1
|
Stokes MS, Kim YJ, Kim Y, Koul S, Chiu SP, Dasovich M, Zuniga J, Nandu T, Huang D, Mathews TP, Solmonson A, Camacho CV, Kraus WL. NAD + Sensing by PARP7 Regulates the C/EBPβ-Dependent Transcription Program in Adipose Tissue In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647692. [PMID: 40291749 PMCID: PMC12027069 DOI: 10.1101/2025.04.07.647692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We have identified PARP7, an NAD + -dependent mono(ADP-ribosyl) transferase, as a key regulator of the C/EBPβ-dependent proadipogenic transcription program. Moreover, PARP7 is required for efficient adipogenesis and downstream biological functions, including involution of the lactating mammary gland. PARP7 serves as a coregulator of C/EBPβ, and depletion of PARP7 causes a dramatic reduction in C/EBPβ binding across the genome. PARP7 functions as a sensor of nuclear NAD + levels to control gene expression. At the relatively high nuclear NAD + concentrations in undifferentiated preadipocytes, PARP7 is catalytically active for auto- mono(ADP-ribosyl)ation (autoMARylation). As nuclear NAD + concentrations decline post- differentiation, autoMARylation decreases dramatically. AutoMARylation promotes instability of PARP7 through an E3 ligase-ubiquitin-proteasome pathway mediated by the ADP-ribose (ADPR)-binding ubiquitin E3 ligases DTX2 and RNF114. Genetic depletion of PARP7 in mice promotes a dramatic reduction in a wide array of lipids in the mammary gland fat pads and milk from lactating females, as well as a significant decrease in nicotinamide mononucleotide (NMN), a key nutrient in mother's milk. The latter is due to reduced expression of Nampt , the gene encoding NAMPT, the enzyme that produces NMN, which is a direct transcriptional target of PARP7 and C/EBPβ. Collectively, our results extend the biology of PARP7 to adipogenesis and perinatal health. Moreover, our results describe the molecular events that regulate these downstream biological functions.
Collapse
|
2
|
Popova K, Benedum J, Engl M, Lütgendorf-Caucig C, Fossati P, Widder J, Podar K, Slade D. PARP7 as a new target for activating anti-tumor immunity in cancer. EMBO Mol Med 2025:10.1038/s44321-025-00214-6. [PMID: 40128585 DOI: 10.1038/s44321-025-00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
ADP-ribosyl transferases (ARTs) are a family of enzymes which catalyze the addition of a chain (PARylation) or a single moiety (MARylation) of ADP-ribose to their substrates. PARP7 is a mono-ADP-ribosyl transferase (mono-ART) which has recently gained attention due to its emerging role as a negative regulator of the type I interferon (IFN-I) and nuclear receptor signaling, and due to its aberrant expression in cancer, contributing to disease progression and immune evasion. PARP7-mediated ADP-ribosylation can differentially affect protein stability. On the one hand, PARP7-mediated ADP-ribosylation of the transcription factor FRA1 protects it from proteosomal degradation and thereby supports its function in negatively regulating IRF1 and the expression of apoptosis and immune signaling genes. On the other hand, PARP7-mediated ADP-ribosylation of aryl hydrocarbon receptor (AHR) and estrogen receptor (ER) marks them for proteosomal degradation. PARP7 also ADP-ribosylates the ligand-bound androgen receptor (AR), which is recognized by DTX3L-PARP9 that modulate the AR transcriptional activity. In this review, we discuss PARP7 enzymatic properties, biological functions and known substrates, its role in various cancers, and its targeting by specific inhibitors.
Collapse
Affiliation(s)
- Katerina Popova
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Carola Lütgendorf-Caucig
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Division of Molecular Oncology and Hematology, Department of Basic and Translational Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Klaus Podar
- Division of Molecular Oncology and Hematology, Department of Basic and Translational Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Internal Medicine 2, University Hospital Krems, Krems and der Donau, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria.
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
- Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
3
|
Naulin F, Guilbaud E, Galluzzi L. PARP7 and nucleic acid-driven oncosuppression. Cell Mol Immunol 2024; 21:1177-1179. [PMID: 38834655 PMCID: PMC11528111 DOI: 10.1038/s41423-024-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Flavie Naulin
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Ying T, Liu X, Zhang L, Cao W, Wen S, Wu Y, He G, Li J. Benchmark Dose for Dioxin Based on Gestational Diabetes Mellitus Using Coexposure Statistical Methods and an Optimized Physiologically Based Toxicokinetic Model. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:661-671. [PMID: 39512389 PMCID: PMC11540123 DOI: 10.1021/envhealth.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 11/15/2024]
Abstract
Dioxins are ubiquitous endocrine-disrupting substances, but determining the effects and benchmark doses in situations of coexposure is highly challenging. The objective of this study was to assess the relationship between dioxin andgestational diabetes mellitus (GDM), calculate the benchmark dose (BMD) of dioxin in coexposure scenarios, and derive a daily exposure threshold using an optimized physiologically based toxicokinetic (PBTK) model. Based on a nested case-control study including 77 cases with GDM and 154 controls, serum levels of 29 dioxin-like compounds (DLCs) along with 10 perfluoroalkyl acids (PFAAs), seven polybrominated diphenyl ethers (PBDEs), and five non-dioxin-like polychlorinated biphenyls (ndl-PCBs) were measured at 9-16 weeks of gestation. Bayesian machine kernel regression (BKMR) was employed to identify significant chemicals, and probit and logistic models were used to calculate BMD adjusted for significant chemicals. A physiologically based toxicokinetic (PBTK) model was optimized using polyfluorinated dibenzo-p-dioxins and dibenzofurans (PFDD/Fs) data by the Bayesian-Monte Carlo Markov chain method and was used to determine the daily dietary exposure threshold. The median serum level of total dioxin toxic equivalent (TEQ) was 7.72 pg TEQ/g fat. Logistic regression analysis revealed that individuals in the fifth quantile of total TEQ level had significantly higher odds of developing GDM compared to those in the first quantile (OR, 8.87; 95% CI 3.19, 27.58). The BKMR analysis identified dioxin TEQ and BDE-153 as the compounds with the greatest influence. The binary logistic and probit models showed that the BMD10 (benchmark dose corresponding to a 10% extra risk) and BMDL10 (lower bound on the BMD10) were 3.71 and 3.46 pg TEQ/g fat, respectively, when accounting for coexposure to BDE-153 up to the 80% level. Using the optimized PBTK model and modifying factor, it was estimated that daily exposure should be below 4.34 pg TEQ kg-1 bw week-1 in order to not reach a harmful serum concentration for GDM. Further studies should utilize coexposure statistical methods and physiologically based pharmacokinetic (PBTK) models in reference dose calculation.
Collapse
Affiliation(s)
- Tao Ying
- School
of Public Health, Key Laboratory of Public Health Safety of the Ministry
of Education, Fudan University, Shanghai 200032, China
| | - Xin Liu
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of
Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
- Key
Laboratory for Deep Processing of Major Grain and Oil (The Chinese
Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Zhang
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of
Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Wencheng Cao
- China
Hubei Provincial Center for Disease Control and Prevention, Hubei
Provincial Academy of Preventive Medicine, Hubei 430023, China
| | - Sheng Wen
- China
Hubei Provincial Center for Disease Control and Prevention, Hubei
Provincial Academy of Preventive Medicine, Hubei 430023, China
| | - Yongning Wu
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of
Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Gengsheng He
- School
of Public Health, Key Laboratory of Public Health Safety of the Ministry
of Education, Fudan University, Shanghai 200032, China
| | - Jingguang Li
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of
Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
5
|
Nazzari M, Romitti M, Kip AM, Kamps R, Costagliola S, van de Beucken T, Moroni L, Caiment F. Impact of benzo[a]pyrene, PCB153 and sex hormones on human ESC-Derived thyroid follicles using single cell transcriptomics. ENVIRONMENT INTERNATIONAL 2024; 188:108748. [PMID: 38763096 DOI: 10.1016/j.envint.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Endocrine disruptors are compounds of manmade origin able to interfere with the endocrine system and constitute an important environmental concern. Indeed, detrimental effects on thyroid physiology and functioning have been described. Differences exist in the susceptibility of human sexes to the incidence of thyroid disorders, like autoimmune diseases or cancer. METHODS To study how different hormonal environments impact the thyroid response to endocrine disruptors, we exposed human embryonic stem cell-derived thyroid organoids to physiological concentrations of sex hormones resembling the serum levels of human females post-ovulation or males of reproductive age for three days. Afterwards, we added 10 µM benzo[a]pyrene or PCB153 for 24 h and analyzed the transcriptome changes via single-cell RNA sequencing with differential gene expression and gene ontology analysis. RESULTS The sex hormones receptors genes AR, ESR1, ESR2 and PGR were expressed at low levels. Among the thyroid markers, only TG resulted downregulated by benzo[a]pyrene or benzo[a]pyrene with the "male" hormones mix. Both hormone mixtures and benzo[a]pyrene alone upregulated ribosomal genes and genes involved in oxidative phosphorylation, while their combination decreased the expression compared to benzo[a]pyrene alone. The "male" mix and benzo[a]pyrene, alone or in combination, upregulated genes involved in lipid transport and metabolism (APOA1, APOC3, APOA4, FABP1, FABP2, FABP6). The combination of "male" hormones and benzo[a]pyrene induced also genes involved in inflammation and NFkB targets. Benzo[a]pyrene upregulated CYP1A1, CYP1B1 and NQO1 irrespective of the hormonal context. The induction was stronger in the "female" mix. Benzo[a]pyrene alone upregulated genes involved in cell cycle regulation, response to reactive oxygen species and apoptosis. PCB153 had a modest effect in presence of "male" hormones, while we did not observe any changes with the "female" mix. CONCLUSION This work shows how single cell transcriptomics can be applied to selectively study the in vitro effects of endocrine disrupters and their interaction with different hormonal contexts.
