1
|
Chakraborty S, Choudhuri A, Mishra A, Sengupta R. S-nitrosylation and S-glutathionylation: Lying at the forefront of redox dichotomy or a visible synergism? Biochem Biophys Res Commun 2025; 761:151734. [PMID: 40179738 DOI: 10.1016/j.bbrc.2025.151734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/06/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
The discovery of novel oxidoreductases and their specific functional revelations as cellular disulfide reductants, S-denitrosylases, or S-deglutathionylases, alongside the well-established major redoxins/antioxidant systems comprising thioredoxin and glutaredoxin, enlarges the spectrum of redox players in the intracellular milieu as well as pushes us to stand at the crossroads concerning the choice of antioxidants that can serve the benefit of catalyzing their cognate protein/non-protein substrates with better efficiencies than the rest. The complexity is extended to exploring the redundancy amongst the redoxin systems and identifying their overlapping or unique substrate preferences to intervene with oxidative or nitrosative stress-induced reversible protein posttranslational modifications such as S-nitrosylation and S-glutathionylation. Contrary to popular expectations of reiterating the theoretical and evidence-based existence of these modifications, the current review aims to take the first leap in delineating the logical reasons behind the competing susceptibility of reactive cysteine thiols toward either or both redox modifications and their subsequent extent of stability in the presence of cellular reductants (thioredoxin, glutaredoxin, thioredoxin-like mimetic or lipoic acid, dihydrolipoic acid, and glutathione), thus rebuilding the underpinnings of a 'redox-interactome' that can further pave the way for the global mapping of ideal substrates exhibiting stringencies or synergism in the context of translational redox research.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
2
|
Wei G, Wang D, Wang T, Wang G, Chai Y, Li Y, Mei M, Wang H, Huang A. Probiotic potential and safety properties of Limosilactobacillus fermentum A51 with high exopolysaccharide production. Front Microbiol 2025; 16:1498352. [PMID: 39906755 PMCID: PMC11790666 DOI: 10.3389/fmicb.2025.1498352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Introduction Exopolysaccharides (EPS) produced by Lactic acid bacteria have many health benefits and unique physicochemical properties. They are widely used in the food industry to improve viscosity, mouthfeel, and textural properties of foods. In our previous studies, Limosilactobacillus fermentum A51 (L. fermentum A51) isolated from yak yogurt exhibited high EPS production capacity and was applied to improve the texture of yogurt. In this study, whole genome sequencing analysis and corresponding in vitro assays were performed to investigate the probiotic potential and safety properties of L. fermentum A51. Results Scanning electron microscopy (SEM) observed that L. fermentum strain A51 adhered into clusters and its colony exhibited the obvious silk drawing phenomenon. Whole genome mapping revealed that L. fermentum A51 genome is 2,188,538 bp, and with an average guanine and cytosine (GC) content of 51.28%. PGAAP annotation identified 2,152 protein-encoding genes and 58 rRNAs, 15 tRNAs, and 5 5sRNAs. Hemolysis and antibiotic resistance tests, combined with the analysis of genes involved in antibiotic resistance, virulence factor, and hemolysins, suggested that L. fermentum A51 is safe. Fifty-one carbohydrate active enzyme genes in the whole genome sequence of L. fermentum A51 were annotated by carbohydrate active enzymes (CAZymes). Furthermore, L. fermentum A51 possesses adhesion, acid tolerance, bile salt tolerance, and heat tolerance genes (srtA, tuf, Bsh, nhaC, Ntn, cfa), antioxidant (nrfA, npr, nox2, tps), antibacterial genes (Idh and Dld) EPS synthesis-related genes (glf, epsG, gtf, Wzz, Wzx, Wzy), and signal molecule A1-2 synthesis-related genes (luxS, pfs). These probiotic genes were verified by quantitative real-time PCR. In vitro assays confirmed that L. fermentum A51 showed good tolerance to simulated gastrointestinal tract (8.49 log CFU/mL), 0.3% bile salt (39.06%), and possessed adhesion (86.92%), antioxidant (70.60-89.71%), and antimicrobial activities, as well as EPS and signaling molecule AI-2 synthesis capacities. Conclusion Collectively, our findings have confirmed that L. fermentum A51 is safe and exhibits good probiotic properties, thus recommending its potential application in the production of value-added fermented dairy products.
Collapse
Affiliation(s)
- Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Daodian Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan, China
| | - Teng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Gao Wang
- Heqing County Inspection and Testing Institute, Heqing, Yunnan, China
| | - Yunmei Chai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yufang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Minhui Mei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Chakraborty S, Mishra A, Choudhuri A, Bhaumik T, Sengupta R. Leveraging the redundancy of S-denitrosylases in response to S-nitrosylation of caspases: Experimental strategies and beyond. Nitric Oxide 2024; 149:18-31. [PMID: 38823434 DOI: 10.1016/j.niox.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of 'redox biochemistry' in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
4
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Qin H, Guo C, Chen B, Huang H, Tian Y, Zhong L. The C-terminal selenenylsulfide of extracellular/non-reduced thioredoxin reductase endows this protein with selectivity to small-molecule electrophilic reagents under oxidative conditions. Front Mol Biosci 2024; 11:1274850. [PMID: 38523661 PMCID: PMC10957665 DOI: 10.3389/fmolb.2024.1274850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Mammalian cytosolic thioredoxin reductase (TrxR1) serves as an antioxidant protein by transferring electrons from NADPH to various substrates. The action of TrxR1 is achieved via reversible changes between NADPH-reduced and non-reduced forms, which involves C-terminal selenolthiol/selenenylsulfide exchanges. TrxR1 may be released into extracellular environment, where TrxR1 is present mainly in the non-reduced form with active-site disulfide and selenenylsulfide bonds. The relationships between extracellular TrxR1 and tumor metastasis or cellular signaling have been discovered, but there are few reports on small-molecule compounds in targeted the non-reduced form of TrxR1. Using eight types of small-molecule thiol-reactive reagents as electrophilic models, we report that the selenenylsulfide bond in the non-reduced form of TrxR1 functions as a selector for the thiol-reactive reagents at pH 7.5. The non-reduced form of TrxR1 is resistant to hydrogen peroxide/oxidized glutathione, but is sensitive to certain electrophilic reagents in different ways. With 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and S-nitrosoglutathione (GSNO), the polarized selenenylsulfide bond breaks, and selenolate anion donates electron to the dynamic covalent bond in DTNB or GSNO, forming TNB-S-Se-TrxR1 complex or ON-Se-TrxR1 complex. The both complexes lose the ability to transfer electrons from NADPH to substrate. For diamide, the non-reduced TrxR1 actually prevents irreversible damage by this oxidant. This is consistent with the regained activity of TrxR1 through removal of diamide via dialysis. Diamide shows effective in the presence of human cytosolic thioredoxin (hTrx1), Cys residue(s) of which is/are preferentially affected by diamide to yield disulfide, hTrx1 dimer and the mixed disulfide between TrxR1-Cys497/Sec498 and hTrx1-Cys73. In human serum samples, the non-reduced form of TrxR1 exists as dithiothreitol-reducible polymer/complexes, which might protect the non-reduced TrxR1 from inactivation by certain electrophilic reagents under oxidative conditions, because cleavage of these disulfides can lead to regain the activity of TrxR1. The details of the selective response of the selenenylsulfide bond to electrophilic reagents may provide new information for designing novel small-molecule inhibitors (drugs) in targeted extracellular/non-reduced TrxR1.
Collapse
Affiliation(s)
- Huijun Qin
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chenchen Guo
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Bozhen Chen
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Huang
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Tian
- Chinese PLA General Hospital (301 Hospital), Beijing, China
| | - Liangwei Zhong
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Li Y, Liang K, Yuan L, Gao J, Wei L, Zhao L. The role of thioredoxin and glutathione systems in arsenic-induced liver injury in rats under glutathione depletion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:547-563. [PMID: 36528894 DOI: 10.1080/09603123.2022.2159016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Antioxidant systems like thioredoxin (Trx) and glutaredoxin (Grx) maintain oxidative stress balance. These systems have cross-talk supported by some in vitro studies. We investigated the underlying mechanisms of arsenic-induced liver injury in glutathione-deficient rats and whether there was any cross-talk between the Trx and Grx systems. The rats in arsenic-treated groups were administered with sodium arsenite (10, 20 mg/kg b w/d) for four weeks. In buthionine sulfoximine (BSO, an inhibitor of GSH) and 20 mg/kg arsenic combined groups, rats were injected with 2 mmol/kg BSO intraperitoneally twice per week. BSO exacerbated arsenic-induced liver injury by increasing arsenic accumulation in urine, serum, and liver while decreasing glutathione activity and resulting in upregulated mRNA expression of the Trx system and downregulation of Grx mRNA expression. The impact of Trx lasted longer than that of the Grx. The Trx system remained highly expressed, while GSH, Grx1, and Grx2 levels were decreased. The inhibitory effect of only BSO treatment on Grx1 and Grx2 was not pronounced. However, the combined impact of arsenic and BSO upregulated Trx expression, primarily related to further reduction of GSH. As a result, the suppressed Grxs were protected by the upregulated Trxs, which serve as a backup antioxidant defense system in the liver.
