1
|
Zhang S, Luo S, Zhang H, Xiao Q. Transmembrane protein 16A in the digestive diseases: A review of its physiology, pharmacology, and therapeutic opportunities. Int J Biol Macromol 2025; 310:143598. [PMID: 40300686 DOI: 10.1016/j.ijbiomac.2025.143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Transmembrane protein 16A (TMEM16A) is a Ca2+-activated Cl- channel that is widely expressed in the digestive system, and numerous compounds have been developed for targeting TMEM16A. This review summarizes the current state of knowledge of physiological and pathological roles of TMEM16A in the digestive system, and discuss the potential therapeutic uses and challenges of TMEM16A modulators, with a focus on their selectivity, potency and molecular mechanisms as well as off-target tissue effects. We propose that TMEM16A exerts physiological and pathological roles in a tissue-specific or disease-specific way, and try to establish the idea that TMEM16A modulators are promising for therapeutic uses in digestive diseases such as secretory diarrhea, gastrointestinal motility disorders, and hepatobiliary and pancreatic diseases, as well as various cancers.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hong Zhang
- Department of Colorectal Oncology/General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Dimino J, Kuo B. Current Concepts in Gastroparesis and Gastric Neuromuscular Disorders-Pathophysiology, Diagnosis, and Management. Diagnostics (Basel) 2025; 15:935. [PMID: 40218285 PMCID: PMC11988396 DOI: 10.3390/diagnostics15070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Upper gastrointestinal concerns including gastroparesis-like symptoms affect a large portion of the population, and determining the culprit condition can be difficult due to largely shared symptoms, clinical course, pathophysiology, and treatment pathways. The understanding of gastric neuromuscular disorders (GNDs) is emerging as a heterogeneous group encompassing conditions from gastroparesis to functional dyspepsia with chronic nausea, early satiety, bloating, or abdominal pain, irrespective of gastric emptying. This article aims to review the current concepts in gastroparesis and GNDs including pathophysiology, diagnosis, and management. While some established standards in their diagnosis and management exist, a number of novel diagnostics are becoming available. Durable therapeutic options are notably limited for such common conditions with chronic and debilitating symptoms, and neuromodulators may play a key role in symptom control, which has been previously under-recognized and underutilized. Advances in both pharmacologic treatment targets as well as noninvasive and invasive interventions and devices show promise in improving the experience of patients with gastroparesis-like symptoms. At this time, treatment of GNDs requires comprehensive multidisciplinary care from providers to achieve successful treatment outcomes.
Collapse
Affiliation(s)
| | - Braden Kuo
- Center for Neurointestinal Health, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
3
|
Li P, Xiao Y, Zhou L, Zhang X, Xu Y, Wang X, Zou M, Guo X. A bibliometric analysis of interstitial cells of Cajal research. Front Med (Lausanne) 2024; 11:1391545. [PMID: 38831987 PMCID: PMC11145981 DOI: 10.3389/fmed.2024.1391545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024] Open
Abstract
Objective The significance of interstitial cells of Cajal (ICC) in the gastrointestinal tract has garnered increasing attention. In recent years, approximately 80 articles on ICC have been published annually in various journals. However, no bibliometric study has specifically focused on the literature related to ICC. Therefore, we conducted a comprehensive bibliometric analysis of ICC to reveal dynamic scientific developments, assisting researchers in exploring hotspots and emerging trends while gaining a global perspective. Methods We conducted a literature search in the Web of Science Core Collection (WoSCC) from January 1, 2013, to December 31, 2023, to identify relevant literature on ICC. We employed bibliometric software, namely VOSviewer and CiteSpace, to analyze various aspects including annual publication output, collaborations, research hotspots, current status, and development trends in this domain. Results A total of 891 English papers were published in 359 journals by 928 institutions from 57 countries/regions. According to the keyword analysis of the literature, researchers mainly focused on "c-Kit," "expression," "smooth muscle," and "nitric oxide" related to ICC over the past 11 years. However, with "SIP syncytium," "ANO1," "enteric neurons," "gastrointestinal stromal tumors (GIST)," and "functional dyspepsia (FD)," there has been a growing interest in the relationship between ANO1, SIP syncytium, and ICC, as well as the role of ICC in the treatment of GIST and FD. Conclusion Bibliometric analysis has revealed the current status of ICC research. The association between ANO1, SIP syncytium, enteric neurons and ICC, as well as the role of ICC in the treatment of GIST versus FD has become the focus of current research. However, further research and collaboration on a global scale are still needed. Our analysis is particularly valuable to researchers in gastroenterology, oncology, and cell biology, providing insights that can guide future research directions.
Collapse
Affiliation(s)
- Pengyu Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yadan Xiao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lan Zhou
- Integrated Traditional Chinese and Western Medicine Department, The Third Hospital of Changsha, Changsha, China
| | - Xuyuan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaojuan Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Menglong Zou
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Guo
- Science & Technology Innovation Center (National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry), Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Li X, Wang Y, Zhang L, Yao S, Liu Q, Jin H, Tuo B. The role of anoctamin 1 in liver disease. J Cell Mol Med 2024; 28:e18320. [PMID: 38685684 PMCID: PMC11058335 DOI: 10.1111/jcmm.18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
5
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
6
|
Liu XY, Zhao Y, Jin LL, Pang Y, Yu B. Trans-ε-viniferin as an inhibitor of TMEM16A preventing intestinal smooth muscle contraction. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:867-879. [PMID: 36625145 DOI: 10.1080/10286020.2023.2165067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
TMEM16A regulator is an important tool to study the physiological functions and pathogenesis related to TMEM16A. In the present study, trans-ε-viniferin (TV) was identified as a TMEM16A inhibitor with inhibitory activity against TMEM16A mediated Cl- currents, which was reversible, without affecting intracytoplasmic Ca2+ concentration and TMEM16A protein expression. TV inhibited intestinal peristalsis and prolonged gastrointestinal transport time. TV could inhibit autonomic and Eact-stimulated intestinal contractility, and was equally effective in ACh- and HA-induced high contractile states. The results indicate that TV significantly inhibits the intestinal smooth muscle contraction, which may be applied in the treatment of TMEM16A-related intestinal dynamic abnormalities.
Collapse
Affiliation(s)
- Xin-Yi Liu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Yan Zhao
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Ling-Ling Jin
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yue Pang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
7
|
Choi NR, Jung D, Kim SC, Park JW, Choi WG, Kim BJ. Analysis of Network Pharmacological Efficacy and Therapeutic Effectiveness in Animal Models for Functional Dyspepsia of Foeniculi fructus. Nutrients 2023; 15:2644. [PMID: 37375548 PMCID: PMC10301275 DOI: 10.3390/nu15122644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
For centuries, Foeniculi fructus (F. fructus) has been used as a traditional herbal medicine in China and Europe and is widely used as a natural therapy for digestive disorders, including indigestion, flatulence, and bloating. The mechanism of F. fructus that alleviates functional dyspepsia was analyzed through network pharmacology, and its therapeutic effect on an animal model of functional dyspepsia were investigated. The traditional Chinese medicine systems pharmacology (TCMSP) database was used to investigate the compounds, targets, and associated diseases of F. fructus. Information on the target genes was classified using the UniProtdatabase. Using the Cytoscape 3.9.1 software, a network was constructed, and the Cytoscape string application was employed to examine genes associated with functional dyspepsia. The efficacy of F. fructus on functional dyspepsia was confirmed by treatment with its extract in a mouse model of loperamide-induced functional dyspepsia. Seven compounds targeted twelve functional dyspepsia-associated genes. When compared to the control group, F. fructus exhibited significant suppression of symptoms in a mouse model of functional dyspepsia. The results of our animal studies indicated a close association between the mechanism of action of F. fructus and gastrointestinal motility. Based on animal experimental results, the results showed that F. fructus provided a potential means to treat functional dyspepsia, suggesting that its medical mechanism for functional dyspepsia could be described by the relationship between seven key compounds of F. fructus, including oleic acid, β-sitosterol, and 12 functional dyspepsia-related genes.
