1
|
Chen XL, Ojalill M, Jean C, Tancioni I, Jiang S, Boyer A, Ozmadenci D, Uryu S, Tarin D, Schlessinger J, Stupack DG, Schlaepfer DD. Inducible FAK loss but not FAK inhibition in endothelial cells of PYK2-null mice activates p53 tumor suppressor to prevent tumor growth. Mol Biol Cell 2025; 36:ar64. [PMID: 40202821 DOI: 10.1091/mbc.e24-12-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Focal adhesion kinase (FAK) and the related tyrosine kinase PYK2 are signaling and scaffolding proteins co-expressed in endothelial cells (ECs) that regulate blood vessel function and tumor growth. As FAK-PYK2 share overlapping cellular roles, we generated PYK2-/- FAKfl/fl mice with tamoxifen-inducible EC-specific Cre expression. EC FAK inactivation in PYK2-/- but not PYK2+/+ mice led to increased heart and lung mass, vascular leakage, and created a tumor microenvironment that was repressive to syngeneic melanoma, breast, and lung carcinoma implanted tumor growth. Tumor suppression was associated with defective vessel sprouting, enhanced p53 tumor suppressor and p21CIP1 protein expression in ECs, elevated markers of DNA damage, and altered blood cytokine levels in tumor-bearing mice. However, EC-specific hemizygous kinase-defective (KD) FAK expression in EC FAK-/KD PYK2-/- mice was not associated with elevated p53 levels. Instead, EC FAK-/KD PYK2-/- mice supported primary tumor growth but prevented metastasis, implicating EC FAK activity in tumor spread. In vitro, combined genetic or small molecule FAK-PYK2 knockdown in ECs or tumor cells elevated p21CIP1 and prevented cell proliferation in a p53-dependent manner, highlighting a linkage between EC FAK-PYK2 loss and p53 activation in tumor regulation.
Collapse
Affiliation(s)
- Xiao Lei Chen
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Marjaana Ojalill
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Christine Jean
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Isabelle Tancioni
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Shulin Jiang
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Antonia Boyer
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Duygu Ozmadenci
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Sean Uryu
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - David Tarin
- Department of Pathology, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - David D Schlaepfer
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| |
Collapse
|
2
|
Li Y, Zhang Y, Zhang J, Zhan Z, Mao W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur J Med Chem 2024; 279:116913. [PMID: 39357313 DOI: 10.1016/j.ejmech.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase frequently overexpressed in various cancer cells, facilitating tumor growth through the regulation of cell adhesion, migration, and proliferation. Consequently, targeting FAK is considered a promising anti-tumor strategy, particularly for invasive cancers. Numerous potent small-molecule inhibitors have progressed to clinical trials. Among these, Defactinib is under evaluation for regulatory approval as a treatment for ovarian serous tumors. Furthermore, novel FAK inhibitors, including PROTACs, have emerged as key research focuses, anticipated to overcome the limitations of traditional inhibitors. In this Perspective, we highlight the protein structure, biological functions, relevant signaling pathways, and associations of FAK with cancer development. We also analyze the clinical status of FAK inhibitors, paying special attention to the various classes of FAK inhibitors, with detailed analyses of their chemical structures, structure-activity relationships (SARs), bioactivity profiles, selectivity profiles, and therapeutic potentials.
Collapse
Affiliation(s)
- Yingnan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Yuming Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China; West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| |
Collapse
|
3
|
Chen XL, Ojalill M, Jean C, Tancioni I, Jiang S, Boyer A, Ozmadenci D, Uryu S, Tarin D, Schlessinger J, Stupack DG, Schlaepfer DD. Inducible FAK Deletion but not FAK Inhibition in Endothelial Cells Activates p53 to Suppress Tumor Growth in PYK2-null Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.622008. [PMID: 39574770 PMCID: PMC11580918 DOI: 10.1101/2024.11.04.622008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Focal adhesion kinase (FAK) functions as a signaling and scaffolding protein within endothelial cells (ECs) impacting blood vessel function and tumor growth. Interpretations of EC FAK-null phenotypes are complicated by related PYK2 (protein tyrosine kinase 2) expression, and to test this, we created PYK2 -/- FAK fl/fl mice with tamoxifen-inducible EC-specific Cre recombinase expression. At 11 weeks of age, EC FAK inactivation resulted in increased heart and lung mass and vascular leakage only on a PYK2 -/- background. Surprisingly, ∼90% of PYK2 -/- EC FAK -/- mice survived to 75 weeks of age. Syngeneic melanoma, breast, or lung carcinoma tumors did not grow in PYK2 -/- EC FAK -/- mice, but tumors grew normally in PYK2 -/- EC FAK fl/fl mice lacking Cre. This tumor inhibitory phenotype was associated with abortive EC vessel sprouting, enhanced EC p53 tumor suppressor and p21CIP1 (cyclin-dependent inhibitor 1) expression, and alterations in serum cytokine levels. To discern the role of FAK kinase versus scaffolding activity in ECs, we generated kinase defective (FAK K454R, KD) PYK2 -/- EC FAK fl/KD and PYK2 -/- EC FAK fl/WT (WT, wildtype) mice. Hemizygous EC FAK -/KD expression supported primary tumor growth but not metastasis, implicating EC FAK activity in tumor dissemination. In vitro , hemizygous expression of either WT or KD FAK suppressed EC p21CIP1 levels and cell death observed in primary PYK2 -/- EC FAK -/- ECs. Combined FAK and PYK2 knockdown in tumor cells also increased p21CIP1 and PARP1 (poly ADP-ribose polymerase 1) levels in a p53-associated manner impacting anchorage-independent growth. Together, these results underscore the linkage between PYK2 and FAK loss with p53 activation impacting tumor growth. Impact Statement PYK2-null combined with endothelial cell-specific FAK transgenic mouse models show that loss of FAK activity limits tumor spread and that genetic or chemical degradation preventing combined FAK-PYK2 expression may be an approach to induce a p53-associated anti-tumor response.
Collapse
|
4
|
Schlaepfer DD, Ojalill M, Stupack DG. Focal adhesion kinase signaling - tumor vulnerabilities and clinical opportunities. J Cell Sci 2024; 137:jcs261723. [PMID: 39034922 PMCID: PMC11298715 DOI: 10.1242/jcs.261723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.
Collapse
Affiliation(s)
- David D. Schlaepfer
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Marjaana Ojalill
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Dwayne G. Stupack
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| |
Collapse
|
5
|
Holland EN, Fernández-Yagüe MA, Zhou DW, O'Neill EB, Woodfolk AU, Mora-Boza A, Fu J, Schlaepfer DD, García AJ. FAK, vinculin, and talin control mechanosensitive YAP nuclear localization. Biomaterials 2024; 308:122542. [PMID: 38547833 PMCID: PMC11065566 DOI: 10.1016/j.biomaterials.2024.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
Focal adhesions (FAs) are nanoscale complexes containing clustered integrin receptors and intracellular structural and signaling proteins that function as principal sites of mechanotransduction in part via promoting the nuclear translocation and activation of the transcriptional coactivator yes-associated protein (YAP). Knockdown of FA proteins such as focal adhesion kinase (FAK), talin, and vinculin can prevent YAP nuclear localization. However, the mechanism(s) of action remain poorly understood. Herein, we investigated the role of different functional domains in vinculin, talin, and FAK in regulating YAP nuclear localization. Using genetic or pharmacological inhibition of fibroblasts and human mesenchymal stem cells (hMSCs) adhering to deformable substrates, we find that disruption of vinculin-talin binding versus talin-FAK binding reduces YAP nuclear localization and transcriptional activity via different mechanisms. Disruption of vinculin-talin binding or knockdown of talin-1 reduces nuclear size, traction forces, and YAP nuclear localization. In contrast, disruption of the talin binding site on FAK or elimination of FAK catalytic activity did not alter nuclear size yet still prevented YAP nuclear localization and activity. These data support both nuclear tension-dependent and independent models for matrix stiffness-regulated YAP nuclear localization. Our results highlight the importance of vinculin-talin-FAK interactions at FAs of adherent cells, controlling YAP nuclear localization and activity.
Collapse
Affiliation(s)
- Elijah N Holland
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Marc A Fernández-Yagüe
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Department of Chemistry, Queen Mary University of London, London, UK
| | - Dennis W Zhou
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B O'Neill
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ayanna U Woodfolk
- Mathematics Department, Spelman College, Atlanta, GA, USA; Bioengineering Department, North Carolina A&T State University, Greensboro, NC, USA
| | - Ana Mora-Boza
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jianping Fu
- Department of Mechanical Engineering, Department of Biomedical Engineering, Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - David D Schlaepfer
- Moores Cancer Center, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Shi Y, Ju M, Zhang Y, Liang L, Sun X, Di X. Comprehensive pan-cancer analysis of 33 human cancers reveals immunotherapeutic value of focal adhesion tyrosine kinase. Medicine (Baltimore) 2024; 103:e37362. [PMID: 38518034 PMCID: PMC10956984 DOI: 10.1097/md.0000000000037362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/02/2024] [Indexed: 03/24/2024] Open
Abstract
The immune environment in tumors is the key factor affecting the survival and immunotherapeutic response of patients. This research aimed to explore the underlying association between focal adhesion tyrosine kinase (FAK/PTK2) and cancer immunotherapy in 33 human cancers. Gene expression data and clinical features of 33 cancers were retrieved from the Cancer Genome Atlas Database. The immunotherapy cohorts included GSE67501, GSE78220, and IMVIGOR210, which were derived from the comprehensive gene expression database or from previous studies. Clinical parameters including patient age, gender, survival rate, and tumor stage were analyzed to evaluate the prognostic value of FAK/PTK2. FAK/PTK2 activity was detected by single-sample gene set enrichment analysis and used to compare the difference between FAK/PTK2 transcriptome and protein expression levels. To better understand the role of FAK/PTK2 in cancer immunotherapy, we analyzed its correlations with tumor microenvironment and with immune processes/elements (e.g., immune cell infiltration, immunosuppressants, and stimulants) and major histocompatible complexes. Potential pathways associated with FAK/PTK2 signaling in cancers were also explored. Correlations between FAK/PTK2 and 2 immunotherapeutic biomarkers (tumor mutation load and microsatellite instability) were studied. Finally, the 3 independent immunotherapy cohorts were used to study the relationship between FAK/PTK2 and immunotherapeutic response. Although FAK/PTK2 is not closely associated with age (13/33), gender (5/33), or tumor stage (5/33) in any of the studied human cancers, it has potential prognostic value for predicting patient survival. Consistency between FAK/PTK2 activity and expression exists in some cancers (3/33). Generally, FAK/PTK2 is robustly correlated with immune cell infiltration, immune modulators, and immunotherapeutic markers. Moreover, high FAK/PTK2 expression is significantly related to immune-relevant pathways. However, FAK/PTK2 is not significantly correlated with the immunotherapeutic response. Research on the immunotherapeutic value of FAK/PTK2 in 33 human cancers provides evidence regarding the function of FAK/PTK2 and its role in clinical treatment. However, given the use of a bioinformatics approach, our results are preliminary and require further validation.
