1
|
Marougka K, Judith D, Jaouen T, Blouquit-Laye S, Cosentino G, Berlioz-Torrent C, Rameix-Welti MA, Sitterlin D. Antagonism of BST2/Tetherin, a new restriction factor of respiratory syncytial virus, requires the viral NS1 protein. PLoS Pathog 2024; 20:e1012687. [PMID: 39561185 PMCID: PMC11614281 DOI: 10.1371/journal.ppat.1012687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Human respiratory syncytial virus (RSV) is an enveloped RNA virus and the leading viral agent responsible for severe pediatric respiratory infections worldwide. Identification of cellular factors able to restrict viral infection is one of the key strategies used to design new drugs against infection. Here, we report for the first time that the cellular protein BST2/Tetherin (a widely known host antiviral molecule) behaves as a restriction factor of RSV infection. We showed that BST2 silencing resulted in a significant rise in viral production during multi-cycle infection, suggesting an inhibitory role during the late steps of RSV's multiplication cycle. Conversely, BST2 overexpression resulted in the decrease of the viral production. Furthermore, BST2 was found associated with envelope proteins and co-localized with viral filaments, suggesting that BST2 tethers RSV particles. Interestingly, RSV naturally downregulates cell surface and global BST2 expression, possibly through a mechanism dependent on ubiquitin. RSV's ability to enhance BST2 degradation was also validated in a model of differentiated cells infected by RSV. Additionally, we found that a virus deleted of NS1 is unable to downregulate BST2 and is significantly more susceptible to BST2 restriction compared to the wild type virus. Moreover, NS1 and BST2 interact in a co- immunoprecipitation experiment. Overall, our data support a model in which BST2 is a restriction factor against RSV infection and that the virus counteracts this effect by limiting the cellular factor's expression through a mechanism involving the viral protein NS1.
Collapse
Affiliation(s)
- Katherine Marougka
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
| | - Delphine Judith
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Tristan Jaouen
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
- Institut Pasteur, Université Paris Cité, M3P, PARIS, France
| | - Sabine Blouquit-Laye
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
| | - Gina Cosentino
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
| | | | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris Cité, M3P, PARIS, France
- Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173, INSERM, Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15 Versailles, France
| | - Delphine Sitterlin
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
- Institut Pasteur, Université Paris Cité, M3P, PARIS, France
| |
Collapse
|
2
|
Yu H, Bian Q, Wang X, Wang X, Lai L, Wu Z, Zhao Z, Ban B. Bone marrow stromal cell antigen 2: Tumor biology, signaling pathway and therapeutic targeting (Review). Oncol Rep 2024; 51:45. [PMID: 38240088 PMCID: PMC10828922 DOI: 10.3892/or.2024.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2) is a type II transmembrane protein that serves critical roles in antiretroviral defense in the innate immune response. In addition, it has been suggested that BST2 is highly expressed in various types of human cancer and high BST2 expression is related to different clinicopathological parameters in cancer. The molecular mechanism underlying BST2 as a potential tumor biomarker in human solid tumors has been reported on; however, to the best of our knowledge, there has been no review published on the molecular mechanism of BST2 in human solid tumors. The present review focuses on human BST2 expression, structure and functions; the molecular mechanisms of BST2 in breast cancer, hepatocellular carcinoma, gastrointestinal tumor and other solid tumors; the therapeutic potential of BST2; and the possibility of BST2 as a potential marker. BST2 is involved in cell membrane integrity and lipid raft formation, which can activate epidermal growth factor receptor signaling pathways, providing a potential mechanistic link between BST2 and tumorigenesis. Notably, BST2 may be considered a universal tumor biomarker and a potential therapeutical target.
Collapse
Affiliation(s)
- Honglian Yu
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xin Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Xinzhe Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Luhao Lai
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Zhankui Zhao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
3
|
Hagelauer E, Lotke R, Kmiec D, Hu D, Hohner M, Stopper S, Nchioua R, Kirchhoff F, Sauter D, Schindler M. Tetherin Restricts SARS-CoV-2 despite the Presence of Multiple Viral Antagonists. Viruses 2023; 15:2364. [PMID: 38140605 PMCID: PMC10747847 DOI: 10.3390/v15122364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Coronavirus infection induces interferon-stimulated genes, one of which encodes Tetherin, a transmembrane protein inhibiting the release of various enveloped viruses from infected cells. Previous studies revealed that SARS-CoV encodes two Tetherin antagonists: the Spike protein (S), inducing lysosomal degradation of Tetherin, and ORF7a, altering its glycosylation. Similarly, SARS-CoV-2 has also been shown to use ORF7a and Spike to enhance virion release in the presence of Tetherin. Here, we directly compare the abilities and mechanisms of these two viral proteins to counteract Tetherin. Therefore, cell surface and total Tetherin levels upon ORF7a or S expression were investigated using flow cytometry and Western blot analysis. SARS-CoV and SARS-CoV-2 S only marginally reduced Tetherin cell surface levels in a cell type-dependent manner. In HEK293T cells, under conditions of high exogenous Tetherin expression, SARS-CoV-2 S and ORF7a reduced total cellular Tetherin levels much more efficiently than the respective counterparts derived from SARS-CoV. Nevertheless, ORF7a from both species was able to alter Tetherin glycosylation. The ability to decrease total protein levels of Tetherin was conserved among S proteins from different SARS-CoV-2 variants (α, γ, δ, ο). While SARS-CoV-2 S and ORF7a both colocalized with Tetherin, only ORF7a directly interacted with the restriction factor in a two-hybrid assay. Despite the presence of multiple Tetherin antagonists, SARS-CoV-2 replication in Caco-2 cells was further enhanced upon Tetherin knockout. Altogether, our data show that endogenous Tetherin restricts SARS-CoV-2 replication and that the antiviral activity of Tetherin is only partially counteracted by viral antagonists with differential and complementary modes of action.
Collapse
Affiliation(s)
- Elena Hagelauer
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Rishikesh Lotke
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (D.K.); (R.N.); (F.K.)
| | - Dan Hu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Mirjam Hohner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Sophie Stopper
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (D.K.); (R.N.); (F.K.)
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (D.K.); (R.N.); (F.K.)
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| |
Collapse
|
4
|
Hussein M, Molina MA, Berkhout B, Herrera-Carrillo E. A CRISPR-Cas Cure for HIV/AIDS. Int J Mol Sci 2023; 24:1563. [PMID: 36675077 PMCID: PMC9863116 DOI: 10.3390/ijms24021563] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections and HIV-induced acquired immunodeficiency syndrome (AIDS) continue to represent a global health burden. There is currently no effective vaccine, nor any cure, for HIV infections; existing antiretroviral therapy can suppress viral replication, but only as long as antiviral drugs are taken. HIV infects cells of the host immune system, and it can establish a long-lived viral reservoir, which can be targeted and edited through gene therapy. Gene editing platforms based on the clustered regularly interspaced palindromic repeat-Cas system (CRISPR-Cas) have been recognized as promising tools in the development of gene therapies for HIV infections. In this review, we evaluate the current landscape of CRISPR-Cas-based therapies against HIV, with an emphasis on the infection biology of the virus as well as the activity of host restriction factors. We discuss the potential of a combined CRISPR-Cas approach that targets host and viral genes to activate antiviral host factors and inhibit viral replication simultaneously. Lastly, we focus on the challenges and potential solutions of CRISPR-Cas gene editing approaches in achieving an HIV cure.
Collapse
Affiliation(s)
| | | | | | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Abstract
Bats are recognized as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically nonpathogenic in bats, raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here, we characterize the tetherin genes from 27 bat species, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, more than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals. IMPORTANCE Bats are an important host of various viruses which are deadly to humans and other mammals but do not cause outward signs of illness in bats. Furthering our understanding of the unique features of the immune system of bats will shed light on how they tolerate viral infections, potentially informing novel antiviral strategies in humans and other animals. This study examines the antiviral protein tetherin, which prevents viral particles from escaping their host cell. Analysis of tetherin from 27 bat species reveals that it is under strong evolutionary pressure, and we show that multiple bat species have evolved to possess more tetherin genes than other mammals, some of which encode structurally unique tetherins capable of activity against different viral particles. These data suggest that bat tetherin plays a potentially broad and important role in the management of viral infections in bats.
Collapse
|
6
|
Zhao Y, Zhao K, Wang S, Du J. Multi-functional BST2/tetherin against HIV-1, other viruses and LINE-1. Front Cell Infect Microbiol 2022; 12:979091. [PMID: 36176574 PMCID: PMC9513188 DOI: 10.3389/fcimb.2022.979091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2), also known as CD317, HM1.24, or tetherin, is a type II transmembrane glycoprotein. Its expression is induced by IFN-I, and it initiates host immune responses by directly trapping enveloped HIV-1 particles onto the cell surface. This antagonistic mechanism toward the virus is attributable to the unique structure of BST2. In addition to its antiviral activity, BST2 restricts retrotransposon LINE-1 through a distinct mechanism. As counteractive measures, different viruses use a variety of proteins to neutralize the function or even stability of BST2. Interestingly, BST2 seems to have both a positive and a negative influence on immunomodulation and virus propagation. Here, we review the relationship between the structural and functional bases of BST2 in anti-HIV-1 and suppressing retrotransposon LINE-1 activation and focus on its dual features in immunomodulation and regulating virus propagation.