Collapse
Affiliation(s)
- Marta Nazzari
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Anna M Kip
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht, the Netherlands
| | - Rick Kamps
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Twan van de Beucken
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht, the Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
6
|
Chen J, Zhang M, Aniagu S, Jiang Y, Chen T. PM 2.5 induces cardiac defects via AHR-SIRT1-PGC-1α mediated mitochondrial damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104393. [PMID: 38367920 DOI: 10.1016/j.etap.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Recent evidence indicates that PM2.5 poses a risk for congenital heart diseases, but the mechanisms remain unclear. We hypothesized that AHR activated by PM2.5 might cause mitochondrial damage via PGC-1α dysregulation, leading to heart defects. We initially discovered that the PGC-1α activator ZLN005 counteracted cardiac defects in zebrafish larvae exposed to EOM (extractable organic matter) from PM2.5. Moreover, ZLN005 attenuated EOM-induced PGC-1α downregulation, mitochondrial dysfunction/biogenesis, and apoptosis. EOM exposure not only decreased PGC-1α expression levels, but suppressed its activity via deacetylation, and SIRT1 activity is required during both processes. We then found that SIRT1 expression levels and NAD+/NADH ratio were reduced in an AHR-dependent way. We also demonstrated that AHR directly suppressed the transcription of SIRT1 while promoted the transcription of TiPARP which consumed NAD+. In conclusion, our study suggests that PM2.5 induces mitochondrial damage and heart defects via AHR/SIRT1/PGC-1α signal pathway.
Collapse
Affiliation(s)
- Jin Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Mingxuan Zhang
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin TX, USA
| | - Yan Jiang
- Suzhou medical college, Soochow University, Suzhou, China.
| | - Tao Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| |
Collapse
|
7
|
Karbowska M, Pawlak K, Sieklucka B, Domaniewski T, Lebkowska U, Zawadzki R, Pawlak D. Dose-dependent exposure to indoxyl sulfate alters AHR signaling, sirtuins gene expression, oxidative DNA damage, and bone mineral status in rats. Sci Rep 2024; 14:2583. [PMID: 38297036 PMCID: PMC10831046 DOI: 10.1038/s41598-024-53164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Indoxyl sulfate (IS), an agonist of aryl hydrocarbon receptors (AhR), can accumulate in patients with chronic kidney disease, but its direct effect on bone is not clear. The present study investigated the effect of chronic exposure to low (100 mg/kg b.w.; 100 IS) and high (200 mg/kg b.w.; 200 IS) dose of IS on bone AhR pathway, sirtuins (SIRTs) expression, oxidative DNA damage and bone mineral status in Wistar rats. The accumulation of IS was observed only in trabecular bone tissue in both doses. The differences were observed in the bone parameters, depending on the applied IS dose. The exposure to 100 IS increased AhR repressor (AhRR)-CYP1A2 gene expression, which was associated with SIRT-1, SIRT-3 and SIRT-7 expression. At the low dose group, the oxidative DNA damage marker was unchanged in the bone samples, and it was inversely related to the abovementioned SIRTs expression. In contrast, the exposure to 200 IS reduced the expression of AhRR, CYP1A, SIRT-3 and SIRT-7 genes compared to 100 IS. The level of oxidative DNA damage was higher in trabecular bone in 200 IS group. Femoral bone mineral density was decreased, and inverse relations were noticed between the level of trabecular oxidative DNA damage and parameters of bone mineral status. In conclusion, IS modulates AhR-depending signaling affecting SIRTs expression, oxidative DNA damage and bone mineral status in a dose dependent manner.
Collapse
Affiliation(s)
- Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland.
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Urszula Lebkowska
- Department of Radiology, Medical University of Bialystok, Białystok, Poland
| | - Radoslaw Zawadzki
- Department of Radiology, Medical University of Bialystok, Białystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
8
|
Curran CS, Kopp JB. The complexity of nicotinamide adenine dinucleotide (NAD), hypoxic, and aryl hydrocarbon receptor cell signaling in chronic kidney disease. J Transl Med 2023; 21:706. [PMID: 37814337 PMCID: PMC10563221 DOI: 10.1186/s12967-023-04584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023] Open
Abstract
Early-stage detection of chronic kidney diseases (CKD) is important to treatment that may slow and occasionally halt CKD progression. CKD of diverse etiologies share similar histologic patterns of glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Macro-vascular disease and micro-vascular disease promote tissue ischemia, contributing to injury. Tissue ischemia promotes hypoxia, and this in turn activates the hypoxia-inducible transcription factors (HIFs). HIF-1α and HIF-2α, share a dimer partner, HIF-1β, with the aryl hydrocarbon receptor (AHR) and are each activated in CKD and associated with kidney cellular nicotinamide adenine dinucleotide (NAD) depletion. The Preiss-Handler, salvage, and de novo pathways regulate NAD biosynthesis and gap-junctions regulate NAD cellular retention. In the Preiss-Handler pathway, niacin forms NAD. Niacin also exhibits crosstalk with HIF and AHR cell signals in the regulation of insulin sensitivity, which is a complication in CKD. Dysregulated enzyme activity in the NAD de novo pathway increases the levels of circulating tryptophan metabolites that activate AHR, resulting in poly-ADP ribose polymerase activation, thrombosis, endothelial dysfunction, and immunosuppression. Therapeutically, metabolites from the NAD salvage pathway increase NAD production and subsequent sirtuin deacetylase activity, resulting in reduced activation of retinoic acid-inducible gene I, p53, NF-κB and SMAD2 but increased activation of FOXO1, PGC-1α, and DNA methyltransferase-1. These post-translational responses may also be initiated through non-coding RNAs (ncRNAs), which are additionally altered in CKD. Nanoparticles traverse biological systems and can penetrate almost all tissues as disease biomarkers and drug delivery carriers. Targeted delivery of non-coding RNAs or NAD metabolites with nanoparticles may enable the development of more effective diagnostics and therapies to treat CKD.
Collapse
Affiliation(s)
- Colleen S Curran
- National Heart Lung and Blood Institute, NIH, BG 10 RM 2C135, 10 Center Drive, Bethesda, MD, 20814, USA.
| | | |
Collapse
|
9
|
Bielczyk-Maczynska E, Sharma D, Blencowe M, Saliba Gustafsson P, Gloudemans MJ, Yang X, Carcamo-Orive I, Wabitsch M, Svensson KJ, Park CY, Quertermous T, Knowles JW, Li J. A single-cell CRISPRi platform for characterizing candidate genes relevant to metabolic disorders in human adipocytes. Am J Physiol Cell Physiol 2023; 325:C648-C660. [PMID: 37486064 PMCID: PMC10635647 DOI: 10.1152/ajpcell.00148.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
CROP-Seq combines gene silencing using CRISPR interference with single-cell RNA sequencing. Here, we applied CROP-Seq to study adipogenesis and adipocyte biology. Human preadipocyte SGBS cell line expressing KRAB-dCas9 was transduced with a sgRNA library. Following selection, individual cells were captured using microfluidics at different timepoints during adipogenesis. Bioinformatic analysis of transcriptomic data was used to determine the knockdown effects, the dysregulated pathways, and to predict cellular phenotypes. Single-cell transcriptomes recapitulated adipogenesis states. For all targets, over 400 differentially expressed genes were identified at least at one timepoint. As a validation of our approach, the knockdown of PPARG and CEBPB (which encode key proadipogenic transcription factors) resulted in the inhibition of adipogenesis. Gene set enrichment analysis generated hypotheses regarding the molecular function of novel genes. MAFF knockdown led to downregulation of transcriptional response to proinflammatory cytokine TNF-α in preadipocytes and to decreased CXCL-16 and IL-6 secretion. TIPARP knockdown resulted in increased expression of adipogenesis markers. In summary, this powerful, hypothesis-free tool can identify novel regulators of adipogenesis, preadipocyte, and adipocyte function associated with metabolic disease.NEW & NOTEWORTHY Genomics efforts led to the identification of many genomic loci that are associated with metabolic traits, many of which are tied to adipose tissue function. However, determination of the causal genes, and their mechanism of action in metabolism, is a time-consuming process. Here, we use an approach to determine the transcriptional outcome of candidate gene knockdown for multiple genes at the same time in a human cell model of adipogenesis.
Collapse
Affiliation(s)
- Ewa Bielczyk-Maczynska
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
| | - Disha Sharma
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
| | - Peter Saliba Gustafsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Michael J Gloudemans
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States
- Biomedical Informatics Training Program, Stanford, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
| | - Ivan Carcamo-Orive
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Centre, Ulm, Germany
| | - Katrin J Svensson
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States
| | - Chong Y Park
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
| | - Joshua W Knowles
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, California, United States
| | - Jiehan Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
10
|
ADP-Ribosylation in Antiviral Innate Immune Response. Pathogens 2023; 12:pathogens12020303. [PMID: 36839575 PMCID: PMC9964302 DOI: 10.3390/pathogens12020303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is a reversible post-translational modification catalyzed by ADP-ribosyltransferases (ARTs). ARTs transfer one or more ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to the target substrate and release the nicotinamide (Nam). Accordingly, it comes in two forms: mono-ADP-ribosylation (MARylation) and poly-ADP-ribosylation (PARylation). ADP-ribosylation plays important roles in many biological processes, such as DNA damage repair, gene regulation, and energy metabolism. Emerging evidence demonstrates that ADP-ribosylation is implicated in host antiviral immune activity. Here, we summarize and discuss ADP-ribosylation modifications that occur on both host and viral proteins and their roles in host antiviral response.