Collapse
Affiliation(s)
- Yujing Shi
- Department of Oncology, The People’s Hospital of Jurong City, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Mengyang Ju
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Zhang
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital. School of Medicine, Tongji University, Shanghai, China
| | - Liang Liang
- Department of Oncology, The People’s Hospital of Jurong City, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Xinchen Sun
- Department of Radiotherapy, Jiangsu Provincial People’s Hospital, Nanjing, China
| | - Xiaoke Di
- Department of Radiotherapy, Jiangsu Provincial People’s Hospital, Nanjing, China
| |
Collapse
|
7
|
Hou W, Gad SA, Ding X, Dhanarajan A, Qiu W. Focal adhesion kinase confers lenvatinib resistance in hepatocellular carcinoma via the regulation of lysine-deficient kinase 1. Mol Carcinog 2024; 63:173-189. [PMID: 37787401 PMCID: PMC10842616 DOI: 10.1002/mc.23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Lenvatinib is a clinically effective multikinase inhibitor approved for first-line therapy of advanced hepatocellular carcinoma (HCC). Although resistance against lenvatinib often emerges and limits its antitumor activity, the underlying molecular mechanisms involved in endogenous and acquired resistance remain elusive. In this study, we identified focal adhesion kinase (FAK) as a critical contributor to lenvatinib resistance in HCC. The elevated expression and phosphorylation of FAK were observed in both acquired and endogenous lenvatinib-resistant (LR) HCC cells. Furthermore, inhibition of FAK reversed lenvatinib resistance in vitro and in vivo. Mechanistically, FAK promoted lenvatinib resistance through regulating lysine-deficient kinase 1 (WNK1). Phosphorylation of WNK1 was significantly increased in LR-HCC cells. Further, WNK1 inhibitor WNK463 resensitized either established or endogenous LR-HCC cells to lenvatinib treatment. In addition, overexpression of WNK1 desensitized parental HCC cells to lenvatinib treatment. Conclusively, our results establish a crucial role and novel mechanism of FAK in lenvatinib resistance and suggest that targeting the FAK/WNK1 axis is a promising therapeutic strategy in HCC patients showing lenvatinib resistance.
Collapse
Affiliation(s)
- Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Shaimaa A. Gad
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Egypt
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| |
Collapse
|
8
|
Guo X, Fan A, Qi X, Liu D, Huang J, Lin W. Indoloquinazoline alkaloids suppress angiogenesis and inhibit metastasis of melanoma cells. Bioorg Chem 2023; 141:106873. [PMID: 37734192 DOI: 10.1016/j.bioorg.2023.106873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Metastasis is the leading cause of cancer-related mortality, targeting angiogenesis emerges as a therapeutic strategy for the treatment of melanoma metastasis. Discovery of new antiangiogenic compounds with specific mechanism of action is still desired. In present study, a bioassay-guidance uncovers the EtOAc extract of a marine-derived fungus Aspergillus clavutus LZD32-24 with significant inhibitory activity against the angiogenesis in Tg (fli1a: EGFP) zebrafish model. Extensive chromatographic fractionation led to the isolation of 48 indoloquinazoline alkaloids, including 21 new analogues namely clavutoines A-U (1-21). Their structures were determined by the spectroscopic data, including the ECD, single crystal X-ray diffraction and quantum chemical calculation for the configurational assignments. Among the bioactive analogues, quinadoline B (QB) showed the most efficacy to suppress the zebrafish vascular outgrowth in zebrafish embryos. QB markedly inhibited the migration, invasion and tube formation with weak cytotoxicity in human umbilical vein endothelial cells (HUVECs). Investigation of the mode of action revealed QB suppressed the ROCK/MYPT1/MLC2/coffin and FAK /Src signaling pathways, and subsequently disrupted actin cytoskeletal organization. In addition, QB reduced the number of new vessels sprouting from the ex vivo chick chorioallantoic membrane (CAM), and inhibited the metastasis of B16F10 melanoma cells in lung of C57BL/6 mice through suppressing angiogenesis. These findings suggest that QB is a potential lead for the development of new antiangiogenic agent to inhibit melanoma metastasis.
Collapse
Affiliation(s)
- Xingchen Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Xinyi Qi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China.
| |
Collapse
|
9
|
Murphy JM, Jeong K, Tran DTK, Cioffi DL, Campbell PM, Kim JH, Jo H, Ahn EYE, Lim STS. Nuclear FAK in endothelium: An intrinsic inhibitor of NF-κB activation in atherosclerosis. Atherosclerosis 2023; 379:117189. [PMID: 37527611 PMCID: PMC10530536 DOI: 10.1016/j.atherosclerosis.2023.117189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND AIMS Hyperlipidemia leads to the accumulation of oxidized low-density lipoprotein (oxLDL) within the vessel wall where it causes chronic inflammation in endothelial cells (ECs) and drives atherosclerotic lesions. Although focal adhesion kinase (FAK) is critical in proinflammatory NF-κB activation in ECs, it is unknown if hyperlipidemia alters FAK-mediated NF-κB activity in vivo to affect atherosclerosis progression. METHODS We investigated changes in EC FAK and NF-κB activation using Apoe-/- mice fed a western diet (WD). Both pharmacological FAK inhibition and EC-specific FAK inhibited mouse models were utilized. FAK and NF-κB localization and activity were also analyzed in human atherosclerotic samples. RESULTS ECs of hyperlipidemic mice clearly showed much higher levels of FAK activation in the cytoplasm, which was associated with increased NF-κB activation compared to normal diet (ND) group. On the contrary, FAK is mostly localized in the nucleus and inactive in ECs under healthy conditions with a low NF-κB activity. Both pharmacological and EC-specific genetic FAK inhibition in WD fed Apoe-/- mice exhibited a significant decrease in FAK activity and cytoplasmic localization, NF-κB activation, macrophage recruitment, and atherosclerotic lesions compared to the vehicle or FAK wild-type groups. Analyses of human atherosclerotic specimens revealed a positive correlation between increased active cytoplasmic FAK within ECs and NF-κB activation in the lesions. CONCLUSIONS Hyperlipidemic conditions activate NF-κB pathway by increasing EC FAK activity and cytoplasmic localization in mice and human atherosclerotic samples. As FAK inhibition can efficiently reduce vascular inflammation and atherosclerotic lesions in mice by reversing EC FAK localization and NF-κB activation, these findings support a potential use for FAK inhibitors in treating atherosclerosis.
Collapse
Affiliation(s)
- James M Murphy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kyuho Jeong
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Duyen Thi Kieu Tran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Donna L Cioffi
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Pamela Moore Campbell
- Department of Pathology, University of South Alabama College of Medicine, Mobile, AL, 36617, USA
| | - Jin H Kim
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, 36688, USA
| | - Hanjoong Jo
- Department of Bioengineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Eun-Young Erin Ahn
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ssang-Taek Steve Lim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
10
|
Zhang J, Li W, Wang W, Chen Q, Xu Z, Deng M, Zhou L, He G. Dual roles of FAK in tumor angiogenesis: A review focused on pericyte FAK. Eur J Pharmacol 2023; 947:175694. [PMID: 36967077 DOI: 10.1016/j.ejphar.2023.175694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Focal adhesion kinase (FAK), also known as protein tyrosine kinase 2 (PTK2), is a ubiquitously expressed non-receptor tyrosine kinase, that plays a pivotal role in integrin-mediated signal transduction. Endothelial FAK is upregulated in many types of cancer and promotes tumorigenesis and tumor progression. However, recent studies have shown that pericyte FAK has the opposite effect. This review article dissects the mechanisms, by which endothelial cells (ECs) and pericyte FAK regulate angiogenesis, with an emphasis on the Gas6/Axl pathway. In particular, this article discusses the role of pericyte FAK loss on angiogenesis during tumorigenesis and metastasis. In addition, the existing challenges and future application of drug-based anti-FAK targeted therapies will be discussed to provide a theoretical basis for further development and use of FAK inhibitors.
Collapse
|
11
|
Le Coq J, Acebrón I, Rodrigo Martin B, López Navajas P, Lietha D. New insights into FAK structure and function in focal adhesions. J Cell Sci 2022; 135:277381. [PMID: 36239192 DOI: 10.1242/jcs.259089] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesion kinase (FAK; also known as PTK2) was discovered three decades ago and is now recognised as a key player in the regulation of cell-matrix adhesion and mesenchymal cell migration. Although it is essential during development, FAK also drives invasive cancer progression and metastasis. On a structural level, the basic building blocks of FAK have been described for some time. However, a picture of how FAK integrates into larger assemblies in various cellular environments, including one of its main cellular locations, the focal adhesion (FA) complex, is only beginning to emerge. Nano-resolution data from cellular studies, as well as atomic structures from reconstituted systems, have provided first insights, but also point to challenges that remain for obtaining a full structural understanding of how FAK is integrated in the FA complex and the structural changes occurring at different stages of FA maturation. In this Review, we discuss the known structural features of FAK, the interactions with its partners within the FA environment on the cell membrane and propose how its initial assembly in nascent FAs might change during FA maturation under force.
Collapse
Affiliation(s)
- Johanne Le Coq
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Iván Acebrón
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Bárbara Rodrigo Martin
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Pilar López Navajas
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Daniel Lietha
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
12
|
Rodriguez UA, Dahiya S, Raymond ML, Gao C, Martins-Cargill CP, Piganelli JD, Gittes GK, Hu J, Esni F. Focal adhesion kinase-mediated signaling controls the onset of pancreatic cell differentiation. Development 2022; 149:dev200761. [PMID: 36017799 PMCID: PMC9482336 DOI: 10.1242/dev.200761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
Signals from the endothelium play a pivotal role in pancreatic lineage commitment. As such, the fate of the epithelial cells relies heavily on the spatiotemporal recruitment of the endothelial cells to the embryonic pancreas. Although it is known that VEGFA secreted by the epithelium recruits the endothelial cells to the specific domains within the developing pancreas, the mechanism that controls the timing of such recruitment is poorly understood. Here, we have assessed the role of focal adhesion kinase (FAK) in mouse pancreatic development based on our observation that the presence of the enzymatically active form of FAK (pFAK) in the epithelial cells is inversely correlated with vessel recruitment. To study the role of FAK in the pancreas, we conditionally deleted the gene encoding focal adhesion kinase in the developing mouse pancreas. We found that homozygous deletion of Fak (Ptk2) during embryogenesis resulted in ectopic epithelial expression of VEGFA, abnormal endothelial recruitment and a delay in endocrine and acinar cell differentiation. The heterozygous mutants were born with no pancreatic phenotype but displayed gradual acinar atrophy due to cell polarity defects in exocrine cells. Together, our findings imply a role for FAK in controlling the timing of pancreatic lineage commitment and/or differentiation in the embryonic pancreas by preventing endothelial recruitment to the embryonic pancreatic epithelium.