Collapse
Affiliation(s)
- Na-Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea;
| | - Daehwa Jung
- Department of Pharmaceutical Engineering, Daegu Hanny University, Gyeongsan 38610, Republic of Korea;
| | - Sang-Chan Kim
- College of Oriental Medicine, Daegu Hanny University, Gyeongsan 38610, Republic of Korea;
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea;
| | - Byung-Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea;
| |
Collapse
|
8
|
Mégier C, Dumery G, Luton D. Iodine and Thyroid Maternal and Fetal Metabolism during Pregnancy. Metabolites 2023; 13:metabo13050633. [PMID: 37233673 DOI: 10.3390/metabo13050633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Thyroid hormones and iodine are required to increase basal metabolic rate and to regulate protein synthesis, long bone growth and neuronal maturation. They are also essential for protein, fat and carbohydrate metabolism regulation. Imbalances in thyroid and iodine metabolism can negatively affect these vital functions. Pregnant women are at risk of hypo or hyperthyroidism, in relation to or regardless of their medical history, with potential dramatic outcomes. Fetal development highly relies on thyroid and iodine metabolism and can be compromised if they malfunction. As the interface between the fetus and the mother, the placenta plays a crucial role in thyroid and iodine metabolism during pregnancy. This narrative review aims to provide an update on current knowledge of thyroid and iodine metabolism in normal and pathological pregnancies. After a brief description of general thyroid and iodine metabolism, their main modifications during normal pregnancies and the placental molecular actors are described. We then discuss the most frequent pathologies to illustrate the upmost importance of iodine and thyroid for both the mother and the fetus.
Collapse
Affiliation(s)
- Charles Mégier
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Bicêtre, Université Paris Saclay, 94270 Le Kremlin-Bicetre, France
| | - Grégoire Dumery
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Bicêtre, Université Paris Saclay, 94270 Le Kremlin-Bicetre, France
| | - Dominique Luton
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Bicêtre, Université Paris Saclay, 94270 Le Kremlin-Bicetre, France
| |
Collapse
|
9
|
Pasricha PJ, Grover M, Yates KP, Abell TL, Koch KL, McCallum RW, Sarosiek I, Bernard CE, Kuo B, Bulat R, Shulman RJ, Chumpitazi BP, Tonascia J, Miriel LA, Wilson LA, Van Natta ML, Mitchell E, Hamilton F, Farrugia G, Parkman HP. Progress in Gastroparesis - A Narrative Review of the Work of the Gastroparesis Clinical Research Consortium. Clin Gastroenterol Hepatol 2022; 20:2684-2695.e3. [PMID: 35688353 PMCID: PMC9691520 DOI: 10.1016/j.cgh.2022.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023]
Abstract
The Gastroparesis Clinical Research Consortium is a multicenter coalition created and funded by the National Institutes of Diabetes and Digestive and Kidney Disorders, with a mission to advance understanding of the pathophysiology of gastroparesis and develop an effective treatment for patients with symptomatic gastroparesis. In this review, we summarize the results of the published Gastroparesis Clinical Research Consortium studies as a ready and convenient resource for gastroenterologists and others to provide a clear understanding of the consortium's experience and perspective on gastroparesis and related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Braden Kuo
- Massachusetts General Hospital, Boston, Massachusetts
| | - Robert Bulat
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | - Frank Hamilton
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | | | | |
Collapse
|
10
|
Anoctamin 1 controls bone resorption by coupling Cl - channel activation with RANKL-RANK signaling transduction. Nat Commun 2022; 13:2899. [PMID: 35610255 PMCID: PMC9130328 DOI: 10.1038/s41467-022-30625-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
Osteoclast over-activation leads to bone loss and chloride homeostasis is fundamental importance for osteoclast function. The calcium-activated chloride channel Anoctamin 1 (also known as TMEM16A) is an important chloride channel involved in many physiological processes. However, its role in osteoclast remains unresolved. Here, we identified the existence of Anoctamin 1 in osteoclast and show that its expression positively correlates with osteoclast activity. Osteoclast-specific Anoctamin 1 knockout mice exhibit increased bone mass and decreased bone resorption. Mechanistically, Anoctamin 1 deletion increases intracellular Cl- concentration, decreases H+ secretion and reduces bone resorption. Notably, Anoctamin 1 physically interacts with RANK and this interaction is dependent upon Anoctamin 1 channel activity, jointly promoting RANKL-induced downstream signaling pathways. Anoctamin 1 protein levels are substantially increased in osteoporosis patients and this closely correlates with osteoclast activity. Finally, Anoctamin 1 deletion significantly alleviates ovariectomy induced osteoporosis. These results collectively establish Anoctamin 1 as an essential regulator in osteoclast function and suggest a potential therapeutic target for osteoporosis.
Collapse
|
11
|
Fairfield CJ, Drake TM, Pius R, Bretherick AD, Campbell A, Clark DW, Fallowfield JA, Hayward C, Henderson NC, Iakovliev A, Joshi PK, Mills NL, Porteous DJ, Ramachandran P, Semple RK, Shaw CA, Sudlow CLW, Timmers PRHJ, Wilson JF, Wigmore SJ, Spiliopoulou A, Harrison EM. Genome-wide analysis identifies gallstone-susceptibility loci including genes regulating gastrointestinal motility. Hepatology 2022; 75:1081-1094. [PMID: 34651315 DOI: 10.1002/hep.32199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Genome-wide association studies (GWAS) have identified several risk loci for gallstone disease. As with most polygenic traits, it is likely that many genetic determinants are undiscovered. The aim of this study was to identify genetic variants that represent new targets for gallstone research and treatment. APPROACH AND RESULTS We performed a GWAS of 28,627 gallstone cases and 348,373 controls in the UK Biobank, replicated findings in a Scottish cohort (1089 cases, 5228 controls), and conducted a GWA meta-analysis (43,639 cases, 506,798 controls) with the FinnGen cohort. We assessed pathway enrichment using gene-based then gene-set analysis and tissue expression of identified genes in Genotype-Tissue Expression project data. We constructed a polygenic risk score (PRS) and evaluated phenotypic traits associated with the score. Seventy-five risk loci were identified (p < 5 × 10-8 ), of which 46 were new. Pathway enrichment revealed associations with lipid homeostasis, glucuronidation, phospholipid metabolism, and gastrointestinal motility. Anoctamin 1 (ANO1) and transmembrane Protein 147 (TMEM147), both in novel, replicated loci, are expressed in the gallbladder and gastrointestinal tract. Both regulate gastrointestinal motility. The gallstone risk allele rs7599-A leads to suppression of hepatic TMEM147 expression, suggesting that the protein protects against gallstone formation. The highest decile of the PRS demonstrated a 6-fold increased odds of gallstones compared with the lowest decile. The PRS was strongly associated with increased body mass index, serum liver enzymes, and C-reactive protein concentrations, and decreased lipoprotein cholesterol concentrations. CONCLUSIONS This GWAS demonstrates the polygenic nature of gallstone risk and identifies 46 novel susceptibility loci. We implicate genes influencing gastrointestinal motility in the pathogenesis of gallstones.