Collapse
|
11
|
Wang J, Lu P, Xie W. Atypical functions of xenobiotic receptors in lipid and glucose metabolism. MEDICAL REVIEW (2021) 2022; 2:611-624. [PMID: 36785576 PMCID: PMC9912049 DOI: 10.1515/mr-2022-0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022]
Abstract
Xenobiotic receptors are traditionally defined as xenobiotic chemical-sensing receptors, the activation of which transcriptionally regulates the expression of enzymes and transporters involved in the metabolism and disposition of xenobiotics. Emerging evidence suggests that "xenobiotic receptors" also have diverse endobiotic functions, including their effects on lipid metabolism and energy metabolism. Dyslipidemia is a major risk factor for cardiovascular disease, diabetes, obesity, metabolic syndrome, stroke, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Understanding the molecular mechanism by which transcriptional factors, including the xenobiotic receptors, regulate lipid homeostasis will help to develop preventive and therapeutic approaches. This review describes recent advances in our understanding the atypical roles of three xenobiotic receptors: aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR), in metabolic disorders, with a particular focus on their effects on lipid and glucose metabolism. Collectively, the literatures suggest the potential values of AhR, PXR and CAR as therapeutic targets for the treatment of NAFLD, NASH, obesity and diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peipei Lu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Sayed TS, Maayah ZH, Zeidan HA, Agouni A, Korashy HM. Insight into the physiological and pathological roles of the aryl hydrocarbon receptor pathway in glucose homeostasis, insulin resistance, and diabetes development. Cell Mol Biol Lett 2022; 27:103. [PMID: 36418969 PMCID: PMC9682773 DOI: 10.1186/s11658-022-00397-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor that mediates the toxicities of several environmental pollutants. Decades of research have been carried out to understand the role of AhR as a novel mechanism for disease development. Its involvement in the pathogenesis of cancer, cardiovascular diseases, rheumatoid arthritis, and systemic lupus erythematosus have long been known. One of the current hot research topics is investigating the role of AhR activation by environmental pollutants on glucose homeostasis and insulin secretion, and hence the pathogenesis of diabetes mellitus. To date, epidemiological studies have suggested that persistent exposure to environmental contaminants such as dioxins, with subsequent AhR activation increases the risk of specific comorbidities such as obesity and diabetes. The importance of AhR signaling in various molecular pathways highlights that the role of this receptor is far beyond just xenobiotic metabolism. The present review aims at providing significant insight into the physiological and pathological role of AhR and its regulated enzymes, such as cytochrome P450 1A1 (CYP1A1) and CYP1B1 in both types of diabetes. It also provides a comprehensive summary of the current findings of recent research studies investigating the role of the AhR/CYP1A1 pathway in insulin secretion and glucose hemostasis in the pancreas, liver, and adipose tissues. This review further highlights the molecular mechanisms involved, such as gluconeogenesis, hypoxia-inducible factor (HIF), oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Tahseen S. Sayed
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Zaid H. Maayah
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Heba A. Zeidan
- grid.498552.70000 0004 0409 8340American School of Doha, Doha, Qatar
| | - Abdelali Agouni
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Hesham M. Korashy
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
13
|
Di Paola S, Matarese M, Barretta ML, Dathan N, Colanzi A, Corda D, Grimaldi G. PARP10 Mediates Mono-ADP-Ribosylation of Aurora-A Regulating G2/M Transition of the Cell Cycle. Cancers (Basel) 2022; 14:5210. [PMID: 36358629 PMCID: PMC9659153 DOI: 10.3390/cancers14215210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 08/13/2023] Open
Abstract
Intracellular mono-ADP-ribosyltransferases (mono-ARTs) catalyze the covalent attachment of a single ADP-ribose molecule to protein substrates, thus regulating their functions. PARP10 is a soluble mono-ART involved in the modulation of intracellular signaling, metabolism and apoptosis. PARP10 also participates in the regulation of the G1- and S-phase of the cell cycle. However, the role of this enzyme in G2/M progression is not defined. In this study, we found that genetic ablation, protein depletion and pharmacological inhibition of PARP10 cause a delay in the G2/M transition of the cell cycle. Moreover, we found that the mitotic kinase Aurora-A, a previously identified PARP10 substrate, is actively mono-ADP-ribosylated (MARylated) during G2/M transition in a PARP10-dependent manner. Notably, we showed that PARP10-mediated MARylation of Aurora-A enhances the activity of the kinase in vitro. Consistent with an impairment in the endogenous activity of Aurora-A, cells lacking PARP10 show a decreased localization of the kinase on the centrosomes and mitotic spindle during G2/M progression. Taken together, our data provide the first evidence of a direct role played by PARP10 in the progression of G2 and mitosis, an event that is strictly correlated to the endogenous MARylation of Aurora-A, thus proposing a novel mechanism for the modulation of Aurora-A kinase activity.
Collapse
Affiliation(s)
- Simone Di Paola
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Maria Matarese
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Maria Luisa Barretta
- National Research Council (CNR), Piazzale Aldo Moro, 700185 Rome, Italy
- Steril Farma Srl, Via L. Da Vinci 128, 80055 Portici, Italy
| | - Nina Dathan
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Daniela Corda
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Giovanna Grimaldi
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
14
|
Szychowski KA, Skóra B, Wójtowicz AK. Involvement of sirtuins (Sirt1 and Sirt3) and aryl hydrocarbon receptor (AhR) in the effects of triclosan (TCS) on production of neurosteroids in primary mouse cortical neurons cultures. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105131. [PMID: 35715069 DOI: 10.1016/j.pestbp.2022.105131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological studies have shown the presence of triclosan (TCS) in the brain due to its widespread use as an antibacterial ingredient. One of the confirmed mechanisms of its action is the interaction with the aryl hydrocarbon receptor (AhR). In nerve cells, sirtuins (Sirt1 and Sirt3) act as cellular sensors detecting energy availability and modulate metabolic processes. Moreover, it has been found that Sirt1 inhibits the activation of estrogen receptors, regulates the androgen receptor, and may interact with the AhR receptor. It is also known that Sirt3 stimulates the production of estradiol (E2) via the estradiol receptor β (Erβ). Therefore, the aim of the present study was to evaluate the effect of TCS alone or in combination with synthetic flavonoids on the production of neurosteroids such as progesterone (P4), testosterone (T), and E2 in primary neural cortical neurons in vitro. The contribution of Sirt1 and Sirt3 as well as AhR to these TCS-induced effects was investigated as well. The results of the experiments showed that both short and long exposure of neurons to TCS increased the expression of the Sirt1 and Sirt3 proteins in response to AhR stimulation. After an initial increase in the production of all tested neurosteroids, TCS acting for a longer time lowered their levels in the cells. This suggests that TCS activating AhR as well as Sirt1 and Sirt3 in short time intervals stimulates the levels of P4, T, and E2 in neurons, and then the amount of neurosteroids decreases despite the activation of AhR and the increase in the expression of the Sirt1 and Sirt3 proteins. The use of both the AhR agonist and antagonist prevented changes in the expression of Sirt1, Sirt3, and AhR and the production of P4, T, and E2, which confirmed that this receptor is a key in the mechanism of the TCS action.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Anna K Wójtowicz
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, Adama Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
15
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
16
|
Abstract
Post-translational modifications exist in different varieties to regulate diverse characteristics of their substrates, ultimately leading to maintenance of cell health. The enzymes of the intracellular poly(ADP-ribose) polymerase (PARP) family can transfer either a single ADP-ribose to targets, in a reaction called mono(ADP-ribosyl)ation or MARylation, or multiple to form chains of poly(ADP-ribose) or PAR. Traditionally thought to be attached to arginine or glutamate, recent data have added serine, tyrosine, histidine and others to the list of potential ADP-ribose acceptor amino acids. PARylation by PARP1 has been relatively well studied, whereas less is known about the other family members such as PARP7 and PARP10. ADP-ribosylation on arginine and serine is reversed by ARH1 and ARH3 respectively, whereas macrodomain-containing MACROD1, MACROD2 and TARG1 reverse modification of acidic residues. For the other amino acids, no hydrolases have been identified to date. For many PARPs, it is not clear yet what their endogenous targets are. Better understanding of their biochemical reactions is required to be able to determine their biological functions in future studies. In this review, we discuss the current knowledge of PARP specificity in vitro and in cells, as well as provide an outlook for future research.
Collapse
|
17
|
Šimečková P, Pěnčíková K, Kováč O, Slavík J, Pařenicová M, Vondráček J, Machala M. In vitro profiling of toxic effects of environmental polycyclic aromatic hydrocarbons on nuclear receptor signaling, disruption of endogenous metabolism and induction of cellular stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151967. [PMID: 34843781 DOI: 10.1016/j.scitotenv.2021.151967] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) may interact with multiple intracellular receptors and related signaling pathways. We comprehensively evaluated the toxicity profiles of six environmentally relevant PAHs differing in structure, genotoxicity and their ability to activate the aryl hydrocarbon receptor (AhR). We focused particularly on their impact on intracellular hormone-, xenobiotic- and lipid-sensing receptors, as well as on cellular stress markers, combining a battery of human reporter gene assays and qRT-PCR evaluation of endogenous gene expression in human hepatocyte-like HepaRG cells, with LC/MS-MS analysis of cellular sphingolipids. The effects of PAHs included: activation of estrogen receptor α (in case of fluoranthene (Fla), pyrene (Pyr), benz[a]anthracene (BaA), benzo[a]pyrene (BaP)), suppression of androgen receptor activity (Fla, BaA, BaP and benzo[k]fluoranthene (BkF)), enhancement of dexamethasone-induced glucocorticoid receptor activity (chrysene (Chry), BaA, and BaP), and potentiation of triiodothyronine-induced thyroid receptor α activity (all tested PAHs). PAHs also induced transcription of endogenous gene targets of constitutive androstane receptor (Fla, Pyr), or repression of target genes of pregnane X receptor and peroxisome proliferator-activated receptor α (in case of the AhR-activating PAHs - Chry, BaA, BaP, and BkF) in HepaRG cells. In the same cell model, the AhR agonists reduced the expression of glucose metabolism genes (PCK1, G6PC and PDK4), and they up-regulated levels of glucosylceramides, together with a concomitant induction of expression of UGCG, glucosylceramide synthesis enzyme. Finally, both BaP and BkF were found to induce expression of early stress and genotoxicity markers: ATF3, EGR1, GDF15, CDKN1A/p21, and GADD45A mRNAs, while BaP alone increased levels of IL-6 mRNA. Overall, whereas low-molecular-weight PAHs exerted significant effects on nuclear receptors (with CYP2B6 induction observed already at nanomolar concentrations), the AhR activation by 4-ring and 5-ring PAHs appeared to be a key mechanism underlying their impact on nuclear receptor signaling, endogenous metabolism and induction of early stress and genotoxicity markers.
