1
|
Tang W, Zhu L, Shi L, Gu B. P-Selectin, Vascular Endothelial Cadherin, and Vascular Cell Adhesion Molecule-1 as Novel Biomarkers for ABO Hemolytic Disease of the Fetus and Newborn. Anal Cell Pathol (Amst) 2025; 2025:9411137. [PMID: 40331036 PMCID: PMC12055318 DOI: 10.1155/ancp/9411137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/22/2025] [Indexed: 05/08/2025] Open
Abstract
Objective: This study aims to assess the potential of vascular endothelial injury markers, namely, P-selectin (PS), vascular endothelial cadherin (VE-Cad), and vascular cell adhesion molecule-1 (VCAM-1), as diagnostic and prognostic biomarkers for ABO hemolytic disease of the fetus and newborn (HDFN). Methods: A total of 218 pregnant women with ABO blood group incompatibility were recruited from the Third People's Hospital of Bengbu Affiliated to Bengbu Medical University. The serum levels of PS, VCAM-1, and VE-Cad were measured, and the participants were followed up until postpartum. The women were divided into an HDFN group and a control group based on the occurrence of ABO-HDFN. The correlations between the three vascular endothelial injury markers, pregnant anti-A/B antibody titers, and the occurrence and severity of HDFN were analyzed. Results: Compared to the control group, the levels of PS, VCAM-1, and VE-Cad were significantly elevated in the HDFN group. Additionally, these markers increased with higher IgG anti-A/B titers. For diagnosing HDFN, the area under the curve (AUC) for PS, VCAM-1, and VE-Cad were 0.826, 0.765, and 0.799, respectively. Moreover, the combined AUC of the three markers with IgG anti-A/B titers was 0.9. The levels of the three biomarkers were significantly negatively correlated with neonatal hemoglobin (Hb) and significantly positively correlated with reticulocyte percentage (Ret%), indirect bilirubin (IBIL), and lactate dehydrogenase (LDH). Univariate logistic regression indicated that increased levels of PS, VCAM-1, and VE-Cad were associated with a higher probability of ABO-HDFN. Multivariate logistic regression revealed that PS is an independent positive factor for HDFN. Conclusion: PS, VCAM-1, and VE-Cad provide experimental evidence for prenatal screening, diagnosis, early prevention and treatment of ABO-HDFN.
Collapse
Affiliation(s)
- Weichun Tang
- School of Medical Technology, Xinxiang Medical University, Xinxiang 453000, Henan, China
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Linlin Zhu
- School of Medical Technology, Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Liwei Shi
- School of Medical Technology, Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Biao Gu
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233030, Anhui, China
| |
Collapse
|
2
|
Mo X, Meng K, Li Z, Lan S, Ren Z, Fu X, Li C, Sun T, Xie D, Zhang Z, Chen H. An Integrated Microcurrent Delivery System Facilitates Human Parathyroid Hormone Delivery for Enhancing Osteoanabolic Effect. SMALL METHODS 2025; 9:e2401144. [PMID: 39420694 PMCID: PMC11926516 DOI: 10.1002/smtd.202401144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Human parathyroid hormone (1-34) (PTH) exhibits osteoanabolic and osteocatabolic effects, with shorter plasma exposure times favoring bone formation. Subcutaneous injection (SCI) is the conventional delivery route for PTH but faces low delivery efficiency due to limited passive diffusion and the obstruction of the vascular endothelial barrier, leading to prolonged drug exposure times and reduced osteoanabolic effects. In this work, a microcurrent delivery system (MDS) based on multimicrochannel microneedle arrays (MMAs) is proposed, achieving high efficiency and safety for PTH transdermal delivery. The internal microchannels of the MMAs are fabricated using high-precision 3D printing technology, providing a concentrated and safe electric field that not only accelerates the movement of PTH but also reversibly increases vascular endothelial permeability by regulating the actin cytoskeleton and interendothelial junctions through Ca2+-dependent cAMP signaling, ultimately promoting PTH absorption and shortening exposure times. The MDS enhances the osteoanabolic effect of PTH in an osteoporosis model by inhibiting osteoclast differentiation on the bone surface compared to SCI. Moreover, histopathological analysis of the skin and organs demonstrated the good safety of PTH delivered by MDS in vivo. In addition to PTH, the MDS shows broad prospects for the high-efficiency transdermal delivery of macromolecular drugs.
Collapse
Affiliation(s)
- Xiaoyi Mo
- Division of Spine SurgeryDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Keyu Meng
- Division of Spine SurgeryDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zehui Li
- Division of Spine SurgeryDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Shanwei Lan
- Division of Spine SurgeryDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhengda Ren
- Division of Spine SurgeryDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xihong Fu
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080China
| | - Chenglin Li
- State Key Laboratory of Optoelectronic Materials and Technologies Province Key Laboratory of Display Material and Technology School of Electronics and Information TechnologySun Yat‐Sen UniversityGuangzhou510006China
| | - Tiancheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies Province Key Laboratory of Display Material and Technology School of Electronics and Information TechnologySun Yat‐Sen UniversityGuangzhou510006China
| | - Denghui Xie
- Department of Orthopedic SurgeryCenter for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Zhongmin Zhang
- Division of Spine SurgeryDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui‐Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies Province Key Laboratory of Display Material and Technology School of Electronics and Information TechnologySun Yat‐Sen UniversityGuangzhou510006China
| |
Collapse
|
3
|
Zhong J, Yu X, Lin Z. Phosphodiesterase 4 inhibition as a novel treatment for stroke. PeerJ 2025; 13:e18905. [PMID: 39897494 PMCID: PMC11786714 DOI: 10.7717/peerj.18905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
The incidence of stroke ranks third among the leading causes of mortality worldwide. It has the characteristics of high morbidity, high disability rate and high recurrence rate. The current risk associated with stroke surgery is exceedingly high. It may potentially outweigh the benefits and fail to ameliorate the cerebral tissue damage following ischemia. Therefore, pharmacological intervention assumes paramount importance. The use of thrombolytic drugs is most common in the treatment of stroke; however, its efficacy is limited due to its time-sensitive nature and propensity for increased bleeding. Over the past few years, the treatment of stroke has witnessed a surge in interest towards neuroprotective drugs that possess the potential to enhance neurological function. The PDE4D gene has been demonstrated to have a positive correlation with the risk of ischemic stroke. Additionally, the utilization of phosphodiesterase 4 inhibitors can enhance synaptic plasticity within the neural circuitry, regulate cellular metabolism, and prevent secondary brain injury caused by impaired blood flow. These mechanisms collectively facilitate the recovery of functional neurons, thereby serving as potential therapeutic interventions. Therefore, the comprehensive investigation of phosphodiesterase 4 as an innovative pharmacological target for stroke injury provides valuable insights into the development of therapeutic interventions in stroke treatment. This review is intended for, but not limited to, pharmacological researchers, drug target researchers, neurologists, neuromedical researchers, and behavioral scientists.
Collapse
Affiliation(s)
- Jiahong Zhong
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Xihui Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhuomiao Lin
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou, Guangdong, China
| |
Collapse
|
4
|
Liu JY, Yin X, Dong YT. Exploration of the shared gene signatures and molecular mechanisms between Alzheimer's disease and intracranial aneurysm. Sci Rep 2024; 14:24628. [PMID: 39427050 PMCID: PMC11490550 DOI: 10.1038/s41598-024-75694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Although Alzheimer's disease (AD) and intracranial aneurysm (IA) were two different types of diseases that occurred in the brain, ruptured IA (RIA) survivors may experience varying degrees of cognitive dysfunction. Neither AD nor IA is easily recognizable by an early onset so that the incidence of adverse clinical outcomes would be on the rise. Therefore, we focused on the exploration of the shared genes and molecular mechanisms between AD and IA, which would be significant for the efficiency of co-screening and co-diagnosis. Two GEO datasets were selected for the weighted gene co-expression network analysis (WGCNA) and differentially expressed gene screening, obtaining 78 overlapped genes. Next, 9 hub genes were identified by the protein-protein interaction network, including PIK3CA, GAB1, IGF1R, PLCB1, PGR, PDGFRB, PLCE1, FGFR3, and SYNJ1. The interactions among the hub genes, miRNA, and TFs were also explored. Meanwhile, we performed GO and KEGG pathway enrichment analyses for the results of WGCNA and hub genes, which showed that the Ras signaling and Rap1 signaling were the main shared pathogenesis. In conclusion, the present bioinformatics analysis revealed that AD and IA had the shared genes and molecular mechanisms, and these outcomes were associated with inflammation and calcium homeostasis, which could provide research clues for further studies.