Collapse
Affiliation(s)
- Uylissa A. Rodriguez
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Shakti Dahiya
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Michelle L. Raymond
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Chenxi Gao
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15244, USA
| | - Christina P. Martins-Cargill
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Jon D. Piganelli
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - George K. Gittes
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Jing Hu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15244, USA
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15244, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15123, USA
| |
Collapse
|
13
|
D'Amico G, Fernandez I, Gómez-Escudero J, Kim H, Maniati E, Azman MS, Mardakheh FK, Serrels B, Serrels A, Parsons M, Squire A, Birdsey GM, Randi AM, Bolado-Carrancio A, Gangeswaran R, Reynolds LE, Bodrug N, Wang Y, Wang J, Meier P, Hodivala-Dilke KM. ERG activity is regulated by endothelial FAK coupling with TRIM25/USP9x in vascular patterning. Development 2022; 149:dev200528. [PMID: 35723257 PMCID: PMC9340553 DOI: 10.1242/dev.200528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.
Collapse
Affiliation(s)
- Gabriela D'Amico
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Isabelle Fernandez
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jesús Gómez-Escudero
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hyojin Kim
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Eleni Maniati
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Muhammad Syahmi Azman
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Faraz K. Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Bryan Serrels
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden G61 1QH, UK
| | - Alan Serrels
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Maddy Parsons
- Kings College London, Randall Centre of Cell and Molecular Biophysics, Room 3.22B, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Anthony Squire
- IMCES - Imaging Centre Essen, Institute for Experimental Immunology and Imaging, University Clinic Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Graeme M. Birdsey
- National Heart & Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Anna M. Randi
- National Heart & Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | - Rathi Gangeswaran
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise E. Reynolds
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Natalia Bodrug
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Wang
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pascal Meier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Kairbaan M. Hodivala-Dilke
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
14
|
Omelchenko T. Cellular protrusions in 3D: Orchestrating early mouse embryogenesis. Semin Cell Dev Biol 2022; 129:63-74. [PMID: 35577698 DOI: 10.1016/j.semcdb.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York 10065, USA.
| |
Collapse
|
15
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
16
|
Newport E, Pedrosa AR, Lees D, Dukinfield M, Carter E, Gomez-Escudero J, Casado P, Rajeeve V, Reynolds LE, R Cutillas P, Duffy SW, De Luxán Delgado B, Hodivala-Dilke K. Elucidating the role of the kinase activity of endothelial cell focal adhesion kinase in angiocrine signalling and tumour growth. J Pathol 2022; 256:235-247. [PMID: 34743335 DOI: 10.1002/path.5833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022]
Abstract
A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Cytokines/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Endothelial Cells/enzymology
- Female
- Focal Adhesion Kinase 1/antagonists & inhibitors
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Humans
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Physiologic
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Emma Newport
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Ana Rita Pedrosa
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Delphine Lees
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Matthew Dukinfield
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Edward Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Jesus Gomez-Escudero
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro Casado
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Vinothini Rajeeve
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Louise E Reynolds
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | | | - Beatriz De Luxán Delgado
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| |
Collapse
|
17
|
Lees DM, Reynolds LE, Pedrosa AR, Roy-Luzarraga M, Hodivala-Dilke KM. Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression. Angiogenesis 2021; 24:471-482. [PMID: 33730293 PMCID: PMC8292267 DOI: 10.1007/s10456-021-09776-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice, our data demonstrate that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrβCre + ;FAKY861F/Y861F but not PdgfrβCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.
Collapse
Affiliation(s)
- Delphine M Lees
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana Rita Pedrosa
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
18
|
Brullo C, Tasso B. New Insights on Fak and Fak Inhibitors. Curr Med Chem 2021; 28:3318-3338. [PMID: 33143618 DOI: 10.2174/0929867327666201103162239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Focal adhesion kinase (Fak) is a cytoplasmic protein tyrosine kinase overexpressed and activated in different solid cancers; it has shown an important role in metastasis formation, cell migration, invasion and angiogenesis and consequently it has been proposed as a potential target in cancer therapy, particularly in a metastatic phase. In recent years, different investigations have highlighted the importance of new Fak inhibitors as potential anti-cancer drugs, but other studies evidenced its role in different pathologies related to the cardiac function or viral infection. METHODS An extensive bibliographic research (104 references) has been done concerning the structure of Fak, its importance in tumor development, but also in other pathologies currently under study. The compounds currently subjected to clinical studies were therefore treated using the appropriate databases. Finally, the main chemical scaffolds currently under preclinical investigation were analyzed, focusing on their molecular structures and on the activity structure relationships (SAR). RESULTS At the moment, only a few reversible ATP-competitive inhibitors are under investigation in pre-clinical studies and clinical trials. Other compounds, with different chemical scaffolds, are investigated to obtain more active and selective Fak inhibitors. This mini-review is a summary of different Fak functions in cancer and other pathologies; the compounds today in clinical trials and the recent chemical scaffolds (also included in patents) giving the most interesting results are investigated. In addition, PROTAC molecules are reported. CONCLUSION All reported results evidenced that additional studies are necessary to design and synthesize new selective and more active compounds, although promising information has been obtained from associations between Fak inhibitors and other different anti- cancer drugs. In addition, the other important roles evidenced, both at the nuclear level and in non-cancerous cells, make this protein an increasingly important target in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| | - Bruno Tasso
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| |
Collapse
|
19
|
Murphy JM, Jeong K, Cioffi DL, Campbell PM, Jo H, Ahn EYE, Lim STS. Focal Adhesion Kinase Activity and Localization is Critical for TNF-α-Induced Nuclear Factor-κB Activation. Inflammation 2021; 44:1130-1144. [PMID: 33527321 PMCID: PMC8326009 DOI: 10.1007/s10753-020-01408-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
While sustained nuclear factor-κB (NF-κB) activation is critical for proinflammatory molecule expression, regulators of NF-κB activity during chronic inflammation are not known. We investigated the role of focal adhesion kinase (FAK) on sustained NF-κB activation in tumor necrosis factor-α (TNF-α)-stimulated endothelial cells (ECs) both in vitro and in vivo. We found that FAK inhibition abolished TNF-α-mediated sustained NF-κB activity in ECs by disrupting formation of TNF-α receptor complex-I (TNFRC-I). Additionally, FAK inhibition diminished recruitment of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and the inhibitor of NF-κB (IκB) kinase (IKK) complex to TNFRC-I, resulting in elevated stability of IκBα protein. In mice given TNF-α, pharmacological and genetic FAK inhibition blocked TNF-α-induced IKK-NF-κB activation in aortic ECs. Mechanistically, TNF-α activated and redistributed FAK from the nucleus to the cytoplasm, causing elevated IKK-NF-κB activation. On the other hand, FAK inhibition trapped FAK in the nucleus of ECs even upon TNF-α stimulation, leading to reduced IKK-NF-κB activity. Together, these findings support a potential use for FAK inhibitors in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- James M Murphy
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, 5851 N. USA Drive, Room 2366, Mobile, AL, 36688, USA
| | - Kyuho Jeong
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, 5851 N. USA Drive, Room 2366, Mobile, AL, 36688, USA
| | - Donna L Cioffi
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, 5851 N. USA Drive, Room 2366, Mobile, AL, 36688, USA
| | - Pamela Moore Campbell
- Department of Pathology, University of South Alabama College of Medicine, Mobile, AL, 36617, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Bioengineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Eun-Young Erin Ahn
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, 5851 N. USA Drive, Room 2366, Mobile, AL, 36688, USA.
| |
Collapse
|
20
|
Zhou DW, Fernández-Yagüe MA, Holland EN, García AF, Castro NS, O'Neill EB, Eyckmans J, Chen CS, Fu J, Schlaepfer DD, García AJ. Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nat Commun 2021; 12:2359. [PMID: 33883558 PMCID: PMC8060400 DOI: 10.1038/s41467-021-22602-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 11/12/2022] Open
Abstract
How adhesive forces are transduced and integrated into biochemical signals at focal adhesions (FAs) is poorly understood. Using cells adhering to deformable micropillar arrays, we demonstrate that traction force and FAK localization as well as traction force and Y397-FAK phosphorylation are linearly coupled at individual FAs on stiff, but not soft, substrates. Similarly, FAK phosphorylation increases linearly with external forces applied to FAs using magnetic beads. This mechanosignaling coupling requires actomyosin contractility, talin-FAK binding, and full-length vinculin that binds talin and actin. Using an in vitro 3D biomimetic wound healing model, we show that force-FAK signaling coupling coordinates cell migration and tissue-scale forces to promote microtissue repair. A simple kinetic binding model of talin-FAK interactions under force can recapitulate the experimental observations. This study provides insights on how talin and vinculin convert forces into FAK signaling events regulating cell migration and tissue repair.
Collapse
Affiliation(s)
- Dennis W Zhou
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Marc A Fernández-Yagüe
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Elijah N Holland
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés F García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicolas S Castro
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B O'Neill
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jianping Fu
- Department of Mechanical Engineering, Department of Biomedical Engineering, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - David D Schlaepfer
- Moores Cancer Center, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
21
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
22
|
The Crosstalk between FAK and Wnt Signaling Pathways in Cancer and Its Therapeutic Implication. Int J Mol Sci 2020; 21:ijms21239107. [PMID: 33266025 PMCID: PMC7730291 DOI: 10.3390/ijms21239107] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Focal adhesion kinase (FAK) and Wnt signaling pathways are important contributors to tumorigenesis in several cancers. While most results come from studies investigating these pathways individually, there is increasing evidence of a functional crosstalk between both signaling pathways during development and tumor progression. A number of FAK-Wnt interactions are described, suggesting an intricate, context-specific, and cell type-dependent relationship. During development for instance, FAK acts mainly upstream of Wnt signaling; and although in intestinal homeostasis and mucosal regeneration Wnt seems to function upstream of FAK signaling, FAK activates the Wnt/β-catenin signaling pathway during APC-driven intestinal tumorigenesis. In breast, lung, and pancreatic cancers, FAK is reported to modulate the Wnt signaling pathway, while in prostate cancer, FAK is downstream of Wnt. In malignant mesothelioma, FAK and Wnt show an antagonistic relationship: Inhibiting FAK signaling activates the Wnt pathway and vice versa. As the identification of effective Wnt inhibitors to translate in the clinical setting remains an outstanding challenge, further understanding of the functional interaction between Wnt and FAK could reveal new therapeutic opportunities and approaches greatly needed in clinical oncology. In this review, we summarize some of the most relevant interactions between FAK and Wnt in different cancers, address the current landscape of Wnt- and FAK-targeted therapies in different clinical trials, and discuss the rationale for targeting the FAK-Wnt crosstalk, along with the possible translational implications.