Collapse
Affiliation(s)
- Yifei Zhao
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Shaohua Wang
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Juan Du,
| |
Collapse
|
7
|
Abdin O, Nim S, Wen H, Kim PM. PepNN: a deep attention model for the identification of peptide binding sites. Commun Biol 2022; 5:503. [PMID: 35618814 PMCID: PMC9135736 DOI: 10.1038/s42003-022-03445-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Protein-peptide interactions play a fundamental role in many cellular processes, but remain underexplored experimentally and difficult to model computationally. Here, we present PepNN-Struct and PepNN-Seq, structure and sequence-based approaches for the prediction of peptide binding sites on a protein. A main difficulty for the prediction of peptide-protein interactions is the flexibility of peptides and their tendency to undergo conformational changes upon binding. Motivated by this, we developed reciprocal attention to simultaneously update the encodings of peptide and protein residues while enforcing symmetry, allowing for information flow between the two inputs. PepNN integrates this module with modern graph neural network layers and a series of transfer learning steps are used during training to compensate for the scarcity of peptide-protein complex information. We show that PepNN-Struct achieves consistently high performance across different benchmark datasets. We also show that PepNN makes reasonable peptide-agnostic predictions, allowing for the identification of novel peptide binding proteins.
Collapse
Affiliation(s)
- Osama Abdin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Han Wen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Philip M Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
8
|
SIVgsn-99CM71 Vpu employs different amino acids to antagonize human and greater spot-nosed monkey BST-2. J Virol 2021; 96:e0152721. [PMID: 34878886 DOI: 10.1128/jvi.01527-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral protein U (Vpu) is an accessory protein encoded by human immunodeficiency virus type 1 (HIV-1) and certain simian immunodeficiency virus (SIV) strains. Some of these viruses were reported to use Vpu to overcome restriction by BST-2 of their natural hosts. Our own recent report revealed that Vpu of SIVgsn-99CM71 (SIVgsn71) antagonizes human BST-2 through two AxxxxxxxW motifs (A22W30 and A25W33) whereas antagonizing BST-2 of its natural host, greater spot-nosed monkey (GSN), involved only A22W30 motif. Here we show that residues A22, A25, W30, and W33 of SIVgsn71 Vpu are all essential to antagonize human BST-2, while, neither single mutation of A22 nor W30 affected the ability to antagonize GSN BST-2. Similar to A18, which is located in the middle of the A14xxxxxxxW22 motif in HIV-1 NL4-3 Vpu and is essential to antagonize human BST-2, A29, located in the middle of the A25W33 motif of SIVgsn71 Vpu was found to be necessary for antagonizing human but not GSN BST-2. Further mutational analyses revealed that residues L21 and K32 of SIVgsn71 Vpu were also essential for antagonizing human BST-2. On the other hand, the ability of SIVgsn71 Vpu to target GSN BST-2 was unaffected by single amino acid substitutions but required multiple mutations to render SIVgsn71 Vpu inactive against GSN BST-2. These results suggest additional requirements for SIVgsn71 Vpu antagonizing human BST-2, implying evolution of the bst-2 gene under strong selective pressure. Importance Genes related to survival against life-threating pathogens are important determinants of natural selection in animal evolution. For instance, BST-2, a protein showing broad-spectrum antiviral activity, shows polymorphisms entailing different phenotypes even among primate species, suggesting that the bst-2 gene of primates has been subject to strong selective pressure during evolution. At the same time, viruses readily adapt to these evolutionary changes. Thus, we found that Vpu of an SIVgsn isolate (SIVgsn-99CM71) can target BST-2 from humans as well as from its natural host thus potentially facilitating zoonosis. Here we mapped residues in SIVgsn71 Vpu potentially contributing to cross-species transmission. We found that the requirements for targeting human BST-2 are distinct from and more complex than those for targeting GSN BST-2. Our results suggest that the human bst-2 gene might have evolved to acquire more restrictive phenotype than GSN bst-2 against viral proteins after being derived from their common ancestor.
Collapse
|
9
|
Marivate A, Njengele-Tetyana Z, Fish MQ, Mosebi S. Recombinant expression, purification, and characterization of full-length human BST-2 from Escherichia coli. Protein Expr Purif 2021; 188:105969. [PMID: 34500069 DOI: 10.1016/j.pep.2021.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 11/25/2022]
Abstract
HIV-1 virus release from infected cells is blocked by human BST-2, but HIV-1 Vpu efficiently antagonises BST-2 due to direct transmembrane domain interactions that occur between each protein. Targeting the interaction between these two proteins is seen as viable for HIV-1 antiviral intervention. This study describes the successful over-expression and purification of a recombinant full-length human BST-2 from inclusion bodies using affinity and anion exchange chromatography. Two milligrams of purified full-length BST-2 were produced per litre of BL21 (DE3) T7 Express® pLysY E. coli culture. Far-UV circular dichroism validated the renaturing of the recombinant protein and retention of its secondary structure. Furthermore, through ELISA, a known human BST-2 binding partner, HIV-1 Vpu, was shown to bind to the renatured and purified protein, further validating its folding. To our knowledge this is the first report of the purification of a wild-type, full-length human BST-2 from Escherichia coli.
Collapse
Affiliation(s)
- Amukelani Marivate
- Biomedical Group, Advanced Materials Division, Mintek, Randburg, 2125, South Africa.
| | | | - Muhammad Qasim Fish
- Biomedical Group, Advanced Materials Division, Mintek, Randburg, 2125, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
10
|
Presle A, Frémont S, Salles A, Commere PH, Sassoon N, Berlioz-Torrent C, Gupta-Rossi N, Echard A. The viral restriction factor tetherin/BST2 tethers cytokinetic midbody remnants to the cell surface. Curr Biol 2021; 31:2203-2213.e5. [PMID: 33711249 DOI: 10.1016/j.cub.2021.02.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/18/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022]
Abstract
The midbody at the center of the intercellular bridge connecting dividing cells recruits the machinery essential for the final steps of cytokinesis.1-5 Successive abscission on both sides of the midbody generates a free midbody remnant (MBR) that can be inherited and accumulated in many cancer, immortalized, and stem cells, both in culture and in vivo.6-12 Strikingly, this organelle was recently shown to contain information that induces cancer cell proliferation, influences cell polarity, and promotes dorso-ventral axis specification upon interaction with recipient cells.13-16 Yet the mechanisms by which the MBR is captured by either a daughter cell or a distant cell are poorly described.10,14 Here, we report that BST2/tetherin, a well-established restriction factor that blocks the release of numerous enveloped viruses from the surface of infected cells,17-20 plays an analogous role in retaining midbody remnants. We found that BST2 is enriched at the midbody during cytokinesis and localizes at the surface of MBRs in a variety of cells. Knocking out BST2 induces the detachment of MBRs from the cell surface, their accumulation in the extracellular medium, and their transfer to distant cells. Mechanistically, the localization of BST2 at the MBR membrane is both necessary and sufficient for the interaction between MBRs and the cell surface. We thus propose that BST2 tethers post-cytokinetic midbody remnants to the cell surface. This finding reveals new parallels between cytokinesis and viral biology21-26 that unexpectedly extend beyond the ESCRT-dependent abscission step.
Collapse
Affiliation(s)
- Adrien Presle
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Audrey Salles
- UTechS Photonic BioImaging PBI (Imagopole), Centre de Recherche et de Ressources Technologiques C2RT, Institut Pasteur, 75015 Paris, France
| | - Pierre-Henri Commere
- UTechS CB, Centre de Recherche et de Ressources Technologiques C2RT, Institut Pasteur, 75015 Paris, France
| | - Nathalie Sassoon
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France
| | | | - Neetu Gupta-Rossi
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
11
|
Cheng J, Liu Z, Deng T, Lu Z, Liu M, Lu X, Adeshakin FO, Yan D, Zhang G, Wan X. CD317 mediates immunocytolysis resistance by RICH2/cytoskeleton-dependent membrane protection. Mol Immunol 2020; 129:94-102. [PMID: 33223223 DOI: 10.1016/j.molimm.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022]
Abstract
Immune evasion is a common hallmark of cancers. Immunotherapies that aim at restoring or increasing the immune response against cancers have revolutionized outcomes for patients, but the mechanisms of resistance remain poorly defined. Here, we report that CD317, a surface molecule with a unique topology that is double anchored into the membrane, protects tumor cells from immunocytolysis. CD317 knockdown in tumor cells renders more severe death in response to NK or chimeric antigen receptor-modified NK cells challenge. Such effects of CD317 silencing might be the results of increasing sensitivity of tumor cells to immune killing rather than strengthening immune response, since neither effector-target cell contact nor the activation of effector cells was affected, and the enhanced cytolysis was also not counteracted by the addition of recombinant CD317 proteins. Mechanistically, CD317 might endow tumor cells with more flexibility to modulate cytoskeleton through its association with RICH2, thereby protects membrane integrity against perforin and consequently promotes survival in response to immunocytolysis. These results reveal a new mechanism of immunocytolysis resistance and suggest CD317 as an attractive target which can be exploited for improving the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Jian Cheng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Zhen Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Maoxuan Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Xiaoxu Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Funmilayo Oladunni Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dehong Yan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China; Shenzhen BinDeBioTech Co., Ltd., Floor 5, Building 6, Tongfuyu Industrial City, Xili, Nanshan, Shenzhen, 518055, PR China.