Collapse
Affiliation(s)
- Ji-Yun Liu
- Department of Clinical Laboratory, Guiyang Second People's Hospital, Guiyang, People's Republic of China
| | - Xuan Yin
- Department of Women Healthcare, Guiyang Maternal and Child Health Hospital, Guiyang, People's Republic of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, No. 9, Beijing Road, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
5
|
Liu XY, Chen B, Zhang R, Zhang MQ, Ma YY, Han Y, Jiang JD, Zhang JP. Atorvastatin-induced intracerebral hemorrhage is inhibited by berberine in zebrafish. J Appl Toxicol 2024; 44:1198-1213. [PMID: 38639436 DOI: 10.1002/jat.4614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Intracerebral hemorrhage (ICH), for which there are currently no effective preventive or treatment methods, has a very high fatality rate. Statins, such as atorvastatin (ATV), are the first-line drugs for regulating blood lipids and treating hyperlipidemia-related cardiovascular diseases. However, ATV-associated ICH has been reported, although its incidence is rare. In this study, we aimed to investigate the protective action and mechanisms of berberine (BBR) against ATV-induced brain hemorrhage. We established an ICH model in zebrafish induced by ATV (2 μM) and demonstrated the effects of BBR (10, 50, and 100 μM) on ICH via protecting the vascular network using hemocyte staining and three transgenic zebrafish. BBR was found to reduce brain inflammation and locomotion injury in ICH-zebrafish. Mechanism research showed that ATV increased the levels of VE-cadherin and occludin proteins but disturbed their localization at the cell membrane by abnormal phosphorylation, which decreased the number of intercellular junctions between vascular endothelial cells (VECs), disrupting the integrity of vascular walls. BBR reversed the effects of ATV by promoting autophagic degradation of phosphorylated VE-cadherin and occludin in ATV-induced VECs examined by co-immunoprecipitation (co-IP). These findings provide crucial insights into understanding the BBR mechanisms involved in the maintenance of vascular integrity and in mitigating adverse reactions to ATV.
Collapse
Affiliation(s)
- Xin-Yan Liu
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Chen
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Ma
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Han
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Fan T, Wang W, Wang Y, Zeng M, Liu Y, Zhu S, Yang L. PDE4 inhibitors: potential protective effects in inflammation and vascular diseases. Front Pharmacol 2024; 15:1407871. [PMID: 38915460 PMCID: PMC11194378 DOI: 10.3389/fphar.2024.1407871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are effective therapeutic agents for various inflammatory diseases. Roflumilast, apremilast, and crisaborole have been developed and approved for the treatment of chronic obstructive pulmonary disease psoriatic arthritis, and atopic dermatitis. Inflammation underlies many vascular diseases, yet the role of PDE4 inhibitors in these diseases remains inadequately explored. This review elucidates the clinical applications and anti-inflammatory mechanisms of PDE4 inhibitors, as well as their potential protective effects on vascular diseases. Additionally, strategies to mitigate the adverse reactions of PDE4 inhibitors are discussed. This article emphasizes the need for further exploration of the therapeutic potential and clinical applications of PDE4 inhibitors in vascular diseases.
Collapse
Affiliation(s)
- Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyao Zhu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
8
|
Hashimoto Y, Greene C, Munnich A, Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 2023; 20:22. [PMID: 36978081 PMCID: PMC10044825 DOI: 10.1186/s12987-023-00424-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The CLDN5 gene encodes claudin-5 (CLDN-5) that is expressed in endothelial cells and forms tight junctions which limit the passive diffusions of ions and solutes. The blood-brain barrier (BBB), composed of brain microvascular endothelial cells and associated pericytes and end-feet of astrocytes, is a physical and biological barrier to maintain the brain microenvironment. The expression of CLDN-5 is tightly regulated in the BBB by other junctional proteins in endothelial cells and by supports from pericytes and astrocytes. The most recent literature clearly shows a compromised BBB with a decline in CLDN-5 expression increasing the risks of developing neuropsychiatric disorders, epilepsy, brain calcification and dementia. The purpose of this review is to summarize the known diseases associated with CLDN-5 expression and function. In the first part of this review, we highlight the recent understanding of how other junctional proteins as well as pericytes and astrocytes maintain CLDN-5 expression in brain endothelial cells. We detail some drugs that can enhance these supports and are being developed or currently in use to treat diseases associated with CLDN-5 decline. We then summarise mutagenesis-based studies which have facilitated a better understanding of the physiological role of the CLDN-5 protein at the BBB and have demonstrated the functional consequences of a recently identified pathogenic CLDN-5 missense mutation from patients with alternating hemiplegia of childhood. This mutation is the first gain-of-function mutation identified in the CLDN gene family with all others representing loss-of-function mutations resulting in mis-localization of CLDN protein and/or attenuated barrier function. Finally, we summarize recent reports about the dosage-dependent effect of CLDN-5 expression on the development of neurological diseases in mice and discuss what cellular supports for CLDN-5 regulation are compromised in the BBB in human diseases.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| | - Chris Greene
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland
| | - Arnold Munnich
- Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, F-75015, France
- Departments of Pediatric Neurology and Medical Genetics, Hospital Necker Enfants Malades, Université Paris Cité, Paris, F-75015, France
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| |
Collapse
|
9
|
Calcium-dependent cAMP mediates the mechanoresponsive behaviour of endothelial cells to high-frequency nanomechanostimulation. Biomaterials 2023; 292:121866. [PMID: 36526351 DOI: 10.1016/j.biomaterials.2022.121866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
The endothelial junction plays a central role in regulating intravascular and interstitial tissue permeability. The ability to manipulate its integrity therefore not only facilitates an improved understanding of its underlying molecular mechanisms but also provides insight into potential therapeutic solutions. Herein, we explore the effects of short-duration nanometer-amplitude MHz-order mechanostimulation on interendothelial junction stability and hence the barrier capacity of endothelial monolayers. Following an initial transient in which the endothelial barrier is permeabilised due to Rho-ROCK-activated actin stress fibre formation and junction disruption typical of a cell's response to insults, we observe, quite uniquely, the integrity of the endothelial barrier to not only spontaneously recover but also to be enhanced considerably-without the need for additional stimuli or intervention. Central to this peculiar biphasic response, which has not been observed with other stimuli to date, is the role of second messenger calcium and cyclic adenosine monophosphate (cAMP) signalling. We show that intracellular Ca2+, modulated by the high frequency excitation, is responsible for activating reorganisation of the actin cytoskeleton in the barrier recovery phase, in which circumferential actin bundles are formed to stabilise the adherens junctions via a cAMP-mediated Epac1-Rap1 pathway. Despite the short-duration stimulation (8 min), the approximate 4-fold enhancement in the transendothelial electrical resistance (TEER) of endothelial cells from different tissue sources, and the corresponding reduction in paracellular permeability, was found to persist over hours. The effect can further be extended through multiple treatments without resulting in hyperpermeabilisation of the barrier, as found with prolonged use of chemical stimuli, through which only 1.1- to 1.2-fold improvement in TEER has been reported. Such an ability to regulate and enhance endothelial barrier capacity is particularly useful in the development of in vitro barrier models that more closely resemble their in vivo counterparts.
Collapse
|
10
|
Structural characterization, molecular docking assessment, drug-likeness study and DFT investigation of 2-(2-{1,2-dibromo-2-[3-(4-chloro-phenyl)-[1,2,4]oxadiazol-5-yl]-2-fluoro-ethyl1}-phenyl)-methyl 3-methoxy-acrylic ester. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Lugnier C. The Complexity and Multiplicity of the Specific cAMP Phosphodiesterase Family: PDE4, Open New Adapted Therapeutic Approaches. Int J Mol Sci 2022; 23:10616. [PMID: 36142518 PMCID: PMC9502408 DOI: 10.3390/ijms231810616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclic nucleotides (cAMP, cGMP) play a major role in normal and pathologic signaling. Beyond receptors, cyclic nucleotide phosphodiesterases; (PDEs) rapidly convert the cyclic nucleotide in its respective 5'-nucleotide to control intracellular cAMP and/or cGMP levels to maintain a normal physiological state. However, in many pathologies, dysregulations of various PDEs (PDE1-PDE11) contribute mainly to organs and tissue failures related to uncontrolled phosphorylation cascade. Among these, PDE4 represents the greatest family, since it is constituted by 4 genes with multiple variants differently distributed at tissue, cellular and subcellular levels, allowing different fine-tuned regulations. Since the 1980s, pharmaceutical companies have developed PDE4 inhibitors (PDE4-I) to overcome cardiovascular diseases. Since, they have encountered many undesired problems, (emesis), they focused their research on other PDEs. Today, increases in the knowledge of complex PDE4 regulations in various tissues and pathologies, and the evolution in drug design, resulted in a renewal of PDE4-I development. The present review describes the recent PDE4-I development targeting cardiovascular diseases, obesity, diabetes, ulcerative colitis, and Crohn's disease, malignancies, fatty liver disease, osteoporosis, depression, as well as COVID-19. Today, the direct therapeutic approach of PDE4 is extended by developing allosteric inhibitors and protein/protein interactions allowing to act on the PDE interactome.
