription from a promoter containing unfolded protein response elements and significantly reduced the ability to Xbp1s to activate the UPR as measured by RNA and protein levels of UPR-related genes. Finally, specific suppression of endogenous Zhangfei in thapsigargin-treated primary rat sensory neurons with siRNA directed to Zhangfei transcripts, led to a significant increase in transcripts and proteins of UPR genes, suggesting a potential role for Zhangfei in modulating the UPR.
Collapse
|
48
|
Kim DK, Gang GT, Ryu D, Koh M, Kim YN, Kim SS, Park J, Kim YH, Sim T, Lee IK, Choi CS, Park SB, Lee CH, Koo SH, Choi HS. Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis. Diabetes 2013; 62:3093-102. [PMID: 23775767 PMCID: PMC3749343 DOI: 10.2337/db12-0946] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM.
Collapse
Affiliation(s)
- Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Gil-Tae Gang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dongryeol Ryu
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Yo-Na Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | - Su Sung Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | - Jinyoung Park
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Taebo Sim
- Chemical Kinomics Research Center, Future Convergence Research Division, Korean Institute of Science and Technology, Seoul, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine and World Class University Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
- Gil Medical Center, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul, Korea
- Corresponding authors: Hueng-Sik Choi, ; Seung-Hoi Koo, ; Chul-Ho Lee, ; and Seung Bum Park,
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Corresponding authors: Hueng-Sik Choi, ; Seung-Hoi Koo, ; Chul-Ho Lee, ; and Seung Bum Park,
| | - Seung-Hoi Koo
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
- Corresponding authors: Hueng-Sik Choi, ; Seung-Hoi Koo, ; Chul-Ho Lee, ; and Seung Bum Park,
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Research Institute of Medical Sciences, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- Corresponding authors: Hueng-Sik Choi, ; Seung-Hoi Koo, ; Chul-Ho Lee, ; and Seung Bum Park,
| |
Collapse
|
49
|
Chan CM, Fulton J, Montiel-Duarte C, Collins HM, Bharti N, Wadelin FR, Moran PM, Mongan NP, Heery DM. A signature motif mediating selective interactions of BCL11A with the NR2E/F subfamily of orphan nuclear receptors. Nucleic Acids Res 2013; 41:9663-79. [PMID: 23975195 PMCID: PMC3834829 DOI: 10.1093/nar/gkt761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite their physiological importance, selective interactions between nuclear receptors (NRs) and their cofactors are poorly understood. Here, we describe a novel signature motif (F/YSXXLXXL/Y) in the developmental regulator BCL11A that facilitates its selective interaction with members of the NR2E/F subfamily. Two copies of this motif (named here as RID1 and RID2) permit BCL11A to bind COUP-TFs (NR2F1;NR2F2;NR2F6) and Tailless/TLX (NR2E1), whereas RID1, but not RID2, binds PNR (NR2E3). We confirmed the existence of endogenous BCL11A/TLX complexes in mouse cortex tissue. No interactions of RID1 and RID2 with 20 other ligand-binding domains from different NR subtypes were observed. We show that RID1 and RID2 are required for BCL11A-mediated repression of endogenous γ-globin gene and the regulatory non-coding transcript Bgl3, and we identify COUP-TFII binding sites within the Bgl3 locus. In addition to their importance for BCL11A function, we show that F/YSXXLXXL/Y motifs are conserved in other NR cofactors. A single FSXXLXXL motif in the NR-binding SET domain protein NSD1 facilitates its interactions with the NR2E/F subfamily. However, the NSD1 motif incorporates features of both LXXLL and FSXXLXXL motifs, giving it a distinct NR-binding pattern in contrast to other cofactors. In summary, our results provide new insights into the selectivity of NR/cofactor complex formation.
Collapse
Affiliation(s)
- Chun Ming Chan
- Gene Regulation Group, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK, School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK and School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Misra J, Kim DK, Choi W, Koo SH, Lee CH, Back SH, Kaufman RJ, Choi HS. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response. Nucleic Acids Res 2013; 41:6960-74. [PMID: 23716639 PMCID: PMC3737538 DOI: 10.1093/nar/gkt429] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Orphan nuclear receptor ERRγ is a member of nuclear receptor superfamily that regulates several important cellular processes including hepatic glucose and alcohol metabolism. However, mechanistic understanding of transcriptional regulation of the ERRγ gene remains to be elucidated. Here, we report that activating transcription factor 6α (ATF6α), an endoplasmic reticulum (ER)-membrane–bound basic leucine zipper (bZip) transcription factor, directly regulates ERRγ gene expression in response to ER stress. ATF6α binds to ATF6α responsive element in the ERRγ promoter. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is required for this transactivation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding of both ATF6α and PGC1α on the ERRγ promoter. ChIP assay demonstrated histone H3 and H4 acetylation occurs at the ATF6α and PGC1α binding site. Of interest, ERRγ along with PGC1α induce ATF6α gene transcription upon ER stress. ERRγ binds to an ERRγ responsive element in the ATF6α promoter. ChIP assay confirmed that both ERRγ and PGC1α bind to a site in the ATF6α promoter that exhibits histone H3 and H4 acetylation. Overall, for the first time our data show a novel pathway of cross talk between nuclear receptors and ER-membrane–bound transcription factors and suggest a positive feed-forward loop regulates ERRγ and ATF6α gene transcription.
Collapse
Affiliation(s)
- Jagannath Misra
- Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|