Collapse
|
23
|
Zaghdoudi S, Decaup E, Belhabib I, Samain R, Cassant‐Sourdy S, Rochotte J, Brunel A, Schlaepfer D, Cros J, Neuzillet C, Strehaiano M, Alard A, Tomasini R, Rajeeve V, Perraud A, Mathonnet M, Pearce OMT, Martineau Y, Pyronnet S, Bousquet C, Jean C. FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Mol Med 2020; 12:e12010. [PMID: 33025708 PMCID: PMC7645544 DOI: 10.15252/emmm.202012010] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are considered the most abundant type of stromal cells in pancreatic ductal adenocarcinoma (PDAC), playing a critical role in tumour progression and chemoresistance; however, a druggable target on CAFs has not yet been identified. Here we report that focal adhesion kinase (FAK) activity (evaluated based on 397 tyrosine phosphorylation level) in CAFs is highly increased compared to its activity in fibroblasts from healthy pancreas. Fibroblastic FAK activity is an independent prognostic marker for disease-free and overall survival of PDAC patients (cohort of 120 PDAC samples). Genetic inactivation of FAK within fibroblasts (FAK kinase-dead, KD) reduces fibrosis and immunosuppressive cell number within primary tumours and dramatically decreases tumour spread. FAK pharmacologic or genetic inactivation reduces fibroblast migration/invasion, decreases extracellular matrix (ECM) expression and deposition by CAFs, modifies ECM track generation and negatively impacts M2 macrophage polarization and migration. Thus, FAK activity within CAFs appears as an independent PDAC prognostic marker and a druggable driver of tumour cell invasion.
Collapse
Affiliation(s)
- Sonia Zaghdoudi
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Emilie Decaup
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Ismahane Belhabib
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Rémi Samain
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Stéphanie Cassant‐Sourdy
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Julia Rochotte
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Alexia Brunel
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - David Schlaepfer
- Department of Reproductive Medicine Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Jérome Cros
- Department of PathologyBeaujon HospitalINSERM U1149ClichyFrance
| | - Cindy Neuzillet
- Medical Oncology DepartmentCurie InstituteVersailles Saint‐Quentin UniversitySaint‐CloudFrance
| | - Manon Strehaiano
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Amandine Alard
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | | | - Vinothini Rajeeve
- Centre for Genomics and Computational BiologyBarts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Aurélie Perraud
- EA 3842 Laboratory, Medicine and Pharmacy FacultiesLimoges UniversityLimogesFrance
| | - Muriel Mathonnet
- EA 3842 Laboratory, Medicine and Pharmacy FacultiesLimoges UniversityLimogesFrance
| | - Oliver MT Pearce
- Centre for Tumour MicroenvironmentBarts Cancer InstituteLondonUK
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Christine Jean
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| |
Collapse
|
24
|
Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF. The Roles of Tissue Rigidity and Its Underlying Mechanisms in Promoting Tumor Growth. Cancer Invest 2020; 38:445-462. [PMID: 32713210 DOI: 10.1080/07357907.2020.1802474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Faculty of Health Sciences, Centre for Healthy Ageing and Wellness, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Gayathri Thevi Selvarajah
- Faculty of Veterinary Medicine, Department of Veterinary Clinical Studies, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Siti Fathiah Masre
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Improved renal outcomes after revascularization of the stenotic renal artery in pigs by prior treatment with low-energy extracorporeal shockwave therapy. J Hypertens 2020; 37:2074-2082. [PMID: 31246892 DOI: 10.1097/hjh.0000000000002158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Revascularization does not restore renal function in most patients with atherosclerotic renal artery stenosis (RAS), likely because of inflammation and fibrosis within the stenotic kidney. Low-energy shockwave therapy (LE-SWT) stimulates angiogenesis in the stenotic kidney, but its ability to improve renal function and structure after revascularization remains unexplored. We tested the hypothesis that a LE-SWT regimen before percutaneous transluminal renal angioplasty (PTRA) would enable PTRA to restore renal function in hypercholesterolemic pigs with RAS (HC+RAS), and that this would be associated with attenuation of renal inflammation and fibrosis. METHODS AND RESULTS Twenty-six pigs were studied after 16 weeks of HC+RAS, HC+RAS treated with PTRA with or without a preceding LE-SWT regimen (bi-weekly for 3 weeks), and controls. Single-kidney renal blood flow (RBF), glomerular filtration rate (GFR), and oxygenation were assessed in vivo using imaging 4 weeks after PTRA, and then inflammation and fibrosis ex vivo.Four weeks after successful PTRA, blood pressure fell similarly in both revascularized groups. Yet, stenotic-kidney GFR remained lower in HC+RAS and HC+RAS+PTRA (P < 0.01 vs. normal), but was improved in HC+RAS+PTRA+SW (P > 0.05 vs. normal). Furthermore, reduced inflammation, medullary fibrosis, and cortical hypoxia were only shown in swine stenotic kidneys pretreated with LE-SWT before PTRA 4 weeks later. CONCLUSION LE-SWT delivery before revascularization permitted PTRA to improve function and decrease cortical and medullary damage in the stenotic swine kidney. This study, therefore, supports the use of an adjunct SW pretreatment to enhance the success of PTRA in blunting loss of kidney function in experimental HC+RAS.
Collapse
|
26
|
Schimmel L, Fukuhara D, Richards M, Jin Y, Essebier P, Frampton E, Hedlund M, Dejana E, Claesson-Welsh L, Gordon E. c-Src controls stability of sprouting blood vessels in the developing retina independently of cell-cell adhesion through focal adhesion assembly. Development 2020; 147:dev185405. [PMID: 32108024 PMCID: PMC7157583 DOI: 10.1242/dev.185405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/19/2020] [Indexed: 12/22/2022]
Abstract
Endothelial cell adhesion is implicated in blood vessel sprout formation, yet how adhesion controls angiogenesis, and whether it occurs via rapid remodeling of adherens junctions or focal adhesion assembly, or both, remains poorly understood. Furthermore, how endothelial cell adhesion is controlled in particular tissues and under different conditions remains unexplored. Here, we have identified an unexpected role for spatiotemporal c-Src activity in sprouting angiogenesis in the retina, which is in contrast to the dominant focus on the role of c-Src in the maintenance of vascular integrity. Thus, mice specifically deficient in endothelial c-Src displayed significantly reduced blood vessel sprouting and loss in actin-rich filopodial protrusions at the vascular front of the developing retina. In contrast to what has been observed during vascular leakage, endothelial cell-cell adhesion was unaffected by loss of c-Src. Instead, decreased angiogenic sprouting was due to loss of focal adhesion assembly and cell-matrix adhesion, resulting in loss of sprout stability. These results demonstrate that c-Src signaling at specified endothelial cell membrane compartments (adherens junctions or focal adhesions) control vascular processes in a tissue- and context-dependent manner.
Collapse
Affiliation(s)
- Lilian Schimmel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daisuke Fukuhara
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Mark Richards
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Yi Jin
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Patricia Essebier
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Emmanuelle Frampton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marie Hedlund
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Elisabetta Dejana
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Lena Claesson-Welsh
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Emma Gordon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| |
Collapse
|
27
|
Mohanty A, Pharaon RR, Nam A, Salgia S, Kulkarni P, Massarelli E. FAK-targeted and combination therapies for the treatment of cancer: an overview of phase I and II clinical trials. Expert Opin Investig Drugs 2020; 29:399-409. [DOI: 10.1080/13543784.2020.1740680] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Atish Mohanty
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Rebecca R Pharaon
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Arin Nam
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Sabrina Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
28
|
Demircioglu F, Wang J, Candido J, Costa ASH, Casado P, de Luxan Delgado B, Reynolds LE, Gomez-Escudero J, Newport E, Rajeeve V, Baker AM, Roy-Luzarraga M, Graham TA, Foster J, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Balkwill FR, Sosabowski J, Cutillas PR, Frezza C, Sancho P, Hodivala-Dilke K. Cancer associated fibroblast FAK regulates malignant cell metabolism. Nat Commun 2020; 11:1290. [PMID: 32157087 PMCID: PMC7064590 DOI: 10.1038/s41467-020-15104-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth. Proteomic and phosphoproteomic analysis in our mouse model identifies metabolic alterations which are reflected at the transcriptomic level in patients with low stromal FAK. Mechanistically we demonstrate that FAK-depletion in CAFs increases chemokine production, which via CCR1/CCR2 on cancer cells, activate protein kinase A, leading to enhanced malignant cell glycolysis. Our data uncover mechanisms whereby stromal fibroblasts regulate cancer cell metabolism independent of genetic mutations in cancer cells.
Collapse
Affiliation(s)
- Fevzi Demircioglu
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Juliana Candido
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Pedro Casado
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Beatriz de Luxan Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jesus Gomez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Emma Newport
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ann-Marie Baker
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Trevor A Graham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Julie Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yu Wang
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | | | - Rajinder Singh
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | - Penglie Zhang
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | - Thomas J Schall
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | - Frances R Balkwill
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- IIS Aragon, Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
29
|
FAK Structure and Regulation by Membrane Interactions and Force in Focal Adhesions. Biomolecules 2020; 10:biom10020179. [PMID: 31991559 PMCID: PMC7072507 DOI: 10.3390/biom10020179] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase with key roles in the regulation of cell adhesion migration, proliferation and survival. In cancer FAK is a major driver of invasion and metastasis and its upregulation is associated with poor patient prognosis. FAK is autoinhibited in the cytosol, but activated upon localisation into a protein complex, known as focal adhesion complex. This complex forms upon cell adhesion to the extracellular matrix (ECM) at the cytoplasmic side of the plasma membrane at sites of ECM attachment. FAK is anchored to the complex via multiple sites, including direct interactions with specific membrane lipids and connector proteins that attach focal adhesions to the actin cytoskeleton. In migrating cells, the contraction of actomyosin stress fibres attached to the focal adhesion complex apply a force to the complex, which is likely transmitted to the FAK protein, causing stretching of the FAK molecule. In this review we discuss the current knowledge of the FAK structure and how specific structural features are involved in the regulation of FAK signalling. We focus on two major regulatory mechanisms known to contribute to FAK activation, namely interactions with membrane lipids and stretching forces applied to FAK, and discuss how they might induce structural changes that facilitate FAK activation.