Collapse
Affiliation(s)
- Pavlína Šimečková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Ondrej Kováč
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Josef Slavík
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Martina Pařenicová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic.
| |
Collapse
|
18
|
Brinkmann V, Romeo M, Larigot L, Hemmers A, Tschage L, Kleinjohann J, Schiavi A, Steinwachs S, Esser C, Menzel R, Giani Tagliabue S, Bonati L, Cox F, Ale-Agha N, Jakobs P, Altschmied J, Haendeler J, Coumoul X, Ventura N. Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants (Basel) 2022; 11:613. [PMID: 35453298 PMCID: PMC9024831 DOI: 10.3390/antiox11040613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Margherita Romeo
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lucie Larigot
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Anne Hemmers
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lisa Tschage
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Jennifer Kleinjohann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Swantje Steinwachs
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Charlotte Esser
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Ralph Menzel
- Institute of Biology, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany;
| | - Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Fiona Cox
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- Institute of Clinical Pharmacology and Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Philipp Jakobs
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Joachim Altschmied
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Judith Haendeler
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Xavier Coumoul
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| |
Collapse
|
19
|
TCDD-inducible Poly (ADP-ribose) Polymerase Promotes Adipogenesis of Both Brown and White Preadipocytes. J Transl Int Med 2022; 10:246-254. [PMID: 36776241 PMCID: PMC9901556 DOI: 10.2478/jtim-2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background TCDD-inducible poly (ADP-ribose) polymerase (TiPARP) is a DNA repair enzyme with functions in energy metabolism, signal transduction, cell differentiation, and other biological processes, which may closely related to lipid metabolism and is highly expressed in adipose tissue. Adipose tissue can be divided into white adipose tissue (WAT) that stores energy and brown adipose tissue (BAT) that releases energy and generates heat. In the present study, we investigated whether TiPARP can affect adipogenesis in adipose tissue and thus participate in the development of obesity. Methods BAT primary cells or 3T3-L1 cells infected with adenovirus expressing TiPARP or TiPARP-targeted short hairpin RNA (shTiPARP) were cultured to induce adipogenic differentiation. The expression of TiPARP was detected by real-time PCR and Western blotting. The expression of specific BAT- and WAT-related markers was detected by real-time PCR. The accumulation of lipid droplets in differentiated cells was detected by Oil Red O staining. Results TiPARP was highly expressed in both subcutaneous WAT and BAT, and TiPARP mRNA level increased significantly along with adipogenic differentiation. Activation of TiPARP or overexpression of TiPARP upregulated BAT-related markers in primary BAT cells and WAT-related markers in 3T3-L1 cells, together with increased lipid accumulation. On the contrary, knockdown of TiPARP downregulated expression of specific markers in both BAT primary cells and 3T3-L1 cells, together with decreased lipid accumulation. Conclusion TiPARP regulates adipogenesis in both BAT primary cells and 3T3-L1 cells and therefore plays an important role in modulating maturity and lipid accumulation in brown and white adipocytes. These findings provide us with a new strategy for combating obesity.
Collapse
|
20
|
Eti NA, Flor S, Iqbal K, Scott RL, Klenov VE, Gibson-Corley KN, Soares MJ, Ludewig G, Robertson LW. PCB126 induced toxic actions on liver energy metabolism is mediated by AhR in rats. Toxicology 2022; 466:153054. [PMID: 34848246 PMCID: PMC8748418 DOI: 10.1016/j.tox.2021.153054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in the regulation of biological responses to more planar aromatic hydrocarbons, like TCDD. We previously described the sequence of events following exposure of male rats to a dioxin-like polychlorinated biphenyl (PCB) congener, 3,3',4,4',5-pentachlorobiphenyl (PCB126), that binds avidly to the AhR and causes various types of toxicity including metabolic syndrome, fatty liver, and disruption of energy homeostasis. The purpose of this study was, to investigate the role of AhR to mediate those toxic manifestations following sub-acute exposure to PCB126 and to examine possible sex differences in effects. For this goal, we created an AhR knockout (AhR-KO) model using CRISPR/Cas9. Comparison was made to the wild type (WT) male and female Holtzman Sprague Dawley rats. Rats were injected with a single IP dose of corn oil vehicle or 5 μmol/kg PCB126 in corn oil and necropsied after 28 days. PCB126 caused significant weight loss, reduced relative thymus weights, and increased relative liver weights in WT male and female rats, but not in AhR-KO rats. Similarly, significant pathologic changes were visible which included necrosis and regeneration in female rats, micro- and macro-vesicular hepatocellular vacuolation in males, and a paucity of glycogen in livers of both sexes in WT rats only. Hypoglycemia and lower IGF1, and reduced serum non-esterified fatty acids (NEFAs) were found in serum of both sexes of WT rats, low serum cholesterol levels only in the females, and no changes in AhR-KO rats. The expression of genes encoding enzymes related to xenobiotic metabolism (e.g. CYP1A1), gluconeogenesis, glycogenolysis, and fatty acid oxidation were unaffected in the AhR-KO rats following PCB126 exposure as opposed to WT rats where expression was significantly upregulated (PPARα, females only) or downregulated suggesting a disrupted energy homeostasis. Interestingly, Acox2, Hmgcs, G6Pase and Pc were affected in both sexes, the gluconeogenesis and glucose transporter genes Pck1, Glut2, Sds, and Crem only in male WT-PCB rats. These results show the essential role of the AhR in glycogenolysis, gluconeogenesis, and fatty acid oxidation, i.e. in the regulation of energy production and homeostasis, but also demonstrate a significant difference in the effects of PCB126 in males verses females, suggesting higher vulnerability of glucose homeostasis in males and more changes in fatty acid/lipid homeostasis in females. These differences in effects, which may apply to more/all AhR agonists, should be further analyzed to identify health risks to specific groups of highly exposed human populations.
Collapse
Affiliation(s)
- Nazmin Akter Eti
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Susanne Flor
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Regan L Scott
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Violet E Klenov
- Department of Ob/Gyn, University of Iowa, Iowa City, IA, United States
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Michael J Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
21
|
Lou W, Zhang MD, Chen Q, Bai TY, Hu YX, Gao F, Li J, Lv XL, Zhang Q, Chang FH. Molecular mechanism of benzo [a] pyrene regulating lipid metabolism via aryl hydrocarbon receptor. Lipids Health Dis 2022; 21:13. [PMID: 35057794 PMCID: PMC8772151 DOI: 10.1186/s12944-022-01627-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Benzo [a] pyrene (BaP), a potent carcinogen, has been proved that it has toxicological effects via activation the aryl hydrocarbon receptor (AhR) pathway. AhR can participate in regulating lipogenesis and lipolysis. This topic will verify whether BaP regulates lipid metabolism via AhR. METHODS (1) C57BL/6 mice were gavaged with BaP for 12 weeks to detect serum lipids, glucose tolerance, and insulin resistance. Morphological changes in white adipose tissue (WAT) were detected by Hematoxylin and Eosin staining. The mRNA expression levels of adipogenesis-related factors included recombinant human CCAAT/enhancer binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and fatty acid binding protein 4 (FABP4) and inflammatory factors included nuclear factor kappa-B (NF-κB), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α) were detected using PCR. (2) Neutral lipid content changes in differentiated 3 T3-L1 adipocytes treated with BaP with and w/o AhR inhibitor were detected by Oil red staining. The protein expression levels of adipogenesis- and decomposition-related factors included PPARγ coactivator-1 alpha (PGC-1α), and peroxisome proliferation-activated receptor alpha (PPARα) were detected using western blotting. The mRNA expression levels of inflammatory factors were detected using PCR. RESULTS (1) BaP inhibited body weight gain, decreased lipid content, increased lipid levels, and decreased glucose tolerance and insulin tolerance in mice; (2) BaP reduced the expressions of C/EBPα, PPARγ, FABP4, PGC-1α, and PPARα and increased the expressions of NF-κB, MCP-1, and TNF-α by activating AhR. CONCLUSION BaP inhibit fat synthesis and oxidation while inducing inflammation by activating AhR, leading to WAT dysfunction and causing metabolic complications.
Collapse
Affiliation(s)
- Wei Lou
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Department of Pharmacy, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010010, China
| | - Meng-di Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Qi Chen
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Tu-Ya Bai
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yu-Xia Hu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Feng Gao
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Jun Li
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Xiao-Li Lv
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Qian Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Fu-Hou Chang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China.
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China.
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China.
| |
Collapse
|
22
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
23
|
Bock KW. Aryl hydrocarbon receptor (AHR) functions in infectious and sterile inflammation and NAD +-dependent metabolic adaptation. Arch Toxicol 2021; 95:3449-3458. [PMID: 34559251 PMCID: PMC8461142 DOI: 10.1007/s00204-021-03134-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023]
Abstract
Aryl hydrocarbon receptor (AHR) research has shifted from exploring dioxin toxicity to elucidation of various physiologic AHR functions. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to exert cellular stress-mediated sterile inflammatory responses in exposed human tissues but may be lethal in sensitive species. Inflammation can be thought of as the extreme end of a spectrum ranging from homeostasis to stress responses (sterile inflammation) and to defense against infection (infectious inflammation). Defense against bacterial infection by generation of reactive oxygen species has to be strictly controlled and may use up a considerable amount of energy. NAD+-mediated energy metabolism adapts to various inflammatory responses. As examples, the present commentary tries to integrate responses of AHR and NAD+-consuming enzymes (PARP7/TiPARP, CD38 and sirtuins) into infectious and stress-induced inflammatory responses, the latter exemplified by nonalcoholic fatty liver disease (NAFLD). TCDD toxicity models in sensitive species provide hints to molecular AHR targets of energy metabolism including gluconeogenesis and glycolysis. AHR research remains challenging and promising.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, 72074, Tübingen, Germany.
| |
Collapse
|
24
|
Sipos A, Ujlaki G, Mikó E, Maka E, Szabó J, Uray K, Krasznai Z, Bai P. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med 2021; 27:33. [PMID: 33794773 PMCID: PMC8017782 DOI: 10.1186/s10020-021-00295-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is characterized by dysbiosis, referred to as oncobiosis in neoplastic diseases. In ovarian cancer, oncobiosis was identified in numerous compartments, including the tumor tissue itself, the upper and lower female genital tract, serum, peritoneum, and the intestines. Colonization was linked to Gram-negative bacteria with high inflammatory potential. Local inflammation probably participates in the initiation and continuation of carcinogenesis. Furthermore, local bacterial colonies in the peritoneum may facilitate metastasis formation in ovarian cancer. Vaginal infections (e.g. Neisseria gonorrhoeae or Chlamydia trachomatis) increase the risk of developing ovarian cancer. Bacterial metabolites, produced by the healthy eubiome or the oncobiome, may exert autocrine, paracrine, and hormone-like effects, as was evidenced in breast cancer or pancreas adenocarcinoma. We discuss the possible involvement of lipopolysaccharides, lysophosphatides and tryptophan metabolites, as well as, short-chain fatty acids, secondary bile acids and polyamines in the carcinogenesis of ovarian cancer. We discuss the applicability of nutrients, antibiotics, and probiotics to harness the microbiome and support ovarian cancer therapy. The oncobiome and the most likely bacterial metabolites play vital roles in mediating the effectiveness of chemotherapy. Finally, we discuss the potential of oncobiotic changes as biomarkers for the diagnosis of ovarian cancer and microbial metabolites as possible adjuvant agents in therapy.