Collapse
Affiliation(s)
- Yuanyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Kun Liang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
- Department of Science and Education, Bayan Nur Hospital, Bayan Nur, China
| | - Lin Yuan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Jing Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
- Department of Public Health, Dalian Health Development Center, Dalian, China
| | - Linquan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| |
Collapse
|
7
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|
8
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. Ferroptosis: The functions of Nrf2 in human embryonic stem cells. Cell Signal 2023; 106:110654. [PMID: 36906163 DOI: 10.1016/j.cellsig.2023.110654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Human embryonic stem cells (hESCs) have the capacity of self-renewal as well as differentiation towards three germ layer derivatives which makes them as a source of therapeutic application. hESCs are tremendously prone to cell death after dissociation into single cells. Therefore, it technically hinders their applications. Our recent study has revealed that hESCs can be prone to ferroptosis which differs from those in earlier explorations reporting that cellular detachment results in a process cited as anoikis. Ferroptosis occurs via increasing intracellular iron. Therefore, this form of programmed cell death is distinct from other cell deaths in terms of biochemistry, morphology, and genetics. Ferroptosis is found by excessive iron which plays an important part role in reactive oxygen species (ROS) generation through the Fenton reaction as a cofactor. Many genes are related to ferroptosis under the control of nuclear factor erythroid 2-related factor 2 (Nrf2) which is a transcription factor regulating the expression of genes to protect cells from oxidative stress. Nrf2 was demonstrated to take a perilous role in the suppression of ferroptosis by regulating the iron, antioxidant defense enzymes, usage, and restoration of glutathione, thioredoxin, and NADPH. Mitochondrial function is another target of Nrf2 to control cell homeostasis through the modulation of ROS production. In this review, we will give a succinct overview of lipid peroxidation and discuss the major players in the ferroptotic cascade. Additionally, we discussed the important role of the Nrf2 signaling pathway in mediating lipid peroxidation and ferroptosis, with a focus on known Nrf2 target genes that inhibit these processes and their possible role in hESCs.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
9
|
Koner D, Nag N, Kalita P, Padhi AK, Tripathi T, Saha N. Functional expression, localization, and biochemical characterization of thioredoxin glutathione reductase from air-breathing magur catfish, Clarias magur. Int J Biol Macromol 2023; 230:123126. [PMID: 36603726 DOI: 10.1016/j.ijbiomac.2022.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
The glutathione (GSH) and thioredoxin (Trx) systems regulate cellular redox homeostasis and maintain antioxidant defense in most eukaryotes. We earlier reported the absence of gene coding for the glutathione reductase (GR) enzyme of the GSH system in the facultative air-breathing catfish, Clarias magur. Here, we identified three thioredoxin reductase (TrxR) genes, one of which was later confirmed as a thioredoxin glutathione reductase (TGR). We then characterized the novel recombinant TGR enzyme of C. magur (CmTGR). The tissue-specific expression of the txnrd genes and the tissue-specific activity of the TrxR enzyme were analyzed. The recombinant CmTGR is a dimer of ~133 kDa. The protein showed TrxR activity with 5,5'-diothiobis (2-nitrobenzoic acid) reduction assay with a Km of 304.40 μM and GR activity with a Km of 58.91 μM. Phylogenetic analysis showed that the CmTGR was related to the TrxRs of fishes and distantly related to the TGRs of platyhelminth parasites. The structural analysis revealed the conserved glutaredoxin active site and FAD- and NADPH-binding sites. To our knowledge, this is the first report of the presence of a TGR in any fish. This unusual presence of TGR in C. magur is crucial as it helps maintain redox homeostasis under environmental stressors-induced oxidative stress.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
10
|
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems. Antioxidants (Basel) 2022; 11:1921. [PMID: 36290644 PMCID: PMC9598160 DOI: 10.3390/antiox11101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Esha Sircar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sneha Bhatta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| |
Collapse
|
11
|
Wang J, Zhou J, Wang C, Fukunaga A, Li S, Yodoi J, Tian H. Thioredoxin-1: A Promising Target for the Treatment of Allergic Diseases. Front Immunol 2022; 13:883116. [PMID: 35572600 PMCID: PMC9095844 DOI: 10.3389/fimmu.2022.883116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Thioredoxin-1 (Trx1) is an important regulator of cellular redox homeostasis that comprises a redox-active dithiol. Trx1 is induced in response to various stress conditions, such as oxidative damage, infection or inflammation, metabolic dysfunction, irradiation, and chemical exposure. It has shown excellent anti-inflammatory and immunomodulatory effects in the treatment of various human inflammatory disorders in animal models. This review focused on the protective roles and mechanisms of Trx1 in allergic diseases, such as allergic asthma, contact dermatitis, food allergies, allergic rhinitis, and drug allergies. Trx1 plays an important role in allergic diseases through processes, such as antioxidation, inhibiting macrophage migration inhibitory factor (MIF), regulating Th1/Th2 immune balance, modulating allergic inflammatory cells, and suppressing complement activation. The regulatory mechanism of Trx1 differs from that of glucocorticoids that regulates the inflammatory reactions associated with immune response suppression. Furthermore, Trx1 exerts a beneficial effect on glucocorticoid resistance of allergic inflammation by inhibiting the production and internalization of MIF. Our results suggest that Trx1 has the potential for future success in translational research.
Collapse
Affiliation(s)
- Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
- Department of Research and Development, Jiaozhimei Biotechnology (Shaoxing) Co., Ltd., Shaoxing, China
| |
Collapse
|
12
|
Dong J, Ping L, Xie Q, Liu D, Zhao L, Evivie SE, Wang Z, Li B, Huo G. Lactobacillus plantarum KLDS1.0386 with antioxidant capacity ameliorates the lipopolysaccharide-induced acute liver injury in mice by NF-κB and Nrf2 pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Koner D, Banerjee B, Kumari A, Lanong AS, Snaitang R, Saha N. Molecular characterization of superoxide dismutase and catalase genes, and the induction of antioxidant genes under the zinc oxide nanoparticle-induced oxidative stress in air-breathing magur catfish (Clarias magur). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1909-1932. [PMID: 34609607 DOI: 10.1007/s10695-021-01019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The deduced amino acid sequences from the complete cDNA coding sequences of three antioxidant enzyme genes (sod1, sod2, and cat) demonstrated that phylogenetically the magur catfish (Clarias magur) is very much close to other bony fishes with complete conservation of active site residues among piscine, amphibian, and mammalian species. The three-dimensional structures of three antioxidant enzyme proteins are very much similar to mammalian counterparts, thereby suggesting the functional similarities of these enzymes. Exposure to ZnO NPs resulted in an oxidative stress as evidenced by an initial sharp rise of intracellular concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) but decreased gradually at later stages. The level of glutathione (GSH) also increased gradually in all the tissues examined after an initial decrease. Biochemical and gene expression analyses indicated that the magur catfish has the ability to defend the ZnO NP-induced oxidative stress by inducing the SOD/CAT enzyme system and also the GSH-related enzymes that are mediated through the activation of various antioxidant-related genes both at the transcriptional and translational levels in various tissues. Furthermore, it appeared that the stimulation of NO, as a consequence of induction nos2 gene, under NP-induced oxidative stress serves as a modulator to induce the SOD/CAT system in various tissues of magur catfish as an antioxidant strategy. Thus, it can be contemplated that the magur catfish possesses a very efficient antioxidant defensive mechanisms to defend against the oxidative stress and also from related cellular damages during exposure to ZnO NPs into their natural environment.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bodhisattwa Banerjee
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Annu Kumari
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Aquisha S Lanong
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Revelbornstar Snaitang
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
14
|
Onyibe PN, Edo GI, Nwosu LC, Ozgor E. Effects of vernonia amygdalina fractionate on glutathione reductase and glutathione-S-transferase on alloxan induced diabetes wistar rat. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Isei MO, Stevens D, Kamunde C. Temperature rise and copper exposure reduce heart mitochondrial reactive oxygen species scavenging capacity. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108999. [PMID: 33556536 DOI: 10.1016/j.cbpc.2021.108999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Mitochondria produce and scavenge reactive oxygen species (ROS); however, whether oxidative distress due to exogenous stress arises from excessive production or impaired scavenging remains unclear. We assessed the effect of copper (Cu) and thermal stress on kinetics of ROS (H2O2) consumption in mitochondria isolated from fish heart. Mitochondria were energized with succinate, glutamate-malate or palmitoylcarnitine (PC) and incubated with 1-25 μM Cu at 11 (control) and 23 °C. We found that H2O2 consumption capacity of heart mitochondria varies with substrate and is additively reduced by temperature rise and Cu. While Cu is a potent inhibitor of H2O2 consumption in mitochondria oxidizing glutamate-malate and succinate, mitochondria oxidizing PC are resistant to the inhibitory effect of the metal. Moreover, the sensitivity of H2O2 consumption pathways to Cu depend on the substrate and are greatly impaired during oxidation of glutamate-malate. Pharmacological manipulation of mitochondrial antioxidant systems revealed that NADPH-dependent peroxidase systems are the centerpieces of ROS scavenging in heart mitochondria, with the glutathione-dependent pathway being the most prominent while catalase played a minimal role. Surprisingly, Cu is as efficacious in inhibiting thioredoxin-dependent peroxidase pathway as auranofin, a selective inhibitor of thioredoxin reductase. Taken together, our study uncovered unique mechanisms by which Cu alters mitochondrial H2O2 homeostasis including its ability to inhibit specific mitochondrial ROS scavenging pathways on a par with conventional inhibitors. Importantly, because of additive inhibitory effect on mitochondrial ROS removal mechanisms, hearts of organisms jointly exposed to Cu and thermal stress are likely at increased risk of oxidative distress.