| |
Collapse
|
12
|
Tiwari R, de la Torre JC, McGavern DB, Nayak D. Beyond Tethering the Viral Particles: Immunomodulatory Functions of Tetherin ( BST-2). DNA Cell Biol 2019; 38:1170-1177. [PMID: 31502877 DOI: 10.1089/dna.2019.4777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host response to viral infection is a highly regulated process involving engagement of various host factors, cytokines, chemokines, and stimulatory signals that pave the way for an antiviral immune response. The response is manifested in terms of viral sequestration, phagocytosis, and inhibition of genome replication, and, finally, if required, lymphocyte-mediated clearance of virally infected cells. During this process, cross-talk between viral and host factors can shape disease outcomes and immunopathology. Bone marrow stromal antigen 2 (BST-2), also know as tetherin, is induced by type I interferon produced in response to viral infections, as well as in certain cancers. BST-2 has been shown to be a host restriction factor of virus multiplication through its ability to physically tether budding virions and restrict viral spread. However, BST-2 has other roles in the host antiviral response. This review focuses on the diverse functions of BST-2 and its downstream signaling pathways in regulating host immune responses.
Collapse
Affiliation(s)
- Ritudhwaj Tiwari
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Juan C de la Torre
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California
| | - Dorian B McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
13
|
Roy IR, Sutton CK, Berndsen CE. Resilience of BST-2/Tetherin structure to single amino acid substitutions. PeerJ 2019; 7:e7043. [PMID: 31183261 PMCID: PMC6546079 DOI: 10.7717/peerj.7043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022] Open
Abstract
Human tetherin, also known as BST-2 or CD317, is a dimeric, extracellular membrane-bound protein that consists of N and C terminal membrane anchors connected by an extracellular domain. BST-2 is involved in binding enveloped viruses, such as HIV, and inhibiting viral release in addition to a role in NF-kB signaling. Viral tethering by tetherin can be disrupted by the interaction with Vpu in HIV-1 in addition to other viral proteins. The structural mechanism of tetherin function is not clear and the effects of human tetherin mutations identified by sequencing consortiums are not known. To address this gap in the knowledge, we used data from the Ensembl database to construct and model known human missense mutations within the ectodomain to investigate how the structure of the ectodomain influences function. From the data, we identified an island of sequence stability within the ectodomain, which corresponds to a functionally and structurally important region identified in previous biochemical and biophysical studies. Most of the modeled mutations had little effect on the structure of the dimer and the coiled-coil, suggesting that the coiled-coil compensates for changes in primary structure. Thus, many of the functional defects observed in previous studies may not be due to changes in tetherin structure, but rather, due to in changes in protein-protein interactions or in aspects of tetherin not currently understood. The lack of structural effects by mutations known to decrease function further illustrates the need for more study of the structure-function connection for this system. Finally, apparent flexibility in tetherin sequence may allow for greater anti-viral activities with a larger number of viruses by reducing specific interactions with anti-tetherin proteins, while maintaining virus restriction.
Collapse
Affiliation(s)
- Ian R Roy
- Department of Health Sciences, James Madison University, Harrisonburg, VA, United States of America
| | - Camden K Sutton
- Department of Kinesiology, James Madison University, Harrisonburg, VA, United States of America
| | - Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, United States of America.,Center for Genome and Metagenome Studies, James Madison University, Harrisonburg, VA, United States of America
| |
Collapse
|
14
|
Bego MG, Miguet N, Laliberté A, Aschman N, Gerard F, Merakos AA, Weissenhorn W, Cohen ÉA. Activation of the ILT7 receptor and plasmacytoid dendritic cell responses are governed by structurally-distinct BST2 determinants. J Biol Chem 2019; 294:10503-10518. [PMID: 31118237 DOI: 10.1074/jbc.ra119.008481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Type I interferons (IFN-I) are key innate immune effectors predominantly produced by activated plasmacytoid dendritic cells (pDCs). By modulating immune responses at their foundation, IFNs can widely reshape immunity to control infectious diseases and malignancies. Nevertheless, their biological activities can also be detrimental to surrounding healthy cells, as prolonged IFN-I signaling is associated with excessive inflammation and immune dysfunction. The interaction of the human pDC receptor immunoglobulin-like transcript 7 (ILT7) with its IFN-I-regulated ligand, bone marrow stromal cell antigen 2 (BST2) plays a key role in controlling the IFN-I amounts produced by pDCs in response to Toll-like receptor (TLR) activation. However, the structural determinants and molecular features of BST2 that govern ILT7 engagement and activation are largely undefined. Using two functional assays to measure BST2-stimulated ILT7 activation as well as biophysical studies, here we identified two structurally-distinct regions of the BST2 ectodomain that play divergent roles during ILT7 activation. We found that although the coiled-coil region contains a newly defined ILT7-binding surface, the N-terminal region appears to suppress ILT7 activation. We further show that a stable BST2 homodimer binds to ILT7, but post-binding events associated with the unique BST2 coiled-coil plasticity are required to trigger receptor signaling. Hence, BST2 with an unstable or a rigid coiled-coil fails to activate ILT7, whereas substitutions in its N-terminal region enhance activation. Importantly, the biological relevance of these newly defined domains of BST2 is underscored by the identification of substitutions having opposing potentials to activate ILT7 in pathological malignant conditions.
Collapse
Affiliation(s)
- Mariana G Bego
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nolwenn Miguet
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Alexandre Laliberté
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nicolas Aschman
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Francine Gerard
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Angelique A Merakos
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Winfried Weissenhorn
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Éric A Cohen
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada, .,the Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
15
|
Zhang G, Li X, Chen Q, Li J, Ruan Q, Chen YH, Yang X, Wan X. CD317 Activates EGFR by Regulating Its Association with Lipid Rafts. Cancer Res 2019; 79:2220-2231. [PMID: 30890618 DOI: 10.1158/0008-5472.can-18-2603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/24/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
EGFR regulates various fundamental cellular processes, and its constitutive activation is a common driver for cancer. Anti-EGFR therapies have shown benefit in cancer patients, yet drug resistance almost inevitably develops, emphasizing the need for a better understanding of the mechanisms that govern EGFR activation. Here we report that CD317, a surface molecule with a unique topology, activated EGFR in hepatocellular carcinoma (HCC) cells by regulating its localization on the plasma membrane. CD317 was upregulated in HCC cells, promoting cell-cycle progression and enhancing tumorigenic potential in a manner dependent on EGFR. Mechanistically, CD317 associated with lipid rafts and released EGFR from these ordered membrane domains, facilitating the activation of EGFR and the initiation of downstream signaling pathways, including the Ras-Raf-MEK-ERK and JAK-STAT pathways. Moreover, in HCC mouse models and patient samples, upregulation of CD317 correlated with EGFR activation. These results reveal a previously unrecognized mode of regulation for EGFR and suggest CD317 as an alternative target for treating EGFR-driven malignancies. SIGNIFICANCE: Activation of EGFR by CD317 in hepatocellular carcinoma cells suggests CD317 as an alternative target for treating EGFR-dependent tumors.
Collapse
Affiliation(s)
- Guizhong Zhang
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Xin Li
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Qian Chen
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Junxin Li
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Qingguo Ruan
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Youhai H Chen
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Xiaochun Wan
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| |
Collapse
|
16
|
Sharma A, Lal SK. Is tetherin a true antiviral: The influenza a virus controversy. Rev Med Virol 2019; 29:e2036. [DOI: 10.1002/rmv.2036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Anshika Sharma
- School of ScienceMonash University, Sunway Campus Bandar Sunway Malaysia
| | - Sunil K. Lal
- School of ScienceMonash University, Sunway Campus Bandar Sunway Malaysia
| |
Collapse
|
17
|
From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:382-394. [PMID: 30290238 PMCID: PMC6334645 DOI: 10.1016/j.bbamcr.2018.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 12/30/2022]
Abstract
Antiviral restriction factors are cellular proteins that inhibit the entry, replication, or spread of viruses. These proteins are critical components of the innate immune system and function to limit the severity and host range of virus infections. Here we review the current knowledge on the mechanisms of action of several restriction factors that affect multiple viruses at distinct stages of their life cycles. For example, APOBEC3G deaminates cytosines to hypermutate reverse transcribed viral DNA; IFITM3 alters membranes to inhibit virus membrane fusion; MXA/B oligomerize on viral protein complexes to inhibit virus replication; SAMHD1 decreases dNTP intracellular concentrations to prevent reverse transcription of retrovirus genomes; tetherin prevents release of budding virions from cells; Viperin catalyzes formation of a nucleoside analogue that inhibits viral RNA polymerases; and ZAP binds virus RNAs to target them for degradation. We also discuss countermeasures employed by specific viruses against these restriction factors, and mention secondary functions of several of these factors in modulating immune responses. These important examples highlight the diverse strategies cells have evolved to combat virus infections.