Collapse
Affiliation(s)
- Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Eszter Maka
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Zoárd Krasznai
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
25
|
Diani-Moore S, Marques Pedro T, Rifkind AB. Organ-specific effects on glycolysis by the dioxin-activated aryl hydrocarbon receptor. PLoS One 2020; 15:e0243842. [PMID: 33320884 PMCID: PMC7737989 DOI: 10.1371/journal.pone.0243842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AHR) by the environmental toxin dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) causes diverse toxicities, including thymus atrophy and hepatosteatosis. The mechanisms by which AHR activation by TCDD leads to these toxicities are not fully understood. Here we studied the effects of TCDD on a major energy pathway, glycolysis, using the chick embryo close to hatching, a well-established model for studying dioxin toxicity. We showed that 24 hr of TCDD treatment causes changes in glycolysis in both thymus and liver. In thymus glands, TCDD decreased mRNAs for glycolytic genes and glucose transporters, glycolytic indices and levels of IL7 mRNA, phosphorylated AKT (pAKT) and HIF1A, stimulators of glycolysis and promoters of survival and proliferation of thymic lymphocytes. In contrast, in liver, TCDD increased mRNA levels for glycolytic genes and glucose transporters, glycolytic endpoints and pAKT levels. Similarly, increases by TCDD in mRNA levels for glycolytic genes and glucose transporters in human primary hepatocytes showed that effects in chick embryo liver pertain also to human cells. Treatment with the glycolytic inhibitor 2-deoxy-d-glucose exacerbated the effects on thymus atrophy by TCDD, supporting a role for decreased glycolysis in thymus atrophy by TCDD, but did not prevent hepatosteatosis. NAD+ precursors abolished TCDD effects on glycolytic endpoints in both thymus and liver. In summary, we report here that dioxin disrupts glycolysis mediated energy metabolism in both thymus and liver, and that it does so in opposite ways, decreasing it in the thymus and increasing it in the liver. Further, the findings support NAD+ boosting as a strategy against metabolic effects of environmental pollutants such as dioxins.
Collapse
Affiliation(s)
- Silvia Diani-Moore
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, New York, New York, United States of America
| | - Tiago Marques Pedro
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, New York, New York, United States of America
| | - Arleen B. Rifkind
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Meta-Analysis of Transcriptome Data Detected New Potential Players in Response to Dioxin Exposure in Humans. Int J Mol Sci 2020; 21:ijms21217858. [PMID: 33113971 PMCID: PMC7672605 DOI: 10.3390/ijms21217858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
Dioxins are one of the most potent anthropogenic poisons, causing systemic disorders in embryonic development and pathologies in adults. The mechanism of dioxin action requires an aryl hydrocarbon receptor (AhR), but the downstream mechanisms are not yet precisely clear. Here, we performed a meta-analysis of all available transcriptome datasets taken from human cell cultures exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Differentially expressed genes from different experiments overlapped partially, but there were a number of those genes that were systematically affected by TCDD. Some of them have been linked to toxic dioxin effects, but we also identified other attractive targets. Among the genes that were affected by TCDD, there are functionally related gene groups that suggest an interplay between retinoic acid, AhR, and Wnt signaling pathways. Next, we analyzed the upstream regions of differentially expressed genes and identified potential transcription factor (TF) binding sites overrepresented in the genes responding to TCDD. Intriguingly, the dioxin-responsive element (DRE), the binding site of AhR, was not overrepresented as much as other cis-elements were. Bioinformatics analysis of the AhR binding profile unveils potential cooperation of AhR with E2F2, CTCFL, and ZBT14 TFs in the dioxin response. We discuss the potential implication of these predictions for further dioxin studies.
Collapse
|
27
|
From diagnosis to therapy in Duchenne muscular dystrophy. Biochem Soc Trans 2020; 48:813-821. [PMID: 32597486 PMCID: PMC7329342 DOI: 10.1042/bst20190282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Genetic approaches for the diagnosis and treatment of inherited muscle diseases have advanced rapidly in recent years. Many of the advances have occurred in the treatment of Duchenne muscular dystrophy (DMD), a muscle wasting disease where affected boys are typically wheelchair bound by age 12 years and generally die in their twenties from respiratory failure or cardiomyopathy. Dystrophin is a 421 kD protein which links F-actin to the extracellular matrix via the dystrophin-associated protein complex (DAPC) at the muscle membrane. In the absence of dystrophin, the DAPC is lost, making the muscle membrane more susceptible to contraction-induced injury. The identification of the gene causing DMD in 1986 resulted in improved diagnosis of the disease and the identification of hotspots for mutation. There is currently no effective treatment. However, there are several promising genetic therapeutic approaches at the preclinical stage or in clinical trials including read-through of stop codons, exon skipping, delivery of dystrophin minigenes and the modulation of expression of the dystrophin related protein, utrophin. In spite of significant progress, the problem of targeting all muscles, including diaphragm and heart at sufficiently high levels, remains a challenge. Any therapy also needs to consider the immune response and some treatments are mutation specific and therefore limited to a subgroup of patients. This short review provides a summary of the current status of DMD therapy with a particular focus on those genetic strategies that have been taken to the clinic.
Collapse
|
28
|
Vitamin B12 and folic acid alleviate symptoms of nutritional deficiency by antagonizing aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2020; 117:15837-15845. [PMID: 32571957 DOI: 10.1073/pnas.2006949117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Despite broad appreciation of their clinical utility, it has been unclear how vitamin B12 and folic acid (FA) function at the molecular level to directly prevent their hallmark symptoms of deficiency like anemia or birth defects. To this point, B12 and FA have largely been studied as cofactors for enzymes in the one-carbon (1C) cycle in facilitating the de novo generation of nucleotides and methylation of DNA and protein. Here, we report that B12 and FA function as natural antagonists of aryl hydrocarbon receptor (AhR). Our studies indicate that B12 and FA bind AhR directly as competitive antagonists, blocking AhR nuclear localization, XRE binding, and target gene induction mediated by AhR agonists like 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and 6-formylindolo[3,2-b]carbazole (FICZ). In mice, TCDD treatment replicated many of the hallmark symptoms of B12/FA deficiency and cotreatment with aryl hydrocarbon portions of B12/FA rescued mice from these toxic effects. Moreover, we found that B12/FA deficiency in mice induces AhR transcriptional activity and accumulation of erythroid progenitors and that it may do so in an AhR-dependent fashion. Consistent with these results, we observed that human cancer samples with deficient B12/FA uptake demonstrated higher transcription of AhR target genes and lower transcription of pathways implicated in birth defects. In contrast, there was no significant difference observed between samples with mutated and intact 1C cycle proteins. Thus, we propose a model in which B12 and FA blunt the effect of natural AhR agonists at baseline to prevent the symptoms that arise with AhR overactivation.
Collapse
|
29
|
Wilkinson IVL, Perkins KJ, Dugdale H, Moir L, Vuorinen A, Chatzopoulou M, Squire SE, Monecke S, Lomow A, Geese M, Charles PD, Burch P, Tinsley JM, Wynne GM, Davies SG, Wilson FX, Rastinejad F, Mohammed S, Davies KE, Russell AJ. Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Kelly J. Perkins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Hannah Dugdale
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Lee Moir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Aini Vuorinen
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Maria Chatzopoulou
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Sarah E. Squire
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Sebastian Monecke
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Alexander Lomow
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Marcus Geese
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Philip D. Charles
- Department of BiochemistryUniversity of Oxford South Parks Rd Oxford OX1 3QU UK
- Target Discovery InstituteUniversity of OxfordOld Road Campus Roosevelt Drive Oxford OX3 7FZ UK
| | - Peter Burch
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Jonathan M. Tinsley
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Graham M. Wynne
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Stephen G. Davies
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Francis X. Wilson
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Fraydoon Rastinejad
- Target Discovery InstituteUniversity of OxfordOld Road Campus Roosevelt Drive Oxford OX3 7FZ UK
| | - Shabaz Mohammed
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Department of BiochemistryUniversity of Oxford South Parks Rd Oxford OX1 3QU UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Angela J. Russell
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Department of PharmacologyUniversity of Oxford Mansfield Road Oxford OX1 3PQ UK
| |
Collapse
|
30
|
Wilkinson IVL, Perkins KJ, Dugdale H, Moir L, Vuorinen A, Chatzopoulou M, Squire SE, Monecke S, Lomow A, Geese M, Charles PD, Burch P, Tinsley JM, Wynne GM, Davies SG, Wilson FX, Rastinejad F, Mohammed S, Davies KE, Russell AJ. Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angew Chem Int Ed Engl 2020; 59:2420-2428. [PMID: 31755636 PMCID: PMC7003794 DOI: 10.1002/anie.201912392] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease arising from mutations in the dystrophin gene. Upregulation of utrophin to compensate for the missing dystrophin offers a potential therapy independent of patient genotype. The first-in-class utrophin modulator ezutromid/SMT C1100 was developed from a phenotypic screen through to a Phase 2 clinical trial. Promising efficacy and evidence of target engagement was observed in DMD patients after 24 weeks of treatment, however trial endpoints were not met after 48 weeks. The objective of this study was to understand the mechanism of action of ezutromid which could explain the lack of sustained efficacy and help development of new generations of utrophin modulators. Using chemical proteomics and phenotypic profiling we show that the aryl hydrocarbon receptor (AhR) is a target of ezutromid. Several lines of evidence demonstrate that ezutromid binds AhR with an apparent KD of 50 nm and behaves as an AhR antagonist. Furthermore, other reported AhR antagonists also upregulate utrophin, showing that this pathway, which is currently being explored in other clinical applications including oncology and rheumatoid arthritis, could also be exploited in future DMD therapies.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Kelly J. Perkins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Hannah Dugdale
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Lee Moir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Aini Vuorinen
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Maria Chatzopoulou
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Sarah E. Squire
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Sebastian Monecke
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Alexander Lomow
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Marcus Geese
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Philip D. Charles
- Department of BiochemistryUniversity of OxfordSouth Parks RdOxfordOX1 3QUUK
- Target Discovery InstituteUniversity of OxfordOld Road CampusRoosevelt DriveOxfordOX3 7FZUK
| | - Peter Burch
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Jonathan M. Tinsley
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Graham M. Wynne
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Stephen G. Davies
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Francis X. Wilson
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Fraydoon Rastinejad
- Target Discovery InstituteUniversity of OxfordOld Road CampusRoosevelt DriveOxfordOX3 7FZUK
| | - Shabaz Mohammed
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of BiochemistryUniversity of OxfordSouth Parks RdOxfordOX1 3QUUK
| | - Kay E. Davies
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Angela J. Russell
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3PQUK
| |
Collapse
|
31
|
Leblanc AF, Attignon EA, Distel E, Karakitsios SP, Sarigiannis DA, Bortoli S, Barouki R, Coumoul X, Aggerbeck M, Blanc EB. A dual mixture of persistent organic pollutants modifies carbohydrate metabolism in the human hepatic cell line HepaRG. ENVIRONMENTAL RESEARCH 2019; 178:108628. [PMID: 31520823 DOI: 10.1016/j.envres.2019.108628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/12/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Individuals as well as entire ecosystems are exposed to mixtures of Persistent Organic Pollutants (POPs). Previously, we showed, by a non-targeted approach, that the expression of several genes involved in carbohydrate metabolism was almost completely inhibited in the human hepatic cell line HepaRG following exposure to a mixture of the organochlorine insecticide alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin. In this European HEALS project, which studies the effects of the exposome on human health, we used a Physiologically Based BioKinetic model to compare the concentrations previously used in vitro with in vivo exposures for humans. We investigated the effects of these POPs on the levels of proteins, on glycogen content, glucose production and the oxidation of glucose into CO2 and correlated them to the expression of genes involved in carbohydrate metabolism as measured by RT-qPCR. Exposure to individual POPs and the mixture decreased the expression of the proteins investigated as well as glucose output (up to 82%), glucose oxidation (up to 29%) and glycogen content (up to 48%). siRNAs that specifically inhibit the expression of several xenobiotic receptors were used to assess receptor involvement in the effects of the POPs. In the HepaRG model, we demonstrate that the effects are mediated by the aryl hydrocarbon receptor and the estrogen receptor alpha, but not the pregnane X receptor or the constitutive androstane receptor. These results provide evidence that exposure to combinations of POPs, acting through different signaling pathways, may affect, more profoundly than single pollutants alone, metabolic pathways such as carbohydrate/energy metabolism and play a potential role in pollutant associated metabolic disorders.