Collapse
Affiliation(s)
- Michael O Isei
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
16
|
Liu J, Huang J, Liu H, Chen C, Xu J, Zhong L. Elevated serum 4HNE plus decreased serum thioredoxin: Unique feature and implications for acute exacerbation of chronic obstructive pulmonary disease. PLoS One 2021; 16:e0245810. [PMID: 33493155 PMCID: PMC7833214 DOI: 10.1371/journal.pone.0245810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is a global problem with high mortality. Its pathogenesis is not fully understood. To reveal new serum feature of AECOPD and their potential implications, we have analyzed 180 serum samples, and found that in the serum of AECOPD patients, 4-hydroxy-2-nonenal (4HNE)-protein adducts are dynamically increased as partial pressure of oxygen (PaO2) drops, which is accompanied by progressively decreasing thioredoxin reductase (TrxR1) and thioredoxin (Trx1), as compared with those of healthy people. This phenomenon is unique, because acute hypoxia patients have 1.1-fold or 1.7-fold higher serum TrxR1 or Trx1 activity, respectively, than healthy people, in keeping with low 4HNE level. Moreover, serum 4HNE-protein adducts may form disulfide-linked complexes with high-molecular-weight, the amount of which is significantly increased during AECOPD. Serum 4HNE-protein adducts include 4HNE-Trx1 adduct and 4HNE-TrxR1 adduct, but only the former is significantly increased during AECOPD. Through cell biology, biochemistry and proteomics methods, we have demonstrated that extracellular 4HNE and 4HNE-Trx1 adduct affect human bronchial epithelial cells via different mechanisms. 4HNE-Trx1 adduct may significantly alter the expression of proteins involved mainly in RNA metabolism, but it has no effect on TrxR1/Trx1 expression and cell viability. On the other hand, low levels of 4HNE promote TrxR1/Trx1 expression and cell viability, while high levels of 4HNE inhibit TrxR1/Trx1 expression and cell viability, during which Trx1, at least in part, mediate the 4HNE action. Our data suggest that increasing serum 4HNE and decreasing serum Trx1 in AECOPD patients are closely related to the pathological processes of the disease. This finding also provides a new basis for AECOPD patients to use antioxidant drugs.
Collapse
Affiliation(s)
- Jia Liu
- Medical School, University of Chinese Academy of Sciences, Huai Rou, Beijing, China
| | - Jin Huang
- Medical School, University of Chinese Academy of Sciences, Huai Rou, Beijing, China
| | - Hu Liu
- Respiratory Department, Shanxi Bethune Hospital/Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Jianying Xu
- Respiratory Department, Shanxi Bethune Hospital/Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liangwei Zhong
- Medical School, University of Chinese Academy of Sciences, Huai Rou, Beijing, China
| |
Collapse
|
17
|
Ferroptosis-Related Flavoproteins: Their Function and Stability. Int J Mol Sci 2021; 22:ijms22010430. [PMID: 33406703 PMCID: PMC7796112 DOI: 10.3390/ijms22010430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis has been described recently as an iron-dependent cell death driven by peroxidation of membrane lipids. It is involved in the pathogenesis of a number of diverse diseases. From the other side, the induction of ferroptosis can be used to kill tumor cells as a novel therapeutic approach. Because of the broad clinical relevance, a comprehensive understanding of the ferroptosis-controlling protein network is necessary. Noteworthy, several proteins from this network are flavoenzymes. This review is an attempt to present the ferroptosis-related flavoproteins in light of their involvement in anti-ferroptotic and pro-ferroptotic roles. When available, the data on the structural stability of mutants and cofactor-free apoenzymes are discussed. The stability of the flavoproteins could be an important component of the cellular death processes.
Collapse
|
18
|
Jastrząb A, Skrzydlewska E. Regulacja układu zależnego od tioredoksyny jako element farmakoterapii w chorobach z zaburzeniami równowagi redoks. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
Działanie wielu czynników egzogennych, a także zaburzone procesy metaboliczne komórek przyczyniają się do nasilonego wytwarzania oksydantów, a to zaburza równowagę redoks, wywołując zmiany metaboliczne, w tym śmierci lub transformacji nowotworowej komórek. Jednak każda komórka zawiera antyoksydanty, które mają zapobiegać tego typu sytuacjom. Jednym z układów antyoksydacyjnych, funkcjonujących w komórkach, jest układ zależny od tioredoksyny, w skład którego wchodzą: tioredoksyna (Trx), reduktaza tioredoksyny (TrxR) oraz peroksydaza tioredoksyny (TPx), które mogą redukować utlenione składniki komórek kosztem fosforanu dinukleotydu nikotynoamidoadeninowego (NADPH). Działanie takie wynika z budowy przestrzennej Trx oraz TrxR, która umożliwia wytworzenie wewnątrzcząsteczkowego mostka disulfidowego w obrębie cząsteczki tioredoksyny oraz dwóch międzycząsteczkowych mostków selenosulfidowych w obrębie dimeru reduktazy tioredoksyny. Inną, równie istotną funkcją układu zależnego od tioredoksyny jest regulowanie ekspresji wielu białek za pośrednictwem takich czynników jak czynnik transkrypcyjnego NF-κB oraz kinaza regulująca apoptozę (ASK-1), które uruchamiają kaskady przemian metabolicznych prowadzących ostatecznie do proliferacji lub apoptozy komórek. Wzrost ekspresji/aktywności składników systemu zależnego od Trx obserwuje się w rozwoju wielu nowotworów. Dlatego też poszukiwanie selektywnych inhibitorów tioredoksyny lub reduktazy tioredoksyny jest obecnie jednym z głównych kierunków badań w farmakoterapii nowotworów. Wykazano, że wiele naturalnie występujących związków polifenolowych pochodzenia naturalnego o działaniu antyoksydacyjnym (np. kwercetyna czy kurkumina) powoduje inaktywację układu Trx-TrxR. Jednocześnie wiele syntetycznych związków, w tym związki kompleksowe, które stosowane są w terapii przeciwnowotworowej (np. cisplatyna, auranofina, moteksafina gadolinu), również hamują działanie układu zależnego od Trx.
Collapse
Affiliation(s)
- Anna Jastrząb
- Zakład Chemii Nieorganicznej i Analitycznej , Uniwersytet Medyczny w Białymstoku
| | | |
Collapse
|
19
|
Song S, Gao Y, Sheng Y, Rui T, Luo C. Targeting NRF2 to suppress ferroptosis in brain injury. Histol Histopathol 2020; 36:383-397. [PMID: 33242213 DOI: 10.14670/hh-18-286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain injury is accompanied by serious iron metabolism disorder and oxidative stress. As a novel form of regulated cell death (RCD) depending on lipid peroxidation caused by iron overload, ferroptosis (FPT) further aggravates brain injury, which is different from apoptosis, autophagy and other traditional cell death in terms of biochemistry, morphology and genetics. Noteworthy, transcriptional regulator NRF2 plays a key role in the cell antioxidant system, and many genes related to FPT are under the control of NRF2, including genes for iron regulation, thiol-dependent antioxidant system, enzymatic detoxification of RCS and carbonyls, NADPH regeneration and ROS sources from mitochondria or extra-mitochondria, which place NRF2 in the key position of regulating the ferroptotic death. Importantly, NRF2 can reduce iron load and resist FPT. In the future, it is expected to open up a new way to treat brain injury by targeting NRF2 to alleviate FPT in brain.