Collapse
Affiliation(s)
- Claire Lugnier
- Section de Structures Biologiques, Pharmacologie et Enzymologie, CNRS/Unistra, CRBS, UR 3072, CEDEX, 67084 Strasbourg, France
| |
Collapse
|
12
|
Wang C, Li Y, Liu W, Wang C, Jiang W, Zhao Z, Li X, Qiao Y, Dai C. The expression and significance of Epac1 and Epac2 in the inner ear of guinea pigs. Eur Arch Otorhinolaryngol 2022; 279:5207-5214. [PMID: 35438345 DOI: 10.1007/s00405-022-07380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To detect the expression of Epac1 and Epac2 in the inner ear of guinea pigs and its association with microcirculation in the inner ear. METHODS The temporal bones of 30 healthy red-eye guinea pigs (60 ears) weighing 200-350 g were collected, then the surrounding bone wall of the cochlea was removed under a dissection microscope. Real-time quantitative PCR (RT-qPCR) and Western blot were used to detect mRNA and protein expression, respectively, of Epac1 and Epac2 in the inner ear and to compare their expression in heart, liver, kidney, intestine, and lung tissues. The specimens of the cochlea included the stria vascularis, basilar membrane, saccule, and utricles isolated under a microscope to detect the localization of Epac1 and Epac2 proteins in various parts of the inner ear through immunofluorescence staining. RESULTS The RT-qPCR and Western blot results showed that Epac1 mRNA was universally expressed in the inner ear, heart, liver, kidneys, intestines, and lungs, and was highly expressed in the liver, kidneys, and intestines (p < 0.05 vs heart, liver, kidney, intestine; p > 0.05 vs lung). Epac2 mRNA was expressed in the inner ear and heart, but not in the liver, kidneys, intestines, or lungs (p < 0.05 vs Heart). Epac1 and Epac2 proteins were both expressed in the inner ear, heart, liver, kidneys, intestines, and lungs. The relative expression of Epac1 proteins in the inner ear was significantly different from the liver, kidneys, intestines, and lungs (p < 0.05). The relative expression of Epac2 proteins in the inner ear was significantly different from the liver, kidneys, and lungs (p < 0.05), but not from the heart (p = 0.127) or intestines (p = 0.274). Immunofluorescence staining observed under confocal microscopy indicated that Epac1 and Epac2 proteins were expressed in the stria vascularis, basilar membrane, saccule, and utricles of the inner ear. They were expressed in maginal cells, intermediate cells, and basal cells of the stria vascularis, and highly expressed in capillary endothelial cells. CONCLUSIONS Epac1 and Epac2 mRNA and proteins were both expressed in the inner ear of guinea pigs and evenly expressed in the spiral ganglion, basilar membrane, saccule, and utricles. However, their expression in capillary endothelial cells of the stria vascularis was more obvious, suggesting that cyclic adenosine monophosphate-Epac1 signaling may play an important role in maintaining the function of the blood-labyrinth barrier and regulating the stability of microcirculation in the inner ear.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Yuan Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Wen Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China
| | - Caiji Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Wen Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Zeqi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Yuehua Qiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Chunfu Dai
- National Health Commission Key Laboratory of Hearing Medicine (Fudan University), Department of Otology and Skull Base Surgery, Shanghai, 200000, People's Republic of China
| |
Collapse
|
13
|
Identification and Characterization of an Affimer Affinity Reagent for the Detection of the cAMP Sensor, EPAC1. Cells 2021; 10:cells10092307. [PMID: 34571955 PMCID: PMC8465552 DOI: 10.3390/cells10092307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 01/15/2023] Open
Abstract
An exchange protein directly activated by cAMP 1 (EPAC1) is an intracellular sensor for cAMP that is involved in a wide variety of cellular and physiological processes in health and disease. However, reagents are lacking to study its association with intracellular cAMP nanodomains. Here, we use non-antibody Affimer protein scaffolds to develop isoform-selective protein binders of EPAC1. Phage-display screens were carried out against purified, biotinylated human recombinant EPAC1ΔDEP protein (amino acids 149–811), which identified five potential EPAC1-selective Affimer binders. Dot blots and indirect ELISA assays were next used to identify Affimer 780A as the top EPAC1 binder. Mutagenesis studies further revealed a potential interaction site for 780A within the EPAC1 cyclic nucleotide binding domain (CNBD). In addition, 780A was shown to co-precipitate EPAC1 from transfected cells and co-localize with both wild-type EPAC1 and a mis-targeting mutant of EPAC1(K212R), predominantly in perinuclear and cytosolic regions of cells, respectively. As a novel EPAC1-selective binder, 780A therefore has the potential to be used in future studies to further understand compartmentalization of the cAMP-EPAC1 signaling system.
Collapse
|
14
|
cAMP Compartmentalization in Cerebrovascular Endothelial Cells: New Therapeutic Opportunities in Alzheimer's Disease. Cells 2021; 10:cells10081951. [PMID: 34440720 PMCID: PMC8392343 DOI: 10.3390/cells10081951] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays a prominent role in this process. It is generally accepted that, in physiological conditions, cyclic AMP (cAMP) plays a key role in maintaining BBB permeability by regulating the formation of tight junctions between endothelial cells of the brain microvasculature. It is also known that intracellular cAMP signaling is highly compartmentalized into small nanodomains and localized cAMP changes are sufficient at modifying the permeability of the endothelial barrier. This spatial and temporal distribution is maintained by the enzymes involved in cAMP synthesis and degradation, by the location of its effectors, and by the existence of anchor proteins, as well as by buffers or different cytoplasm viscosities and intracellular structures limiting its diffusion. This review compiles current knowledge on the influence of cAMP compartmentalization on the endothelial barrier and, more specifically, on the BBB, laying the foundation for a new therapeutic approach in the treatment of AD.
Collapse
|
15
|
Wang J, Kazmi MM, Huxley VH. Microvascular Sex- and Age- Dependent Phosphodiesterase Expression. FRONTIERS IN AGING 2021; 2:719698. [PMID: 35822023 PMCID: PMC9261398 DOI: 10.3389/fragi.2021.719698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023]
Abstract
Objective: The cyclic nucleotide second messengers, cAMP and cGMP, are pivotal regulators of vascular functions; their cellular levels are tightly controlled by the cyclic nucleotide hydrolases, phosphodiesterases (PDE). Biologic sex and age are recognized as independent factors impacting the mechanisms mediating both vascular health and dysfunction. This study focused on microvessels isolated from male and female rats before (juvenile) and after (adult) sexual maturity under resting conditions. We tested the hypothesis that sexual dimorphism in microvascular PDE expression would be absent in juvenile rats, but would manifest in adult rats. Methods: Abdominal skeletal muscle arterioles and venules were isolated from age-matched juvenile and adult male and female rats under resting conditions. Transcripts of five PDE families (1–5) associated with coronary and vascular function with a total of ten genes were measured using TaqMan real-time RT-PCR and protein expression of microvessel PDE4 was assessed using immunoblotting and immunofluorescence. Results: Overall expression levels of PDE5A were highest while PDE3 levels were lowest among the five PDE families (p < 0.05) regardless of age or sex. Contrary to our hypothesis, in juveniles, sexual dimorphism in PDE expression was observed in three genes: arterioles (PDE1A, female > male) and venules (PDE1B and 3A, male > female). In adults, gene expression levels in males were higher than females for five genes in arterioles (PDE1C, 3A, 3B, 4B, 5A) and three genes (PDE3A, 3B, and 5A) in venules. Furthermore, age-related differences were observed in PDE1-5 (in males, adult > juvenile for most genes in arterioles; in females, adult > juvenile for arteriolar PDE3A; juvenile gene expression > adult for two genes in arterioles and three genes in venules). Immunoblotting and immunofluorescence analysis revealed protein expression of microvessel PDE4. Conclusion: This study revealed sexual dimorphism in both juvenile and adult rats, which is inconsistent with our hypothesis. The sex- and age-dependent differences in PDE expression implicate different modulations of cAMP and cGMP pathways for microvessels in health. The implication of these sex- and age-dependent differences, as well as the duration and microdomain of PDE1-5 activities in skeletal muscle microvessels, in both health and disease, require further investigation.
Collapse
Affiliation(s)
- Jianjie Wang
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, United States
- *Correspondence: Jianjie Wang,
| | - Murtaza M. Kazmi
- Department of Medicine, The Aga Khan University, Karachi, Pakistan
| | - Virginia H. Huxley
- Department of Medical Pharmacology and Physiology, National Center for Gender Physiology, Dalton Cardiovascular Research Center, Columbia, MO, United States
| |
Collapse
|
16
|
Zhang Q, Fan Z, Xue W, Sun F, Zhu H, Huang D, Wang Z, Dong L. Vitexin regulates Epac and NLRP3 and ameliorates chronic cerebral hypoperfusion injury. Can J Physiol Pharmacol 2021; 99:1079-1087. [PMID: 33915055 DOI: 10.1139/cjpp-2021-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic cerebral hypoperfusion (CCH), as a critical factor of chronic cerebrovascular diseases, has greatly influenced the health of patients with vascular dementia. Vitexin, a flavone C-glycoside (apigenin-8-C-β-D-glucopyranoside) that belongs to the flavone subclass of flavonoids, has been shown to possess antioxidant and anti-ischemic properties; however, the putative protective effects of vitexin on the CCH need further investigation. In the current study, the role of vitexin and its underlying mechanism were investigated with permanent bilateral common carotid artery occlusion (2VO) in rats as well as mouse hippocampal neuronal (HT22) cells with oxygen and glucose deprivation/reoxygenation (OGD/R) injury model. The results demonstrated that vitexin improved cognitive dysfunction as well as alleviated pathological neuronal damage in hematoxylin plus eosin (HE) and TUNEL results. The decreased levels of exchange protein directly activated by cAMP 1 (Epac1), Epac2, Ras-associated protein 1 (Rap1), and phospho-extracellular signal-regulated kinase (p-ERK) were reversed by vitexin in rats with CCH. Furthermore, this study indicated that vitexin alleviated CCH-induced inflammation injuries by reducing the expression of NOD-like receptor 3 (NLRP3), caspase-1, interleukin 1β (IL-1β), IL-6, and cleaved caspase-3. In vitro, vitexin increased the expression of Epac1 and Epac2, decreased the activation of the NLRP3-mediated inflammation, and improved cell viability. Taken together, our findings suggest that vitexin can reduce the degree of the progressing pathological damage in the cortex and hippocampus and inhibit further deterioration of cognitive function in rats with CCH. Epac and NLRP3 can be regulated by vitexin in vivo and in vitro, which provides enlightenment for the protection of CCH injury.