Collapse
Affiliation(s)
- Alix F Leblanc
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Eléonore A Attignon
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Emilie Distel
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Spyros P Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, 54 124, Thessaloniki, Greece.
| | - Dimosthenis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, 54 124, Thessaloniki, Greece; Environmental Health Engineering, Institute for Advanced Study, Pavia, Italy.
| | - Sylvie Bortoli
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Robert Barouki
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France; AP-HP, Hôpital Necker-Enfants Malades, Service de Biochimie Métabolique, 149, rue de Sèvres, 75743, Paris, France.
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Martine Aggerbeck
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Etienne B Blanc
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| |
Collapse
|
32
|
Functions of aryl hydrocarbon receptor (AHR) and CD38 in NAD metabolism and nonalcoholic steatohepatitis (NASH). Biochem Pharmacol 2019; 169:113620. [PMID: 31465774 DOI: 10.1016/j.bcp.2019.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Abstract
Aryl hydrocarbon receptor (AHR), identified in studies of dioxin toxicity, has been characterized as ligand-activated transcription factor involved in diverse functions including microbial defense, cell proliferation, immunity and NAD metabolism. AHR targets of the latter function are PARPs/ARTs and CD38 that are regulating glucose and lipid metabolism via NAD-dependent sirtuins. Deregulation of these pathways may facilitate obesity and age-dependent pathologies. The present commentary is focused on AHR and CD38 signaling in liver. CD38 is functioning as ectoNADase and Ca2+ mobilizing enzyme in endoplasmic reticulum and endolysosomal membranes. Deregulation of TCDD-activated AHR and CD38 may facilitate hepatic steatosis and inflammation. However, these proteins are also involved in protection against inflammation and CD38-mediated age-related decreased NAD levels that may be responsible for neurodegeneration. Further knowledge about the complexity of these pathways is needed to avoid pathologies. Therapeutic modulation of AHR and CD38 remains a challenging task.
Collapse
|
33
|
Liu X, Zhang L, Li J, Wang J, Meng G, Chi M, Zhao Y, Wu Y. Relative Effect Potency Estimates for Dioxin-Like Compounds in Pregnant Women with Gestational Diabetes Mellitus and Blood Glucose Outcomes Based on a Nested Case-control Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7792-7802. [PMID: 31149810 DOI: 10.1021/acs.est.9b00988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To improve the applicability of the toxic equivalents principle for human health risk assessment, systemic relative effect potencies (REPs) for dioxin-like compounds (DLCs) deriving from human in vivo data are required. A prospective nested case-control study was performed to determine REPs from the human serum concentration of DLCs using gestational diabetes mellitus (GDM) and fasting blood glucose (FBG) as the end points of concern. Serum concentration of 29 DLCs from 77 cases and 154 controls were measured. Logistic and linear regression were used to estimate the effects of individual congeners on GDM and FBG, respectively. The REPs based on GDM and FBG were calculated from the ratios of regression coefficients, βi (DLCs)/βTCDD. Two sets of consistent human serum-based REPs, that is, GDM-REP and FBG-REP, were established and largely agree with REPs from other human studies. These human-serum REPs show much smaller variation compared to the 4 to 5 orders of magnitude span in REPs database for the present WHO-TEF determination. Moreover, the established REPs fitted well with WHO-TEFs, especially for polychlorinated dibenzo- p-dioxins, furans. These REPs reflecting real human exposure scenarios exhibited validity and could be used to improve health risk assessment of human body burden of DLCs.
Collapse
Affiliation(s)
- Xin Liu
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control , Shenzhen 518020 , China
| | - Guimin Meng
- Beijing Fengtai Hospital obstetrics and gynecology , Beijing 100071 , China
| | - Min Chi
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
- Taiyuan Center for Disease Control and Prevention , Taiyuan 030000 , China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
34
|
Shen X, Chen Y, Zhang J, Yan X, Liu W, Guo Y, Shan Q, Liu S. Low-dose PCB126 compromises circadian rhythms associated with disordered glucose and lipid metabolism in mice. ENVIRONMENT INTERNATIONAL 2019; 128:146-157. [PMID: 31055201 DOI: 10.1016/j.envint.2019.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
It has been documented that 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) elicits diverse detrimental effects on human health including metabolic syndrome and non-alcoholic fatty-liver disease (NAFLD), through a wide array of non-carcinogenic mechanisms, which require further detailed investigations. The circadian clock system consists of central clock machinery (located in the suprachiasmatic nucleus in the hypothalamus) and the peripheral clocks (located in nearly all peripheral tissues). Peripheral clocks in the liver play fundamental roles in maintaining liver homeostasis, including the regulation of energy metabolism and the expression of enzymes that fine-tune the absorption and metabolism of xenobiotics. However, the molecular basis of whether PCB126 disrupts liver homeostasis (e.g., glucose and lipid metabolism) by dysregulating the circadian clock system is still unknown. Thus, we performed a set of comprehensive analyses of glucose and lipid metabolism in the liver tissues from low-dose PCB126-treated mice. Our results demonstrated that PCB126 diminished glucose and cholesterol levels in serum and elevated glucose and cholesterol levels in the liver. Moreover, PCB126 compromised PGC1α and PDHE1α, which are the driving force for mitochondrial biogenesis and entry of pyruvate into the tricarboxylic acid (TCA) cycle, respectively, and resulted in the accumulation of glucose, glycogen and pyruvate in the liver after PCB126 exposure. Additionally, PCB126 blocked hepatic cholesterol metabolism and export pathways, leading to an elevated localization of hepatic cholesterol. Mechanistic investigations illustrated that PCB126 greatly altered the expression profile of core clock genes and their target rhythm genes involved in orchestrating glucose and cholesterol metabolism. Together, our results demonstrated that a close correlation between PCB126-disturbed glucose and lipid metabolism and disordered physiological oscillation of circadian genes.
Collapse
Affiliation(s)
- Xinming Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongjiu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xu Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiuli Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Olaparib induces browning of in vitro cultures of human primary white adipocytes. Biochem Pharmacol 2019; 167:76-85. [PMID: 31251940 DOI: 10.1016/j.bcp.2019.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial biogenesis is a key feature of energy expenditure and organismal energy balance. Genetic deletion of PARP1 or PARP2 was shown to induce mitochondrial biogenesis and energy expenditure. In line with that, PARP inhibitors were shown to induce energy expenditure in skeletal muscle. We aimed to investigate whether pharmacological inhibition of PARPs induces brown or beige adipocyte differentiation. SVF fraction of human pericardial adipose tissue was isolated and human adipose-derived mesenchymal stem cells (hADMSCs) were differentiated to white and beige adipocytes. A subset of hADMSCs were differentiated to white adipocytes in the presence of Olaparib, a potent PARP inhibitor currently in clinical use, to induce browning. Olaparib induced morphological changes (smaller lipid droplets) in white adipocytes that is a feature of brown/beige adipocytes. Furthermore, Olaparib induced mitochondrial biogenesis in white adipocytes and enhanced UCP1 expression. We showed that Olaparib treatment inhibited nuclear and cytosolic PAR formation, induced NAD+/NADH ratio and consequently boosted SIRT1 and AMPK activity and the downstream transcriptional program leading to increases in OXPHOS. Olaparib treatment did not induce the expression of beige adipocyte markers in white adipocytes, suggesting the formation of brown or brown-like adipocytes. PARP1, PARP2 and tankyrases are key players in the formation of white adipose tissue. Hereby, we show that PARP inhibition induces the transdifferentiation of white adipocytes to brown-like adipocytes suggesting that PARP activity could be a determinant of the differentiation of these adipocyte lineages.