Collapse
Affiliation(s)
- Shunchen Song
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yaxuan Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yi Sheng
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
20
|
Zhang J, Hao H, Wu X, Wang Q, Chen M, Feng Z, Chen H. The functions of glutathione peroxidase in ROS homeostasis and fruiting body development in Hypsizygus marmoreus. Appl Microbiol Biotechnol 2020; 104:10555-10570. [PMID: 33175244 DOI: 10.1007/s00253-020-10981-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Glutathione peroxidase (GPX) is one of the most important antioxidant enzymes for maintaining reactive oxygen species (ROS) homeostasis. Although studies on fungi have suggested many important physiological functions of GPX, few studies have examined the role of this enzyme in Basidiomycetes, particularly its functions in fruiting body developmental processes. In the present study, GPX-silenced (GPxi) strains were obtained by using RNA interference. The GPxi strains of Hypsizygus marmoreus showed defects in mycelial growth and fruiting body development. In addition, the results indicated essential roles of GPX in controlling ROS homeostasis by regulating intracellular H2O2 levels, maintaining GSH/GSSG balance, and promoting antioxidant enzyme activity. Furthermore, lignocellulose enzyme activity levels were reduced and the mitochondrial phenotype and mitochondrial complex activity levels were changed in the H. marmoreus GPxi strains, possibly in response to impediments to mycelial growth and fruiting body development. These findings indicate that ROS homeostasis has a complex influence on growth, fruiting body development, GSH/GSSG balance, and carbon metabolism in H. marmoreus.Key points• ROS balance, energy metabolism, fruiting development.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Xuelan Wu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.,College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing, 210095, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
21
|
Shu N, Hägglund P, Cai H, Hawkins CL, Davies MJ. Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway. Redox Biol 2019; 29:101400. [PMID: 31926625 PMCID: PMC6926358 DOI: 10.1016/j.redox.2019.101400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/27/2023] Open
Abstract
Quinones can modify biological molecules through both redox-cycling reactions that yield radicals (semiquinone, superoxide and hydroxyl) and via covalent adduction to nucleophiles (e.g. thiols and amines). Kinetic data indicate that Cys residues in GSH and proteins are major targets. In the studies reported here, the interactions of a prototypic quinone compound, p-benzoquinone (BQ), with the key redox protein, thioredoxin-1 (Trx1) were examined. BQ binds covalently with isolated Trx1 forming quinoprotein adducts, resulting in a concentration-dependent loss of enzyme activity and crosslink formation. Mass spectrometry peptide mass mapping data indicate that BQ forms adducts with all of the Trx1 Cys residues. Glutathione (GSH) reacts competitively with BQ, and thereby modulates the loss of activity and crosslink formation. Exposure of macrophage-like (J774A.1) cells to BQ results in a dose-dependent loss of Trx and thioredoxin reductase (TrxR) activities, quinoprotein formation, and a decrease in GSH levels without a concomitant increase in oxidized glutathione. GSH depletion aggravates the loss of Trx and TrxR activity. These data are consistent with adduction of GSH to BQ being a primary protective pathway. Reaction of BQ with Trx in cells resulted in the activation of apoptosis signal-regulating kinase 1 (ASK1), and p38 mitogen-activated protein kinase (MAPK) leading to apoptotic cell death. These data suggest that BQ reacts covalently with Cys residues in Trx, including at the active site, leading to enzyme inactivation and protein cross-linking. Modification of the Cys residues in Trx also results in activation of the ASK1/p38-MAPK signalling pathway and promotion of apoptotic cell death. Quinone (e.g. p-benzoquinone, BQ) toxicity is linked to Michael adduction reactions. Adduction of BQ to Cys residues in proteins are rapid (≤105 M−1 s−1) and selective. BQ reaction with Cys inactivates thioredoxin (Trx) and yields quinone- and disulfide-linked dimers. GSH reacts competitively with BQ and modulates damage, without GSSG formation. BQ activates ASK1 and p38 pathways and induced apoptosis in cells via Trx damage.
Collapse
Affiliation(s)
- Nan Shu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
22
|
The effect of short-term methionine restriction on glutathione synthetic capacity and antioxidant responses at the whole tissue and mitochondrial level in the rat liver. Exp Gerontol 2019; 127:110712. [PMID: 31472257 DOI: 10.1016/j.exger.2019.110712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022]
Abstract
Dietary methionine restriction (MR) where methionine is the sole source of sulfur amino acid increases lifespan in diverse species. Methionine restricted rodents experience a decrease in glutathione (GSH), a major antioxidant, in several tissues, which is paradoxical to longevity interventions because tissues with low GSH might experience more oxidative damage. Liver plays a key role in GSH synthesis and here we examined how MR influences GSH metabolism in the liver. We also hypothesised that low GSH might be subsidized by compensatory pathway(s) in the liver. To investigate GSH synthesis and antioxidant responses, Fischer-344 rats were given either a MR diet or a control diet for 8 weeks. Based on γ-glutamylcysteine synthetase activity, GSH synthetic capacity did not respond to low dietary methionine availability. Tissue level protein and lipid oxidation markers do not support elevated oxidative damage, despite low GSH availability. Whole tissue and mitochondrial level responses to MR differed. Specifically, the activity of glutathione reductase and thioredoxin reductase increase in whole liver tissue which might offset the effects of declined GSH availability whereas mitochondrial GSH levels were unperturbed by MR. Moreover, enhanced proton leak in liver mitochondria by MR (4 week) presumably diminishes ROS production. Taken together, we suggest that the effect of low GSH in liver tissue is subsidized, at least in part, by increased antioxidant activity and possibly by enhanced mitochondrial proton leak.
Collapse
|
23
|
Foley TD. Reductive Reprogramming: A Not-So-Radical Hypothesis of Neurodegeneration Linking Redox Perturbations to Neuroinflammation and Excitotoxicity. Cell Mol Neurobiol 2019; 39:577-590. [PMID: 30904976 PMCID: PMC11462848 DOI: 10.1007/s10571-019-00672-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Free radical-mediated oxidative stress, neuroinflammation, and excitotoxicity have long been considered insults relevant to the progression of Alzheimer's disease and other aging-related neurodegenerative disorders (NDD). Among these phenomena, the significance of oxidative stress and, more generally, redox perturbations, for NDD remain ill-defined and unsubstantiated. Here, I argue that (i) free radical-mediated oxidations of biomolecules can be dissociated from the progression of NDD, (ii) oxidative stress fails as a descriptor of cellular redox states under conditions relevant to disease, and (iii) aberrant upregulation of compensatory reducing activities in neural cells, resulting in reductive shifts in thiol-based redox potentials, may be an overlooked and paradoxical contributor to disease progression. In particular, I summarize evidence which supports the view that reductive shifts in the extracellular space can occur in response to oxidant and inflammatory signals and that these have the potential to reduce putative regulatory disulfide bonds in exofacial domains of the N-methyl-D-aspartate receptor, leading potentially to aberrant increases in neuronal excitability and, if sustained, excitotoxicity. The novel reductive reprogramming hypothesis of neurodegeneration presented here provides an alternative view of redox perturbations in NDD and links these to both neuroinflammation and excitotoxicity.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry and Neuroscience Program, University of Scranton, Scranton, PA, 18510, USA.
| |
Collapse
|
24
|
Mikheyeva IV, Thomas JM, Kolar SL, Corvaglia AR, Gaϊa N, Leo S, Francois P, Liu GY, Rawat M, Cheung AL. YpdA, a putative bacillithiol disulfide reductase, contributes to cellular redox homeostasis and virulence in Staphylococcus aureus. Mol Microbiol 2019; 111:1039-1056. [PMID: 30636083 DOI: 10.1111/mmi.14207] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2018] [Indexed: 11/28/2022]
Abstract
The intracellular redox environment of Staphylococcus aureus is mainly buffered by bacillithiol (BSH), a low molecular weight thiol. The identity of enzymes responsible for the recycling of oxidized bacillithiol disulfide (BSSB) to the reduced form (BSH) remains elusive. We examined YpdA, a putative bacillithiol reductase, for its role in maintaining intracellular redox homeostasis. The ypdA mutant showed increased levels of BSSB and a lower bacillithiol redox ratio vs. the isogenic parent, indicating a higher level of oxidative stress within the bacterial cytosol. We showed that YpdA consumed NAD(P)H; and YpdA protein levels were augmented in response to stress. Wild type strains overexpressing YpdA showed increased tolerance to oxidants and electrophilic agents. Importantly, YpdA overexpression in the parental strain caused an increase in BSH levels accompanied by a decrease in BSSB concentration in the presence of stress, resulting in an increase in bacillithiol redox ratio vs. the vector control. Additionally, the ypdA mutant exhibited decreased survival in human neutrophils (PMNs) as compared with the parent, while YpdA overexpression protected the resulting strain from oxidative stress in vitro and from killing by human neutrophils ex vivo. Taken together, these data present a new role for YpdA in S. aureus physiology and virulence through the bacillithiol system.