Collapse
|
18
|
Berry KN, Kober DL, Su A, Brett TJ. Limiting Respiratory Viral Infection by Targeting Antiviral and Immunological Functions of BST-2/Tetherin: Knowledge and Gaps. Bioessays 2018; 40:e1800086. [PMID: 30113067 PMCID: PMC6371793 DOI: 10.1002/bies.201800086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Recent findings regarding the cellular biology and immunology of BST-2 (also known as tetherin) indicate that its function could be exploited as a universal replication inhibitor of enveloped respiratory viruses (e.g., influenza, respiratory syncytial virus, etc.). BST-2 inhibits viral replication by preventing virus budding from the plasma membrane and by inducing an antiviral state in cells adjacent to infection via unique inflammatory signaling mechanisms. This review presents the first comprehensive summary of what is currently known about BST-2 anti-viral function against respiratory viruses, how these viruses construct countermeasures to antagonize BST-2, and how BST-2 function might be targeted to develop therapies to treat respiratory virus infections. The authors address the current gaps in knowledge, including the need for mechanistic understanding of BST-2 antagonism by respiratory viruses, that should be bridged to achieve that goal.
Collapse
Affiliation(s)
- Kayla N. Berry
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
- Immunology ProgramWashington University School of MedicineSt. Louis 63110Missouri
- Medical Scientist Training ProgramWashington University School of MedicineSt. Louis 63110Missouri
| | - Daniel L. Kober
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
- Microbiology ProgramWashington University School of MedicineSt. Louis 63110Missouri
| | - Alvin Su
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
| | - Tom J. Brett
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
- Department of Medicine, and Department of Cell Biology and PhysiologyWashington University School of MedicineSt. Louis 63110Missouri
| |
Collapse
|
19
|
Structural determinant of BST-2-mediated regulation of breast cancer cell motility: a role for cytoplasmic tail tyrosine residues. Oncotarget 2017; 8:110221-110233. [PMID: 29299143 PMCID: PMC5746378 DOI: 10.18632/oncotarget.22753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/09/2017] [Indexed: 01/25/2023] Open
Abstract
There is now irrefutable evidence that overexpression of the innate immunity protein―BST-2, in breast cancer cells is implicated in tumor growth and progression. The cellular mechanisms that control BST-2-mediated effect in tumor progression involve enhancement of cancer cell motility―migration/invasion. However, the distinct structural elements of BST-2 that mediate breast cancer cell motility remain unknown. Here, we used various motility assays and different variants of BST-2 to examine the cellular and structural mechanisms controlling BST-2-mediated cell motility. We show that BST-2 silencing in various cancer cell lines inhibits cell motility. Restoration of BST-2 expression using construct expressing wild type BST-2 rescues cell motility. Mutational analysis identifies the cytoplasmic tail of BST-2 as a novel regulator of cancer cell motility, because cell motility was significantly abrogated by substitution of the BST-2 cytoplasmic tail tyrosine residues to alanine residues. Furthermore, in a spheroid invasion model, BST-2-expressing tumor spheroids are highly invasive inside 3D Matrigel matrices. In this model, the spreading distance of BST-2-expressing spheroids was significantly higher than that of BST-2-suppressed spheroids. Collectively, our data reveal that i) BST-2-expressing breast cancer cells in spheroids are more motile than their BST-2-supressed counterparts; ii) BST-2 cytoplasmic tail regulates non-proteolytic (migration) and proteolytic (invasion) mechanisms of breast cancer cell motility; and iii) replacement of the tyrosine residues at positions 6 and 8 in the cytoplasmic tail of BST-2 with alanine residues inhibits cell motility.
Collapse
|
20
|
Ozcan KA, Berndsen CE. Bending of the BST‐2 coiled‐coil during viral budding. Proteins 2017; 85:2081-2087. [DOI: 10.1002/prot.25362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/29/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Kadir A. Ozcan
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburg Virginia
| | | |
Collapse
|
21
|
Yi E, Oh J, Giao NQ, Oh S, Park SH. Enhanced production of enveloped viruses in BST-2-deficient cell lines. Biotechnol Bioeng 2017; 114:2289-2297. [PMID: 28498621 DOI: 10.1002/bit.26338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 05/07/2017] [Indexed: 11/09/2022]
Abstract
Despite all the advantages that cell-cultured influenza vaccines have over egg-based influenza vaccines, the inferior productivity of cell-culture systems is a major drawback that must be addressed. BST-2 (tetherin) is a host restriction factor which inhibits budding-out of various enveloped viruses from infected host cells. We developed BST-2-deficient MDCK and Vero cell lines to increase influenza virus release in cell culture. BST-2 gene knock-out resulted in increased release of viral particles into the culture medium, by at least 2-fold and up to 50-fold compared to release from wild-type counterpart cells depending on cell line and virus type. The effect was not influenza virus/MDCK/Vero-specific, but was also present in a broad range of host cells and virus families; we observed similar results in murine, human, canine, and monkey cell lines with viruses including MHV-68 (Herpesviridae), influenza A virus (Orthomyxoviridae), porcine epidemic diarrhea virus (Coronaviridae), and vaccinia virus (Poxviridae). Our results suggest that the elimination of BST-2 expression in virus-producing cell lines can enhance the production of viral vaccines. Biotechnol. Bioeng.2017;114: 2289-2297. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eunbi Yi
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,ImmunoMax Co., Ltd, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Jinsoo Oh
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ngoc Q Giao
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soohwan Oh
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Se-Ho Park
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
22
|
Kong N, Meng Q, Wu Y, Wang Z, Zuo Y, Tong W, Zheng H, Li G, Yang S, Yu H, Shan T, Zhou EM, Tong G. Monoclonal Antibody to Bone Marrow Stromal Cell Antigen 2 Protein of Swine. Monoclon Antib Immunodiagn Immunother 2016; 35:172-6. [PMID: 27148642 DOI: 10.1089/mab.2016.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The bone marrow stromal cell antigen 2 (BST-2) protein was identified as a novel virus restriction factor that potently restricts the replication and egress of enveloped viruses. In this study, we generated monoclonal antibodies (MAbs) against porcine BST-2 encoding 34-112 aa of porcine BST-2, which was cloned and inserted into the prokaryotic expression vector pCold-I to construct a recombinant plasmid pCold-pBST-2. The recombinant porcine BST-2 protein (rpBST-2 protein) was induced by isopropyl-β-D-thiogalactoside in Escherichia coli BL21 (DE3). Then, BALB/c mice were immunized with the purified rpBST-2 protein to prepare MAbs of BST-2. After subcloning, one strain of hybridoma cells named 1B2 secreting porcine BST-2 protein monoclonal antibody (MAb) was obtained. Indirect immunofluorescence assay and western blot analysis showed that the MAb was specifically reacted with the overexpressed porcine BST-2 protein in Vero cells. The specific MAb of porcine BST-2 provides a valuable tool for further studies of BST-2 to restrict virus infection.