Collapse
Affiliation(s)
- Qilong Zhang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zhijia Fan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Xue
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Fanfan Sun
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
| | - Dake Huang
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
17
|
Burke-Kleinman J, Maurice DH. Phosphodiesterase 4D7 selectively regulates cAMP-mediated control of human arterial endothelial cell transcriptomic responses to fluid shear stress. Can J Physiol Pharmacol 2021; 99:179-184. [PMID: 32846105 DOI: 10.1139/cjpp-2020-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human arterial endothelial cells (HAECs) regulate their phenotype by integrating signals encoded in the frictional forces exerted by flowing blood, fluid shear stress (FSS). High laminar FSS promotes establishment of adaptive HAEC phenotype protective against atherosclerosis, whereas low or disturbed FSS cause HAECs to adopt atheroprone phenotypes. A vascular endothelial cadherin (VE cadherin)-based mechanosensory complex allows HAECs to regulate barrier function, cell morphology,/ and gene expression in response to FSS. Previously, we reported that this mechanosensor integrated exchange protein activated by cAMP (EPAC1) and a PDE4D gene derived cyclic nucleotide phosphodiesterase (PDE), but had not identified the PDE4D variant involved. Our hypothesis here was that only one of the two ∼100 kDa PDE4D variants expressed in HAECs coordinated these responses. Now, we show one unique PDE4D splice variant, PDE4D7, controls transcriptional responses of HAECs to FSS while another, PDE4D5, does not. Adaptive transcriptional responses of HAECs subjected to laminar FSS in vitro were blunted in cells in which PDE4D7 was silenced, but unaffected in cells with silenced PDE4D5. This work identifies a specific therapeutic target for the treatment or prevention of atherosclerosis and improves our understanding of the role of cAMP signaling in modulating mechanosensory signal transduction in the vascular endothelium.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON K7L 3N6, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON K7L 3N6, Canada
| |
Collapse
|
18
|
Epac1 Is Crucial for Maintenance of Endothelial Barrier Function through A Mechanism Partly Independent of Rac1. Cells 2020; 9:cells9102170. [PMID: 32992982 PMCID: PMC7601253 DOI: 10.3390/cells9102170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Epac1 (exchange protein activated by cAMP) stabilizes the endothelial barrier, but detailed studies are limited by the side effects of pharmacological Epac1 modulators and transient transfections. Here, we compare the key properties of barriers between endothelial cells derived from wild-type (WT) and Epac1-knockout (KO) mice myocardium. We found that KO cell layers, unlike WT layers, had low and cAMP-insensitive trans-endothelial resistance (TER). They also had fragmented VE-cadherin staining despite having augmented cAMP levels and increased protein expression of Rap1, Rac1, RhoA, and VE-cadherin. The simultaneous direct activation of Rac1 and RhoA by CN04 compensated Epac1 loss, since TER was increased. In KO-cells, inhibition of Rac1 activity had no additional effect on TER, suggesting that other mechanisms compensate the inhibition of the Rac1 function to preserve barrier properties. In summary, Epac1 is crucial for baseline and cAMP-mediated barrier stabilization through mechanisms that are at least partially independent of Rac1.
Collapse
|
19
|
Integration of Rap1 and Calcium Signaling. Int J Mol Sci 2020; 21:ijms21051616. [PMID: 32120817 PMCID: PMC7084553 DOI: 10.3390/ijms21051616] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ is a universal intracellular signal. The modulation of cytoplasmic Ca2+ concentration regulates a plethora of cellular processes, such as: synaptic plasticity, neuronal survival, chemotaxis of immune cells, platelet aggregation, vasodilation, and cardiac excitation–contraction coupling. Rap1 GTPases are ubiquitously expressed binary switches that alternate between active and inactive states and are regulated by diverse families of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Active Rap1 couples extracellular stimulation with intracellular signaling through secondary messengers—cyclic adenosine monophosphate (cAMP), Ca2+, and diacylglycerol (DAG). Much evidence indicates that Rap1 signaling intersects with Ca2+ signaling pathways to control the important cellular functions of platelet activation or neuronal plasticity. Rap1 acts as an effector of Ca2+ signaling when activated by mechanisms involving Ca2+ and DAG-activated (CalDAG-) GEFs. Conversely, activated by other GEFs, such as cAMP-dependent GEF Epac, Rap1 controls cytoplasmic Ca2+ levels. It does so by regulating the activity of Ca2+ signaling proteins such as sarcoendoplasmic reticulum Ca2+-ATPase (SERCA). In this review, we focus on the physiological significance of the links between Rap1 and Ca2+ signaling and emphasize the molecular interactions that may offer new targets for the therapy of Alzheimer’s disease, hypertension, and atherosclerosis, among other diseases.
Collapse
|
20
|
Reshaping cAMP nanodomains through targeted disruption of compartmentalised phosphodiesterase signalosomes. Biochem Soc Trans 2020; 47:1405-1414. [PMID: 31506329 DOI: 10.1042/bst20190252] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Spatio-temporal regulation of localised cAMP nanodomains is highly dependent upon the compartmentalised activity of phosphodiesterase (PDE) cyclic nucleotide degrading enzymes. Strategically positioned PDE-protein complexes are pivotal to the homeostatic control of cAMP-effector protein activity that in turn orchestrate a wide range of cellular signalling cascades in a variety of cells and tissue types. Unsurprisingly, dysregulated PDE activity is central to the pathophysiology of many diseases warranting the need for effective therapies that target PDEs selectively. This short review focuses on the importance of activating compartmentalised cAMP signalling by displacing the PDE component of signalling complexes using cell-permeable peptide disrupters.
Collapse
|
21
|
Synthesis, crystal structures, computational studies and α-amylase inhibition of three novel 1,3,4-oxadiazole derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Blokland A, Heckman P, Vanmierlo T, Schreiber R, Paes D, Prickaerts J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol Sci 2019; 40:971-985. [DOI: 10.1016/j.tips.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
23
|
Ebrahimighaei R, McNeill MC, Smith SA, Wray JP, Ford KL, Newby AC, Bond M. Elevated cyclic-AMP represses expression of exchange protein activated by cAMP (EPAC1) by inhibiting YAP-TEAD activity and HDAC-mediated histone deacetylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1634-1649. [PMID: 31255721 DOI: 10.1016/j.bbamcr.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 02/05/2023]
Abstract
Ligand-induced activation of Exchange Protein Activated by cAMP-1 (EPAC1) is implicated in numerous physiological and pathological processes, including cardiac fibrosis where changes in EPAC1 expression have been detected. However, little is known about how EPAC1 expression is regulated. Therefore, we investigated regulation of EPAC1 expression by cAMP in cardiac fibroblasts. Elevation of cAMP using forskolin, cAMP-analogues or adenosine A2B-receptor activation significantly reduced EPAC1 mRNA and protein levels and inhibited formation of F-actin stress fibres. Inhibition of actin polymerisation with cytochalasin-D, latrunculin-B or the ROCK inhibitor, Y-27632, mimicked effects of cAMP on EPAC1 mRNA and protein levels. Elevated cAMP also inhibited activity of an EPAC1 promoter-reporter gene, which contained a consensus binding element for TEAD, which is a target for inhibition by cAMP. Inhibition of TEAD activity using siRNA-silencing of its co-factors YAP and TAZ, expression of dominant-negative TEAD or treatment with YAP-TEAD inhibitors, significantly inhibited EPAC1 expression. However, whereas expression of constitutively-active YAP completely reversed forskolin inhibition of EPAC1-promoter activity it did not rescue EPAC1 mRNA levels. Chromatin-immunoprecipitation detected a significant reduction in histone3-lysine27-acetylation at the EPAC1 proximal promoter in response to forskolin stimulation. HDAC1/3 inhibition partially reversed forskolin inhibition of EPAC1 expression, which was completely rescued by simultaneously expressing constitutively active YAP. Taken together, these data demonstrate that cAMP downregulates EPAC1 gene expression via disrupting the actin cytoskeleton, which inhibits YAP/TAZ-TEAD activity in concert with HDAC-mediated histone deacetylation at the EPAC1 proximal promoter. This represents a novel negative feedback mechanism controlling EPAC1 levels in response to cAMP elevation.
Collapse
Affiliation(s)
- Reza Ebrahimighaei
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Madeleine C McNeill
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Sarah A Smith
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Jason P Wray
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Kerrie L Ford
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Andrew C Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Mark Bond
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK.
| |
Collapse
|
24
|
MacKeil JL, Brzezinska P, Burke-Kleinman J, Craig AW, Nicol CJB, Maurice DH. A PKA/cdc42 Signaling Axis Restricts Angiogenic Sprouting by Regulating Podosome Rosette Biogenesis and Matrix Remodeling. Sci Rep 2019; 9:2385. [PMID: 30787359 PMCID: PMC6382826 DOI: 10.1038/s41598-018-37805-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
Angiogenic sprouting can contribute adaptively, or mal-adaptively, to a myriad of conditions including ischemic heart disease and cancer. While the cellular and molecular systems that regulate tip versus stalk endothelial cell (EC) specification during angiogenesis are known, those systems that regulate their distinct actions remain poorly understood. Pre-clinical and clinical findings support sustained adrenergic signaling in promoting angiogenesis, but links between adrenergic signaling and angiogenesis are lacking; importantly, adrenergic agents alter the activation status of the cAMP signaling system. Here, we show that the cAMP effector, PKA, acts in a cell autonomous fashion to constitutively reduce the in vitro and ex vivo angiogenic sprouting capacity of ECs. At a cellular level, we observed that silencing or inhibiting PKA in human ECs increased their invasive capacity, their generation of podosome rosettes and, consequently, their ability to degrade a collagen matrix. While inhibition of either Src-family kinases or of cdc42 reduced these events in control ECs, only cdc42 inhibition, or silencing, significantly impacted them in PKA(Cα)-silenced ECs. Consistent with these findings, cell-based measurements of cdc42 activity revealed that PKA activation inhibits EC cdc42 activity, at least in part, by promoting its interaction with the inhibitory regulator, guanine nucleotide dissociation inhibitor-α (RhoGDIα).