Collapse
|
30
|
Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res 2020; 388:111824. [PMID: 31926148 DOI: 10.1016/j.yexcr.2020.111824] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Cell migration and invasion play an important role in the development of cancer. Cell migration is associated with several specific actin filament-based structures, including lamellipodia, filopodia, invadopodia and blebs, and with cell-cell adhesion, cell-extracellular matrix adhesion. Migration occurs via different modes, human epithelial cancer cells mainly migrate collectively, while in vivo imaging studies in laboratory animals have found that most cells migrate as single cells. Rho GTPases play an important role in the process of cell migration, and several Rho GTPase-related signaling complexes are also involved. However, the exact mechanism by which these signaling complexes act remains unclear. This paper reviews how Rho GTPases and related signaling complexes interact with other proteins, how their expression is regulated, how tumor microenvironment-related factors play a role in invasion and metastasis, and the mechanism of these complex signaling networks in cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chi Dong
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
31
|
Mierke CT. The Role of the Optical Stretcher Is Crucial in the Investigation of Cell Mechanics Regulating Cell Adhesion and Motility. Front Cell Dev Biol 2019; 7:184. [PMID: 31552247 PMCID: PMC6736998 DOI: 10.3389/fcell.2019.00184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanical properties of cells, tissues, and the surrounding extracellular matrix environment play important roles in the process of cell adhesion and migration. In physiological and pathological processes of the cells, such as wound healing and cancer, the capacity to migrate through the extracellular matrix is crucial. Hence biophysical techniques were used to determine the mechanical properties of cells that facilitate the various migratory capacities. Since the field of mechanobiology is rapidly growing, the reliable and reproducible characterization of cell mechanics is required that facilitates the adhesion and migration of cells. One of these cell mechanical techniques is the optical stretching device, which was originally developed to investigate the mechanical properties of cells, such as the deformation of single cells in suspension. After discussing the strengths and weaknesses of the technology, the latest findings in optical stretching-based cell mechanics are presented in this review. Finally, the mechanical properties of cells are correlated with their migratory potential and it is pointed out how the inhibition of biomolecules that contribute to the to the maintenance of cytoskeletal structures in cells affect their mechanical deformability.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
32
|
Diaz Osterman CJ, Ozmadenci D, Kleinschmidt EG, Taylor KN, Barrie AM, Jiang S, Bean LM, Sulzmaier FJ, Jean C, Tancioni I, Anderson K, Uryu S, Cordasco EA, Li J, Chen XL, Fu G, Ojalill M, Rappu P, Heino J, Mark AM, Xu G, Fisch KM, Kolev VN, Weaver DT, Pachter JA, Győrffy B, McHale MT, Connolly DC, Molinolo A, Stupack DG, Schlaepfer DD. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. eLife 2019; 8:e47327. [PMID: 31478830 PMCID: PMC6721800 DOI: 10.7554/elife.47327] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Gene copy number alterations, tumor cell stemness, and the development of platinum chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence. Stem phenotypes involving Wnt-β-catenin, aldehyde dehydrogenase activities, intrinsic platinum resistance, and tumorsphere formation are here associated with spontaneous gains in Kras, Myc and FAK (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin cytotoxicity. Platinum-resistant tumorspheres can acquire a dependence on FAK for growth. Accordingly, increased FAK tyrosine phosphorylation was observed within HGSOC patient tumors surviving neo-adjuvant chemotherapy. Combining a FAK inhibitor with platinum overcame chemoresistance and triggered cell apoptosis. FAK transcriptomic analyses across knockout and reconstituted cells identified 135 targets, elevated in HGSOC, that were regulated by FAK activity and β-catenin including Myc, pluripotency and DNA repair genes. These studies reveal an oncogenic FAK signaling role supporting chemoresistance.
Collapse
Affiliation(s)
- Carlos J Diaz Osterman
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Duygu Ozmadenci
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Elizabeth G Kleinschmidt
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Kristin N Taylor
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Allison M Barrie
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Shulin Jiang
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Lisa M Bean
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Florian J Sulzmaier
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Christine Jean
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Isabelle Tancioni
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Kristen Anderson
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Sean Uryu
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Edward A Cordasco
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | | | - Pekka Rappu
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Jyrki Heino
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Adam M Mark
- Department of MedicineUCSD Center for Computational Biology & BioinformaticsLa JollaUnited States
| | - Guorong Xu
- Department of MedicineUCSD Center for Computational Biology & BioinformaticsLa JollaUnited States
| | - Kathleen M Fisch
- Department of MedicineUCSD Center for Computational Biology & BioinformaticsLa JollaUnited States
| | | | | | | | - Balázs Győrffy
- Institute of EnzymologyHungarian Academy of SciencesBudapestHungary
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Michael T McHale
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | | | - Alfredo Molinolo
- Department of PathologyMoores UCSD Cancer CenterLa JollaUnited States
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - David D Schlaepfer
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| |
Collapse
|
33
|
Pedrosa AR, Bodrug N, Gomez-Escudero J, Carter EP, Reynolds LE, Georgiou PN, Fernandez I, Lees DM, Kostourou V, Alexopoulou AN, Batista S, Tavora B, Serrels B, Parsons M, Iskratsch T, Hodivala-Dilke KM. Tumor Angiogenesis Is Differentially Regulated by Phosphorylation of Endothelial Cell Focal Adhesion Kinase Tyrosines-397 and -861. Cancer Res 2019; 79:4371-4386. [PMID: 31189647 DOI: 10.1158/0008-5472.can-18-3934] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
Expression of focal adhesion kinase (FAK) in endothelial cells (EC) is essential for angiogenesis, but how FAK phosphorylation at tyrosine-(Y)397 and Y861 regulate tumor angiogenesis in vivo is unknown. Here, we show that tumor growth and angiogenesis are constitutively reduced in inducible, ECCre+;FAKY397F/Y397F -mutant mice. Conversely, ECCre+;FAKY861F/Y861F mice exhibit normal tumor growth with an initial reduction in angiogenesis that recovered in end-stage tumors. Mechanistically, FAK-Y397F ECs exhibit increased Tie2 expression, reduced Vegfr2 expression, decreased β1 integrin activation, and disrupted downstream FAK/Src/PI3K(p55)/Akt signaling. In contrast, FAK-Y861F ECs showed decreased Vegfr2 and Tie2 expression with an enhancement in β1 integrin activation. This corresponds with a decrease in Vegfa-stimulated response, but an increase in Vegfa+Ang2- or conditioned medium from tumor cell-stimulated cellular/angiogenic responses, mimicking responses in end-stage tumors with elevated Ang2 levels. Mechanistically, FAK-Y861F, but not FAK-Y397F ECs showed enhanced p190RhoGEF/P130Cas-dependent signaling that is required for the elevated responses to Vegfa+Ang2. This study establishes the differential requirements of EC-FAK-Y397 and EC-FAK-Y861 phosphorylation in the regulation of EC signaling and tumor angiogenesis in vivo. SIGNIFICANCE: Distinct motifs of the focal adhesion kinase differentially regulate tumor blood vessel formation and remodeling.
Collapse
Affiliation(s)
- Ana-Rita Pedrosa
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Natalia Bodrug
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Jesus Gomez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Paraskivi Natalia Georgiou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Isabelle Fernandez
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Delphine M Lees
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Vassiliki Kostourou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Annika N Alexopoulou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Silvia Batista
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bernardo Tavora
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bryan Serrels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
34
|
Chen J, Jiang C, Fu L, Zhu CL, Xiang YQ, Jiang LX, Chen Q, Liu WM, Chen JN, Zhang LY, Liu M, Chen C, Tang H, Wang B, Tsao SW, Kwong DLW, Guan XY. CHL1 suppresses tumor growth and metastasis in nasopharyngeal carcinoma by repressing PI3K/AKT signaling pathway via interaction with Integrin β1 and Merlin. Int J Biol Sci 2019; 15:1802-1815. [PMID: 31523184 PMCID: PMC6743306 DOI: 10.7150/ijbs.34785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/19/2019] [Indexed: 01/24/2023] Open
Abstract
Deletion of Chromosome 3p is one of the most frequently detected genetic alterations in nasopharyngeal carcinoma (NPC). We reported the role of a novel 3p26.3 tumor suppressor gene (TSG) CHL1 in NPC. Down-regulation of CHL1 was detected in 4/6 of NPC cell lines and 71/95 (74.7%) in clinical tissues. Ectopic expressions of CHL1 in NPC cells significantly inhibit colony formation and cell motility in functional study. By up-regulating epithelial markers and down-regulating mesenchymal markers CHL1 could induce mesenchymal-epithelial transition (MET), a key step in preventing tumor invasion and metastasis. CHL1 could also cause the inactivation of RhoA/Rac1/Cdc42 signaling pathway and inhibit the formation of stress fiber, lamellipodia, and filopodia. CHL1 could co-localize with adhesion molecule Integrin-β1, the expression of CHL1 was positively correlated with Integrin-β1 and another known tumor suppressor gene (TSG) Merlin. Down-regulation of Integrin-β1 or Merlin was significantly correlated with the poor survival rate of NPC patients. Further mechanistic studies showed that CHL1 could directly interact with integrin-β1 and link to Merlin, leading to the inactivation of integrin β1-AKT pathway. In conclusion, CHL1 is a vital tumor suppressor in the carcinogenesis of NPC.
Collapse
Affiliation(s)
- Juan Chen
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;,Department of Clinical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Chen Jiang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Research Centre, Shenzhen University school of Medicine, Shenzhen, China
| | - Cai-Lei Zhu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal, Sun Yat-Sen Cancer Center, Guangzhou, China
| | - Ling-Xi Jiang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qian Chen
- Departments of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai Man Liu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin-Na Chen
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li-Yi Zhang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Science and Technology of Huazhong University, Wuhan, China
| | - Hong Tang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bo Wang
- Department of Clinical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Sai Wah Tsao
- Departments of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dora Lai-Wan Kwong
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China;,✉ Corresponding author: Xin-Yuan Guan, Department of Clinical Oncology, The University of Hong Kong, Room L10-56, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, Tel: 852-3917-9782, E-Mail: ; or Dora Lai-Wan Kwong, Department of Clinical Oncology, University of Hong Kong, 1/F, Professorial Block, Queen Mary Hospital, Hong Kong, Tel: 852-28554521, E-mail:
| |
Collapse
|
35
|
Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:250. [PMID: 31186061 PMCID: PMC6560741 DOI: 10.1186/s13046-019-1265-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
FAK is a tyrosine kinase overexpressed in cancer cells and plays an important role in the progression of tumors to a malignant phenotype. Except for its typical role as a cytoplasmic kinase downstream of integrin and growth factor receptor signaling, related studies have shown new aspects of the roles of FAK in the nucleus. FAK can promote p53 degradation through ubiquitination, leading to cancer cell growth and proliferation. FAK can also regulate GATA4 and IL-33 expression, resulting in reduced inflammatory responses and immune escape. These findings establish a new model of FAK from the cytoplasm to the nucleus. Activated FAK binds to transcription factors and regulates gene expression. Inactive FAK synergizes with different E3 ligases to promote the turnover of transcription factors by enhancing ubiquitination. In the tumor microenvironment, nuclear FAK can regulate the formation of new blood vessels, affecting the tumor blood supply. This article reviews the roles of nuclear FAK in regulating gene expression. In addition, the use of FAK inhibitors to target nuclear FAK functions will also be emphasized.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
36
|
Jeong K, Kim JH, Murphy JM, Park H, Kim SJ, Rodriguez YAR, Kong H, Choi C, Guan JL, Taylor JM, Lincoln TM, Gerthoffer WT, Kim JS, Ahn EYE, Schlaepfer DD, Lim STS. Nuclear Focal Adhesion Kinase Controls Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia Through GATA4-Mediated Cyclin D1 Transcription. Circ Res 2019; 125:152-166. [PMID: 31096851 DOI: 10.1161/circresaha.118.314344] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). OBJECTIVE To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. METHODS AND RESULTS Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ERT2) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. CONCLUSIONS Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.