Collapse
Affiliation(s)
- Cameron J Fairfield
- Center for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Thomas M Drake
- Center for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Riinu Pius
- Center for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Andrew D Bretherick
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
| | - Archie Campbell
- Center for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
- Center for Genomic and Experimental MedicineInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
- Health Data Research UKUniversity of EdinburghEdinburghScotland
| | - David W Clark
- Center for Global Health ResearchUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Jonathan A Fallowfield
- Centre for Inflammation ResearchQueen's Medical Research InstituteUniversity of EdinburghEdinburghScotland
| | - Caroline Hayward
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
| | - Neil C Henderson
- Centre for Inflammation ResearchQueen's Medical Research InstituteUniversity of EdinburghEdinburghScotland
| | - Andrii Iakovliev
- Center for Population Health SciencesUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Peter K Joshi
- Center for Global Health ResearchUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Nicholas L Mills
- Center for Cardiovascular ScienceQueen's Medical Research InstituteUniversity of EdinburghEdinburghScotland
| | - David J Porteous
- Center for Genomic and Experimental MedicineInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
| | - Prakash Ramachandran
- Centre for Inflammation ResearchQueen's Medical Research InstituteUniversity of EdinburghEdinburghScotland
| | - Robert K Semple
- Center for Cardiovascular ScienceQueen's Medical Research InstituteUniversity of EdinburghEdinburghScotland
| | - Catherine A Shaw
- Center for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Cathie L W Sudlow
- Center for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Paul R H J Timmers
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
- Center for Global Health ResearchUsher InstituteUniversity of EdinburghEdinburghScotland
| | - James F Wilson
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
- Center for Global Health ResearchUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Stephen J Wigmore
- Department of Clinical SurgeryDivision of Health SciencesUniversity of EdinburghEdinburghScotland
| | - Athina Spiliopoulou
- Center for Population Health SciencesUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Ewen M Harrison
- Center for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| |
Collapse
|
12
|
Kondo R, Furukawa N, Deguchi A, Kawata N, Suzuki Y, Imaizumi Y, Yamamura H. Downregulation of Ca 2+-Activated Cl - Channel TMEM16A Mediated by Angiotensin II in Cirrhotic Portal Hypertensive Mice. Front Pharmacol 2022; 13:831311. [PMID: 35370660 PMCID: PMC8966666 DOI: 10.3389/fphar.2022.831311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/01/2022] [Indexed: 12/29/2022] Open
Abstract
Portal hypertension is defined as an increased pressure in the portal venous system and occurs as a major complication in chronic liver diseases. The pathological mechanism underlying the pathogenesis and development of portal hypertension has been extensively investigated. Vascular tone of portal vein smooth muscles (PVSMs) is regulated by the activities of several ion channels, including Ca2+-activated Cl- (ClCa) channels. TMEM16A is mainly responsible for ClCa channel conductance in vascular smooth muscle cells, including portal vein smooth muscle cells (PVSMCs). In the present study, the functional roles of TMEM16A channels were examined using two experimental portal hypertensive models, bile duct ligation (BDL) mice with cirrhotic portal hypertension and partial portal vein ligation (PPVL) mice with non-cirrhotic portal hypertension. Expression analyses revealed that the expression of TMEM16A was downregulated in BDL-PVSMs, but not in PPVL-PVSMs. Whole-cell ClCa currents were smaller in BDL-PVSMCs than in sham- and PPVL-PVSMCs. The amplitude of spontaneous contractions was smaller and the frequency was higher in BDL-PVSMs than in sham- and PPVL-PVSMs. Spontaneous contractions sensitive to a specific inhibitor of TMEM16A channels, T16Ainh-A01, were reduced in BDL-PVSMs. Furthermore, in normal PVSMs, the downregulation of TMEM16A expression was mimicked by the exposure to angiotensin II, but not to bilirubin. This study suggests that the activity of ClCa channels is attenuated by the downregulation of TMEM16A expression in PVSMCs associated with cirrhotic portal hypertension, which is partly mediated by increased angiotensin II in cirrhosis.
Collapse
Affiliation(s)
- Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Nami Furukawa
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akari Deguchi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoki Kawata
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
13
|
Shi S, Pang C, Ren S, Sun F, Ma B, Guo S, Li J, Chen Y, An H. Molecular dynamics simulation of TMEM16A channel: Linking structure with gating. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183777. [PMID: 34537214 DOI: 10.1016/j.bbamem.2021.183777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
TMEM16A, the calcium-activated chloride channel, is broadly expressed and plays pivotal roles in diverse physiological processes. To understand the structural and functional relationships of TMEM16A, it is necessary to fully clarify the structural basis of the gating of the TMEM16A channel. Herein, we performed the protein electrostatic analysis and molecular dynamics simulation on the TMEM16A in the presence and absence of Ca2+. Data showed that the separation of TM4 and TM6 causes pore expansion, and Q646 may be a key residue for the formation of π-helix in the middle segment of TM6. Moreover, E705 was found to form a group of H-bond interactions with D554/K588/K645 below the hydrophobic gate to stabilize the closed conformation of the pore in the Ca2+-free state. Interestingly, in the Ca2+ bound state, the E705 side chain swings 100o to serve as Ca2+-binding coordination and released K645. K645 is closer to the hydrophobic gate in the calcium-bound state, which facilitates the provision of electrostatic forces for chloride ions as the ions pass through the hydrophobic gate. Our findings provide the structural-based insights to understanding the mechanisms of gating of TMEM16A.
Collapse
Affiliation(s)
- Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Shuxi Ren
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Fude Sun
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Shuai Guo
- College of Life Science, Hebei University, Baoding 071002, Hebei, China
| | - Junwei Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
14
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
15
|
Sorrenti S, Baldini E, Pironi D, Lauro A, D’Orazi V, Tartaglia F, Tripodi D, Lori E, Gagliardi F, Praticò M, Illuminati G, D’Andrea V, Palumbo P, Ulisse S. Iodine: Its Role in Thyroid Hormone Biosynthesis and Beyond. Nutrients 2021; 13:4469. [PMID: 34960019 PMCID: PMC8709459 DOI: 10.3390/nu13124469] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The present review deals with the functional roles of iodine and its metabolism. The main biological function of iodine concerns its role in the biosynthesis of thyroid hormones (THs) by the thyroid gland. In addition, however, further biological roles of iodine have emerged. Precisely, due to its significant action as scavenger of reactive oxygen species (ROS), iodine is thought to represent one of the oldest antioxidants in living organisms. Moreover, iodine oxidation to hypoiodite (IO-) has been shown to possess strong bactericidal as well as antiviral and antifungal activity. Finally, and importantly, iodine has been demonstrated to exert antineoplastic effects in human cancer cell lines. Thus, iodine, through the action of different tissue-specific peroxidases, may serve different evolutionarily conserved physiological functions that, beyond TH biosynthesis, encompass antioxidant activity and defense against pathogens and cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (S.S.); (E.B.); (D.P.); (A.L.); (V.D.); (F.T.); (D.T.); (E.L.); (F.G.); (M.P.); (G.I.); (V.D.); (P.P.)