Collapse
Affiliation(s)
- J L MacKeil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - P Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - J Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - A W Craig
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - C J B Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - D H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada. .,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
25
|
Chen W, Sinha B, Li Y, Benowitz L, Chen Q, Zhang Z, Patel NJ, Aziz-Sultan AM, Chiocca AE, Wang X. Monogenic, Polygenic, and MicroRNA Markers for Ischemic Stroke. Mol Neurobiol 2019; 56:1330-1343. [PMID: 29948938 PMCID: PMC7358039 DOI: 10.1007/s12035-018-1055-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/29/2018] [Indexed: 02/08/2023]
Abstract
Ischemic stroke (IS) is a leading disease with high mortality and disability, as well as with limited therapeutic window. Biomarkers for earlier diagnosis of IS have long been pursued. Family and twin studies confirm that genetic variations play an important role in IS pathogenesis. Besides DNA mutations found previously by genetic linkage analysis for monogenic IS (Mendelian inheritance), recent studies using genome-wide associated study (GWAS) and microRNA expression profiling have resulted in a large number of DNA and microRNA biomarkers in polygenic IS (sporadic IS), especially in different IS subtypes and imaging phenotypes. The present review summarizes genetic markers discovered by clinical studies and discusses their pathogenic molecular mechanisms involved in developmental or regenerative anomalies of blood vessel walls, neuronal apoptosis, excitotoxic death, inflammation, neurogenesis, and angiogenesis. The possible impact of environment on genetics is addressed as well. We also include a perspective on further studies and clinical application of these IS biomarkers.
Collapse
Affiliation(s)
- Wu Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Yi Li
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China
| | - Larry Benowitz
- Department of Neurosurgery, Boston Children's Hospital, F.M. Kirby Neurobiology Center for Life Science, Harvard Medical School, Boston, MA, 02115, USA
| | - Qinhua Chen
- Experimental Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China
| | - Zhenghong Zhang
- Department of Neurology, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali M Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Antonio E Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
27
|
Titus DJ, Wilson NM, Alcazar O, Calixte DA, Dietrich WD, Gurney ME, Atkins CM. A negative allosteric modulator of PDE4D enhances learning after traumatic brain injury. Neurobiol Learn Mem 2018; 148:38-49. [PMID: 29294383 PMCID: PMC5844849 DOI: 10.1016/j.nlm.2017.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) significantly decreases cyclic AMP (cAMP) signaling which produces long-term synaptic plasticity deficits and chronic learning and memory impairments. Phosphodiesterase 4 (PDE4) is a major family of cAMP hydrolyzing enzymes in the brain and of the four PDE4 subtypes, PDE4D in particular has been found to be involved in memory formation. Although most PDE4 inhibitors target all PDE4 subtypes, PDE4D can be targeted with a selective, negative allosteric modulator, D159687. In this study, we hypothesized that treating animals with D159687 could reverse the cognitive deficits caused by TBI. To test this hypothesis, adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. After 3 months of recovery, animals were treated with D159687 (0.3 mg/kg, intraperitoneally) at 30 min prior to cue and contextual fear conditioning, acquisition in the water maze or during a spatial working memory task. Treatment with D159687 had no significant effect on these behavioral tasks in non-injured, sham animals, but did reverse the learning and memory deficits in chronic TBI animals. Assessment of hippocampal slices at 3 months post-TBI revealed that D159687 reversed both the depression in basal synaptic transmission in area CA1 as well as the late-phase of long-term potentiation. These results demonstrate that a negative allosteric modulator of PDE4D may be a potential therapeutic to improve chronic cognitive dysfunction following TBI.
Collapse
Affiliation(s)
- David J Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14 Terrace, Miami, FL 33136, USA
| | - Nicole M Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14 Terrace, Miami, FL 33136, USA
| | - Oscar Alcazar
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14 Terrace, Miami, FL 33136, USA
| | - Dale A Calixte
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14 Terrace, Miami, FL 33136, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14 Terrace, Miami, FL 33136, USA
| | - Mark E Gurney
- Tetra Discovery Partners, Inc., 38 Fulton Street West, Suite 303, Grand Rapids, MI 49503, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14 Terrace, Miami, FL 33136, USA.
| |
Collapse
|
28
|
Fertig BA, Baillie GS. PDE4-Mediated cAMP Signalling. J Cardiovasc Dev Dis 2018; 5:jcdd5010008. [PMID: 29385021 PMCID: PMC5872356 DOI: 10.3390/jcdd5010008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
cAMP is the archetypal and ubiquitous second messenger utilised for the fine control of many cardiovascular cell signalling systems. The ability of cAMP to elicit cell surface receptor-specific responses relies on its compartmentalisation by cAMP hydrolysing enzymes known as phosphodiesterases. One family of these enzymes, PDE4, is particularly important in the cardiovascular system, where it has been extensively studied and shown to orchestrate complex, localised signalling that underpins many crucial functions of the heart. In the cardiac myocyte, cAMP activates PKA, which phosphorylates a small subset of mostly sarcoplasmic substrate proteins that drive β-adrenergic enhancement of cardiac function. The phosphorylation of these substrates, many of which are involved in cardiac excitation-contraction coupling, has been shown to be tightly regulated by highly localised pools of individual PDE4 isoforms. The spatial and temporal regulation of cardiac signalling is made possible by the formation of macromolecular “signalosomes”, which often include a cAMP effector, such as PKA, its substrate, PDE4 and an anchoring protein such as an AKAP. Studies described in the present review highlight the importance of this relationship for individual cardiac PKA substrates and we provide an overview of how this signalling paradigm is coordinated to promote efficient adrenergic enhancement of cardiac function. The role of PDE4 also extends to the vascular endothelium, where it regulates vascular permeability and barrier function. In this distinct location, PDE4 interacts with adherens junctions to regulate their stability. These highly specific, non-redundant roles for PDE4 isoforms have far reaching therapeutic potential. PDE inhibitors in the clinic have been plagued with problems due to the active site-directed nature of the compounds which concomitantly attenuate PDE activity in all highly localised “signalosomes”.
Collapse
|
29
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
30
|
Wilson LS, Guo M, Umana MB, Maurice DH. Distinct phosphodiesterase 5A-containing compartments allow selective regulation of cGMP-dependent signalling in human arterial smooth muscle cells. Cell Signal 2017; 36:204-211. [PMID: 28506928 DOI: 10.1016/j.cellsig.2017.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Cyclic GMP (cGMP) translates and integrates much of the information encoded by nitric oxide (NO·) and several natriuretic peptides, including the atrial natriuretic peptide (ANP). Previously, we reported that integration of a cGMP-specific cyclic nucleotide phosphodiesterase, namely phosphodiesterase 5A (PDE5A), into a protein kinase G (PKG)- and inositol-1,4,5-trisphosphate receptor (IP3R)-containing endoplasmic reticulum (ER) signalosome allows localized control of PDE5A activity and of PKG-dependent inhibition of IP3-mediated release of ER Ca2+ in human platelets. Herein, we report that PDE5A integrates into an analogous signalosome in human arterial smooth muscle cells (HASMC), wherein it regulates muscarinic agonist-dependent Ca2+ release and is activated selectively by PKG-dependent phosphorylation. In addition, we report that PDE5A also regulates HASMC functions via events independent of PKG, but rather through actions coordinated by competitive cGMP-mediated inhibition of cAMP hydrolysis by the so-called cGMP-inhibited cAMP PDE, namely phosphodiesterase 3A (PDE3A). Indeed, we show that ANP increases both cGMP and cAMP levels in HASMC and promotes phosphorylation of vasodilator-stimulated phospho-protein (VASP) at each the PKG and PKA phospho-acceptor sites. Since selective inhibition of PDE5 decreased DNA synthesis and chemotaxis of HASMC, and that PDE3A knockdown obviated these effects, our findings are consistent with a role for a PDE5A-PDE3A-PKA axis in their regulation. Our findings provide insight into the existence of distinct "pools" of PDE5A in HASMC and support the idea that these discrete compartments regulate distinct cGMP-dependent events. As a corollary, we suggest that it may be possible to target these distinct PDE5A-regulated pools and in so-doing differentially impact selected cGMP-regulated functions in these cells.