Collapse
Affiliation(s)
- Kyuho Jeong
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Jung-Hyun Kim
- Mitchell Cancer Institute (J.-H.K., H.K., E.-Y.E.A), University of South Alabama, College of Medicine, Mobile
| | - James M Murphy
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Hyeonsoo Park
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Su-Jeong Kim
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Yelitza A R Rodriguez
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Hyunkyung Kong
- Mitchell Cancer Institute (J.-H.K., H.K., E.-Y.E.A), University of South Alabama, College of Medicine, Mobile
| | - Chungsik Choi
- Department of Physiology (C.C., T.M.L.), University of South Alabama, College of Medicine, Mobile
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati, College of Medicine, OH (J.-L.G.)
| | - Joan M Taylor
- Department of Pathology, University of North Carolina, School of Medicine, Chapel Hill (J.M.T.)
| | - Thomas M Lincoln
- Department of Physiology (C.C., T.M.L.), University of South Alabama, College of Medicine, Mobile
| | - William T Gerthoffer
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Jun-Sub Kim
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile.,Department of Biotechnology, Korea National Transportation University, Chungbuk (J.-S.K.)
| | - Eun-Young Erin Ahn
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile.,Mitchell Cancer Institute (J.-H.K., H.K., E.-Y.E.A), University of South Alabama, College of Medicine, Mobile
| | - David D Schlaepfer
- Department of Reproductive Medicine, Moores Cancer Center, University of California, San Diego, La Jolla (D.D.S.)
| | - Ssang-Taek Steve Lim
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| |
Collapse
|
37
|
Rigiracciolo DC, Santolla MF, Lappano R, Vivacqua A, Cirillo F, Galli GR, Talia M, Muglia L, Pellegrino M, Nohata N, Di Martino MT, Maggiolini M. Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:58. [PMID: 30728047 PMCID: PMC6364402 DOI: 10.1186/s13046-019-1056-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Focal adhesion kinase (FAK) is a cytoplasmatic protein tyrosine kinase that associates with both integrins and growth factor receptors toward the adhesion, migration and invasion of cancer cells. The G-protein coupled estrogen receptor (GPER) has been involved in the stimulatory action of estrogens in breast tumor. In this study, we have investigated the engagement of FAK by GPER signaling in triple negative breast cancer (TNBC) cells. METHODS Publicly available large-scale database and patient data sets derived from "The Cancer Genome Atlas" (TCGA; www.cbioportal.org ) were used to assess FAK expression in TNBC, non-TNBC tumors and normal breast tissues. MDA-MB 231 and SUM159 TNBC cells were used as model system. The levels of phosphorylated FAK, other transduction mediators and target genes were detected by western blotting analysis. Focal adhesion assay was carried out in order to determine the focal adhesion points and the formation of focal adhesions (FAs). Luciferase assays were performed to evaluate the promoters activity of c-FOS, EGR1 and CTGF upon GPER activation. The mRNA expression of the aforementioned genes was measured by real time-PCR. Boyden chamber and wound healing assays were used in order to evaluate cell migration. The statistical analysis was performed by ANOVA. RESULTS We first determined by bioinformatic analysis that the mRNA expression levels of the gene encoding FAK, namely PTK2, is higher in TNBC respect to non-TNBC and normal breast tissues. Next, we found that estrogenic GPER signaling triggers Y397 FAK phosphorylation as well as the increase of focal adhesion points (FAs) in TNBC cells. Besides, we ascertained that GPER and FAK activation are involved in the STAT3 nuclear accumulation and gene expression changes. As biological counterpart, we show that FAK inhibition prevents the migration of TNBC cells upon GPER activation. CONCLUSIONS The present data provide novel insights regarding the action of FAK in TNBC. Moreover, on the basis of our findings estrogenic GPER signaling may be considered among the transduction mechanisms engaging FAK toward breast cancer progression.
Collapse
Affiliation(s)
| | - Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Giulia Raffaella Galli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
38
|
Jeong K, Murphy JM, Rodriguez YAR, Kim JS, Ahn EYE, Lim STS. FAK inhibition reduces metastasis of α4 integrin-expressing melanoma to lymph nodes by targeting lymphatic VCAM-1 expression. Biochem Biophys Res Commun 2019; 509:1034-1040. [PMID: 30660359 DOI: 10.1016/j.bbrc.2019.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 01/27/2023]
Abstract
Malignant melanoma typically metastasizes to lymph nodes (LNs) as a primary or in-transit lesion before secondary metastasis occurs, and LN biopsy is a common procedure to diagnose melanoma progression. Since cancer metastasis is a complex process where various interactions between tumor cells and the stroma play key roles in establishing metastatic lesions, the exact mechanisms underlying melanoma metastasis to LNs remains unknown. It has been known that focal adhesion kinase (FAK) activity promotes the expression of proinflammatory vascular cell adhesion molecule-1 (VCAM-1). As VCAM-1 is a major receptor for α4 integrin and plays a key role in leukocyte recruitment, we reasoned that inhibition of FAK activity may reduce VCAM-1 expression within LNs and thus reduce metastasis of α4 integrin-expressing melanoma to LNs. First, we found that a pharmacological FAK inhibitor, PF-271, blocked tumor necrosis factor-α (TNF-α)-mediated VCAM-1 expression on human dermal lymphatic endothelial cells (HDLECs). In vitro, PF-271 significantly decreased B16F10 melanoma adhesion to and transmigration through HDLECs compared to TNF-α treated cells. Furthermore, in vivo FAK inhibition by oral PF-271 administration reduced VCAM-1 expression in inguinal, cervical, and popliteal LNs compared to vehicle treated mice. Finally, in a footpad metastasis model, B16F10 melanoma cells were injected into the right footpad of C57BL/6 mice, and PF-271 (50 mg/kg, twice daily for 6 days) was orally administrated after 1 week of tumor transplantation. While untreated mice exhibited significant metastatic melanoma lesions in popliteal LNs, PF-271 treated mice showed only marginal melanoma metastasis. These results support the possibility that FAK inhibitors may be a novel preventative option in melanoma metastasis by blocking VCAM-1 expression in LNs.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - James M Murphy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Yelitza A R Rodriguez
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Jun-Sub Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States; Department of Biotechnology, Korea National University of Transportation, Chungbuk, 27909, Republic of Korea
| | - Eun-Young Erin Ahn
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States.
| |
Collapse
|
39
|
Xiao X, Ni Y, Yu C, Li L, Mao B, Yang Y, Zheng D, Silvestrini B, Cheng CY. Src family kinases (SFKs) and cell polarity in the testis. Semin Cell Dev Biol 2018; 81:46-53. [PMID: 29174914 PMCID: PMC5988912 DOI: 10.1016/j.semcdb.2017.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023]
Abstract
Non-receptor Src family kinases (SFKs), most notably c-Src and c-Yes, are recently shown to be expressed by Sertoli and/or germ cells in adult rat testes. Studies have shown that SFKs are involved in modulating the cell cytoskeletal function, and involved in endocytic vesicle-mediated protein endocytosis, transcytosis and/or recycling as well as intracellular protein degradation events. Furthermore, a knockdown to SFKs, in particular c-Yes, has shown to induce defects in spermatid polarity. These findings, coupled with emerging evidence in the field, thus prompt us to critically evaluate them to put forth a developing concept regarding the role of SFKs and cell polarity, which will become a basis to design experiments for future investigations.
Collapse
Affiliation(s)
- Xiang Xiao
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
| | - Ya Ni
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Chenhuan Yu
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzho, Zhejiang 325035, China
| | - Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzho, Zhejiang 325035, China
| | - Yue Yang
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Dongwang Zheng
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | | | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
| |
Collapse
|
40
|
Heim JB, McDonald CA, Wyles SP, Sominidi-Damodaran S, Squirewell EJ, Li M, Motsonelidze C, Böttcher RT, van Deursen J, Meves A. FAK auto-phosphorylation site tyrosine 397 is required for development but dispensable for normal skin homeostasis. PLoS One 2018; 13:e0200558. [PMID: 30001432 PMCID: PMC6042779 DOI: 10.1371/journal.pone.0200558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022] Open
Abstract
Focal adhesion kinase (FAK) is an intensely studied non-receptor tyrosine kinase with roles in cancer and other common human diseases. Despite the large interest in FAK, the in vivo contribution of FAK auto-phosphorylation site tyrosine (Y) 397 to FAK function is incompletely understood. To study FAK Y397 in vivo we analyzed mice with 'non-phosphorylatable' Y-to-phenylalanine (F) and 'phospho-mimicking' Y-to-glutamate (E) mutations in the germline. We found that FAK Y397F mice die early during embryogenesis with abnormal angiogenesis like FAK kinase-dead mice. When Y397 is mutated to a glutamate mice survive beyond mid-gestation like mice where Y397 is lost by deletion of FAK exon 15. In culture, defects in proliferation, invasion and gene expression were more severe with the FAK Y397F than with the FAK Y397E mutation despite the inability of FAK Y397E to bind SRC. Conditional expression of FAK Y397F or Y397E in unchallenged avascular epidermis, however, resulted in no appreciable phenotype. We conclude that FAK Y397 is required for the highly dynamic tissue remodeling during development but dispensable for normal homeostasis of avascular epidermis. In contrast to the Y397F mutation, FAK Y397E retains sufficient biological activity to allow for development beyond mid-gestation.