Collapse
|
36
|
Bock KW. Aryl hydrocarbon receptor (AHR) functions in NAD + metabolism, myelopoiesis and obesity. Biochem Pharmacol 2019; 163:128-132. [PMID: 30779909 DOI: 10.1016/j.bcp.2019.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022]
Abstract
Diverse physiologic functions of AHR, a transcription factor discovered in studies of dioxin toxicity, are currently elucidated in many laboratories including chemical and microbial defense, immunity and myelopoiesis. Accumulating evidence suggests that AHR may also be involved in obesity and TCDD-mediated lethality in sensitive species. Underlying mechanisms include NAD+- and sirtuin-mediated deregulation of lipid, glucose and NAD+ homeostasis. Progress in NAD metabolome research suggests large consumption of NAD+ by NAD glycohydrolases (NADases) and NAD-dependent sirtuins. In focus are two NADases: (i) TiPARP (TCDD-induced poly(ADP-ribose) polymerase), one of several nuclear NADases, and (ii) plasma membrane-bound ectoNADase/CD38, a multifunctional enzyme and receptor. CD38 is involved in extra- and intracellular NAD degradation but acts also as differentiation marker. Both CD38 and AHR are components of a complex signalsome that enhances retinoic acid-induced differentiation of myeloid progenitor cells to granulocytes. Further advances of NAD metabolome research may lead to therapeutic options in the control of obesity and to improved risk assessment of TCDD toxicity.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
37
|
Zhang N, Sauve AA. Regulatory Effects of NAD + Metabolic Pathways on Sirtuin Activity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 154:71-104. [PMID: 29413178 DOI: 10.1016/bs.pmbts.2017.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAD+ acts as a crucial regulator of cell physiology and as an integral participant in cellular metabolism. By virtue of a variety of signaling activities this central metabolite can exert profound effects on organism health status. Thus, while it serves as a well-known metabolic cofactor functioning as a redox-active substrate, it can also function as a substrate for signaling enzymes, such as sirtuins, poly (ADP-ribosyl) polymerases, mono (ADP-ribosyl) transferases, and CD38. Sirtuins function as NAD+-dependent protein deacetylases (deacylases) and catalyze the reaction of NAD+ with acyllysine groups to remove the acyl modification from substrate proteins. This deacetylation provides a regulatory function and integrates cellular NAD+ metabolism into a large spectrum of cellular processes and outcomes, such as cell metabolism, cell survival, cell cycle, apoptosis, DNA repair, mitochondrial homeostasis and mitochondrial biogenesis, and even lifespan. Increased attention to how regulated and pharmacologic changes in NAD+ concentrations can impact sirtuin activities has motivated openings of new areas of research, including investigations of how NAD+ levels are regulated at the subcellular level, and searches for more potent NAD+ precursors typified by nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). This review describes current results and thinking of how NAD+ metabolic pathways regulate sirtuin activities and how regulated NAD+ levels can impact cell physiology. In addition, NAD+ precursors are discussed, with attention to how these might be harnessed to generate novel therapeutic options to treat the diseases of aging.
Collapse
Affiliation(s)
- Ning Zhang
- Weill Cornell Medical College, New York, NY, United States
| | | |
Collapse
|
38
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
39
|
Mi T, Dong Y, Santhanam U, Huang N. Niacinamide and 12-hydroxystearic acid prevented benzo(a)pyrene and squalene peroxides induced hyperpigmentation in skin equivalent. Exp Dermatol 2018; 28:742-746. [PMID: 30339718 DOI: 10.1111/exd.13811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/05/2018] [Indexed: 01/10/2023]
Abstract
Skin surface is constantly exposed to environmental and secreted stressors such as UV, air pollution and peroxidized sebum. The current study aims to use reconstructed human skin equivalents to demonstrate topical stressor-induced hyperpigmentation and evaluate bioactives' potential protective effect. Given that polycyclic aromatic hydrocarbons are representative airborne particle-bound organic compounds with known relevance to pigmentation pathways, benzo(a)pyrene was selected as surrogate environmental toxin. On the other hand, squalene monohydroperoxides are well-characterized sebum peroxidation product under UV and pollutant exposure, thus are used as another representative skin stressor. With 3-day continuous exposure, 30 pmol/cm2 of benzo(a)pyrene and 3.4 nmol/cm2 of squalene monohydroperoxides induced significant viability loss, inflammatory response, and approximately 10 shades of pigmentation increase in pigmented living skin equivalents. At the same time, pretreatment and co-treatment with 12-hydroxystearic acid (12-HSA, 20 μmol/L) or niacinamide (5 mmol/L) ameliorated such stressor-induced consequences. Niacinamide was particularly effective against benzo(a)pyrene damage, probably as a substrate for important NAD+ dependent detoxification pathways, while 12-HSA was potent against squalene monohydroperoxides through barrier enhancing, anti-inflammatory, and anti-oxidative mechanisms. In summary, topical stressor-induced hyperpigmentation was achieved in vitro, with known bioactives showing protective benefits.
Collapse
Affiliation(s)
| | | | | | - Nan Huang
- Unilever R&D Shanghai, Shanghai, China
| |
Collapse
|
40
|
Bianchi-Smiraglia A, Bagati A, Fink EE, Affronti HC, Lipchick BC, Moparthy S, Long MD, Rosario SR, Lightman SM, Moparthy K, Wolff DW, Yun DH, Han Z, Polechetti A, Roll MV, Gitlin II, Leonova KI, Rowsam AM, Kandel ES, Gudkov AV, Bergsagel PL, Lee KP, Smiraglia DJ, Nikiforov MA. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J Clin Invest 2018; 128:4682-4696. [PMID: 30198908 PMCID: PMC6159960 DOI: 10.1172/jci70712] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Polyamine inhibition for cancer therapy is, conceptually, an attractive approach but has yet to meet success in the clinical setting. The aryl hydrocarbon receptor (AHR) is the central transcriptional regulator of the xenobiotic response. Our study revealed that AHR also positively regulates intracellular polyamine production via direct transcriptional activation of 2 genes, ODC1 and AZIN1, which are involved in polyamine biosynthesis and control, respectively. In patients with multiple myeloma (MM), AHR levels were inversely correlated with survival, suggesting that AHR inhibition may be beneficial for the treatment of this disease. We identified clofazimine (CLF), an FDA-approved anti-leprosy drug, as a potent AHR antagonist and a suppressor of polyamine biosynthesis. Experiments in a transgenic model of MM (Vk*Myc mice) and in immunocompromised mice bearing MM cell xenografts revealed high efficacy of CLF comparable to that of bortezomib, a first-in-class proteasome inhibitor used for the treatment of MM. This study identifies a previously unrecognized regulatory axis between AHR and polyamine metabolism and reveals CLF as an inhibitor of AHR and a potentially clinically relevant anti-MM agent.
Collapse
Affiliation(s)
| | | | | | - Hayley C. Affronti
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Brittany C. Lipchick
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sudha Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark D. Long
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Spencer R. Rosario
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Shivana M. Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kalyana Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David W. Wolff
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Zhannan Han
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Matthew V. Roll
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | - Aryn M. Rowsam
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | | | | | - Kelvin P. Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Dominic J. Smiraglia
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mikhail A. Nikiforov
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
41
|
Hutin D, Tamblyn L, Gomez A, Grimaldi G, Soedling H, Cho T, Ahmed S, Lucas C, Kanduri C, Grant DM, Matthews J. Hepatocyte-Specific Deletion of TIPARP, a Negative Regulator of the Aryl Hydrocarbon Receptor, Is Sufficient to Increase Sensitivity to Dioxin-Induced Wasting Syndrome. Toxicol Sci 2018; 165:347-360. [PMID: 29873790 PMCID: PMC6154274 DOI: 10.1093/toxsci/kfy136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of dioxin (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin; TCDD), which includes thymic atrophy, steatohepatitis, and a lethal wasting syndrome in laboratory rodents. Although the mechanisms of dioxin toxicity remain unknown, AHR signaling in hepatocytes is necessary for dioxin-induced liver toxicity. We previously reported that loss of TCDD-inducible poly(adenosine diphosphate [ADP]-ribose) polymerase (TIPARP/PARP7/ARTD14), an AHR target gene and mono-ADP-ribosyltransferase, increases the sensitivity of mice to dioxin-induced toxicities. To test the hypothesis that TIPARP is a negative regulator of AHR signaling in hepatocytes, we generated Tiparpfl/fl mice in which exon 3 of Tiparp is flanked by loxP sites, followed by Cre-lox technology to create hepatocyte-specific (Tiparpfl/flCreAlb) and whole-body (Tiparpfl/flCreCMV; TiparpEx3-/-) Tiparp null mice. Tiparpfl/flCreAlb and TiparpEx3-/- mice given a single injection of 10 μg/kg dioxin did not survive beyond days 7 and 9, respectively, while all Tiparp+/+ mice survived the 30-day treatment. Dioxin-exposed Tiparpfl/flCreAlb and TiparpEx3-/- mice had increased steatohepatitis and hepatotoxicity as indicated by greater staining of neutral lipids and serum alanine aminotransferase activity than similarly treated wild-type mice. Tiparpfl/flCreAlb and TiparpEx3-/- mice exhibited augmented AHR signaling, denoted by increased dioxin-induced gene expression. Metabolomic studies revealed alterations in lipid and amino acid metabolism in liver extracts from Tiparpfl/flCreAlb mice compared with wild-type mice. Taken together, these data illustrate that TIPARP is an important negative regulator of AHR activity, and that its specific loss in hepatocytes is sufficient to increase sensitivity to dioxin-induced steatohepatitis and lethality.