Collapse
Affiliation(s)
- Lindsay S Wilson
- Department of Pathology & Molecular Medicine (LSW, DHM), Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biomedical and Molecular Sciences (MBU, MG, DHM), Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Manhong Guo
- Department of Pathology & Molecular Medicine (LSW, DHM), Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biomedical and Molecular Sciences (MBU, MG, DHM), Queen's University, Kingston, ON K7L 3N6, Canada
| | - M Bibiana Umana
- Department of Pathology & Molecular Medicine (LSW, DHM), Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biomedical and Molecular Sciences (MBU, MG, DHM), Queen's University, Kingston, ON K7L 3N6, Canada
| | - Donald H Maurice
- Department of Pathology & Molecular Medicine (LSW, DHM), Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biomedical and Molecular Sciences (MBU, MG, DHM), Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
31
|
Kopperud RK, Rygh CB, Karlsen TV, Krakstad C, Kleppe R, Hoivik EA, Bakke M, Tenstad O, Selheim F, Lidén Å, Madsen L, Pavlin T, Taxt T, Kristiansen K, Curry FRE, Reed RK, Døskeland SO. Increased microvascular permeability in mice lacking Epac1 (Rapgef3). Acta Physiol (Oxf) 2017; 219:441-452. [PMID: 27096875 PMCID: PMC5073050 DOI: 10.1111/apha.12697] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/15/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Aim Maintenance of the blood and extracellular volume requires tight control of endothelial macromolecule permeability, which is regulated by cAMP signalling. This study probes the role of the cAMP mediators rap guanine nucleotide exchange factor 3 and 4 (Epac1 and Epac2) for in vivo control of microvascular macromolecule permeability under basal conditions. Methods Epac1−/− and Epac2−/− C57BL/6J mice were produced and compared with wild‐type mice for transvascular flux of radio‐labelled albumin in skin, adipose tissue, intestine, heart and skeletal muscle. The transvascular leakage was also studied by dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) using the MRI contrast agent Gadomer‐17 as probe. Results Epac1−/− mice had constitutively increased transvascular macromolecule transport, indicating Epac1‐dependent restriction of baseline permeability. In addition, Epac1−/− mice showed little or no enhancement of vascular permeability in response to atrial natriuretic peptide (ANP), whether probed with labelled albumin or Gadomer‐17. Epac2−/− and wild‐type mice had similar basal and ANP‐stimulated clearances. Ultrastructure analysis revealed that Epac1−/− microvascular interendothelial junctions had constitutively less junctional complex. Conclusion Epac1 exerts a tonic inhibition of in vivo basal microvascular permeability. The loss of this tonic action increases baseline permeability, presumably by reducing the interendothelial permeability resistance. Part of the action of ANP to increase permeability in wild‐type microvessels may involve inhibition of the basal Epac1‐dependent activity.
Collapse
Affiliation(s)
- R. K. Kopperud
- Department of Biomedicine; University of Bergen; Bergen Norway
- Centre for Cancer Biomarkers (CCBIO); University of Bergen; Bergen Norway
| | - C. Brekke Rygh
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - T. V. Karlsen
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - C. Krakstad
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - R. Kleppe
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - E. A. Hoivik
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - M. Bakke
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - O. Tenstad
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - F. Selheim
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - Å. Lidén
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - L. Madsen
- Department of Biomedicine; University of Bergen; Bergen Norway
- Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - T. Pavlin
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - T. Taxt
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - K. Kristiansen
- Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - F.-R. E. Curry
- Department of Physiology and Membrane Biology; School of Medicine; University of California; Davis CA USA
| | - R. K. Reed
- Department of Biomedicine; University of Bergen; Bergen Norway
- Centre for Cancer Biomarkers (CCBIO); University of Bergen; Bergen Norway
| | - S. O. Døskeland
- Department of Biomedicine; University of Bergen; Bergen Norway
| |
Collapse
|
32
|
Affiliation(s)
- J. Waschke
- Department of Anatomy; Ludwig-Maximilians-Universitaet Munich Medizinische Fakultaet; Munich Germany
| |
Collapse
|
33
|
Bedioune I, Bobin P, Leroy J, Fischmeister R, Vandecasteele G. Cyclic Nucleotide Phosphodiesterases and Compartmentation in Normal and Diseased Heart. MICRODOMAINS IN THE CARDIOVASCULAR SYSTEM 2017. [DOI: 10.1007/978-3-319-54579-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Lezoualc'h F, Fazal L, Laudette M, Conte C. Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease. Circ Res 2016; 118:881-97. [PMID: 26941424 DOI: 10.1161/circresaha.115.306529] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
cAMP is a universal second messenger that plays central roles in cardiovascular regulation influencing gene expression, cell morphology, and function. A crucial step toward a better understanding of cAMP signaling came 18 years ago with the discovery of the exchange protein directly activated by cAMP (EPAC). The 2 EPAC isoforms, EPAC1 and EPAC2, are guanine-nucleotide exchange factors for the Ras-like GTPases, Rap1 and Rap2, which they activate independently of the classical effector of cAMP, protein kinase A. With the development of EPAC pharmacological modulators, many reports in the literature have demonstrated the critical role of EPAC in the regulation of various cAMP-dependent cardiovascular functions, such as calcium handling and vascular tone. EPAC proteins are coupled to a multitude of effectors into distinct subcellular compartments because of their multidomain architecture. These novel cAMP sensors are not only at the crossroads of different physiological processes but also may represent attractive therapeutic targets for the treatment of several cardiovascular disorders, including cardiac arrhythmia and heart failure.
Collapse
Affiliation(s)
- Frank Lezoualc'h
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.).
| | - Loubina Fazal
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| | - Marion Laudette
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| | - Caroline Conte
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| |
Collapse
|
35
|
EPAC1 promotes adaptive responses in human arterial endothelial cells subjected to low levels of laminar fluid shear stress: Implications in flow-related endothelial dysfunction. Cell Signal 2016; 28:606-19. [DOI: 10.1016/j.cellsig.2016.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 11/18/2022]
|
36
|
Bobin P, Belacel-Ouari M, Bedioune I, Zhang L, Leroy J, Leblais V, Fischmeister R, Vandecasteele G. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Arch Cardiovasc Dis 2016; 109:431-43. [PMID: 27184830 DOI: 10.1016/j.acvd.2016.02.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), thereby regulating multiple aspects of cardiac and vascular muscle functions. This highly diverse class of enzymes encoded by 21 genes encompasses 11 families that are not only responsible for the termination of cyclic nucleotide signalling, but are also involved in the generation of dynamic microdomains of cAMP and cGMP, controlling specific cell functions in response to various neurohormonal stimuli. In the myocardium and vascular smooth muscle, the PDE3 and PDE4 families predominate, degrading cAMP and thereby regulating cardiac excitation-contraction coupling and smooth muscle contractile tone. PDE3 inhibitors are positive inotropes and vasodilators in humans, but their use is limited to acute heart failure and intermittent claudication. PDE5 is particularly important for the degradation of cGMP in vascular smooth muscle, and PDE5 inhibitors are used to treat erectile dysfunction and pulmonary hypertension. There is experimental evidence that these PDEs, as well as other PDE families, including PDE1, PDE2 and PDE9, may play important roles in cardiac diseases, such as hypertrophy and heart failure, as well as several vascular diseases. After a brief presentation of the cyclic nucleotide pathways in cardiac and vascular cells, and the major characteristics of the PDE superfamily, this review will focus on the current use of PDE inhibitors in cardiovascular diseases, and the recent research developments that could lead to better exploitation of the therapeutic potential of these enzymes in the future.
Collapse
Affiliation(s)
- Pierre Bobin
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Milia Belacel-Ouari
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ibrahim Bedioune
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Liang Zhang
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jérôme Leroy
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Rodolphe Fischmeister
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Grégoire Vandecasteele
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
37
|
Wu C, Rajagopalan S. Phosphodiesterase-4 inhibition as a therapeutic strategy for metabolic disorders. Obes Rev 2016; 17:429-41. [PMID: 26997580 DOI: 10.1111/obr.12385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
Phosphodiesterase-4 (PDE4) hydrolyses cyclic adenosine monophosphate (cAMP), a crucial secondary messenger for cellular adaptation to diverse external stimuli. The activity of PDE4 is tightly controlled by post-translational regulation, structure-based auto-regulation and locus specific 'compartmentalization' of PDE4 with its interactive proteins (signalsomes). Through these mechanisms, PDE4 regulates cAMP levels and shapes the cAMP signalling, directing signals from the diverse external stimuli to distinct microenvironments exquisitely. Derangement of the PDE4-cAMP signalling represents a pathophysiologically relevant pathway in metabolic disorders as demonstrated through a critical role in the processes including inflammation, disordered glucose and lipid metabolism, hepatic steatosis, abnormal lipolysis, suppressed thermogenic function and deranged neuroendocrine functions. A limited number of PDE4 inhibitors are currently undergoing clinical evaluation for treating disorders such as type 2 diabetes and non-alcoholic steatohepatitis. The discovery of novel PDE4 allosteric inhibitors and signalsome-based strategies targeting individual PDE4 variants may allow PDE4 isoform selective inhibition, which may offer safer strategies for chronic treatment of metabolic disorders.