| |
Collapse
|
16
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
17
|
Emerging Modulators of TMEM16A and Their Therapeutic Potential. J Membr Biol 2021; 254:353-365. [PMID: 34263350 DOI: 10.1007/s00232-021-00188-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/21/2021] [Indexed: 02/04/2023]
Abstract
Calcium-activated chloride channels (CaCCs) are widespread chloride channels which rely on calcium activation to perform their functions. In 2008, TMEM16A (also known as anoctamin1, ANO1) was identified as the molecular basis of the CaCCs, which provided the possibility to study the physiological function of CaCCs. TMEM16A is widely expressed in various cells and controls basic physiological functions, including neuronal and cardiac excitability, nerve transduction, smooth muscle contraction, epithelial Cl- secretion and fertilization. However, the abnormal function of TMEM16A may cause a variety of diseases, including asthma, gastrointestinal motility disorder and various cancers. Therefore, TMEM16A is a putative drug target for many diseases, and it is important to determine specific and efficient modulators of TMEM16A channel. In recent years, we and others have screened several natural modulators of TMEM16A against cancers and gastrointestinal motility dysfunction. This article reviews the screening methods, efficacy of TMEM16A modulators and pharmacological effects of TMEM16A modulators on different diseases. GRAPHIC ABSTACT.
Collapse
|
18
|
Dulin NO. Calcium-Activated Chloride Channel ANO1/TMEM16A: Regulation of Expression and Signaling. Front Physiol 2020; 11:590262. [PMID: 33250781 PMCID: PMC7674831 DOI: 10.3389/fphys.2020.590262] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
Anoctamin-1 (ANO1), also known as TMEM16A, is the most studied member of anoctamin family of calcium-activated chloride channels with diverse cellular functions. ANO1 controls multiple cell functions including cell proliferation, survival, migration, contraction, secretion, and neuronal excitation. This review summarizes the current knowledge of the cellular mechanisms governing the regulation of ANO1 expression and of ANO1-mediated intracellular signaling. This includes the stimuli and mechanisms controlling ANO1 expression, agonists and processes that activate ANO1, and signal transduction mediated by ANO1. The major conclusion is that this field is poorly understood, remains highly controversial, and requires extensive and rigorous further investigation.
Collapse
Affiliation(s)
- Nickolai O Dulin
- Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
Chikkamenahalli LL, Pasricha PJ, Farrugia G, Grover M. Gastric Biopsies in Gastroparesis: Insights into Gastric Neuromuscular Disorders to Aid Treatment. Gastroenterol Clin North Am 2020; 49:557-570. [PMID: 32718570 PMCID: PMC7387746 DOI: 10.1016/j.gtc.2020.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cellular and molecular understanding of human gastroparesis has markedly improved due to studies on full-thickness gastric biopsies. A decrease in the number of interstitial cells of Cajal (ICC) and functional changes in ICC constitutes the hallmark cellular feature of gastroparesis. More recently, in animal models, macrophages have also been identified to play a central role in development of delayed gastric emptying. Activation of macrophages leads to loss of ICC. In human gastroparesis, loss of anti-inflammatory macrophages in gastric muscle has been shown. Deeper molecular characterization using transcriptomics and proteomics has identified macrophage-based immune dysregulation in human gastroparesis.
Collapse
Affiliation(s)
- Lakshmikanth L. Chikkamenahalli
- Enteric NeuroScience Program, Mayo clinic, Division of Gastroenterology & Hepatology, Physiology & Biomedical Engineering Mayo Clinic, 200 1 Street SW, Rochester, MN 55905, Tel: +1 507-538-0337
| | - Pankaj J. Pasricha
- Center for Neurogastroenterology, Division of Gastroenterology & Hepatology Johns Hopkins School of Medicine, Ross 958, 720 Rutland Avenue, Baltimore, MD 21205, Tel: +1 443-613-8152
| | - Gianrico Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology & Hepatology, Physiology & Biomedical Engineering Mayo Clinic, 200 1 Street SW, Rochester, MN 55905, Tel: +1 507-284-4695
| | - Madhusudan Grover
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA; Division of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
20
|
Ji Q, Shi S, Guo S, Zhan Y, Zhang H, Chen Y, An H. Activation of TMEM16A by natural product canthaxanthin promotes gastrointestinal contraction. FASEB J 2020; 34:13430-13444. [PMID: 32812278 DOI: 10.1096/fj.202000443rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/11/2022]
Abstract
Transmembrane 16A (TMEM16A), also known as anoctamin 1, is the molecular basis of the calcium-activated chloride channels. TMEM16A is present in interstitial cells of Cajal, which are the pacemaker cells that control smooth muscle contraction. TMEM16A is implicated in gastrointestinal disorders. Activation of TMEM16A is believed to promote the gastrointestinal muscle contraction. Here, we report a highly efficient, nontoxic, and selective activator of TMEM16A, canthaxanthin (CX). The study using molecular docking and site-directed mutation revealed that CX-specific binging site in TMEM16A is K769. CX was also found to promote the contraction of smooth muscle cells in gastrointestinal tract through activation of TMEM16A channels, which provides an excellent basis for development of CX as a chemical tool and potential therapeutic for gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Sai Shi
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Hailin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drug, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
21
|
Zhang G, Zhu L, Xue Y, Zhao Z, Li H, Niu Z, Wang X, Chen P, Zhang J, Zhang X. Benzophenanthridine alkaloids suppress lung adenocarcinoma by blocking TMEM16A Ca2+-activated Cl− channels. Pflugers Arch 2020; 472:1457-1467. [DOI: 10.1007/s00424-020-02434-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
|
22
|
Park JH, Ousingsawat J, Cabrita I, Bettels RE, Große-Onnebrink J, Schmalstieg C, Biskup S, Reunert J, Rust S, Schreiber R, Kunzelmann K, Marquardt T. TMEM16A deficiency: a potentially fatal neonatal disease resulting from impaired chloride currents. J Med Genet 2020; 58:247-253. [PMID: 32487539 DOI: 10.1136/jmedgenet-2020-106978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION TMEM16A is a calcium-activated chloride channel expressed in various secretory epithelia. Two siblings presented in early infancy with reduced intestinal peristalsis and recurrent episodes of haemorrhagic diarrhoea. In one of them, the episodes were characterised by hepatic pneumatosis with gas bubbles in the portal vein similar to necrotising enterocolitis of the newborn. METHODS Exome sequencing identified a homozygous truncating pathogenic variant in ANO1. Expression analysis was performed using reverse transcription PCR, western blot and immunohistochemistry. Electrophysiological and cell biological studies were employed to characterise the effects on ion transport both in patient respiratory epithelial cells and in transfected HEK293 cells. RESULTS The identified variant led to TMEM16A dysfunction, which resulted in abolished calcium-activated Cl- currents. Secondarily, CFTR function is affected due to the close interplay between both channels without inducing cystic fibrosis (CF). CONCLUSION TMEM16A deficiency is a potentially fatal disorder caused by abolished calcium-activated Cl- currents in secretory epithelia. Secondary impairment of CFTR function did not cause a CF phenotyp, which may have implications for CF treatment.