Collapse
Affiliation(s)
- David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Alvin Gomez
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Giulia Grimaldi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Helen Soedling
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Tiffany Cho
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Shaimaa Ahmed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Christin Lucas
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Chakravarthi Kanduri
- Department of Informatics, Jebsen Centre of Excellence for Celiac Disease Research, University of Oslo, Oslo, Norway
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Zhu X, Li H, Wu Y, Zhou J, Yang G, Wang W, Kang D, Ye S. CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis. J Cell Biochem 2018; 120:4192-4202. [PMID: 30260029 DOI: 10.1002/jcb.27706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022]
Abstract
Hepatic gluconeogenesis is the major contributor to hyperglycemia in diabetes. Long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been shown to promote hepatic insulin resistance; however, the underlying mechanism involving hepatic gluconeogenesis remains unclear. This study aims to investigate the potential role of MEG3 in hepatic gluconeogenesis. Mouse primary hepatocytes were used in this study. Cell transfection was performed for the overexpression or knockdown of specific genes. Expressions of MEG3, miR-302a-3p, CREB-regulated transcriptional coactivator 2 (CRTC2), protein kinase A (PKA), cAMP-response element binding protein (CREB), PPARγ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pc) were determined by quantitative real-time polymerase chain reaction (qRT-qPCR) and Western blot analysis, respectively. The association among MEG3, miR-302a-3p, and CRTC2 was disclosed by dual-luciferase reporter assay. MEG3 was highly expressed in high glucagon-treated mouse primary hepatocytes. CREB-induced MEG3 upregulation increased gluconeogenic gene expression in high glucagon-treated primary hepatocytes, while MEG3 interference led to an opposite effect. MEG3 served as a competing endogenous RNA (ceRNA) to upregulate CRTC2 by targeting miR-302a-3p in primary hepatocytes, thereby increasing PGC-1α-PEPCK/G6Pc. CREB-upregulated MEG3-enhanced hepatic gluconeogenesis via mediating miR-302a-3p-CRTC2 axis, revealing that MEG3 might be a potential target and therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Xiang Zhu
- School of Medicine, Shandong University, Jinan, Shandong, China.,Department of Gerontology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongqi Li
- Department of Gerontology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanbo Wu
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Zhou
- Department of Gerontology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guangwei Yang
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weidong Wang
- Department of Gerontology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongmei Kang
- Department of Gerontology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
43
|
Ghazi Eid B, Hanafy A, Hasan A. Aryl Hydrocarbon Receptor Is Expressed in the Prostate Gland of Lean and Obese Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.992.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
DNA damage response upon environmental contaminants: An exhausting work for genomic integrity. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Lai KP, Wan HT, Ng AHM, Li JW, Chan TF, Wong CKC. Transcriptomic and Functional Analyses on the Effects of Dioxin on Insulin Secretion of Pancreatic Islets and β-Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11390-11400. [PMID: 28880546 DOI: 10.1021/acs.est.7b02830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, transcriptomic and Ingenuity Pathway Analysis (IPA) underlined that an ex-vivo TCDD treatment (0.1 nM) stimulated insulin-release in mouse pancreatic islets via the effect on the Akt-mTOR-p70S6K, AMPK and ERK1/2 pathways. Functional studies using both ex-vivo islets and the mouse β-cell-line (Min-6) validated the stimulatory effects of TCDD (0.1 and 1 nM) on basal-insulin secretion. At 0.1 nM TCDD treatment on Min-6, Western blot analysis showed activation of ERK1/2 and decreased expression of pyruvate dehydrogenase kinase (PDK). A reduction of PDK expression is associated with an increase of pyruvate dehydrogenase flux. This observation was supported by the detection of significantly higher cellular ATP levels, an increase of glucose-stimulated-insulin-secretion (GSIS), and an inhibition of the AMPK pathway. At 1 nM TCDD treatment on Min-6, significant inhibitions of the Akt-mTOR pathway, cellular ATP production, and GSIS were evident. The experimental studies in Min-6 supported the IPA of transcriptomic data in pancreatic islets. Collectively, TCDD treatment caused an elevated basal-insulin release in both islets and β-cell cultures. Moreover, our data revealed that the modulation of the Akt-mTOR-p70S6K, AMPK and ERK1/2 pathways might be an important component of the mechanism for the TCDD-perturbing effects on ATP production in β-cells in affecting insulin secretion.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Chemistry, City University of Hong Kong , Hong Kong SAR, China
| | - Hin Ting Wan
- Croucher Institute for Environmental Sciences, Partner State Key Laboratory of Environmental and Biological Analysis, Department of Biology, Hong Kong Baptist University , Hong Kong SAR, China
| | - Alice Hoi-Man Ng
- Croucher Institute for Environmental Sciences, Partner State Key Laboratory of Environmental and Biological Analysis, Department of Biology, Hong Kong Baptist University , Hong Kong SAR, China
| | - Jing Woei Li
- Department of Chemistry, City University of Hong Kong , Hong Kong SAR, China
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Chris Kong-Chu Wong
- Croucher Institute for Environmental Sciences, Partner State Key Laboratory of Environmental and Biological Analysis, Department of Biology, Hong Kong Baptist University , Hong Kong SAR, China
| |
Collapse
|
47
|
Nadal A, Quesada I, Tudurí E, Nogueiras R, Alonso-Magdalena P. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol 2017; 13:536-546. [PMID: 28524168 DOI: 10.1038/nrendo.2017.51] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.
Collapse
Affiliation(s)
- Angel Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| | - Ivan Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| | - Eva Tudurí
- Instituto de Investigaciones Sanitarias (IDIS), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Avda. Barcelona s/n, 15706 Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Instituto de Investigaciones Sanitarias (IDIS), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Avda. Barcelona s/n, 15706 Santiago de Compostela, Spain
- Department of Physiology, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela, Calle San Francisco s/n, 15706 Santiago de Compostela, Spain
| | - Paloma Alonso-Magdalena
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| |
Collapse
|
48
|
Venkatasubramanian PB, Toydemir G, de Wit N, Saccenti E, Martins Dos Santos VAP, van Baarlen P, Wells JM, Suarez-Diez M, Mes JJ. Use of Microarray Datasets to generate Caco-2-dedicated Networks and to identify Reporter Genes of Specific Pathway Activity. Sci Rep 2017; 7:6778. [PMID: 28755007 PMCID: PMC5533711 DOI: 10.1038/s41598-017-06355-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
Intestinal epithelial cells, like Caco-2, are commonly used to study the interaction between food, other luminal factors and the host, often supported by microarray analysis to study the changes in gene expression as a result of the exposure. However, no compiled dataset for Caco-2 has ever been initiated and Caco-2-dedicated gene expression networks are barely available. Here, 341 Caco-2-specific microarray samples were collected from public databases and from in-house experiments pertaining to Caco-2 cells exposed to pathogens, probiotics and several food compounds. Using these datasets, a gene functional association network specific for Caco-2 was generated containing 8937 nodes 129711 edges. Two in silico methods, a modified version of biclustering and the new Differential Expression Correlation Analysis, were developed to identify Caco-2-specific gene targets within a pathway of interest. These methods were subsequently applied to the AhR and Nrf2 signalling pathways and altered expression of the predicted target genes was validated by qPCR in Caco-2 cells exposed to coffee extracts, known to activate both AhR and Nrf2 pathways. The datasets and in silico method(s) to identify and predict responsive target genes can be used to more efficiently design experiments to study Caco-2/intestinal epithelial-relevant biological processes.
Collapse
Affiliation(s)
| | - Gamze Toydemir
- Alanya Alaaddin Keykubat University, Faculty of Engineering, Food Engineering Department, Kestel-Alanya, 07450, Antalya, Turkey
| | - Nicole de Wit
- Wageningen University & Research, Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Edoardo Saccenti
- Wageningen University & Research, Systems and Synthetic Biology, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Wageningen University & Research, Systems and Synthetic Biology, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- LifeGlimmerGmbH, Markelstrasse 38, 12163, Berlin, Germany
| | - Peter van Baarlen
- Wageningen University & Research, Host-Microbe Interactomics, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Jerry M Wells
- Wageningen University & Research, Host-Microbe Interactomics, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Wageningen University & Research, Systems and Synthetic Biology, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jurriaan J Mes
- Wageningen University & Research, Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
49
|
Diani-Moore S, Shoots J, Singh R, Zuk JB, Rifkind AB. NAD + loss, a new player in AhR biology: prevention of thymus atrophy and hepatosteatosis by NAD + repletion. Sci Rep 2017; 7:2268. [PMID: 28536482 PMCID: PMC5442136 DOI: 10.1038/s41598-017-02332-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) is a carcinogenic and highly toxic industrial byproduct that persists in the environment and produces a pleiotropic toxicity syndrome across vertebrate species that includes wasting, hepatosteatosis, and thymus atrophy. Dioxin toxicities require binding and activation of the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor. However, after nearly 50 years of study, it remains unknown how AhR activation by dioxin produces toxic effects. Here, using the chick embryo close to hatching, a well-accepted model for dioxin toxicity, we identify NAD+ loss through PARP activation as a novel unifying mechanism for diverse effects of dioxin in vivo. We show that NAD+ loss is attributable to increased PARP activity in thymus and liver, as cotreatment with dioxin and the PARP inhibitor PJ34 increased NAD+ levels and prevented both thymus atrophy and hepatosteatosis. Our findings additionally support a role for decreased NAD+ dependent Sirt6 activity in mediating dioxin toxicity following PARP activation. Strikingly, treatment in vivo with the NAD+ repleting agent nicotinamide, a form of vitamin B3, prevented thymus atrophy and hepatosteatosis by dioxin and increased sirtuin activity, providing a therapeutic approach for preventing dioxin toxicities in vivo.
Collapse
Affiliation(s)
- Silvia Diani-Moore
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA
| | - Jenny Shoots
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA
| | - Rubi Singh
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA
| | - Joshua B Zuk
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA
| | - Arleen B Rifkind
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA.
| |
Collapse
|
50
|
Hivert MF, Scholtens DM, Allard C, Nodzenski M, Bouchard L, Brisson D, Lowe LP, McDowell I, Reddy T, Dastani Z, Richards JB, Hayes MG, Lowe WL. Genetic determinants of adiponectin regulation revealed by pregnancy. Obesity (Silver Spring) 2017; 25:935-944. [PMID: 28317342 PMCID: PMC5404994 DOI: 10.1002/oby.21805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/25/2016] [Accepted: 01/18/2017] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study investigated genetic determinants of adiponectin during pregnancy to reveal novel biology of adipocyte regulation. METHODS A genome-wide association study was conducted in 1,322 pregnant women from the Hyperglycemia and Adverse Pregnancy Outcome Study with adiponectin measured at ∼28 weeks of gestation. Variants reaching P < 5×10-5 for de novo genotyping in two replication cohorts (Genetics of Glycemic regulation in Gestation and Growth N = 522; ECOGENE-21 N = 174) were selected. RESULTS In the combined meta-analysis, the maternal T allele of rs900400 located on chr3q25 (near LEKR1/CCNL1) was associated with lower maternal adiponectin (β ± standard error [SE] = -0.18 ± 0.03 standard deviation [SD] of adiponectin per risk allele; P = 1.5 ×10-8 ; N = 2,004; multivariable adjusted models). In contrast, rs900400 showed only nominal association with adiponectin in a large sample of nonpregnant women (β ± SE = -0.012 ± 0.006; P = 0.05; N = 16,678 women from the ADIPOgen consortium). The offspring rs900400 T risk allele was associated with greater neonatal skinfold thickness (β ±SE = 0.19 ± 0.04 SD per risk allele; P = 4.1×10-8 ; N = 1,489) and higher cord blood leptin (β ± SE = 0.28 ± 0.05 log-leptin per risk allele; P = 8.2 ×10-9 ; N = 502), but not with cord blood adiponectin (P = 0.23; N = 495). The T allele of rs900400 was associated with higher expression of TIPARP in adipocytes. CONCLUSIONS These investigations of adipokines during pregnancy and early life suggest that rs900400 has a role in adipocyte function.
Collapse
Affiliation(s)
- Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Denise M. Scholtens
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine Allard
- Department of Mathematics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michael Nodzenski
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Diane Brisson
- Department of Medicine, Université de Montréal, ECOGENE-21 and Lipid Clinic, Chicoutimi, QC, Canada
| | - Lynn P. Lowe
- Department of Preventive Medicine, Division of Epidemiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ian McDowell
- Department of Biostatistics and Bioinformatics, Duke Institute for Genome Sciences and Policy, Durham, NC, USA
| | - Tim Reddy
- Department of Biostatistics and Bioinformatics, Duke Institute for Genome Sciences and Policy, Durham, NC, USA
| | - Zari Dastani
- Department of Internal Medicine, Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - J. Brent Richards
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Department of Twin Research, King’s College London, London, UK
| | - M. Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William L. Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|