Collapse
Affiliation(s)
- C Wu
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Smith PM, Brzezinska P, Hubert F, Mimee A, Maurice DH, Ferguson AV. Leptin influences the excitability of area postrema neurons. Am J Physiol Regul Integr Comp Physiol 2015; 310:R440-8. [PMID: 26719304 DOI: 10.1152/ajpregu.00326.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022]
Abstract
The area postrema (AP) is a circumventricular organ with important roles in central autonomic regulation. This medullary structure has been shown to express the leptin receptor and has been suggested to have a role in modulating peripheral signals, indicating energy status. Using RT-PCR, we have confirmed the presence of mRNA for the leptin receptor, ObRb, in AP, and whole cell current-clamp recordings from dissociated AP neurons demonstrated that leptin influenced the excitability of 51% (42/82) of AP neurons. The majority of responsive neurons (62%) exhibited a depolarization (5.3 ± 0.7 mV), while the remaining affected cells (16/42) demonstrated hyperpolarizing effects (-5.96 ± 0.95 mV). Amylin was found to influence the same population of AP neurons. To elucidate the mechanism(s) of leptin and amylin actions in the AP, we used fluorescence resonance energy transfer (FRET) to determine the effect of these peptides on cAMP levels in single AP neurons. Leptin and amylin were found to elevate cAMP levels in the same dissociated AP neurons (leptin: % total FRET response 25.3 ± 4.9, n = 14; amylin: % total FRET response 21.7 ± 3.1, n = 13). When leptin and amylin were coapplied, % total FRET response rose to 53.0 ± 8.3 (n = 6). The demonstration that leptin and amylin influence a subpopulation of AP neurons and that these two signaling molecules have additive effects on single AP neurons to increase cAMP, supports a role for the AP as a central nervous system location at which these circulating signals may act through common intracellular signaling pathways to influence central control of energy balance.
Collapse
Affiliation(s)
- Pauline M Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paulina Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Fabien Hubert
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Andrea Mimee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
39
|
Adaptive phenotypic modulation of human arterial endothelial cells to fluid shear stress-encoded signals: modulation by phosphodiesterase 4D-VE-cadherin signalling. Cell Signal 2015; 28:741-8. [PMID: 26658094 DOI: 10.1016/j.cellsig.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022]
Abstract
Although cAMP-signalling regulates numerous functions of vascular endothelial cells (VECs), including their ability to impact vascular resistance in response to changes in blood flow dynamics, few of the mechanisms underlying these effects have yet to be described. In addition to forming stable adherens junctions (AJs) in static VEC cultures, VE-cadherin (VECAD) has emerged as a critical component in a key mechanosensor responsible for linking altered blood flow dynamics and the VEC-mediated control of vascular resistance. Previously, a cAMP phosphodiesterase, PDE4D, was shown to coordinate the VEC permeability limiting effects of cAMP-elevating agents in human arterial VECs (HAECs). Herein, we report that PDE4D acts to allow cAMP-elevating agents to regulate VECADs' role as a sensor of flow-associated fluid shear stress (FSS)-encoded information in HAECs. Thus, we report that PDE4 activity is increased in HAECs exposed to laminar FSS and that this effect contributes to controlling how FSS impacts the morphological and gene expression changes in HAECs exposed to flow. More specifically, we report that PDE4D regulates the efficiency with which VECAD, within its mechanosensor, controls VEGFR2 and Akt activities. Indeed, we show that PDE4D knockdown (KD) significantly blunts responses of HAECs to levels of FSS characteristically found in areas of the vasculature in which stenosis is prevalent. We propose that this effect may provide a new therapeutic avenue in modulating VEC behaviour at these sites by promoting an adaptive and vasculo-protective phenotype.
Collapse
|
40
|
Banerjee U, Cheng X. Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: Structure, function and therapeutics. Gene 2015; 570:157-67. [PMID: 26119090 PMCID: PMC4556420 DOI: 10.1016/j.gene.2015.06.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
Abstract
Mammalian exchange protein directly activated by cAMP isoform 1 (EPAC1), encoded by the RAPGEF3 gene, is one of the two-membered family of cAMP sensors that mediate the intracellular functions of cAMP by acting as guanine nucleotide exchange factors for the Ras-like Rap small GTPases. Extensive studies have revealed that EPAC1-mediated cAMP signaling is highly coordinated spatiotemporally through the formation of dynamic signalosomes by interacting with a diverse array of cellular partners. Recent functional analyses of genetically engineered mouse models further suggest that EPAC1 functions as an important stress response switch and is involved in pathophysiological conditions of cardiac stresses, chronic pain, cancer and infectious diseases. These findings, coupled with the development of EPAC specific small molecule modulators, validate EPAC1 as a promising target for therapeutic interventions. Human gene RAPGEF3 encodes for EPAC1 protein. Along with PKA, CNG & HCN, EPAC is an important cAMP sensor. Selective modulators of EPAC1 have been developed for use as pharmacological probes. Formation of EPAC1 signalosomes allows spatiotemporal control of cAMP signaling. EPAC1 is implicated in major pathophysiological conditions and is an attractive therapeutic target.
Collapse
Affiliation(s)
- Upasana Banerjee
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Health Science Center, Houston, TX 77030, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Health Science Center, Houston, TX 77030, United States.
| |
Collapse
|
41
|
Cyclic nucleotide phosphodiesterases (PDEs): coincidence detectors acting to spatially and temporally integrate cyclic nucleotide and non-cyclic nucleotide signals. Biochem Soc Trans 2015; 42:250-6. [PMID: 24646226 DOI: 10.1042/bst20130268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cyclic nucleotide second messengers cAMP and cGMP each affect virtually all cellular processes. Although these hydrophilic small molecules readily diffuse throughout cells, it is remarkable that their ability to activate their multiple intracellular effectors is spatially and temporally selective. Studies have identified a critical role for compartmentation of the enzymes which hydrolyse and metabolically inactivate these second messengers, the PDEs (cyclic nucleotide phosphodiesterases), in this specificity. In the present article, we describe several examples from our work in which compartmentation of selected cAMP- or cGMP-hydrolysing PDEs co-ordinate selective activation of cyclic nucleotide effectors, and, as a result, selectively affect cellular functions. It is our belief that therapeutic strategies aimed at targeting PDEs within these compartments will allow greater selectivity than those directed at inhibiting these enzymes throughout the cells.
Collapse
|
42
|
Liu J, Yeung PKK, Cheng L, Lo ACY, Chung SSM, Chung SK. Epac2-deficiency leads to more severe retinal swelling, glial reactivity and oxidative stress in transient middle cerebral artery occlusion induced ischemic retinopathy. SCIENCE CHINA-LIFE SCIENCES 2015; 58:521-30. [PMID: 25985753 DOI: 10.1007/s11427-015-4860-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
Abstract
Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac1 and Epac2, are cAMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions. To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion (tMCAO) was performed on Epac1-deficient (Epac1 (-/-)) mice, Epac2-deficient (Epac2 (-/-)) mice, and their wild type counterparts (Epac1 (+/+) and Epac2 (+/+)). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After tMCAO, the contralateral retinae displayed similar morphology between different genotypes. Neuronal loss, retinal edema and increase in immunoreactivity for aquaporin 4 (AQP4), glial fibrillary acidic protein (GFAP), peroxiredoxin 6 (Prx6) were observed in ipsilateral retinae. Epac2 (-/-) ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2 (+/+). However, Epac1 (-/-) ipsilateral retinae displayed similar pathology as those in Epac1 (+/+) mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jin Liu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
43
|
Sin YY, Martin TP, Wills L, Currie S, Baillie GS. Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy. Cell Commun Signal 2015; 13:16. [PMID: 25889640 PMCID: PMC4356135 DOI: 10.1186/s12964-015-0094-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nuclear import of protein kinase D1 (PKD1) is an important event in the transcriptional regulation of cardiac gene reprogramming leading to the hypertrophic growth response, however, little is known about the molecular events that govern this event. We have identified a novel complex between PKD1 and a heat shock protein (Hsp), Hsp20, which has been implicated as cardioprotective. This study aims to characterize the role of the complex in PKD1-mediated myocardial regulatory mechanisms that depend on PKD1 nuclear translocation. RESULTS In mapping the Hsp20 binding sites on PKD1 within its catalytic unit using peptide array analysis, we were able to develop a cell-permeable peptide that disrupts the Hsp20-PKD1 complex. We use this peptide to show that formation of the Hsp20-PKD1 complex is essential for PKD1 nuclear translocation, signaling mechanisms leading to hypertrophy, activation of the fetal gene programme and pathological cardiac remodeling leading to cardiac fibrosis. CONCLUSIONS These results identify a new signaling complex that is pivotal to pathological remodelling of the heart that could be targeted therapeutically.
Collapse
Affiliation(s)
- Yuan Yan Sin
- Institute of Cardiovascular and Medical sciences, CMVLS, University of Glasgow, Glasgow, G128QQ, UK.
| | - Tamara P Martin
- Institute of Cardiovascular and Medical sciences, CMVLS, University of Glasgow, Glasgow, G128QQ, UK.
| | - Lauren Wills
- Institute of Cardiovascular and Medical sciences, CMVLS, University of Glasgow, Glasgow, G128QQ, UK.
| | - Susan Currie
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Hamnett building, 161 Cathedral Street, Glasgow, G4 ORE, UK.
| | - George S Baillie
- Institute of Cardiovascular and Medical sciences, CMVLS, University of Glasgow, Glasgow, G128QQ, UK.
| |
Collapse
|
44
|
Abstract
cAMP production and protein kinase A (PKA) are the most widely studied steps in β-adrenergic receptor (βAR) signaling in the heart; however, the multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is also activated in response to βAR stimulation and is involved in the regulation of cardiac excitation-contraction coupling. Its activity and expression are increased during cardiac hypertrophy, in heart failure, and under conditions that promote arrhythmias both in animal models and in the human heart, underscoring the clinical relevance of CaMKII in cardiac pathophysiology. Both CaMKII and PKA phosphorylate a number of protein targets critical for Ca(2+) handling and contraction with similar, but not always identical, functional consequences. How these two pathways communicate with each other remains incompletely understood, however. To maintain homeostasis, cyclic nucleotide levels are regulated by phosphodiesterases (PDEs), with PDE4s predominantly responsible for cAMP degradation in the rodent heart. Here we have reassessed the interaction between cAMP/PKA and Ca(2+)/CaMKII signaling. We demonstrate that CaMKII activity constrains basal and βAR-activated cAMP levels. Moreover, we show that these effects are mediated, at least in part, by CaMKII regulation of PDE4D. This regulation establishes a negative feedback loop necessary to maintain cAMP/CaMKII homeostasis, revealing a previously unidentified function for PDE4D as a critical integrator of cAMP/PKA and Ca(2+)/CaMKII signaling.