Collapse
Affiliation(s)
- Julien H Park
- Department of Paediatrics, University Hospital Münster, Münster, Nordrhein-Westfalen, Germany
| | | | - Inês Cabrita
- Department of Physiology, University of Regensburg, Regensburg, Bayern, Germany
| | - Ruth E Bettels
- Department of Paediatrics, University Hospital Münster, Münster, Nordrhein-Westfalen, Germany
| | - Jörg Große-Onnebrink
- Department of Paediatrics, University Hospital Münster, Münster, Nordrhein-Westfalen, Germany
| | - Christian Schmalstieg
- Department of Paediatrics, University Hospital Münster, Münster, Nordrhein-Westfalen, Germany
| | | | - Janine Reunert
- Department of Paediatrics, University Hospital Münster, Münster, Nordrhein-Westfalen, Germany
| | - Stephan Rust
- Department of Paediatrics, University Hospital Münster, Münster, Nordrhein-Westfalen, Germany
| | - Rainer Schreiber
- Department of Physiology, University of Regensburg, Regensburg, Bayern, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, Regensburg, Bayern, Germany
| | - Thorsten Marquardt
- Department of Paediatrics, University Hospital Münster, Münster, Nordrhein-Westfalen, Germany
| |
Collapse
|
23
|
Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride - The Underrated Ion in Nociceptors. Front Neurosci 2020; 14:287. [PMID: 32322187 PMCID: PMC7158864 DOI: 10.3389/fnins.2020.00287] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Selvaraj C, Selvaraj G, Kaliamurthi S, Cho WC, Wei DQ, Singh SK. Ion Channels as Therapeutic Targets for Type 1 Diabetes Mellitus. Curr Drug Targets 2020; 21:132-147. [PMID: 31538892 DOI: 10.2174/1389450119666190920152249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Ion channels are integral proteins expressed in almost all living cells and are involved in muscle contraction and nutrient transport. They play a critical role in the normal functioning of the excitable tissues of the nervous system and regulate the action potential and contraction events. Dysfunction of genes encodes ion channel proteins, which disrupt the channel function and lead to a number of diseases, among which is type 1 diabetes mellitus (T1DM). Therefore, understanding the complex mechanism of ion channel receptors is necessary to facilitate the diagnosis and management of treatment. In this review, we summarize the mechanism of important ion channels and their potential role in the regulation of insulin secretion along with the limitations of ion channels as therapeutic targets. Furthermore, we discuss the recent investigations of the mechanism regulating the ion channels in pancreatic beta cells, which suggest that ion channels are active participants in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
- Department of Bioinformatics, The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| |
Collapse
|
25
|
Grover M, Farrugia G, Stanghellini V. Gastroparesis: a turning point in understanding and treatment. Gut 2019; 68:2238-2250. [PMID: 31563877 PMCID: PMC6874806 DOI: 10.1136/gutjnl-2019-318712] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Gastroparesis is defined by delayed gastric emptying (GE) and symptoms of nausea, vomiting, bloating, postprandial fullness, early satiety and abdominal pain. Most common aetiologies include diabetes, postsurgical and postinfectious, but in many cases it is idiopathic. Clinical presentation and natural history vary by the aetiology. There is significant morbidity and healthcare utilisation associated with gastroparesis. Mechanistic studies from diabetic animal models of delayed GE as well as human full-thickness biopsies have significantly advanced our understanding of this disorder. An innate immune dysregulation and injury to the interstitial cells of Cajal and other components of the enteric nervous system through paracrine and oxidative stress mediators is likely central to the pathogenesis of gastroparesis. Scintigraphy and 13C breath testing provide the most validated assessment of GE. The stagnant gastroparesis therapeutic landscape is likely to soon see significant changes. Relatively newer treatment strategies include antiemetics (aprepitant), prokinetics (prucalopride, relamorelin) and fundic relaxants (acotiamide, buspirone). Endoscopic pyloromyotomy appears promising over the short term, especially for symptoms of nausea and vomiting. Further controlled trials and identification of the appropriate subgroup with pyloric dysfunction and assessment of long-term outcomes are essential. This review highlights the clinical presentation, diagnosis, mechanisms and treatment advancements for gastroparesis.
Collapse
Affiliation(s)
- Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vincenzo Stanghellini
- Department of Digestive Diseases and Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Ayon RJ, Hawn MB, Aoun J, Wiwchar M, Forrest AS, Cunningham F, Singer CA, Valencik ML, Greenwood IA, Leblanc N. Molecular mechanism of TMEM16A regulation: role of CaMKII and PP1/PP2A. Am J Physiol Cell Physiol 2019; 317:C1093-C1106. [PMID: 31461344 DOI: 10.1152/ajpcell.00059.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study explored the mechanism by which Ca2+-activated Cl- channels (CaCCs) encoded by the Tmem16a gene are regulated by calmodulin-dependent protein kinase II (CaMKII) and protein phosphatases 1 (PP1) and 2A (PP2A). Ca2+-activated Cl- currents (IClCa) were recorded from HEK-293 cells expressing mouse TMEM16A. IClCa were evoked using a pipette solution in which free Ca2+ concentration was clamped to 500 nM, in the presence (5 mM) or absence of ATP. With 5 mM ATP, IClCa decayed to <50% of the initial current magnitude within 10 min after seal rupture. IClCa rundown seen with ATP-containing pipette solution was greatly diminished by omitting ATP. IClCa recorded after 20 min of cell dialysis with 0 ATP were more than twofold larger than those recorded with 5 mM ATP. Intracellular application of autocamtide-2-related inhibitory peptide (5 µM) or KN-93 (10 µM), two specific CaMKII inhibitors, produced a similar attenuation of TMEM16A rundown. In contrast, internal application of okadaic acid (30 nM) or cantharidin (100 nM), two nonselective PP1 and PP2A blockers, promoted the rundown of TMEM16A in cells dialyzed with 0 ATP. Mutating serine 528 of TMEM16A to an alanine led to a similar inhibition of TMEM16A rundown to that exerted by either one of the two CaMKII inhibitors tested, which was not observed for three putative CaMKII consensus sites for phosphorylation (T273, T622, and S730). Our results suggest that TMEM16A-mediated CaCCs are regulated by CaMKII and PP1/PP2A. Our data also suggest that serine 528 of TMEM16A is an important contributor to the regulation of IClCa by CaMKII.