Collapse
Affiliation(s)
- Irina V Mikheyeva
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jason M Thomas
- Biology Department, California State University, Fresno, Fresno, CA 93740, USA
| | - Stacey L Kolar
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna-Rita Corvaglia
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - Nadia Gaϊa
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - Stefano Leo
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - Patrice Francois
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - George Y Liu
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mamta Rawat
- Biology Department, California State University, Fresno, Fresno, CA 93740, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
25
|
Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:240-251. [DOI: 10.1016/j.bbamcr.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
|
26
|
Su T, Si M, Zhao Y, Yao S, Che C, Liu Y, Chen C. Function of alkyl hydroperoxidase AhpD in resistance to oxidative stress in Corynebacterium glutamicum. J GEN APPL MICROBIOL 2019; 65:72-79. [DOI: 10.2323/jgam.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tao Su
- College of Life Sciences, Qufu Normal University
| | - Meiru Si
- College of Life Sciences, Qufu Normal University
| | - Yunfeng Zhao
- College of Life Sciences, Qufu Normal University
| | - Shumin Yao
- College of Life Sciences, Qufu Normal University
| | | | - Yan Liu
- School of Ggeography and Tourism, Qufu Normal University
| | - Can Chen
- College of Life Science and Agronomy, Zhoukou Normal University
| |
Collapse
|
27
|
Yan X, Zhang X, Wang L, Zhang R, Pu X, Wu S, Li L, Tong P, Wang J, Meng QH, Jensen VB, Girard L, Minna JD, Roth JA, Swisher SG, Heymach JV, Fang B. Inhibition of Thioredoxin/Thioredoxin Reductase Induces Synthetic Lethality in Lung Cancers with Compromised Glutathione Homeostasis. Cancer Res 2018; 79:125-132. [PMID: 30401714 DOI: 10.1158/0008-5472.can-18-1938] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/12/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Glutathione (GSH)/GSH reductase (GSR) and thioredoxin/thioredoxin reductase (TXNRD) are two major compensating thiol-dependent antioxidant pathways that maintain protein dithiol/disulfide balance. We hypothesized that functional deficiency in one of these systems would render cells dependent on compensation by the other system for survival, providing a mechanism-based synthetic lethality approach for treatment of cancers. The human GSR gene is located on chromosome 8p12, a region frequently lost in human cancers. GSR deletion was detected in about 6% of lung adenocarcinomas in The Cancer Genome Atlas database. To test whether loss of GSR sensitizes cancer cells to TXNRD inhibition, we knocked out or knocked down the GSR gene in human lung cancer cells and evaluated their response to the TXNRD inhibitor auranofin. GSR deficiency sensitized lung cancer cells to this agent. Analysis of a panel of 129 non-small cell lung cancer (NSCLC) cell lines revealed that auranofin sensitivity correlated with the expression levels of the GSR, glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone dehydrogenase 1 (NQO1) genes. In NSCLC patient-derived xenografts with reduced expression of GSR and/or GCLC, growth was significantly suppressed by treatment with auranofin. Together, these results provide a proof of concept that cancers with compromised expression of enzymes required for GSH homeostasis or with chromosome 8p deletions that include the GSR gene may be targeted by a synthetic lethality strategy with inhibitors of TXNRD. SIGNIFICANCE: These findings demonstrate that lung cancers with compromised expression of enzymes required for glutathione homeostasis, including reduced GSR gene expression, may be targeted by thioredoxin/thioredoxin reductase inhibitors.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ran Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xingxiang Pu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vanessa B Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology, The Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology, The Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
28
|
Jiang H, Wang H, De Ridder M. Targeting antioxidant enzymes as a radiosensitizing strategy. Cancer Lett 2018; 438:154-164. [PMID: 30223069 DOI: 10.1016/j.canlet.2018.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022]
Abstract
Radiotherapy represents a major anti-cancer modality and effectively kills cancer cells through generation of reactive oxygen species (ROS). However, cancer cells are commonly characterized by increased activity of ROS-scavenging enzymes in adaptation to intrinsic oxidative stress, leading to radioresistance. Abrogation of this defense network by pharmacological ROS insults therefore is shown to improve radioresponse in preclinical models; some of them are then tested in clinical trials. In this review, we address (1) the importance of ROS in radioresponse, (2) the main systems regulating redox homeostasis with a special focus on their prognostic effect and predictive role in radiotherapy, and (3) the potential radiosensitizers acting through inhibition of antioxidant enzymes.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
29
|
Lian G, Gnanaprakasam JNR, Wang T, Wu R, Chen X, Liu L, Shen Y, Yang M, Yang J, Chen Y, Vasiliou V, Cassel TA, Green DR, Liu Y, Fan TWM, Wang R. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. eLife 2018; 7:e36158. [PMID: 30198844 PMCID: PMC6152796 DOI: 10.7554/elife.36158] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
Upon antigen stimulation, T lymphocytes undergo dramatic changes in metabolism to fulfill the bioenergetic, biosynthetic and redox demands of proliferation and differentiation. Glutathione (GSH) plays an essential role in controlling redox balance and cell fate. While GSH can be recycled from Glutathione disulfide (GSSG), the inhibition of this recycling pathway does not impact GSH content and murine T cell fate. By contrast, the inhibition of the de novo synthesis of GSH, by deleting either the catalytic (Gclc) or the modifier (Gclm) subunit of glutamate-cysteine ligase (Gcl), dampens intracellular GSH, increases ROS, and impact T cell differentiation. Moreover, the inhibition of GSH de novo synthesis dampened the pathological progression of experimental autoimmune encephalomyelitis (EAE). We further reveal that glutamine provides essential precursors for GSH biosynthesis. Our findings suggest that glutamine catabolism fuels de novo synthesis of GSH and directs the lineage choice in T cells.
Collapse
Affiliation(s)
- Gaojian Lian
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
- Medical Research CenterUniversity of South ChinaHengyang, Hunan ProvinceChina
| | - JN Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Tingting Wang
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Ruohan Wu
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Lingling Liu
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Yuqing Shen
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Mao Yang
- Department of ImmunologySt. Jude Children’s Research HospitalMemphisUnited States
| | - Jun Yang
- Department of SurgerySt. Jude Children’s Research HospitalMemphisUnited States
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public HealthYale UniversityNew HavenUnited States
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public HealthYale UniversityNew HavenUnited States
| | - Teresa A Cassel
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
| | - Douglas R Green
- Department of ImmunologySt. Jude Children’s Research HospitalMemphisUnited States
| | - Yusen Liu
- Center for Perinatal ResearchThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusOhio, United States
| | - Teresa WM Fan
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| |
Collapse
|
30
|
Rashida Gnanaprakasam JN, Wu R, Wang R. Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity. Front Immunol 2018; 9:1075. [PMID: 29868027 PMCID: PMC5964129 DOI: 10.3389/fimmu.2018.01075] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
A robust adaptive immune response requires a phase of proliferative burst which is followed by the polarization of T cells into relevant functional subsets. Both processes are associated with dramatically increased bioenergetics demands, biosynthetic demands, and redox demands. T cells meet these demands by rewiring their central metabolic pathways that generate energy and biosynthetic precursors by catabolizing and oxidizing nutrients into carbon dioxide. Simultaneously, oxidative metabolism also produces reactive oxygen species (ROS), which are tightly controlled by antioxidants and plays important role in regulating T cell functions. In this review, we discuss how metabolic rewiring during T cell activation influence ROS production and antioxidant capacity.