Collapse
Affiliation(s)
- Ning Kong
- 1 Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China .,2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qiong Meng
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongguang Wu
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhongze Wang
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yewen Zuo
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China .,3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| | - Hao Zheng
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China .,3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| | - Guoxin Li
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China .,3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| | - Shen Yang
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China .,3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| | - Hai Yu
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China .,3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| | - Tongling Shan
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China .,3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| | - En-Min Zhou
- 1 Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
| | - Guangzhi Tong
- 2 Department of Swine Infectious Disease, Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Shanghai, China .,3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| |
Collapse
|
23
|
Du Pont KE, McKenzie AM, Kokhan O, Sumner I, Berndsen CE. The Disulfide Bonds within BST-2 Enhance Tensile Strength during Viral Tethering. Biochemistry 2016; 55:940-7. [DOI: 10.1021/acs.biochem.5b01362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kelly E. Du Pont
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Aidan M. McKenzie
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Oleksandr Kokhan
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Isaiah Sumner
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Christopher E. Berndsen
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
24
|
Mahauad-Fernandez WD, Okeoma CM. The role of BST-2/Tetherin in host protection and disease manifestation. IMMUNITY INFLAMMATION AND DISEASE 2015; 4:4-23. [PMID: 27042298 PMCID: PMC4768070 DOI: 10.1002/iid3.92] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Host cells respond to viral infections by activating immune response genes that are not only involved in inflammation, but may also predispose cells to cancerous transformation. One such gene is BST‐2, a type II transmembrane protein with a unique topology that endows it tethering and signaling potential. Through this ability to tether and signal, BST‐2 regulates host response to viral infection either by inhibiting release of nascent viral particles or in some models inhibiting viral dissemination. However, despite its antiviral functions, BST‐2 is involved in disease manifestation, a function linked to the ability of BST‐2 to promote cell‐to‐cell interaction. Therefore, modulating BST‐2 expression and/or activity has the potential to influence course of disease.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| | - Chioma M Okeoma
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
25
|
Three-Dimensional Structural Characterization of HIV-1 Tethered to Human Cells. J Virol 2015; 90:1507-21. [PMID: 26582000 DOI: 10.1128/jvi.01880-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tetherin (BST2, CD317, or HM1.24) is a host cellular restriction factor that prevents the release of enveloped viruses by mechanically linking virions to the plasma membrane. The precise arrangement of tetherin molecules at the plasma membrane site of HIV-1 assembly, budding, and restriction is not well understood. To gain insight into the biophysical mechanism underlying tetherin-mediated restriction of HIV-1, we utilized cryo-electron tomography (cryo-ET) to directly visualize HIV-1 virus-like particles (VLPs) and virions tethered to human cells in three dimensions (3D). Rod-like densities that we refer to as tethers were seen connecting HIV-1 virions to each other and to the plasma membrane. Native immunogold labeling showed tetherin molecules located on HIV-1 VLPs and virions in positions similar to those of the densities observed by cryo-ET. The location of the tethers with respect to the ordered immature Gag lattice or mature conical core was random. However, tethers were not uniformly distributed on the viral membrane but rather formed clusters at sites of contact with the cell or other virions. Chains of tethered HIV-1 virions often were arranged in a linear fashion, primarily as single chains and, to a lesser degree, as branched chains. Distance measurements support the extended tetherin model, in which the coiled-coil ectodomains are oriented perpendicular with respect to the viral and plasma membranes. IMPORTANCE Tetherin is a cellular factor that restricts HIV-1 release by directly cross-linking the virus to the host cell plasma membrane. We used cryo-electron tomography to visualize HIV-1 tethered to human cells in 3D. We determined that tetherin-restricted HIV-1 virions were physically connected to each other or to the plasma membrane by filamentous tethers that resembled rods ∼15 nm in length, which is consistent with the extended tetherin model. In addition, we found the position of the tethers to be arbitrary relative to the ordered immature Gag lattice or the mature conical cores. However, when present as multiple copies, the tethers clustered at the interface between virions. Tethered HIV-1 virions were arranged in a linear fashion, with the majority as single chains. This study advances our understanding of tetherin-mediated HIV-1 restriction by defining the spatial arrangement and orientation of tetherin molecules at sites of HIV-1 restriction.
Collapse
|
26
|
Mussil B, Javed A, Töpfer K, Sauermann U, Sopper S. Increased BST2 expression during simian immunodeficiency virus infection is not a determinant of disease progression in rhesus monkeys. Retrovirology 2015; 12:92. [PMID: 26554913 PMCID: PMC4641394 DOI: 10.1186/s12977-015-0219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
Background Bone marrow stromal cell antigen 2 (BST2), also known as tetherin, HM1.24 or CD317 represents a type 2 integral membrane protein, which has been described to restrict the production of some enveloped viruses by inhibiting the virus release from the cell surface. This innate antiviral mechanism is counteracted by the HIV-1 viral factor Vpu, targeting BST2 for cellular degradation. Since antiviral BST2 activity has been mainly confirmed by in vitro data, we investigated its role in vivo on the disease progression using the SIV/macaque model for AIDS. We determined BST2 expression in PBMC and leukocyte subsets of uninfected and SIV-infected rhesus macaques by real-time PCR and flow cytometry and correlated it with disease progression and viral load. Results Compared to pre-infection levels, we found increased BST2 expression in PBMC, purified CD4+ lymphocytes and CD14+ monocytes of SIV-infected animals, which correlated with viral load. Highest BST2 levels were found in progressors and lowest levels comparable to uninfected macaques were observed in long-term non-progressors (LTNPs). During acute viremia, BST2 mRNA increased in parallel with MX1, a prototype interferon-stimulated gene. This association was maintained during the whole disease course. Conclusion The detected relationship between BST2 expression and viral load as well as with MX1 indicate a common regulation by the interferon response and suggest rather limited influence of BST2 in vivo on the disease outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0219-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bianka Mussil
- Unit of Infection Models, German Primate Centre, Goettingen, Germany.
| | - Aneela Javed
- Unit of Infection Models, German Primate Centre, Goettingen, Germany. .,Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), H12, Islamabad, Pakistan.
| | - Katharina Töpfer
- Unit of Infection Models, German Primate Centre, Goettingen, Germany.
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Centre, Goettingen, Germany.
| | - Sieghart Sopper
- Department of Hematology and Oncology, Medical University Innsbruck, ZVG 7G5 009A, Anichstr. 35, 6020, Innsbruck, Austria. .,Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
27
|
Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference. J Virol 2015; 89:11820-33. [PMID: 26378163 DOI: 10.1128/jvi.02274-15] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Severe acute respiratory syndrome (SARS) emerged in November 2002 as a case of atypical pneumonia in China, and the causative agent of SARS was identified to be a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV). Bone marrow stromal antigen 2 (BST-2; also known as CD317 or tetherin) was initially identified to be a pre-B-cell growth promoter, but it also inhibits the release of virions of the retrovirus human immunodeficiency virus type 1 (HIV-1) by tethering budding virions to the host cell membrane. Further work has shown that BST-2 restricts the release of many other viruses, including the human coronavirus 229E (hCoV-229E), and the genomes of many of these viruses encode BST-2 antagonists to overcome BST-2 restriction. Given the previous studies on BST-2, we aimed to determine if BST-2 has the ability to restrict SARS-CoV and if the SARS-CoV genome encodes any proteins that modulate BST-2's antiviral function. Through an in vitro screen, we identified four potential BST-2 modulators encoded by the SARS-CoV genome: the papain-like protease (PLPro), nonstructural protein 1 (nsp1), ORF6, and ORF7a. As the function of ORF7a in SARS-CoV replication was previously unknown, we focused our study on ORF7a. We found that BST-2 does restrict SARS-CoV, but the loss of ORF7a leads to a much greater restriction, confirming the role of ORF7a as an inhibitor of BST-2. We further characterized the mechanism of BST-2 inhibition by ORF7a and found that ORF7a localization changes when BST-2 is overexpressed and ORF7a binds directly to BST-2. Finally, we also show that SARS-CoV ORF7a blocks the restriction activity of BST-2 by blocking the glycosylation of BST-2. IMPORTANCE The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged from zoonotic sources in 2002 and caused over 8,000 infections and 800 deaths in 37 countries around the world. Identifying host factors that regulate SARS-CoV pathogenesis is critical to understanding how this lethal virus causes disease. We have found that BST-2 is capable of restricting SARS-CoV release from cells; however, we also identified a SARS-CoV protein that inhibits BST-2 function. We show that the SARS-CoV protein ORF7a inhibits BST-2 glycosylation, leading to a loss of BST-2's antiviral function.
Collapse
|
28
|
Jia X, Zhao Q, Xiong Y. HIV suppression by host restriction factors and viral immune evasion. Curr Opin Struct Biol 2015; 31:106-14. [PMID: 25939065 DOI: 10.1016/j.sbi.2015.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 01/30/2023]
Abstract
Antiviral restriction factors are an integral part of the host innate immune system that protects cells from viral pathogens, such as human immunodeficiency virus (HIV). Studies of the interactions between restriction factors and HIV have greatly advanced our understanding of both the viral life cycle and basic cell biology, as well as provided new opportunities for therapeutic intervention of viral infection. Here we review the recent developments towards establishing the structural and biochemical bases of HIV inhibition by, and viral countermeasures of, the restriction factors TRIM5, MxB, APOBEC3, SAMHD1, and BST2/tetherin.
Collapse
Affiliation(s)
- Xiaofei Jia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
29
|
Welbourn S, Kao S, Du Pont KE, Andrew AJ, Berndsen CE, Strebel K. Positioning of cysteine residues within the N-terminal portion of the BST-2/tetherin ectodomain is important for functional dimerization of BST-2. J Biol Chem 2014; 290:3740-51. [PMID: 25525265 DOI: 10.1074/jbc.m114.617639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BST-2/tetherin is a cellular host factor capable of restricting the release of a variety of enveloped viruses, including HIV-1. Structurally, BST-2 consists of an N-terminal cytoplasmic domain, a transmembrane domain, an ectodomain, and a C-terminal membrane anchor. The BST-2 ectodomain encodes three cysteine residues in its N-terminal half, each of which can contribute to the formation of cysteine-linked dimers. We previously reported that any one of the three cysteine residues is sufficient to produce functional BST-2 dimers. Here we investigated the importance of cysteine positioning on the ectodomain for functional dimerization of BST-2. Starting with a cysteine-free monomeric form of BST-2, individual cysteine residues were reintroduced at various locations throughout the ectodomain. The resulting BST-2 variants were tested for expression, dimerization, surface presentation, and inhibition of HIV-1 virus release. We found significant flexibility in the positioning of cysteine residues, although the propensity to form cysteine-linked dimers generally decreased with increasing distance from the N terminus. Interestingly, all BST-2 variants, including the one lacking all three ectodomain cysteines, retained the ability to form non-covalent dimers, and all of the BST-2 variants were efficiently expressed at the cell surface. Importantly, not all BST-2 variants capable of forming cysteine-linked dimers were functional, suggesting that cysteine-linked dimerization of BST-2 is necessary but not sufficient for inhibiting virus release. Our results expose new structural constraints governing the functional dimerization of BST-2, a property essential to its role as a restriction factor tethering viruses to the host cell.