Collapse
Affiliation(s)
- Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, College of Medicine, The University of Arizona College of Medicine, Arizona Health Sciences Center, Tucson, Arizona
| | - Matthew B Hawn
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Joydeep Aoun
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Michael Wiwchar
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abigail S Forrest
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Fiona Cunningham
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Maria L Valencik
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Iain A Greenwood
- Institute of Molecular and Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Normand Leblanc
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
27
|
Jeon YJ, Lee JS, Cho YR, Lee SB, Kim WY, Roh SS, Joung JY, Lee HD, Moon SO, Cho JH, Son CG. Banha-sasim-tang improves gastrointestinal function in loperamide-induced functional dyspepsia mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111834. [PMID: 30940567 DOI: 10.1016/j.jep.2019.111834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banha-sasim-tang (BST; Hange-shashin-to in Kampo medicine; Banxia xiexin tang in traditional Chinese medicine) is a traditional Chinese harbal medicine that has been commonly used for gastrointestinal disorders. AIM OF THE STUDY To investigate the pharmacological effects of BST, a standardized herbal drug, on main symptoms of functional dyspepsia including delayed gastric emptying, and underlying mechanisms of action in mouse model. METHODS AND MATERIALS Balb/C mice were pretreated with BST (25, 50, 100 mg/kg, po) or mosapride (3 mg/kg, po) for 3 days, and then treated with loperamide (10 mg/kg, ip) after 19 h fasting. A solution of 0.05% phenol red (500 μL) or 5% charcoal diet (200 μL) was orally administered, followed by scarifying and assessment of gastric emptying or gastro-intestinal motility. C-kit (immunofluorescence), nNOS (western blot) and gastric contraction-related gene expression were examined in stomach tissue. RESULTS The loperamide injection substantially delayed gastric emptying, while the BST pretreatment significantly attenuated this peristaltic dysfunction, as evidenced by the quantity of stomach-retained phenol red (p < 0.05 or 0.01) and stomach weight (p < 0.05 or 0.01). The BST pretreatment significantly tempered the loperamide-induced inactivation of c-kit and nNOS (p < 0.05 or 0.01) as well as the contraction-related gene expression, such as the 5HT4 receptor (5HT4R), anoctamin-1 (ANO1), ryanodine receptor 3 (RYR3) and smooth muscle myosin light chain kinase (smMLCK). The BST pretreatment also significantly attenuated the alterations in gastro-intestinal motility (p < 0.01). CONCLUSION Our results are the first evidence of the prokinetic agent effects of Banha-sasim-tang in a loperamide-induced FD animal model. The underlying mechanisms of action may involve the modulation of peristalsis via activation of the interstitial cells of Cajal and the smooth muscle cells in the stomach.
Collapse
Affiliation(s)
- Yoo-Jin Jeon
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Jin-Seok Lee
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Yong-Rae Cho
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Sung-Bae Lee
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Won-Young Kim
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, DaeguHaany University, 136 Shinchendong-ro, Suseong-gu, Daegu, 42158, Republic of Korea.
| | - Jin-Yong Joung
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Hwa-Dong Lee
- Office of Strategic Planning, National Development Institute of Korean Medicine (NIKOM), 94, Hwarang-ro(Gapje-dong), Gyengsan-si, Republic of Korea.
| | - Sung-Ok Moon
- Korean Medicine R&D Team 2, Korea Medicine Development, National Development Institute of Korean Medicine (NIKOM), 94, Hwarang-ro(Gapje-dong), Gyengsan-si, Republic of Korea.
| | - Jung-Hyo Cho
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Chang-Gue Son
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| |
Collapse
|
28
|
Hwang SJ, Pardo DM, Zheng H, Bayguinov Y, Blair PJ, Fortune‐Grant R, Cook RS, Hennig GW, Shonnard MC, Grainger N, Peri LE, Verma SD, Rock J, Sanders KM, Ward SM. Differential sensitivity of gastric and small intestinal muscles to inducible knockdown of anoctamin 1 and the effects on gastrointestinal motility. J Physiol 2019; 597:2337-2360. [PMID: 30843201 PMCID: PMC6487927 DOI: 10.1113/jp277335] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Electrical pacemaking in gastrointestinal muscles is generated by specialized interstitial cells of Cajal that produce the patterns of contractions required for peristalsis and segmentation in the gut. The calcium-activated chloride conductance anoctamin-1 (Ano1) has been shown to be responsible for the generation of pacemaker activity in GI muscles, but this conclusion is established from studies of juvenile animals in which effects of reduced Ano1 on gastric emptying and motor patterns could not be evaluated. Knocking down Ano1 expression using Cre/LoxP technology caused dramatic changes in in gastric motor activity, with disrupted slow waves, abnormal phasic contractions and delayed gastric emptying; modest changes were noted in the small intestine. Comparison of the effects of Ano1 antagonists on muscles from juvenile and adult small intestinal muscles suggests that conductances in addition to Ano1 may develop with age and contribute to pacemaker activity. ABSTRACT Interstitial cells of Cajal (ICC) generate slow waves and transduce neurotransmitter signals in the gastrointestinal (GI) tract, facilitating normal motility patterns. ICC express a Ca2+ -activated Cl- conductance (CaCC), and constitutive knockout of the channel protein anoctamin-1 leads to loss of slow waves in gastric and intestinal muscles. These knockout experiments were performed on juvenile mice. However, additional experiments demonstrated significant differences in the sensitivity of gastric and intestinal muscles to antagonists of anoctamin-1 channels. Furthermore, the significance of anoctamin-1 and the electrical and mechanical behaviours facilitated by this conductance have not been evaluated on the motor behaviours of adult animals. Cre/loxP technology was used to generate cell-specific knockdowns of anoctamin-1 in ICC (KitCreERT2/+ ;Ano1tm2jrr/+ ) in GI muscles. The recombination efficiency of KitCreERT was evaluated with an eGFP reporter, molecular techniques and immunohistochemistry. Electrical and contractile experiments were used to examine the consequences of anoctamin-1 knockdown on pacemaker activity, mechanical responses, gastric motility patterns, gastric emptying and GI transit. Reduced anoctamin-1 caused loss of gastric, but not intestinal slow waves. Irregular spike complexes developed in gastric muscles, leading to uncoordinated antral contractions, delayed gastric emptying and increased total GI transit time. Slow waves in intestinal muscles of juvenile mice were more sensitive to anoctamin-1 antagonists than slow waves in adult muscles. The low susceptibility to anoctamin-1 knockdown and weak efficacy of anoctamin-1 antagonists in inhibiting slow waves in adult small intestinal muscles suggest that a conductance in addition to anoctamin-1 may develop in small intestinal ICC with ageing and contribute to pacemaker activity.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - David M. Pardo
- Department of AnatomyUniversity of CaliforniaSan FranciscoSan FranciscoCA94143USA
| | - Haifeng Zheng
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Yulia Bayguinov
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Peter J. Blair
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Rachael Fortune‐Grant
- Faculty of BiologyMedicine and HealthSchool of Biological SciencesUniversity of ManchesterUK
| | - Robert S. Cook
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Grant W. Hennig
- Department of PharmacologyThe University of VermontUVM College of MedicineBurlingtonVT05405USA
| | - Matthew C. Shonnard
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Nathan Grainger
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Lauren E. Peri
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Sonali Deep Verma
- Department of AnatomyUniversity of CaliforniaSan FranciscoSan FranciscoCA94143USA
| | - Jason Rock
- Centre for Regenerative MedicineBoston University School of MedicineBostonMA02118USA
| | - Kenton M. Sanders
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Sean M. Ward
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| |
Collapse
|
29
|
Askew Page HR, Dalsgaard T, Baldwin SN, Jepps TA, Povstyan O, Olesen SP, Greenwood IA. TMEM16A is implicated in the regulation of coronary flow and is altered in hypertension. Br J Pharmacol 2019; 176:1635-1648. [PMID: 30710335 DOI: 10.1111/bph.14598] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Coronary artery disease leads to ischaemic heart disease and ultimately myocardial infarction. Thus, it is important to determine the factors that regulate coronary blood flow. Ca2+ -activated chloride channels contribute to the regulation of arterial tone; however, their role in coronary arteries is unknown. The aim of this study was to investigate the expression and function of the main molecular correlate of Ca2+ -activated chloride channels, TMEM16A, in rat coronary arteries. EXPERIMENTAL APPROACH We performed mRNA and protein analysis, electrophysiological studies of coronary artery myocytes, and functional studies of coronary artery contractility and coronary perfusion, using novel inhibitors of TMEM16A. Furthermore, we assessed whether any changes in expression and function occurred in coronary arteries from spontaneously hypertensive rats (SHRs). KEY RESULTS TMEM16A was expressed in rat coronary arteries. The TMEM16A-specific inhibitor, MONNA, hyperpolarised the membrane potential in U46619. MONNA, T16Ainh -A01, and Ani9 attenuated 5-HT/U46619-induced contractions. MONNA and T16Ainh -A01 also increased coronary flow in Langendorff perfused rat heart preparations. TMEM16A mRNA was increased in coronary artery smooth muscle cells from SHRs, and U46619 and 5-HT were more potent in arteries from SHRs than in those from normal Wistar rats. MONNA diminished this increased sensitivity to U46619 and 5-HT. CONCLUSIONS AND IMPLICATIONS In conclusion, TMEM16A is a key regulator of coronary blood flow and is implicated in the altered contractility of coronary arteries from SHRs.