Collapse
Affiliation(s)
- Joel B. Heim
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cera A. McDonald
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Edwin J. Squirewell
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ming Li
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
- German Center for Cardiovascular Research-Munich Partner Site, Munich, Germany
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
41
|
Chung DJ, Wang CJ, Yeh CW, Tseng TH. Inhibition of the Proliferation and Invasion of C6 Glioma Cells by Tricin via the Upregulation of Focal-Adhesion-Kinase-Targeting MicroRNA-7. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6708-6716. [PMID: 29877083 DOI: 10.1021/acs.jafc.8b00604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tricin, a natural flavonoid present in large amounts in rice bran, was investigated for the mechanisms by which it exhibited antiproliferation and anti-invasion in C6 glioma cells. The results indicated that treatment with 5, 10, 25, and 50 μM tricin for 48 h significantly ( p < 0.05) inhibited cell numbers and colony numbers with values of 134.3 ± 5.5, 114.6 ± 2.5, 106.3 ± 3.2, and 57.3 ± 10.2, respectively. Tricin also inhibited C6-cell motility, migration, and invasion. Tricin changed the cytoskeletal organization, reduced matrix-metalloproteinase (MMP) expression, and upregulated E-cadherin. Tricin decreased FAK protein levels and suppressed focal-adhesion-kinase (FAK)-downstream-signal activation. Most importantly, tricin dose-dependently upregulated microRNA-7 (miR-7). Transfection with an miR-7 inhibitor suppressed miR-7 expression, increased FAK expression, and promoted the proliferation and invasion in C6 cells. The data support a novel anticancer mechanism of tricin that involves upregulation of FAK-targeting miR-7 in C6 glioma cells.
Collapse
Affiliation(s)
- Dai-Jung Chung
- Institute of Biochemistry, Microbiology and Immunology , Chung Shan Medical University , Taichung 40201 , Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology , Chung Shan Medical University , Taichung 40201 , Taiwan
- Department of Medical Research , Chung Shan Medical University Hospital , Taichung 40201 , Taiwan
| | - Chia-Wei Yeh
- Department of Medical Laboratory and Biotechnology , Chung Shan Medical University , Taichung 40201 , Taiwan
| | - Tsui-Hwa Tseng
- Department of Medical Applied Chemistry , Chung Shan Medical University , Taichung 40201 , Taiwan
- Department of Medical Education , Chung Shan Medical University Hospital , Taichung 40201 , Taiwan
| |
Collapse
|
42
|
Alexopoulou AN, Lees DM, Bodrug N, Lechertier T, Fernandez I, D'Amico G, Dukinfield M, Batista S, Tavora B, Serrels B, Hodivala‐Dilke K. Focal Adhesion Kinase (FAK) tyrosine 397E mutation restores the vascular leakage defect in endothelium-specific FAK-kinase dead mice. J Pathol 2017; 242:358-370. [PMID: 28444899 PMCID: PMC5518444 DOI: 10.1002/path.4911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/14/2017] [Accepted: 04/13/2017] [Indexed: 01/24/2023]
Abstract
Focal adhesion kinase (FAK) inhibitors have been developed as potential anticancer agents and are undergoing clinical trials. In vitro activation of the FAK kinase domain triggers autophosphorylation of Y397, Src activation, and subsequent phosphorylation of other FAK tyrosine residues. However, how FAK Y397 mutations affect FAK kinase-dead (KD) phenotypes in tumour angiogenesis in vivo is unknown. We developed three Pdgfb-iCreert -driven endothelial cell (EC)-specific, tamoxifen-inducible homozygous mutant mouse lines: FAK wild-type (WT), FAK KD, and FAK double mutant (DM), i.e. KD with a putatively phosphomimetic Y397E mutation. These ECCre+;FAKWT/WT , ECCre+;FAKKD/KD and ECCre+;FAKDM/DM mice were injected subcutaneously with syngeneic B16F0 melanoma cells. Tumour growth and tumour blood vessel functions were unchanged between ECCre+;FAKWT/WT and ECCre-;FAKWT/WT control mice. In contrast, tumour growth and vessel density were decreased in ECCre+;FAKKD/KD and ECCre+;FAKDM/DM mice, as compared with Cre - littermates. Despite no change in the percentage of perfused vessels or pericyte coverage in either genotype, tumour hypoxia was elevated in ECCre+;FAKKD/KD and ECCre+;FAKDM/DM mice. Furthermore, although ECCre+;FAKKD/KD mice showed reduced blood vessel leakage, ECCre+;FAKDM/DM and ECCre-;FAKDM/DM mice showed no difference in leakage. Mechanistically, fibronectin-stimulated Y397 autophosphorylation was reduced in Cre+;FAKKD/KD ECs as compared with Cre+;FAKWT/WT cells, with no change in phosphorylation of the known Src targets FAK-Y577, FAK-Y861, FAK-Y925, paxillin-Y118, p130Cas-Y410. Cre+;FAKDM/DM ECs showed decreased Src target phosphorylation levels, suggesting that the Y397E substitution actually disrupted Src activation. Reduced VE-cadherin-pY658 levels in Cre+;FAKKD/KD ECs were rescued in Cre+FAKDM/DM ECs, corresponding with the rescue in vessel leakage in the ECCre+;FAKDM/DM mice. We show that EC-specific FAK kinase activity is required for tumour growth, angiogenesis, and vascular permeability. The ECCre+;FAKDM/DM mice restored the KD-dependent tumour vascular leakage observed in ECCre+;FAKKD/KD mice in vivo. This study opens new fields in in vivo FAK signalling. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Delphine M Lees
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Natalia Bodrug
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Tanguy Lechertier
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Isabelle Fernandez
- Platform of Expertise for Rare Diseases Paris‐SudLe Kremlin‐BicêtreFrance
| | - Gabriela D'Amico
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Matthew Dukinfield
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Silvia Batista
- Division of Cancer Therapeutics, Institute of Cancer ResearchSuttonUK
| | - Bernardo Tavora
- Laboratory of Systems Cancer BiologyRockefeller UniversityNew YorkUSA
| | - Bryan Serrels
- Cancer Research UK Edinburgh CentreUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
43
|
Wang X, Zhou Q, Yu Z, Wu X, Chen X, Li J, Li C, Yan M, Zhu Z, Liu B, Su L. Cancer-associated fibroblast-derived Lumican promotes gastric cancer progression via the integrin β1-FAK signaling pathway. Int J Cancer 2017; 141:998-1010. [PMID: 28542982 DOI: 10.1002/ijc.30801] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 04/11/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaofeng Wang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
- Department of Surgery; Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Quan Zhou
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| | - Zhenjia Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| | - Xiongyan Wu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| | - Xuehua Chen
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| | - Jianfang Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| | - Chen Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| | - Min Yan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| | - Zhenggang Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| | - Bingya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| | - Liping Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025 People's Republic of China
| |
Collapse
|
44
|
Hu C, Chen X, Wen J, Gong L, Liu Z, Wang J, Liang J, Hu F, Zhou Q, Wei L, Shen Y, Zhang W. Antitumor effect of focal adhesion kinase inhibitor PF562271 against human osteosarcoma in vitro and in vivo. Cancer Sci 2017; 108:1347-1356. [PMID: 28406574 PMCID: PMC5497929 DOI: 10.1111/cas.13256] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
Focal adhesion kinase (FAK) overexpression is related to invasive and metastatic properties in different kinds of cancers. Target therapy by inhibiting FAK has achieved promising effect in some cancer treatments, but its effect in human osteosarcoma has not been well studied. In the present study, we analyzed the antitumor efficacy of PF562271, an FAK inhibitor, against osteosarcoma in vitro and in vivo. Phosphorylated FAK (Y397) was highly expressed in primary human osteosarcoma tumor samples and was associated with osteosarcoma prognosis and lung metastasis. PF562271 greatly suppressed proliferation and colony formation in human osteosarcoma cell lines. In addition, treatment of osteosarcoma cell lines with PF562271 induced apoptosis and downregulated the activity of the protein kinase B/mammalian target of rapamycin pathway. PF562271 also impaired the tube formation ability of endothelial cells in vitro. Finally, oral treatment with PF562271 in mice dramatically reduced tumor volume, weight, and angiogenesis of osteosarcoma xenografts in vivo. These results indicate that FAK inhibitor PF562271 can potentially be effectively used for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Chuanzhen Hu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Chen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedics, Wuxi Xinrui Hospital, Wuxi Branch, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Wuxi, China
| | - Junxiang Wen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liangzhi Gong
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuochao Liu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Liang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangqiong Hu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Wei
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weibin Zhang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proc Natl Acad Sci U S A 2017; 114:3933-3938. [PMID: 28348210 DOI: 10.1073/pnas.1614894114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase involved in development and human disease, including cancer. It is currently thought that the four-point one, ezrin, radixin, moesin (FERM)-kinase domain linker, which contains autophosphorylation site tyrosine (Y) 397, is not required for in vivo FAK function until late midgestation. Here, we directly tested this hypothesis by generating mice with FAK Y397-to-phenylalanine (F) mutations in the germline. We found that Y397F embryos exhibited reduced mesodermal fibronectin (FN) and osteopontin expression and died during mesoderm development akin to FAK kinase-dead mice. We identified myosin-1E (MYO1E), an actin-dependent molecular motor, to interact directly with the FAK FERM-kinase linker and induce FAK kinase activity and Y397 phosphorylation. Active FAK in turn accumulated in the nucleus where it led to the expression of osteopontin and other FN-type matrix in both mouse embryonic fibroblasts and human melanoma. Our data support a model in which FAK Y397 autophosphorylation is required for FAK function in vivo and is positively regulated by MYO1E.
Collapse
|
46
|
Kleinschmidt EG, Schlaepfer DD. Focal adhesion kinase signaling in unexpected places. Curr Opin Cell Biol 2017; 45:24-30. [PMID: 28213315 DOI: 10.1016/j.ceb.2017.01.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase first identified at extracellular matrix and integrin receptor cell adhesion sites and is a key regulator of cell movement. FAK is activated by a variety of stimuli. Herein, we discuss advances in conformational-associated FAK activation and dimerization mechanisms. Additionally, new roles have emerged for FAK signaling at cell adhesions, adherens junctions, endosomes, and the nucleus. In light of these new findings, we review how FAK activation at these sites is connected to the regulation of integrin recycling-activation, vascular permeability, cell survival, and transcriptional regulation, respectively. Studies uncovering FAK signaling connections in unexpected places within cells have yielded important new regulatory insights in cell biology.