Collapse
Affiliation(s)
- Josephin N Rashida Gnanaprakasam
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - Ruohan Wu
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - Ruoning Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| |
Collapse
|
31
|
Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Appl Microbiol Biotechnol 2018; 102:4995-5004. [DOI: 10.1007/s00253-018-9033-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
|
32
|
Kritsiligkou P, Chatzi A, Charalampous G, Mironov A, Grant CM, Tokatlidis K. Unconventional Targeting of a Thiol Peroxidase to the Mitochondrial Intermembrane Space Facilitates Oxidative Protein Folding. Cell Rep 2017; 18:2729-2741. [PMID: 28297675 PMCID: PMC5368413 DOI: 10.1016/j.celrep.2017.02.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/01/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Thiol peroxidases are conserved hydrogen peroxide scavenging and signaling molecules that contain redox-active cysteine residues. We show here that Gpx3, the major H2O2 sensor in yeast, is present in the mitochondrial intermembrane space (IMS), where it serves a compartment-specific role in oxidative metabolism. The IMS-localized Gpx3 contains an 18-amino acid N-terminally extended form encoded from a non-AUG codon. This acts as a mitochondrial targeting signal in a pathway independent of the hitherto known IMS-import pathways. Mitochondrial Gpx3 interacts with the Mia40 oxidoreductase in a redox-dependent manner and promotes efficient Mia40-dependent oxidative protein folding. We show that cells lacking Gpx3 have aberrant mitochondrial morphology, defective protein import capacity, and lower inner membrane potential, all of which can be rescued by expression of a mitochondrial-only form of Gpx3. Together, our data reveal a novel role for Gpx3 in mitochondrial redox regulation and protein homeostasis. A pool of yeast Gpx3 localizes to mitochondria via translation from a non-AUG codon Loss of Gpx3 causes defects in mitochondrial architecture and membrane potential Gpx3 interacts with the oxidative protein folding machinery in the IMS
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Afroditi Chatzi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Georgia Charalampous
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aleksandr Mironov
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
33
|
Abstract
SIGNIFICANCE Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
Collapse
Affiliation(s)
- Gaetano Calabrese
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 2 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| |
Collapse
|
34
|
Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death. Cell Death Dis 2017; 8:e3067. [PMID: 28981107 PMCID: PMC5680568 DOI: 10.1038/cddis.2017.412] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcoma (RMS) cells have recently been reported to be sensitive to oxidative stress. Therefore, we investigated whether concomitant inhibition of the two main antioxidant defense pathways, that is, the thioredoxin (TRX) and the glutathione (GSH) systems, presents a new strategy to trigger cell death in RMS. In this study, we discover that GSH-depleting agents, i.e. γ-glutamylcysteine synthetase inhibitor, buthionine sulfoximine (BSO) or the cystine/glutamate antiporter inhibitor erastin (ERA), synergize with thioredoxin reductase (TrxR) inhibitor auranofin (AUR) to induce cell death in RMS cells. Interestingly, AUR causes accumulation of ubiquitinated proteins when combined with BSO or ERA, in line with recent reports showing that AUR inhibits the proteasome besides TrxR. Consistently, AUR/BSO or AUR/ERA cotreatment increases ubiquitination and expression of the short-lived proteins NOXA and MCL-1, accompanied by increased binding of NOXA to MCL-1. Notably, NOXA knockdown significantly rescues RMS cells from AUR/BSO- or AUR/ERA-induced cell death. In addition, AUR acts together with BSO or ERA to stimulate BAX/BAK and caspase activation. Of note, BSO or ERA abolish the AUR-stimulated increase in GSH levels, leading to reduced GSH levels upon cotreatment. Although AUR/BSO or AUR/ERA cotreatment enhances reactive oxygen species (ROS) production, only thiol-containing antioxidants (i.e., N-acetylcysteine (NAC), GSH), but not the non-thiol-containing ROS scavenger α-Tocopherol consistently suppress AUR/BSO- and AUR/ERA-stimulated cell death in both cell lines. Importantly, re-supply of GSH or its precursor NAC completely prevents AUR/ERA- and AUR/BSO-induced accumulation of ubiquitinated proteins, NOXA upregulation and cell death, indicating that GSH depletion rather than ROS production is critical for AUR/BSO- or AUR/ERA-mediated cell death. Thus, by demonstrating that GSH-depleting agents enhance the antitumor activity of AUR, we highlight new treatment options for RMS by targeting the redox homeostasis.
Collapse
|
36
|
Hillion M, Imber M, Pedre B, Bernhardt J, Saleh M, Loi VV, Maaß S, Becher D, Astolfi Rosado L, Adrian L, Weise C, Hell R, Wirtz M, Messens J, Antelmann H. The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress. Sci Rep 2017; 7:5020. [PMID: 28694441 PMCID: PMC5504048 DOI: 10.1038/s41598-017-05206-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes and functions in post-translational thiol-modification by protein S-mycothiolation as emerging thiol-protection and redox-regulatory mechanism. Here, we have used shotgun-proteomics to identify 26 S-mycothiolated proteins in the pathogen Corynebacterium diphtheriae DSM43989 under hypochlorite stress that are involved in energy metabolism, amino acid and nucleotide biosynthesis, antioxidant functions and translation. The glyceraldehyde-3-phosphate dehydrogenase (GapDH) represents the most abundant S-mycothiolated protein that was modified at its active site Cys153 in vivo. Exposure of purified GapDH to H2O2 and NaOCl resulted in irreversible inactivation due to overoxidation of the active site in vitro. Treatment of GapDH with H2O2 or NaOCl in the presence of MSH resulted in S-mycothiolation and reversible GapDH inactivation in vitro which was faster compared to the overoxidation pathway. Reactivation of S-mycothiolated GapDH could be catalyzed by both, the Trx and the Mrx1 pathways in vitro, but demycothiolation by Mrx1 was faster compared to Trx. In summary, we show here that S-mycothiolation can function in redox-regulation and protection of the GapDH active site against overoxidation in C. diphtheriae which can be reversed by both, the Mrx1 and Trx pathways.
Collapse
Affiliation(s)
- Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Marcel Imber
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Brandán Pedre
- Center for Structural Biology, VIB, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Malek Saleh
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Sandra Maaß
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Leonardo Astolfi Rosado
- Center for Structural Biology, VIB, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christoph Weise
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Rüdiger Hell
- Plant Molecular Biology, Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Markus Wirtz
- Plant Molecular Biology, Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Joris Messens
- Center for Structural Biology, VIB, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany.
| |
Collapse
|
37
|
Han C, Kim MJ, Ding D, Park HJ, White K, Walker L, Gu T, Tanokura M, Yamasoba T, Linser P, Salvi R, Someya S. GSR is not essential for the maintenance of antioxidant defenses in mouse cochlea: Possible role of the thioredoxin system as a functional backup for GSR. PLoS One 2017; 12:e0180817. [PMID: 28686716 PMCID: PMC5501606 DOI: 10.1371/journal.pone.0180817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022] Open
Abstract
Glutathione reductase (GSR), a key member of the glutathione antioxidant defense system, converts oxidized glutathione (GSSG) to reduced glutathione (GSH) and maintains the intracellular glutathione redox state to protect the cells from oxidative damage. Previous reports have shown that Gsr deficiency results in defects in host defense against bacterial infection, while diquat induces renal injury in Gsr hypomorphic mice. In flies, overexpression of GSR extended lifespan under hyperoxia. In the current study, we investigated the roles of GSR in cochlear antioxidant defense using Gsr homozygous knockout mice that were backcrossed onto the CBA/CaJ mouse strain, a normal-hearing strain that does not carry a specific Cdh23 mutation that causes progressive hair cell degeneration and early onset of hearing loss. Gsr-/- mice displayed a significant decrease in GSR activity and GSH/GSSG ratios in the cytosol of the inner ears. However, Gsr deficiency did not affect ABR (auditory brainstem response) hearing thresholds, wave I amplitudes or wave I latencies in young mice. No histological abnormalities were observed in the cochlea of Gsr-/- mice. Furthermore, there were no differences in the activities of cytosolic glutathione-related enzymes, including glutathione peroxidase and glutamate-cysteine ligase, or the levels of oxidative damage markers in the inner ears between WT and Gsr-/- mice. In contrast, Gsr deficiency resulted in increased activities of cytosolic thioredoxin and thioredoxin reductase in the inner ears. Therefore, under normal physiological conditions, GSR is not essential for the maintenance of antioxidant defenses in mouse cochlea. Given that the thioredoxin system is known to reduce GSSG to GSH in multiple species, our findings suggest that the thioredoxin system can support GSSG reduction in the mouse peripheral auditory system.
Collapse
Affiliation(s)
- Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, United States of America
| | - Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
- Whitney Laboratory, University of Florida, St Augustine, FL, United States of America
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - Logan Walker
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States of America
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, University of Tokyo, Hongo, Tokyo, Japan
| | - Paul Linser
- Whitney Laboratory, University of Florida, St Augustine, FL, United States of America
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, United States of America
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
We aimed to evaluate the effects of acute heat stress (HS) and age on the redox state in broilers aged 21 and 42 days. We evaluated the expression of genes related to antioxidant capacity, the production of hydrogen peroxide (H2O2), and the activity of antioxidant enzymes in the liver, as well as oxidative stress markers in the liver and plasma. The experiment had a completely randomized factorial design with two thermal environments (thermoneutral and HS, 38°C for 24 h) and two ages (21 and 42 days). Twenty-one-day-old animals exposed to HS showed the highest thioredoxin reductase 1 (TrxR1) (P<0.0001) and glutathione synthetase (GSS) (P<0.0001) gene expression levels. Age influenced the expression of the thioredoxin (Trx) (P=0.0090), superoxide dismutase (SOD) (P=0.0194), glutathione reductase (GSR) (P<0.0001) and glutathione peroxidase 7 (GPx7) (P<0.0001) genes; we observed greater expression in birds at 21 days than at 42 days. Forty-two-day-old HS birds showed the highest H2O2 production (222.31 pmol dichlorofluorescein produced/min×mg mitochondrial protein). We also verified the effects of age and environment on the liver content of Glutathione (GSH) (P<0.0001 and P=0.0039, respectively) and catalase (CAT) enzyme activity (P=0.0007 and P=0.0004, respectively). Higher GSH content and lower CAT activity were observed in animals from the thermoneutral environment compared with the HS environment and in animals at 21 days compared with 42 days. Broilers at 42 days of age had higher plasma creatinine content (0.05 v. 0.01 mg/dl) and higher aspartate aminotransferase activity (546.50 v. 230.67 U/l) than chickens at 21 days of age. Our results suggest that under HS conditions, in which there is higher H2O2 production, 21-day-old broilers have greater antioxidant capacity than 42-day-old animals.