Collapse
Affiliation(s)
- Henry R Askew Page
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Dalsgaard
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel N Baldwin
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK
| | - Thomas A Jepps
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oleksandr Povstyan
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK
| | - Søren P Olesen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Mazzone A, Gibbons SJ, Eisenman ST, Strege PR, Zheng T, D'Amato M, Ordog T, Fernandez-Zapico ME, Farrugia G. Direct repression of anoctamin 1 ( ANO1) gene transcription by Gli proteins. FASEB J 2019; 33:6632-6642. [PMID: 30802137 DOI: 10.1096/fj.201802373r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ca2+-activated Cl- channel, anoctamin 1 (Ano1, also known as transmembrane protein 16A) contributes to intestinal pacemaking, fluid secretion, cellular excitability, and tissue development. The human ANO1 promoter contains binding sites for the glioma-associated oncogene (Gli) proteins. We investigated regulation of ANO1 transcription by Gli. ANO1 promoter activity was determined using a luciferase reporter system. Binding and functional effects of Glis on ANO1 transcription and expression were demonstrated by chromatin immunoprecipitation, small interfering RNA knockdown, PCR, immunolabeling, and recordings of Ca2+-activated Cl- currents in human embryonic kidney 293 (HEK293) cells. Results from previous genome-wide association studies were used to test ANO1 promoter polymorphisms for association with disease. Gli1 and Gli2 bound to the promoter and repressed ANO1 transcription. Repression depended on Gli binding to a site close to the ANO1 transcriptional start site. Mutation of this site prevented Gli binding and transcriptional repression. Knockdown of Gli expression and inhibition of Gli activity increased expression of ANO1 RNA and Ca2+-activated Cl- currents in HEK293 cells. A single-nucleotide polymorphism prevented Gli binding and showed association with irritable bowel syndrome. We conclude that Gli1 and Gli2 repress ANO1 by a novel mechanism that is independent of Gli cleavage and that has a role in gastrointestinal function.-Mazzone, A., Gibbons, S. J., Eisenman, S. T., Strege, P. R., Zheng, T., D'Amato, M., Ordog, T., Fernandez-Zapico, M. E., Farrugia, G. Direct repression of anoctamin 1 (ANO1) gene transcription by Gli proteins.
Collapse
Affiliation(s)
- Amelia Mazzone
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon J Gibbons
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Seth T Eisenman
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter R Strege
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Tenghao Zheng
- Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mauro D'Amato
- Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Biodonostia Health Research Institute, San Sebastián, Spain.,Ikerbasque-Basque Science Foundation, San Sebastián, Spain
| | - Tamas Ordog
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
31
|
Sanders KM. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:3-46. [PMID: 31183821 PMCID: PMC7035145 DOI: 10.1007/978-981-13-5895-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract has multifold tasks of ingesting, processing, and assimilating nutrients and disposing of wastes at appropriate times. These tasks are facilitated by several stereotypical motor patterns that build upon the intrinsic rhythmicity of the smooth muscles that generate phasic contractions in many regions of the gut. Phasic contractions result from a cyclical depolarization/repolarization cycle, known as electrical slow waves, which result from intrinsic pacemaker activity. Interstitial cells of Cajal (ICC) are electrically coupled to smooth muscle cells (SMCs) and generate and propagate pacemaker activity and slow waves. The mechanism of slow waves is dependent upon specialized conductances expressed by pacemaker ICC. The primary conductances responsible for slow waves in mice are Ano1, Ca2+-activated Cl- channels (CaCCs), and CaV3.2, T-type, voltage-dependent Ca2+ channels. Release of Ca2+ from intracellular stores in ICC appears to be the initiator of pacemaker depolarizations, activation of T-type current provides voltage-dependent Ca2+ entry into ICC, as slow waves propagate through ICC networks, and Ca2+-induced Ca2+ release and activation of Ano1 in ICC amplifies slow wave depolarizations. Slow waves conduct to coupled SMCs, and depolarization elicited by these events enhances the open-probability of L-type voltage-dependent Ca2+ channels, promotes Ca2+ entry, and initiates contraction. Phasic contractions timed by the occurrence of slow waves provide the basis for motility patterns such as gastric peristalsis and segmentation. This chapter discusses the properties of ICC and proposed mechanism of electrical rhythmicity in GI muscles.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
32
|
Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y, An H. Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol 2018; 234:7856-7873. [PMID: 30515811 DOI: 10.1002/jcp.27865] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xuzhao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| |
Collapse
|
33
|
Kamikawa A, Sakazaki J, Ichii O. Tissue-specific variation in 5'-terminal exons of mouse Anoctamin 1 transcript induces N-terminal variation of its protein via alternative translational start sites. Biochem Biophys Res Commun 2018; 503:1710-1715. [PMID: 30078682 DOI: 10.1016/j.bbrc.2018.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
Anoctamin 1 (encoded by the Ano1 gene) is a Ca2+-activated Cl- channel critical to many physiological functions. It has been speculated that Ano1 expression is regulated in a tissue-dependent manner via alternative promoters. However, variation in the 5'-end sequence of mouse Ano1 (mAno1) and its tissue-dependent regulation are poorly understood. We identified a novel 5'-terminal exon (designated exon 1a) of mAno1 instead of the known 5'-terminal exon (exon 0) using 5'-rapid amplification of cDNA ends (RACE) analysis. Unexpectedly, the novel 5'-end variant mAno1Ex1a was abundantly expressed in many tissues including the salivary and mammary glands, rectum, lung, trachea and prostate. In contrast, the known variant mAno1Ex0 predominated only in male reproductive tissues such as the epididymis and testis. In a heterologous expression system, mAno1Ex0 encoded a longer protein than mAno1Ex1a, and this long isoform was abolished by a mutation in the exon 0 start codon. Moreover, the mAno1Ex0-specific N-terminal sequence was immunohistochemically detected in epididymis but not in salivary gland. Our data suggest that mAno1 expression is regulated via alternative promoters, and its transcriptional variation results in variation of the N-terminal sequence of the Ano1 protein due to the alternative translation initiation sites. These tissue-specific variations might contribute to the regulation of mAno1 expression and activity according to the physiological function of each tissue.