Collapse
|
45
|
Zhao J, Randive R, Stewart JA. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes 2014; 5:860-867. [PMID: 25512788 PMCID: PMC4265872 DOI: 10.4239/wjd.v5.i6.860] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic hyperglycemia is one of the main characteristics of diabetes. Persistent exposure to elevated glucose levels has been recognized as one of the major causal factors of diabetic complications. In pathologies, like type 2 diabetes mellitus (T2DM), mechanical and biochemical stimuli activate profibrotic signaling cascades resulting in myocardial fibrosis and subsequent impaired cardiac performance due to ventricular stiffness. High levels of glucose nonenzymatically react with long-lived proteins, such as collagen, to form advanced glycation end products (AGEs). AGE-modified collagen increase matrix stiffness making it resistant to hydrolytic turnover, resulting in an accumulation of extracellular matrix (ECM) proteins. AGEs account for many of the diabetic cardiovascular complications through their engagement of the receptor for AGE (RAGE). AGE/RAGE activation stimulates the secretion of numerous profibrotic growth factors, promotes increased collagen deposition leading to tissue fibrosis, as well as increased RAGE expression. To date, the AGE/RAGE cascade is not fully understood. In this review, we will discuss one of the major fibrotic signaling pathways, the AGE/RAGE signaling cascade, as well as propose an alternate pathway via Rap1a that may offer insight into cardiovascular ECM remodeling in T2DM. In a series of studies, we demonstrate a role for Rap1a in the regulation of fibrosis and myofibroblast differentiation in isolated diabetic and non-diabetic fibroblasts. While these studies are still in a preliminary stage, inhibiting Rap1a protein expression appears to down-regulate the molecular switch used to activate the ζ isotype of protein kinase C thereby promote AGE/RAGE-mediated fibrosis.
Collapse
|
46
|
Wittchen ES, Aghajanian A, Burridge K. Isoform-specific differences between Rap1A and Rap1B GTPases in the formation of endothelial cell junctions. Small GTPases 2014; 2:65-76. [PMID: 21776404 DOI: 10.4161/sgtp.2.2.15735] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 03/21/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022] Open
Abstract
Rap1 is a Ras-like GTPase that has been studied with respect to its role in cadherin-based cell adhesion. Rap1 exists as two separate isoforms, Rap1A and Rap1B, which are 95% identical and yet the phenotype of the isoform-specific knockout mice is different. We and others have previously identified a role for Rap1 in regulating endothelial adhesion, junctional integrity and barrier function; however, these early studies did not distinguish a relative role for each isoform. To dissect the individual contribution of each isoform in regulating the endothelial barrier, we utilized an engineered microRNA-based approach to silence Rap1A, Rap1B or both, then analyzed barrier properties of the endothelium. Electrical impedance sensing experiments show that Rap1A is the predominant isoform involved in endothelial cell junction formation. Quantification of monolayer integrity by VE-cadherin staining revealed that knockdown of Rap1A, but not Rap1B, increased the number of gaps in the confluent monolayer. This loss of monolayer integrity could be rescued by re-expression of exogenous Rap1A protein. Expression of GFP-tagged Rap1A or 1B revealed quantifiable differences in localization of each isoform, with the junctional pool of Rap1A being greater. The junctional protein AF-6 also co-immunoprecipitates more strongly with expressed GFP-Rap1A. Our results show that Rap1A is the more critical isoform in the context of endothelial barrier function, indicating that some cellular processes differentially utilize Rap1A and 1B isoforms. Studying how Rap1 isoforms differentially regulate EC junctions may thus reveal new targets for developing therapeutic strategies during pathological situations where endothelial barrier disruption leads to disease.
Collapse
Affiliation(s)
- Erika S Wittchen
- Department of Cell and Developmental Biology; Chapel Hill, NC USA
| | | | | |
Collapse
|
47
|
Abusnina A, Keravis T, Zhou Q, Justiniano H, Lobstein A, Lugnier C. Tumour growth inhibition and anti-angiogenic effects using curcumin correspond to combined PDE2 and PDE4 inhibition. Thromb Haemost 2014; 113:319-28. [PMID: 25230992 DOI: 10.1160/th14-05-0454] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/13/2014] [Indexed: 01/04/2023]
Abstract
Vascular endothelial growth factor (VEGF) plays a major role in angiogenesis by stimulating endothelial cells. Increase in cyclic AMP (cAMP) level inhibits VEGF-induced endothelial cell proliferation and migration. Cyclic nucleotide phosphodiesterases (PDEs), which specifically hydrolyse cyclic nucleotides, are critical in the regulation of this signal transduction. We have previously reported that PDE2 and PDE4 up-regulations in human umbilical vein endothelial cells (HUVECs) are implicated in VEGF-induced angiogenesis and that inhibition of PDE2 and PDE4 activities prevents the development of the in vitro angiogenesis by increasing cAMP level, as well as the in vivo chicken embryo angiogenesis. We have also shown that polyphenols are able to inhibit PDEs. The curcumin having anti-cancer properties, the present study investigated whether PDE2 and PDE4 inhibitors and curcumin could have similar in vivo anti-tumour properties and whether the anti-angiogenic effects of curcumin are mediated by PDEs. Both PDE2/PDE4 inhibitor association and curcumin significantly inhibited in vivo tumour growth in C57BL/6N mice. In vitro, curcumin inhibited basal and VEGF-stimulated HUVEC proliferation and migration and delayed cell cycle progression at G0/G1, similarly to the combination of selective PDE2 and PDE4 inhibitors. cAMP levels in HUVECs were significantly increased by curcumin, similarly to rolipram (PDE4 inhibitor) and BAY-60-550 (PDE2 inhibitor) association, indicating cAMP-PDE inhibitions. Moreover, curcumin was able to inhibit VEGF-induced cAMP-PDE activity without acting on cGMP-PDE activity and to modulate PDE2 and PDE4 expressions in HUVECs. The present results suggest that curcumin exerts its in vitro anti-angiogenic and in vivo anti-tumour properties through combined PDE2 and PDE4 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Claire Lugnier
- Dr. Claire Lugnier, Université de Strasbourg, CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, 74 route du Rhin, CS 60024, 67401 Illkirch, France, Tel.: +33 3 68 85 41 01, Fax: +33 3 68 85 43 13, E-mail:
| |
Collapse
|
48
|
Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis 2014; 21:e25-50. [PMID: 25056711 DOI: 10.1111/odi.12275] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023]
Abstract
By catalyzing hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. As these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A, and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multimolecular signaling/regulatory complexes, called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners.
Collapse
Affiliation(s)
- F Ahmad
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
49
|
cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP). Biochem Soc Trans 2014; 42:89-97. [PMID: 24450633 DOI: 10.1042/bst20130253] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation.
Collapse
|
50
|
Radeva MY, Kugelmann D, Spindler V, Waschke J. PKA compartmentalization via AKAP220 and AKAP12 contributes to endothelial barrier regulation. PLoS One 2014; 9:e106733. [PMID: 25188285 PMCID: PMC4154725 DOI: 10.1371/journal.pone.0106733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/07/2014] [Indexed: 01/14/2023] Open
Abstract
cAMP-mediated PKA signaling is the main known pathway involved in maintenance of the endothelial barrier. Tight regulation of PKA function can be achieved by discrete compartmentalization of the enzyme via physical interaction with A-kinase anchoring proteins (AKAPs). Here, we investigated the role of AKAPs 220 and 12 in endothelial barrier regulation. Analysis of human and mouse microvascular endothelial cells as well as isolated rat mesenteric microvessels was performed using TAT-Ahx-AKAPis peptide, designed to competitively inhibit PKA-AKAP interaction. In vivo microvessel hydraulic conductivity and in vitro transendothelial electrical resistance measurements showed that this peptide destabilized endothelial barrier properties, and dampened the cAMP-mediated endothelial barrier stabilization induced by forskolin and rolipram. Immunofluorescence analysis revealed that TAT-Ahx-AKAPis led to both adherens junctions and actin cytoskeleton reorganization. Those effects were paralleled by redistribution of PKA and Rac1 from endothelial junctions and by Rac1 inactivation. Similarly, membrane localization of AKAP220 was also reduced. In addition, depletion of either AKAP12 or AKAP220 significantly impaired endothelial barrier function and AKAP12 was also shown to interfere with cAMP-mediated barrier enhancement. Furthermore, immunoprecipitation analysis demonstrated that AKAP220 interacts not only with PKA but also with VE-cadherin and ß-catenin. Taken together, these results indicate that AKAP-mediated PKA subcellular compartmentalization is involved in endothelial barrier regulation. More specifically, AKAP220 and AKAP12 contribute to endothelial barrier function and AKAP12 is required for cAMP-mediated barrier stabilization.
Collapse
Affiliation(s)
- Mariya Y. Radeva
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|