Collapse
|
39
|
The oxidation state of the cytoplasmic glutathione redox system does not correlate with replicative lifespan in yeast. NPJ Aging Mech Dis 2016; 2:16028. [PMID: 28721277 PMCID: PMC5515007 DOI: 10.1038/npjamd.2016.28] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 10/05/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022] Open
Abstract
What is cause and what is consequence of aging and whether reactive oxygen species (ROS) contribute to this phenomenon is debated since more than 50 years. Notwithstanding, little is known about the cellular buffer and redox systems in aging Saccharomyces cerevisiae, which is a model for aging stem cells. Using genetically encoded fluorescent sensors, we measured pH, H2O2 levels and the glutathione redox potential compartment-specific in the cytosol of living, replicatively aging yeast cells, growing under fermenting and respiratory conditions until the end of their lifespan. We found that the pH decreases under both conditions at later stages of the replicative lifespan. H2O2 levels increase in fermenting cells in the post-replicative stage, but increase continuously with age in respiring cells. The glutathione redox couple becomes also more oxidizing in respiring cells but surprisingly more reducing under fermenting conditions. In strains deleted for the gene encoding glutathione reductase Glr1, such a reduction of the glutathione redox couple with age is not observed. We demonstrate that in vivo Glr1 is activated at lower pH explaining the reduced glutathione potential. The deletion of glr1 dramatically increases the glutathione redox potential especially under respiratory conditions but does not reduce lifespan. Our data demonstrate that pH and the glutathione redox couple is linked through Glr1 and that yeast cells can cope with a high glutathione redox potential without impact on longevity. Our data further suggest that a breakdown of cellular energy metabolism marks the end of replicative lifespan in yeast.
Collapse
|
40
|
Wang Q, Zhou Y, Chen K, Ju X. Identification and characterization of an atypical 2-cys peroxiredoxin from the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:347-354. [PMID: 26969823 DOI: 10.1111/imb.12224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Peroxiredoxins (Prxs) play an important role in the protection of insects against the toxicity of reactive oxygen species. Here, we identified and characterized a novel, atypical 2-cysteine (Cys) peroxiredoxin (BmPrx3) from an expressed sequence tag database in a lepidopteran insect, Bombyx mori. The BmPrx3 cDNA contained an open reading frame of 684 bp that encodes a 228-amino-acid protein with a calculated molecular mass of 25 kDa. Sequence comparison revealed that BmPrx3 belongs to the atypical 2-Cys Prxs. Quantitative real-time PCR revealed that BmPrx3 can be detected in all tissues and developmental stages. Recombinant BmPrx3 purified from Escherichia coli exhibited antioxidant activity that removed hydrogen peroxide and protected DNA from oxidative damage. Disc diffusion and viability assays revealed that recombinant BmPrx3 increased bacterial survival under H2 O2 -mediated oxidative stress. In addition, quantitative real-time PCR analysis indicated that BmPrx3 transcription levels were significantly increased in response to various oxidative stresses. Furthermore, BmPrx3 transcription levels in the midgut were regulated by bacterial infection. Taken together, these results suggest that BmPrx3 acts as an antioxidant enzyme to protect the silkworm from various oxidative stresses.
Collapse
Affiliation(s)
- Q Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Y Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - K Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - X Ju
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
41
|
Kim IS, Kim YS, Kim YH, Park AK, Kim HW, Lee JH, Yoon HS. Potential Application of the Oryza sativa Monodehydroascorbate Reductase Gene (OsMDHAR) to Improve the Stress Tolerance and Fermentative Capacity of Saccharomyces cerevisiae. PLoS One 2016; 11:e0158841. [PMID: 27392090 PMCID: PMC4938589 DOI: 10.1371/journal.pone.0158841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/22/2016] [Indexed: 02/06/2023] Open
Abstract
Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) is an important enzyme for ascorbate recycling. To examine whether heterologous expression of MDHAR from Oryza sativa (OsMDHAR) can prevent the deleterious effects of unfavorable growth conditions, we constructed a transgenic yeast strain harboring a recombinant plasmid carrying OsMDHAR (p426GPD::OsMDHAR). OsMDHAR-expressing yeast cells displayed enhanced tolerance to hydrogen peroxide by maintaining redox homoeostasis, proteostasis, and the ascorbate (AsA)-like pool following the accumulation of antioxidant enzymes and molecules, metabolic enzymes, and molecular chaperones and their cofactors, compared to wild-type (WT) cells carrying vector alone. The addition of exogenous AsA or its analogue isoascorbic acid increased the viability of WT and ara2Δ cells under oxidative stress. Furthermore, the survival of OsMDHAR-expressing cells was greater than that of WT cells when cells at mid-log growth phase were exposed to high concentrations of ethanol. High OsMDHAR expression also improved the fermentative capacity of the yeast during glucose-based batch fermentation at a standard cultivation temperature (30°C). The alcohol yield of OsMDHAR-expressing transgenic yeast during fermentation was approximately 25% (0.18 g·g-1) higher than that of WT yeast. Accordingly, OsMDHAR-expressing transgenic yeast showed prolonged survival during the environmental stresses produced during fermentation. These results suggest that heterologous OsMDHAR expression increases tolerance to reactive oxygen species-induced oxidative stress by improving cellular redox homeostasis and improves survival during fermentation, which enhances fermentative capacity.
Collapse
Affiliation(s)
- Il-Sup Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (I-SK); (H-SY)
| | - Young-Saeng Kim
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yul-Ho Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, Republic of Korea
| | - Ae-Kyung Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Han-Woo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Jun-Hyuk Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Ho-Sung Yoon
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (I-SK); (H-SY)
| |
Collapse
|
42
|
Wang X, Hai C. Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 2016; 43:607-28. [DOI: 10.1007/s11033-016-4022-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
|
43
|
Kowalec P, Grynberg M, Pająk B, Socha A, Winiarska K, Fronk J, Kurlandzka A. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov048. [PMID: 26091838 DOI: 10.1093/femsyr/fov048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/25/2022] Open
Abstract
Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.
Collapse
Affiliation(s)
- Piotr Kowalec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Pająk
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Anna Socha
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Jan Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
44
|
Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules 2015; 20:10511-34. [PMID: 26060916 PMCID: PMC6272303 DOI: 10.3390/molecules200610511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.
Collapse
|
45
|
Tillmann AT, Strijbis K, Cameron G, Radmaneshfar E, Thiel M, Munro CA, MacCallum DM, Distel B, Gow NAR, Brown AJP. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans. PLoS One 2015; 10:e0126940. [PMID: 26039593 PMCID: PMC4454436 DOI: 10.1371/journal.pone.0126940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C. albicans: glutathione reductase (Glr1) and the S-nitrosoglutathione reductase (GSNOR), Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is induced in response to oxidative stress and is required for resistance to macrophage killing. GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays NO adaptation and increases NO sensitivity. C. albicans fdh3⎔ cells are also sensitive to formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3 is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in the Galleria mellonella and mouse models of systemic infection. We conclude that Glr1 and Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative and formaldehyde stress, and hence during the colonisation of the host. Our findings emphasise the importance of the glutathione system and the maintenance of intracellular redox homeostasis in this major pathogen.
Collapse
Affiliation(s)
- Anna T. Tillmann
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Karin Strijbis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gary Cameron
- Division of Applied Medicine, Mass Spectrometry Section, University of Aberdeen, Aberdeen, United Kingdom
| | - Elahe Radmaneshfar
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom
| | - Marco Thiel
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom
| | - Carol A. Munro
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Neil A. R. Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
46
|
Wadley AJ, Chen YW, Bennett SJ, Lip GYH, Turner JE, Fisher JP, Aldred S. Monitoring changes in thioredoxin and over-oxidised peroxiredoxin in response to exercise in humans. Free Radic Res 2015; 49:290-8. [PMID: 25547896 DOI: 10.3109/10715762.2014.1000890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Peroxiredoxin (PRDX) and thioredoxin (TRX) are antioxidant proteins that control cellular signalling and redox balance, although their response to exercise is unknown. This study aimed to assess key aspects of the PRDX-TRX redox cycle in response to three different modes of exercise. METHODS Healthy males (n = 10, mean ± SD: 22 ± 3 yrs) undertook three exercise trials on separate days: two steady-state cycling trials at moderate (60% [Formula: see text]O2MAX; 27 min, MOD) and high (80% [Formula: see text]O2MAX; 20 min, HIGH) intensities, and a low-volume high-intensity interval training trial (10 × 1 min 90% [Formula: see text]O2MAX, LV-HIIT). Peripheral blood mononuclear cells were assessed for TRX-1 and over-oxidised PRDX (isoforms I-IV) protein expression before, during, and 30 min following exercise (post + 30). The activities of TRX reductase (TRX-R) and the nuclear factor kappa B (NF-κB) p65 subunit were also assessed. RESULTS TRX-1 increased during exercise in all trials (MOD, + 84.5%; HIGH, + 64.1%; LV-HIIT, + 205.7%; p < 05), whereas over-oxidised PRDX increased during HIGH only (MOD, - 28.7%; HIGH, + 202.9%; LV-HIIT, - 22.7%; p < .05). TRX-R and NF-κB p65 activity increased during exercise in all trials, with the greatest response in TRX-R activity seen in HIGH (p < 0.05). DISCUSSION All trials stimulated a transient increase in TRX-1 protein expression during exercise. Only HIGH induced a transient over-oxidation of PRDX, alongside the greatest change in TRX-R activity. Future studies are needed to clarify the significance of heightened peroxide exposure during continuous high-intensity exercise and the mechanisms of PRDX-regulatory control.