Collapse
Affiliation(s)
- Sarah Welbourn
- From the Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460 and
| | - Sandra Kao
- From the Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460 and
| | - Kelly E Du Pont
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Amy J Andrew
- From the Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460 and
| | - Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Klaus Strebel
- From the Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460 and
| |
Collapse
|
30
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Lv M, Wang J, Zhang J, Zhang B, Wang X, Zhu Y, Zuo T, Liu D, Li X, Wu J, Zhang H, Yu B, Wu H, Zhao X, Kong W, Yu X. Epitope tags beside the N-terminal cytoplasmic tail of human BST-2 alter its intracellular trafficking and HIV-1 restriction. PLoS One 2014; 9:e111422. [PMID: 25347789 PMCID: PMC4210262 DOI: 10.1371/journal.pone.0111422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/25/2014] [Indexed: 12/02/2022] Open
Abstract
BST-2 blocks the particle release of various enveloped viruses including HIV-1, and this antiviral activity is dependent on the topological arrangement of its four structural domains. Several functions of the cytoplasmic tail (CT) of BST-2 have been previously discussed, but the exact role of this domain remains to be clearly defined. In this study, we investigated the impact of truncation and commonly-used tags addition into the CT region of human BST-2 on its intracellular trafficking and signaling as well as its anti-HIV-1 function. The CT-truncated BST-2 exhibited potent inhibition on Vpu-defective HIV-1 and even wild-type HIV-1. However, the N-terminal HA-tagged CT-truncated BST-2 retained little antiviral activity and dramatically differed from its original protein in the cell surface level and intracellular localization. Further, we showed that the replacement of the CT domain with a hydrophobic tag altered BST-2 function possibly by preventing its normal vesicular trafficking. Notably, we demonstrated that a positive charged motif “KRXK” in the conjunctive region between the cytotail and the transmembrane domain which is conserved in primate BST-2 is important for the protein trafficking and the antiviral function. These results suggest that although the CT of BST-2 is not essential for its antiviral activity, the composition of residues in this region may play important roles in its normal trafficking which subsequently affected its function. These observations provide additional implications for the structure-function model of BST-2.
Collapse
Affiliation(s)
- Mingyu Lv
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Jiawen Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
- Center for New Medicine Research, Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Jingyao Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Biao Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, P.R. China
| | - Xiaodan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Yingzi Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Xiaojun Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Xinghong Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
- * E-mail: (WK); (XY)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
- * E-mail: (WK); (XY)
| |
Collapse
|
32
|
Antiretroviral restriction factors in mice. Virus Res 2014; 193:130-4. [PMID: 25018022 DOI: 10.1016/j.virusres.2014.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/31/2022]
Abstract
One of the most exciting areas in contemporary retrovirus research is the discovery of "restriction factors". These are cellular proteins that act after virus entry to inhibit infection by or replication of retroviruses (and other viruses and intracellular pathogens). We briefly discuss here three antiretroviral restriction factors in mice: Fv1, APOBEC3, and tetherin, touching on both biological and molecular aspects of these restriction systems.
Collapse
|
33
|
Sauter D. Counteraction of the multifunctional restriction factor tetherin. Front Microbiol 2014; 5:163. [PMID: 24782851 PMCID: PMC3989765 DOI: 10.3389/fmicb.2014.00163] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/26/2014] [Indexed: 01/28/2023] Open
Abstract
The interferon-inducible restriction factor tetherin (also known as CD317, BST-2 or HM1.24) has emerged as a key component of the antiviral immune response. Initially, tetherin was shown to restrict replication of various enveloped viruses by inhibiting the release of budding virions from infected cells. More recently, it has become clear that tetherin also acts as a pattern recognition receptor inducing NF-κB-dependent proinflammatory gene expression in virus infected cells. Whereas the ability to restrict virion release is highly conserved among mammalian tetherin orthologs and thus probably an ancient function of this protein, innate sensing seems to be an evolutionarily recent activity. The potent and broad antiviral activity of tetherin is reflected by the fact that many viruses evolved means to counteract this restriction factor. A continuous arms race with viruses has apparently driven the evolution of different isoforms of tetherin with different functional properties. Interestingly, tetherin has also been implicated in cellular processes that are unrelated to immunity, such as the organization of the apical actin network and membrane microdomains or stabilization of the Golgi apparatus. In this review, I summarize our current knowledge of the different functions of tetherin and describe the molecular strategies that viruses have evolved to antagonize or evade this multifunctional host restriction factor.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
34
|
Emerging Role of the Host Restriction Factor Tetherin in Viral Immune Sensing. J Mol Biol 2013; 425:4956-64. [DOI: 10.1016/j.jmb.2013.09.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 12/22/2022]
|
35
|
Petris G, Casini A, Sasset L, Cesaratto F, Bestagno M, Cereseto A, Burrone OR. CD4 and BST-2/tetherin proteins retro-translocate from endoplasmic reticulum to cytosol as partially folded and multimeric molecules. J Biol Chem 2013; 289:1-12. [PMID: 24257748 DOI: 10.1074/jbc.m113.512368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD4 and BST-2/Tetherin are cellular membrane proteins targeted to degradation by the HIV-1 protein Vpu. In both cases proteasomal degradation following recruitment into the ERAD pathway has been described. CD4 is a type I transmembrane glycoprotein, with four extracellular immunoglobulin-like domains containing three intrachain disulfide bridges. BST-2/Tetherin is an atypical type II transmembrane glycoprotein with an N-terminal transmembrane domain and a C-terminal glycophosphatidylinositol anchor, which dimerizes through three interchain bridges. We investigated spontaneous and Vpu-induced retro-translocation of CD4 and BST-2/Tetherin using our novel biotinylation technique in living cells to determine ER-to-cytosol retro-translocation of proteins. We found that CD4 retro-translocates with oxidized intrachain disulfide bridges, and only upon proteasomal inhibition does it accumulate in the cytosol as already reduced and deglycosylated molecules. Similarly, BST-2/Tetherin is first exposed to the cytosol as a dimeric oxidized complex and then becomes deglycosylated and reduced to monomers. These results raise questions on the required features of the putative retro-translocon, suggesting alternative retro-translocation mechanisms for membrane proteins in which complete cysteine reduction and unfolding are not always strictly required before ER to cytosol dislocation.
Collapse
Affiliation(s)
- Gianluca Petris
- From the International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy and
| | | | | | | | | | | | | |
Collapse
|
36
|
Billcliff PG, Gorleku OA, Chamberlain LH, Banting G. The cytosolic N-terminus of CD317/tetherin is a membrane microdomain exclusion motif. Biol Open 2013; 2:1253-63. [PMID: 24244863 PMCID: PMC3828773 DOI: 10.1242/bio.20135793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/15/2013] [Indexed: 01/17/2023] Open
Abstract
The integral membrane protein CD317/tetherin has been associated with a plethora of biological processes, including restriction of enveloped virus release, regulation of B cell growth, and organisation of membrane microdomains. CD317 possesses both a conventional transmembrane (TM) domain and a glycophosphatidylinositol (GPI) anchor. We confirm that the GPI anchor is essential for CD317 to associate with membrane microdomains, and that the TM domain of CD44 is unable to rescue proper microdomain association of a ΔGPI-CD317 construct. Additionally, we demonstrate that the cytosolic amino terminal region of CD317 can function as a ‘microdomain-excluding’ motif, when heterologously expressed as part of a reporter construct. Finally, we show that two recently described isoforms of CD317 do not differ in their affinity for membrane microdomains. Together, these data help further our understanding of the fundamental cell biology governing membrane microdomain association of CD317.
Collapse
Affiliation(s)
- Peter G Billcliff
- School of Biochemistry, University of Bristol , Bristol BS8 1TD , UK ; Present address: Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | | | | |
Collapse
|
37
|
Functional antagonism of rhesus macaque and chimpanzee BST-2 by HIV-1 Vpu is mediated by cytoplasmic domain interactions. J Virol 2013; 87:13825-36. [PMID: 24109238 DOI: 10.1128/jvi.02567-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by interfering with the function of BST-2/tetherin, a cellular protein inhibiting virus release. The Vpu protein encoded by NL4-3, a widely used HIV-1 laboratory strain, antagonizes human BST-2 but not monkey or murine BST-2, leading to the conclusion that BST-2 antagonism by Vpu is species specific. In contrast, we recently identified several primary Vpu isolates, such as Vpu of HIV-1DH12, capable of antagonizing both human and rhesus BST-2. Here we report that while Vpu interacts with human BST-2 primarily through their respective transmembrane domains, antagonism of rhesus BST-2 by Vpu involved an interaction of their cytoplasmic domains. Importantly, a Vpu mutant carrying two mutations in its transmembrane domain (A14L and W22A), rendering it incompetent for interaction with human BST-2, was able to interact with human BST-2 carrying the rhesus BST-2 cytoplasmic domain and partially neutralized the ability of this BST-2 variant to inhibit viral release. Bimolecular fluorescence complementation analysis to detect Vpu-BST-2 interactions suggested that the physical interaction of Vpu with rhesus or chimpanzee BST-2 involves a 5-residue motif in the cytoplasmic domain of BST-2 previously identified as important for the antagonism of monkey and great ape BST-2 by simian immunodeficiency virus (SIV) Nef. Thus, our study identifies a novel mechanism of antagonism of monkey and great ape BST-2 by Vpu that targets the same motif in BST-2 used by SIV Nef and might explain the expanded host range observed for Vpu isolates in our previous study.