Collapse
Affiliation(s)
- Elizabeth G Kleinschmidt
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, United States; Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Drive, MC 0983, La Jolla, CA 92093-0983, United States
| | - David D Schlaepfer
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, United States; Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Drive, MC 0983, La Jolla, CA 92093-0983, United States.
| |
Collapse
|
47
|
Mierke CT, Fischer T, Puder S, Kunschmann T, Soetje B, Ziegler WH. Focal adhesion kinase activity is required for actomyosin contractility-based invasion of cells into dense 3D matrices. Sci Rep 2017; 7:42780. [PMID: 28202937 PMCID: PMC5311912 DOI: 10.1038/srep42780] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
The focal adhesion kinase (FAK) regulates the dynamics of integrin-based cell adhesions important for motility. FAK's activity regulation is involved in stress-sensing and focal-adhesion turnover. The effect of FAK on 3D migration and cellular mechanics is unclear. We analyzed FAK knock-out mouse embryonic fibroblasts and cells expressing a kinase-dead FAK mutant, R454-FAK, in comparison to FAK wild-type cells. FAK knock-out and FAKR454/R454 cells invade dense 3D matrices less efficiently. These results are supported by FAK knock-down in wild-type fibroblasts and MDA-MB-231 human breast cancer cells showing reduced invasiveness. Pharmacological interventions indicate that in 3D matrices, cells deficient in FAK or kinase-activity behave similarly to wild-type cells treated with inhibitors of Src-activity or actomyosin-contractility. Using magnetic tweezers experiments, FAKR454/R454 cells are shown to be softer and exhibit impaired adhesion to fibronectin and collagen, which is consistent with their reduced 3D invasiveness. In line with this, FAKR454/R454 cells cannot contract the matrix in contrast to FAK wild-type cells. Finally, our findings demonstrate that active FAK facilitates 3D matrix invasion through increased cellular stiffness and transmission of actomyosin-dependent contractile force in dense 3D extracellular matrices.
Collapse
Affiliation(s)
- Claudia T. Mierke
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Tom Kunschmann
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Birga Soetje
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Wolfgang H. Ziegler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
48
|
Franco-Barraza J, Francescone R, Luong T, Shah N, Madhani R, Cukierman G, Dulaimi E, Devarajan K, Egleston BL, Nicolas E, Katherine Alpaugh R, Malik R, Uzzo RG, Hoffman JP, Golemis EA, Cukierman E. Matrix-regulated integrin α vβ 5 maintains α 5β 1-dependent desmoplastic traits prognostic of neoplastic recurrence. eLife 2017; 6. [PMID: 28139197 PMCID: PMC5283834 DOI: 10.7554/elife.20600] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022] Open
Abstract
Desmoplasia, a fibrotic mass including cancer-associated fibroblasts (CAFs) and self-sustaining extracellular matrix (D-ECM), is a puzzling feature of pancreatic ductal adenocarcinoma (PDACs). Conflicting studies have identified tumor-restricting and tumor-promoting roles of PDAC-associated desmoplasia, suggesting that individual CAF/D-ECM protein constituents have distinguishable tumorigenic and tumor-repressive functions. Using 3D culture of normal pancreatic versus PDAC-associated human fibroblasts, we identified a CAF/D-ECM phenotype that correlates with improved patient outcomes, and that includes CAFs enriched in plasma membrane-localized, active α5β1-integrin. Mechanistically, we established that TGFβ is required for D-ECM production but dispensable for D-ECM-induced naïve fibroblast-to-CAF activation, which depends on αvβ5-integrin redistribution of pFAK-independent active α5β1-integrin to assorted endosomes. Importantly, the development of a simultaneous multi-channel immunofluorescence approach and new algorithms for computational batch-analysis and their application to a human PDAC panel, indicated that stromal localization and levels of active SMAD2/3 and α5β1-integrin distinguish patient-protective from patient-detrimental desmoplasia and foretell tumor recurrences, suggesting a useful new prognostic tool. DOI:http://dx.doi.org/10.7554/eLife.20600.001 Tumors are not entirely made out of cancerous cells. They contain many other components – referred to as tumor stroma – that may either encourage or hinder the tumor’s growth. Tumor stroma includes non-cancerous cells and a framework of fibrous sugary proteins, called the extracellular matrix, which surround and signal to cells while providing physical support. In the most common and aggressive form of pancreatic cancer, the stroma often makes up the majority of the tumor’s mass. Sometimes the stroma of these pancreatic tumors can protect the cancer cells from anti-cancer drugs. Researchers have therefore been interested in finding out exactly which aspects of the tumor stroma shield and support cancer cells, and which impede their growth and progression. Answering these questions could make it possible to develop new drugs that will change a tumor-supporting stroma into one that hinders the tumor’s growth and spread. The most abundant cells in the stroma of pancreatic tumors are called cancer-associated fibroblasts. Healthy specialized fibroblasts – known as pancreatic stellate cells – help to build and maintain the ‘normal’ extracellular matrix and so these cells normally restrict a tumor’s development. However, cancer cells can adapt healthy fibroblasts into cancer-associated fibroblasts, which produce an altered extracellular matrix that could allow the tumor to grow. Franco-Barraza et al. have now compared healthy and cancer-associated fibroblasts from patients’ pancreatic tumors. One of the main differences between these two cell types was the location of the activated form of a molecule called α5β1-integrin. Healthy fibroblasts, in a normal extracellular matrix, have active α5β1-integrin on the surface of the cell. However, a number of tumor-promoting signals, including some from the altered extracellular matrix, could force the active α5β1-integrins to relocate inside the fibroblasts instead. In further experiments, where the activated integrin was retained at the cell surface, the fibroblasts were able to resist the influence of the cancer-associated extracellular matrix. Then again, if the active α5β1-integrins were directed inside the cells, healthy cells turned into cancer-associated fibroblasts. With this information in hand, Franco-Barraza et al. examined tumor samples from over a hundred pancreatic cancer patients using a new microscopy-based technique that distinguishes cancer cells from stroma cells. The analysis confirmed the pattern observed in the laboratory: those patients who appeared to produce more normal extracellular matrix and have active α5β1-integrin localized mostly to the surface of the cells survived longer without the cancer returning than those patients who lacked these stroma traits. Samples from patients with kidney cancer also showed similar results and, as before, an altered extracellular matrix was linked to a worse outcome of the disease. Together these findings suggest that if future studies uncover ways to relocate or maintain active α5β1-integrin to the cell surface of fibroblasts they could lead to new treatments to restrict the growth of tumors in cancer patients. DOI:http://dx.doi.org/10.7554/eLife.20600.002
Collapse
Affiliation(s)
| | - Ralph Francescone
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Tiffany Luong
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Neelima Shah
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Raj Madhani
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Gil Cukierman
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, United States
| | - Karthik Devarajan
- Department of Cancer Epigenetics, Fox Chase Cancer Center, Philadelphia, United States
| | - Brian L Egleston
- Department of Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, United States
| | - Emmanuelle Nicolas
- Programs in Genomics, Fox Chase Cancer Center, Philadelphia, United States
| | | | - Ruchi Malik
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Robert G Uzzo
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States.,Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, United States
| | - John P Hoffman
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, United States
| | - Erica A Golemis
- Department of Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, United States
| | - Edna Cukierman
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| |
Collapse
|
49
|
Antoniades I, Stylianou P, Christodoulou N, Skourides PA. Addressing the Functional Determinants of FAK during Ciliogenesis in Multiciliated Cells. J Biol Chem 2016; 292:488-504. [PMID: 27895123 DOI: 10.1074/jbc.m116.767111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
We previously identified focal adhesion kinase (FAK) as an important regulator of ciliogenesis in multiciliated cells. FAK and other focal adhesion (FA) proteins associate with the basal bodies and their striated rootlets and form complexes named ciliary adhesions (CAs). CAs display similarities with FAs but are established in an integrin independent fashion and are responsible for anchoring basal bodies to the actin cytoskeleton during ciliogenesis as well as in mature multiciliated cells. FAK down-regulation leads to aberrant ciliogenesis due to impaired association between the basal bodies and the actin cytoskeleton, suggesting that FAK is an important regulator of the CA complex. However, the mechanism through which FAK functions in the complex is not clear, and in this study we examined the role of this protein in both ciliogenesis and ciliary function. We show that localization of FAK at CAs depends on interactions taking place at the amino-terminal (FERM) and carboxyl-terminal (FAT) domains and that both domains are required for proper ciliogenesis and ciliary function. Furthermore, we show that an interaction with another CA protein, paxillin, is essential for correct localization of FAK in multiciliated cells. This interaction is indispensable for both ciliogenesis and ciliary function. Finally, we provide evidence that despite the fact that FAK is in the active, open conformation at CAs, its kinase activity is dispensable for ciliogenesis and ciliary function revealing that FAK plays a scaffolding role in multiciliated cells. Overall these data show that the role of FAK at CAs displays similarities but also important differences compared with its role at FAs.
Collapse
Affiliation(s)
- Ioanna Antoniades
- From the Laboratory of Cell Biology and Molecular Embryology, Department of Biological Sciences, University of Cyprus, 1 University Avenue, Nicosia 2109, Cyprus
| | - Panayiota Stylianou
- From the Laboratory of Cell Biology and Molecular Embryology, Department of Biological Sciences, University of Cyprus, 1 University Avenue, Nicosia 2109, Cyprus
| | - Neophytos Christodoulou
- From the Laboratory of Cell Biology and Molecular Embryology, Department of Biological Sciences, University of Cyprus, 1 University Avenue, Nicosia 2109, Cyprus
| | - Paris A Skourides
- From the Laboratory of Cell Biology and Molecular Embryology, Department of Biological Sciences, University of Cyprus, 1 University Avenue, Nicosia 2109, Cyprus
| |
Collapse
|
50
|
Roy-Luzarraga M, Hodivala-Dilke K. Molecular Pathways: Endothelial Cell FAK-A Target for Cancer Treatment. Clin Cancer Res 2016; 22:3718-24. [PMID: 27262114 PMCID: PMC5386133 DOI: 10.1158/1078-0432.ccr-14-2021] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/13/2016] [Indexed: 01/28/2023]
Abstract
The nonreceptor protein tyrosine kinase, focal adhesion kinase (FAK, also known as PTK2), is a key mediator of signal transduction downstream of integrins and growth factor receptors in a variety of cells, including endothelial cells. FAK is upregulated in several advanced-stage solid tumors and has been described to promote tumor progression and metastasis through effects on both tumor cells and stromal cells. This observation has led to the development of several FAK inhibitors, some of which have entered clinical trials (GSK2256098, VS-4718, VS-6062, VS-6063, and BI853520). Resistance to chemotherapy is a serious limitation of cancer treatment and, until recently, most studies were restricted to tumor cells, excluding the possible roles performed by the tumor microenvironment. A recent report identified endothelial cell FAK (EC-FAK) as a major regulator of chemosensitivity. By dysregulating endothelial cell-derived paracrine (also known as angiocrine) signals, loss of FAK solely in the endothelial cell compartment is able to induce chemosensitization to DNA-damaging therapies in the malignant cell compartment and thereby reduce tumor growth. Herein, we summarize the roles of EC-FAK in cancer and development and review the status of FAK-targeting anticancer strategies. Clin Cancer Res; 22(15); 3718-24. ©2016 AACR.
Collapse
Affiliation(s)
- Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|