Collapse
Affiliation(s)
- A J Wadley
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham , Edgbaston, Birmingham , UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Floen MJ, Forred BJ, Bloom EJ, Vitiello PF. Thioredoxin-1 redox signaling regulates cell survival in response to hyperoxia. Free Radic Biol Med 2014; 75:167-77. [PMID: 25106706 PMCID: PMC4174305 DOI: 10.1016/j.freeradbiomed.2014.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/28/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
The most common form of newborn chronic lung disease, bronchopulmonary dysplasia (BPD), is thought to be caused by oxidative disruption of lung morphogenesis, which results in decreased pulmonary vasculature and alveolar simplification. Although cellular redox status is known to regulate cellular proliferation and differentiation, redox-sensitive pathways associated with these processes in developing pulmonary epithelium are unknown. Redox-sensitive pathways are commonly regulated by cysteine thiol modifications. Therefore two thiol oxidoreductase systems, thioredoxin and glutathione, were chosen to elucidate the roles of these pathways on cell death. Studies herein indicate that thiol oxidation contributes to cell death through impaired activity of glutathione-dependent and thioredoxin (Trx) systems and altered signaling through redox-sensitive pathways. Free thiol content decreased by 71% with hyperoxic (95% oxygen) exposure. Increased cell death was observed during oxygen exposure when either the Trx or the glutathione-dependent system was pharmacologically inhibited with aurothioglucose (ATG) or buthionine sulfoximine, respectively. However, inhibition of the Trx system yielded the smallest decrease in free thiol content (1.44% with ATG treatment vs 21.33% with BSO treatment). Although Trx1 protein levels were unchanged, Trx1 function was impaired during hyperoxic treatment as indicated by progressive cysteine oxidation. Overexpression of Trx1 in H1299 cells utilizing an inducible construct increased cell survival during hyperoxia, whereas siRNA knockdown of Trx1 during oxygen treatment reduced cell viability. Overall, this indicated that a comparatively small pool of proteins relies on Trx redox functions to mediate cell survival in hyperoxia, and the protective functions of Trx1 are progressively lost by its oxidative inhibition. To further elucidate the role of Trx1, potential Trx1 redox protein-protein interactions mediating cytoprotection and cell survival pathways were determined by utilizing a substrate trap (mass action trapping) proteomics approach. With this method, known Trx1 targets were detected, including peroxiredoxin-1as well as novel targets, including two HSP90 isoforms (HSP90AA1 and HSP90AB1). Reactive cysteines within the structure of HSP90 are known to modulate its ATPase-dependent chaperone activity through disulfide formation and S-nitrosylation. Whereas HSP90 expression is unchanged at the protein level during hyperoxic exposure, siRNA knockdown significantly increased hyperoxic cell death by 2.5-fold, indicating cellular dependence on HSP90 chaperone functions in response to hyperoxic exposure. These data support the hypothesis that hyperoxic impairment of Trx1 has a negative impact on HSP90-oxidative responses critical to cell survival, with potential implications for pathways implicated in lung development and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Miranda J Floen
- Basic Biomedical Sciences and The University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Benjamin J Forred
- Children׳s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Elliot J Bloom
- Children׳s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Peter F Vitiello
- Department of Pediatrics, The University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA; Children׳s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA.
| |
Collapse
|
48
|
Björnberg O, Efler P, Ebong ED, Svensson B, Hägglund P. Lactococcus lactis TrxD represents a subgroup of thioredoxins prevalent in Gram-positive bacteria containing WCXDC active site motifs. Arch Biochem Biophys 2014; 564:164-72. [PMID: 25255970 DOI: 10.1016/j.abb.2014.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/31/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Three protein disulfide reductases of the thioredoxin superfamily from the industrially important Gram-positive Lactococcus lactis (LlTrxA, LlTrxD and LlNrdH) are compared to the "classical" thioredoxin from Escherichia coli (EcTrx1). LlTrxA resembles EcTrx1 with a WCGPC active site motif and other key residues conserved. By contrast, LlTrxD is more distantly related and contains a WCGDC motif. Bioinformatics analysis suggests that LlTrxD represents a subgroup of thioredoxins from Gram-positive bacteria. LlNrdH is a glutaredoxin-like electron donor for ribonucleotide reductase class Ib. Based on protein-protein equilibria LlTrxA (E°'=-259mV) and LlNrdH (E°'=-238mV) show approximately 10mV higher standard state redox potentials than the corresponding E. coli homologues, while E°' of LlTrxD is -243mV, more similar to glutaredoxin than "classical" thioredoxin. EcTrx1 and LlTrxA have high capacity to reduce insulin disulfides and their exposed active site thiol is alkylated at a similar rate at pH 7.0. LlTrxD on the other hand, is alkylated by iodoacetamide at almost 100 fold higher rate and shows no activity towards insulin disulfides. LlTrxA, LlTrxD and LlNrdH are all efficiently reduced by NADPH dependent thioredoxin reductase (TrxR) from L. lactis and good cross-reactivity towards E. coli TrxR was observed with LlTrxD as the notable exception.
Collapse
Affiliation(s)
- Olof Björnberg
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Petr Efler
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Epie Denis Ebong
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Per Hägglund
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
49
|
Zhang Z, Zhang J, Xiao J. Selenoproteins and selenium status in bone physiology and pathology. Biochim Biophys Acta Gen Subj 2014; 1840:3246-3256. [PMID: 25116856 DOI: 10.1016/j.bbagen.2014.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence supports the view that selenoproteins are essential for maintaining bone health. SCOPE OF REVIEW The current state of knowledge concerning selenoproteins and Se status in bone physiology and pathology is summarized. MAJOR CONCLUSIONS Antioxidant selenoproteins including glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), as a whole, play a pivotal role in maintaining bone homeostasis and protecting against bone loss. GPx1, a major antioxidant enzyme in osteoclasts, is up-regulated by estrogen, an endogenous inhibitor of osteoclastogenesis. TrxR1 is an immediate early gene in response to 1α,25-dihydroxyvitamin D3, an osteoblastic differentiation agent. The combination of 1α,25-dihydroxyvitamin D3 and Se generates a synergistic elevation of TrxR activity in Se-deficient osteoblasts. Of particular concern, pleiotropic TrxR1 is implicated in promoting NFκB activation. Coincidentally, TrxR inhibitors such as curcumin and gold compounds exhibit potent osteoclastogenesis inhibitory activity. Studies in patients with the mutations of selenocysteine insertion sequence-binding protein 2, a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins have clearly established a causal link of selenoproteins in bone development. Se transport to bone relies on selenoprotein P. Plasma selenoprotein P concentrations have been found to be positively correlated with bone mineral density in elderly women. GENERAL SIGNIFICANCE A full understanding of the role and function of selenoproteins and Se status on bone physiology and pathology may lead to effectively prevent against or modify bone diseases by using Se.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China
| | - Jinsong Zhang
- School of Tea Food Science, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China.
| |
Collapse
|
50
|
Abstract
The thioredoxin (Trx) system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin, is a key antioxidant system in defense against oxidative stress through its disulfide reductase activity regulating protein dithiol/disulfide balance. The Trx system provides the electrons to thiol-dependent peroxidases (peroxiredoxins) to remove reactive oxygen and nitrogen species with a fast reaction rate. Trx antioxidant functions are also shown by involvement in DNA and protein repair by reducing ribonucleotide reductase, methionine sulfoxide reductases, and regulating the activity of many redox-sensitive transcription factors. Moreover, Trx systems play critical roles in the immune response, virus infection, and cell death via interaction with thioredoxin-interacting protein. In mammalian cells, the cytosolic and mitochondrial Trx systems, in which TrxRs are high molecular weight selenoenzymes, together with the glutathione-glutaredoxin (Grx) system (NADPH, glutathione reductase, GSH, and Grx) control the cellular redox environment. Recently mammalian thioredoxin and glutathione systems have been found to be able to provide the electrons crossly and to serve as a backup system for each other. In contrast, bacteria TrxRs are low molecular weight enzymes with a structure and reaction mechanism distinct from mammalian TrxR. Many bacterial species possess specific thiol-dependent antioxidant systems, and the significance of the Trx system in the defense against oxidative stress is different. Particularly, the absence of a GSH-Grx system in some pathogenic bacteria such as Helicobacter pylori, Mycobacterium tuberculosis, and Staphylococcus aureus makes the bacterial Trx system essential for survival under oxidative stress. This provides an opportunity to kill these bacteria by targeting the TrxR-Trx system.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|