Collapse
|
38
|
Rollason R, Dunstan K, Billcliff PG, Bishop P, Gleeson P, Wise H, Digard P, Banting G. Expression of HIV-1 Vpu leads to loss of the viral restriction factor CD317/Tetherin from lipid rafts and its enhanced lysosomal degradation. PLoS One 2013; 8:e75680. [PMID: 24086611 PMCID: PMC3782430 DOI: 10.1371/journal.pone.0075680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 08/20/2013] [Indexed: 01/01/2023] Open
Abstract
CD317/tetherin (aka BST2 or HM1.24 antigen) is an interferon inducible membrane protein present in regions of the lipid bilayer enriched in sphingolipids and cholesterol (often termed lipid rafts). It has been implicated in an eclectic mix of cellular processes including, most notably, the retention of fully formed viral particles at the surface of cells infected with HIV and other enveloped viruses. Expression of the HIV viral accessory protein Vpu has been shown to lead to intracellular sequestration and degradation of tetherin, thereby counteracting the inhibition of viral release. There is evidence that tetherin interacts directly with Vpu, but it remains unclear where in the cell this interaction occurs or if Vpu expression affects the lipid raft localisation of tetherin. We have addressed these points using biochemical and cell imaging approaches focused on endogenous rather than ectopically over-expressed tetherin. We find i) no evidence for an interaction between Vpu and endogenous tetherin at the cell surface, ii) the vast majority of endogenous tetherin that is at the cell surface in control cells is in lipid rafts, iii) internalised tetherin is present in non-raft fractions, iv) expression of Vpu in cells expressing endogenous tetherin leads to the loss of tetherin from lipid rafts, v) internalised tetherin enters early endosomes, and late endosomes, in both control cells and cells expressing Vpu, but the proportion of tetherin molecules destined for degradation rather than recycling is increased in cells expressing Vpu vi) lysosomes are the primary site for degradation of endogenous tetherin in cells expressing Vpu. Our studies underlie the importance of studying endogenous tetherin and let us propose a model in which Vpu intercepts newly internalised tetherin and diverts it for lysosomal destruction rather than recycling to the cell surface.
Collapse
Affiliation(s)
- Ruth Rollason
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Katie Dunstan
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Paul Bishop
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Paul Gleeson
- Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Helen Wise
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - George Banting
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Combs MD, Knutsen RH, Broekelmann TJ, Toennies HM, Brett TJ, Miller CA, Kober DL, Craft CS, Atkinson JJ, Shipley JM, Trask BC, Mecham RP. Microfibril-associated glycoprotein 2 (MAGP2) loss of function has pleiotropic effects in vivo. J Biol Chem 2013; 288:28869-80. [PMID: 23963447 DOI: 10.1074/jbc.m113.497727] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microfibril-associated glycoprotein (MAGP) 1 and 2 are evolutionarily related but structurally divergent proteins that are components of microfibrils of the extracellular matrix. Using mice with a targeted inactivation of Mfap5, the gene for MAGP2 protein, we demonstrate that MAGPs have shared as well as unique functions in vivo. Mfap5(-/-) mice appear grossly normal, are fertile, and have no reduction in life span. Cardiopulmonary development is typical. The animals are normotensive and have vascular compliance comparable with age-matched wild-type mice, which is indicative of normal, functional elastic fibers. Loss of MAGP2 alone does not significantly alter bone mass or architecture, and loss of MAGP2 in tandem with loss of MAGP1 does not exacerbate MAGP1-dependent osteopenia. MAGP2-deficient mice are neutropenic, which contrasts with monocytopenia described in MAGP1-deficient animals. This suggests that MAGP1 and MAGP2 have discrete functions in hematopoiesis. In the cardiovascular system, MAGP1;MAGP2 double knockout mice (Mfap2(-/-);Mfap5(-/-)) show age-dependent aortic dilation. These findings indicate that MAGPs have shared primary functions in maintaining large vessel integrity. In solid phase binding assays, MAGP2 binds active TGFβ1, TGFβ2, and BMP2. Together, these data demonstrate that loss of MAGP2 expression in vivo has pleiotropic effects potentially related to the ability of MAGP2 to regulate growth factors or participate in cell signaling.
Collapse
|
40
|
Lv M, Zhu Y, Wang J, Zhang H, Wang X, Zuo T, Liu D, Zhang J, Wu J, Kong W, Yu X. Purification of eukaryotic tetherin/Vpu proteins and detection of their interaction by ELISA. Protein Expr Purif 2013; 91:112-8. [PMID: 23916489 DOI: 10.1016/j.pep.2013.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022]
Abstract
Tetherin/BST-2/CD317 inhibits HIV-1 release from infected cells, while HIV-1 Vpu efficiently antagonizes tetherin based on intermolecular interactions between the transmembrane domains of each protein. In this study, we successfully partially purified His-tagged tetherin with a glycophosphatidylinositol deletion (delGPI) and His-tagged full-length Vpu from transiently transfected 293T cells using affinity chromatography. The in vitro interaction between these purified proteins was observed by a pull-down assay and ELISA. Detection of the Vpu/tetherin interaction by ELISA is a novel approach that would be advantageous for inhibitor screening in vitro. Successful co-purification of the tetherin/Vpu complex also provides a basis for further structural studies.
Collapse
Affiliation(s)
- Mingyu Lv
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Tetherin, an interferon-inducible membrane protein, inhibits the release of nascent enveloped viral particles from the surface of infected cells. However, the mechanisms underlying virion retention have not yet been fully delineated. Here, we employ biochemical assays and engineered tetherin proteins to demonstrate conclusively that virion tethers are composed of the tetherin protein itself, and to elucidate the configuration and topology that tetherin adopts during virion entrapment. We demonstrate that tetherin dimers adopt an “axial” configuration, in which pairs of transmembrane domains or pairs of glycosylphosphatidyl inositol anchors are inserted into assembling virion particles, while the remaining pair of membrane anchors remains embedded in the infected cell membrane. We use quantitative western blotting to determine that a few dozen tetherin dimers are used to tether each virion particle, and that there is ∼3- to 5-fold preference for the insertion of glycosylphosphatidyl inositol anchors rather than transmembrane domains into tethered virions. Cumulatively, these results demonstrate that axially configured tetherin homodimers are directly responsible for trapping virions at the cell surface. We suggest that insertion of glycosylphosphatidyl inositol anchors may be preferred so that effector functions that require exposure of the tetherin N-terminus to the cytoplasm of infected cells are retained. The cellular restriction factor, tetherin, prevents HIV-1 and other enveloped virus particles from being disseminated into the extracellular milieu by infiltrating their envelopes and by physically crosslinking them to the cell surface. It is known that tetherin consists of pairs of membrane anchors, situated at either end of a rod-shaped molecule, but how tetherin causes virion tethering has been difficult to unambiguously determine. In this work, we develop genetic and biochemical approaches to probe tetherin molecules that have infiltrated tethered virions. We show that tetherin adopts an “axial” configuration in its functional state, with a pair of membrane anchors situated at one end of the rod-like structure inserted into a tethered virion. While either end of the rod can be inserted into a virion, there is a preference for the insertion of its lipid (glycosylphosphatidyl inositol) modified carboxyl-terminus into virion envelopes. These studies demonstrate unequivocally that the tetherin molecule itself is directly responsible for trapping virions, and dissect the molecular mechanism underpinning its antiviral activity.
Collapse
|
42
|
Strebel K. HIV-1 Vpu - an ion channel in search of a job. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1074-81. [PMID: 23831603 DOI: 10.1016/j.bbamem.2013.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022]
Abstract
Vpu is a small membrane protein encoded by HIV-1 and some SIV isolates. The protein is best known for its ability to degrade CD4 and to enhance the release of progeny virions from infected cells. However, Vpu also promotes host-cell apoptosis by deregulating the NFκB signaling pathway and it assembles into cation-conducting membrane pores. This review summarizes our current understanding of these various functions of Vpu with particular emphasis on recent progress in the Vpu field. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Klaus Strebel
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH Bldg. 4, Room 310, 4 Center Drive MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
43
|
BST-2/tetherin: Structural biology, viral antagonism, and immunobiology of a potent host antiviral factor. Mol Immunol 2013; 54:132-9. [DOI: 10.1016/j.molimm.2012.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
|
44
|
McNatt MW, Zang T, Bieniasz PD. Vpu binds directly to tetherin and displaces it from nascent virions. PLoS Pathog 2013; 9:e1003299. [PMID: 23633949 PMCID: PMC3635990 DOI: 10.1371/journal.ppat.1003299] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/25/2013] [Indexed: 12/27/2022] Open
Abstract
Tetherin (Bst2/CD317/HM1.24) is an interferon-induced antiviral host protein that inhibits the release of many enveloped viruses by tethering virions to the cell surface. The HIV-1 accessory protein, Vpu, antagonizes Tetherin through a variety of proposed mechanisms, including surface downregulation and degradation. Previous studies have demonstrated that mutation of the transmembrane domains (TMD) of both Vpu and Tetherin affect antagonism, but it is not known whether Vpu and Tetherin bind directly to each other. Here, we use cysteine-scanning mutagenesis coupled with oxidation-induced cross-linking to demonstrate that Vpu and Tetherin TMDs bind directly to each other in the membranes of living cells and to map TMD residues that contact each other. We also reveal a property of Vpu, namely the ability to displace Tetherin from sites of viral assembly, which enables Vpu to exhibit residual Tetherin antagonist activity in the absence of surface downregulation or degradation. Elements in the cytoplasmic tail domain (CTD) of Vpu mediate this displacement activity, as shown by experiments in which Vpu CTD fragments were directly attached to Tetherin in the absence of the TMD. In particular, the C-terminal α-helix (H2) of Vpu CTD is sufficient to remove Tetherin from sites of viral assembly and is necessary for full Tetherin antagonist activity. Overall, these data demonstrate that Vpu and Tetherin interact directly via their transmembrane domains enabling activities present in the CTD of Vpu to remove Tetherin from sites of viral assembly.
Collapse
Affiliation(s)
- Matthew W. McNatt
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Trinity Zang
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Grover JR, Llewellyn GN, Soheilian F, Nagashima K, Veatch SL, Ono A. Roles played by capsid-dependent induction of membrane curvature and Gag-ESCRT interactions in tetherin recruitment to HIV-1 assembly sites. J Virol 2013; 87:4650-64. [PMID: 23408603 PMCID: PMC3624355 DOI: 10.1128/jvi.03526-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/04/2013] [Indexed: 12/17/2022] Open
Abstract
Tetherin/BST-2 (here called tetherin) is an antiviral protein that restricts release of diverse enveloped viruses from infected cells through physically tethering virus envelope and host plasma membrane. For HIV-1, specific recruitment of tetherin to assembly sites has been observed as its colocalization with the viral structural protein Gag or its accumulation in virus particles. Because of its broad range of targets, we hypothesized that tetherin is recruited through conserved features shared among various enveloped viruses, such as lipid raft association, membrane curvature, or ESCRT dependence. We observed that reduction of cellular cholesterol does not block tetherin anti-HIV-1 function, excluding an essential role for lipid rafts. In contrast, mutations in the capsid domain of Gag, which inhibit induction of membrane curvature, prevented tetherin-Gag colocalization detectable by confocal microscopy. Disruption of Gag-ESCRT interactions also inhibited tetherin-Gag colocalization when disruption was accomplished via amino acid substitutions in late domain motifs, expression of a dominant-negative Tsg101 derivative, or small interfering RNA (siRNA)-mediated depletion of Tsg101 or Alix. However, further analyses of these conditions by quantitative superresolution localization microscopy revealed that Gag-tetherin coclustering is significantly reduced but persists at intermediate levels. Notably, this residual tetherin recruitment was still sufficient for the full restriction of HIV-1 release. Unlike the late domain mutants, the capsid mutants defective in inducing membrane curvature showed little or no coclustering with tetherin in superresolution analyses. These results support a model in which both Gag-induced membrane curvature and Gag-ESCRT interactions promote tetherin recruitment, but the recruitment level achieved by the former is sufficient for full restriction.
Collapse
Affiliation(s)
- Jonathan R Grover
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
46
|
BST2/Tetherin inhibits hepatitis C virus production in human hepatoma cells. Antiviral Res 2013; 98:54-60. [PMID: 23422647 DOI: 10.1016/j.antiviral.2013.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a common cause of chronic hepatitis and is currently treated with alpha interferon (IFN-α)-based therapies. IFN-induced cell membrane protein BST2 (also known as CD317, HM1.24 or tetherin) has been reported to tether a broad range of lipid-enveloped viruses on cell surfaces. However, whether HCV is sensitive to BST2 remains controversial. Here we established a Huh7.5-BST2-TO cell line, in which BST2 expression is regulated by tetracycline. Our results showed that the effect of BST2 on inhibiting HCV production was dependent on its expression level. Highly expressed BST2 reduced the yield of cell-free HCV virions but did not affect the efficiency of HCV infection and genome replication. Co-localization of HCV core protein and BST2 was detected by immunofluorescence in certain cells with high expression, but not in cells with low BST2 expression. Furthermore, inhibition of IFN-α induced BST2 expression in Huh7.5 cells by siRNA technology slightly reduced the antiviral response of the cytokine against HCV, but only at low IFN-α concentration. While overexpression of BST2 inhibited HCV replication in this system, BST2 is therefore not likely to be a major contributor to the antiviral effect of IFN-α.
Collapse
|
47
|
Moffat JM, Segura E, Khoury G, Caminschi I, Cameron PU, Lewin SR, Villadangos JA, Mintern JD. Targeting antigen to bone marrow stromal cell-2 expressed by conventional and plasmacytoid dendritic cells elicits efficient antigen presentation. Eur J Immunol 2013; 43:595-605. [PMID: 23303646 DOI: 10.1002/eji.201242799] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/19/2012] [Accepted: 01/04/2013] [Indexed: 11/08/2022]
Abstract
Bone marrow stromal cell-2 (BST-2) has major roles in viral tethering and modulation of interferon production. Here we investigate BST-2 as a receptor for the delivery of antigen to dendritic cells (DCs). We show that BST-2 is expressed by a panel of mouse and human DC subsets, particularly under inflammatory conditions. The outcome of delivering antigen to BST-2 expressed by steady state and activated plasmacytoid DC (pDC) or conventional CD8(+) and CD8(-) DCs was determined. T-cell responses were measured for both MHC class I (MHCI) and MHC class II (MHCII) antigen presentation pathways in vitro. Delivering antigen via BST-2 was compared with that via receptors DEC205 or Siglec-H. We show that despite a higher antigen load and faster receptor internalisation, when antigen is delivered to steady state or activated pDC via BST-2, BST-2-targeted activated conventional DCs present antigen more efficiently. Relative to DEC205, BST-2 was inferior in its capacity to deliver antigen to the MHCI cross-presentation pathway. In contrast, BST-2 was superior to Siglec-H at initiating either MHCI or MHCII antigen presentation. In summary, BST-2 is a useful receptor to target with antigen, given its broad expression pattern and ability to access both MHCI and MHCII presentation pathways with relative efficiency.
Collapse
|
48
|
Billcliff PG, Rollason R, Prior I, Owen DM, Gaus K, Banting G. CD317/tetherin is an organiser of membrane microdomains. J Cell Sci 2013; 126:1553-64. [PMID: 23378022 DOI: 10.1242/jcs.112953] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The integral membrane protein tetherin has been associated with an eclectic mix of cellular processes, including restricting the release of a range of enveloped viruses from infected cells. The unusual topology of tetherin (it possesses both a conventional transmembrane domain and a glycosylphosphatidylinositol anchor), its localisation to membrane microdomains (lipid rafts) and the fact that its cytosolic domain can be linked (indirectly) to the actin cytoskeleton, led us to speculate that tetherin might form a 'tethered picket fence' and thereby play a role in the organisation of lipid rafts. We now show that knocking down expression of tetherin leads to changes in the distribution of lipid raft-localised proteins and changes in the organisation of lipids in the plasma membrane. These changes can be reversed by re-expression of wild-type tetherin, but not by any of a range of tetherin-based constructs, indicating that no individual feature of the tetherin sequence is dispensable in the context of its lipid raft organising function.
Collapse
|
49
|
Abstract
Tetherin (BST2/CD317) has emerged as a key host cell defense molecule, inhibiting the release and spread of diverse enveloped virions from infected cells. In this chapter, I review the molecular and cellular basis for tetherin's antiviral activities and the function of virally encoded countermeasures that disrupt its function. I further describe recent advances in our understanding of tetherin's associated role in viral pattern recognition and the evidence for its role in limiting viral pathogenesis in vivo.
Collapse
Affiliation(s)
- Stuart J D Neil
- Department of Infectious Disease, King's College London School of Medicine, London, UK.
| |
Collapse
|
50
|
Zheng YH, Jeang KT, Tokunaga K. Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology 2012; 9:112. [PMID: 23254112 PMCID: PMC3549941 DOI: 10.1186/1742-4690-9-112] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/09/2012] [Indexed: 01/19/2023] Open
Abstract
Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs), and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.
Collapse
Affiliation(s)
- Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|