Collapse
Affiliation(s)
- Akihiro Kamikawa
- Section of Physiology and Pharmacology, Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.
| | - Junpei Sakazaki
- Section of Physiology and Pharmacology, Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
34
|
Min YW, Ko EJ, Lee JY, Rhee PL. Impaired neural pathway in gastric muscles of patients with diabetes. Sci Rep 2018; 8:7101. [PMID: 29739973 PMCID: PMC5940896 DOI: 10.1038/s41598-018-24147-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
To explore the pathogenic mechanism of diabetic gastropathy, we investigated differences in response to electrical field stimulation (EFS) of gastric muscles from diabetic and non-diabetic (control) patients. Gastric specimens were obtained from 34 patients and 45 controls who underwent gastrectomy for early gastric cancer. Using organ bath techniques, we examined peak and nadir values of contraction under EFS. To examine responses to purinergic and nitrergic inhibition without cholinergic innervation, atropine, MRS2500, and N-nitro-L-arginine (L-NNA) were added sequentially to the organ bath. Tetrodotoxin (TTX) was used to confirm that the responses to EFS were mediated via neural stimulation. In the absence of pharmacological agents, peak contraction amplitude was greater in non-diabetic controls compared to diabetics only in the distal longitudinal gastric muscles. However, the nadir was greater in controls than in patients in both proximal and distal gastric circular muscles. Addition of MRS2500 could not decrease the nadir in both controls and patients, both in the proximal and distal stomach. However, L-NNA completely reversed the relaxation. TTX had no further effect on nadir. In conclusion, impaired inhibitory nitrergic neural pathway in both proximal and distal stomach and impaired excitatory cholinergic neural pathway in the distal stomach may contribute to the pathogenic mechanism underlying diabetic gastropathy.
Collapse
Affiliation(s)
- Yang Won Min
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Ju Ko
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Yeon Lee
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Poong-Lyul Rhee
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
De la Vieja A, Santisteban P. Role of iodide metabolism in physiology and cancer. Endocr Relat Cancer 2018; 25:R225-R245. [PMID: 29437784 DOI: 10.1530/erc-17-0515] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022]
Abstract
Iodide (I-) metabolism is crucial for the synthesis of thyroid hormones (THs) in the thyroid and the subsequent action of these hormones in the organism. I- is principally transported by the sodium iodide symporter (NIS) and by the anion exchanger PENDRIN, and recent studies have demonstrated the direct participation of new transporters including anoctamin 1 (ANO1), cystic fibrosis transmembrane conductance regulator (CFTR) and sodium multivitamin transporter (SMVT). Several of these transporters have been found expressed in various tissues, implicating them in I- recycling. New research supports the exciting idea that I- participates as a protective antioxidant and can be oxidized to hypoiodite, a potent oxidant involved in the host defense against microorganisms. This was possibly the original role of I- in biological systems, before the appearance of TH in evolution. I- per se participates in its own regulation, and new evidence indicates that it may be antineoplastic, anti-proliferative and cytotoxic in human cancer. Alterations in the expression of I- transporters are associated with tumor development in a cancer-type-dependent manner and, accordingly, NIS, CFTR and ANO1 have been proposed as tumor markers. Radioactive iodide has been the mainstay adjuvant treatment for thyroid cancer for the last seven decades by virtue of its active transport by NIS. The rapid advancement of techniques that detect radioisotopes, in particular I-, has made NIS a preferred target-specific theranostic agent.
Collapse
Affiliation(s)
- Antonio De la Vieja
- Tumor Endocrine Unit, Chronic Disease Program (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- CiberOnc, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Santisteban
- CiberOnc, Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiopathology of Endocrine a Nervous System, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
36
|
Herring BP, Hoggatt AM, Gupta A, Griffith S, Nakeeb A, Choi JN, Idrees MT, Nowak T, Morris DL, Wo JM. Idiopathic gastroparesis is associated with specific transcriptional changes in the gastric muscularis externa. Neurogastroenterol Motil 2018; 30:e13230. [PMID: 29052298 PMCID: PMC5878698 DOI: 10.1111/nmo.13230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The molecular changes that occur in the stomach that are associated with idiopathic gastroparesis are poorly described. The aim of this study was to use quantitative analysis of mRNA expression to identify changes in mRNAs encoding proteins required for the normal motility functions of the stomach. METHODS Full-thickness stomach biopsy samples were collected from non-diabetic control subjects who exhibited no symptoms of gastroparesis and from patients with idiopathic gastroparesis. mRNA was isolated from the muscularis externa and mRNA expression levels were determined by quantitative reverse transcriptase (RT)-PCR. KEY RESULTS Smooth muscle tissue from idiopathic gastroparesis patients had decreased expression of mRNAs encoding several contractile proteins, such as MYH11 and MYLK1. Conversely, there was no significant change in mRNAs characteristic of interstitial cells of Cajal (ICCs) such as KIT or ANO1. There was also a significant decrease in mRNA-encoding platelet-derived growth factor receptor α (PDGFRα) and its ligand PDGFB and in Heme oxygenase 1 in idiopathic gastroparesis subjects. In contrast, there was a small increase in mRNA characteristic of neurons. Although there was not an overall change in KIT expression in gastroparesis patients, KIT expression showed a significant correlation with gastric emptying whereas changes in MYLK1, ANO1 and PDGFRα showed weak correlations to the fullness/satiety subscore of patient assessment of upper gastrointestinal disorder-symptom severity index scores. CONCLUSIONS AND INFERENCES Our findings suggest that idiopathic gastroparesis is associated with altered smooth muscle cell contractile protein expression and loss of PDGFRα+ cells without a significant change in ICCs.
Collapse
Affiliation(s)
- B. Paul Herring
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202,To whom correspondence should be addressed: Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis IN, 46202, Phone: (317) 278-1785, FAX: (317) 274-3318,
| | - April M. Hoggatt
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Anita Gupta
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sarah Griffith
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Attila Nakeeb
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jennifer N. Choi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Muhammad T. Idrees
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Thomas Nowak
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - David L. Morris
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - John M. Wo
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
37
|
Danielsson J, Vink J, Hyuga S, Fu XW, Funayama H, Wapner R, Blanks AM, Gallos G. Anoctamin Channels in Human Myometrium: A Novel Target for Tocolysis. Reprod Sci 2018; 25:1589-1600. [PMID: 29471754 DOI: 10.1177/1933719118757683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Spontaneous preterm labor leading to preterm birth is a significant obstetric problem leading to neonatal morbidity and mortality. Current tocolytics are not completely effective and novel targets may afford a therapeutic benefit. OBJECTIVE To determine whether the anoctamin (ANO) family, including the calcium-activated chloride channel ANO1, is present in pregnant human uterine smooth muscle (USM) and whether pharmacological and genetic modulation of ANO1 modulates USM contraction. METHODS Reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical staining were done to determine which members of the ANO family are expressed in human USM. Uterine smooth muscle strips were studied in an organ bath to determine whether ANO1 antagonists inhibit oxytocin-induced USM contractions. Anoctamin 1 small interfering RNA (siRNA) knockdown was performed to determine its effect on filamentous-/globular (F/G)-actin ratio, a measurement of actin polymerization's role in promoting smooth muscle contraction. RESULTS Messenger RNA (mRNA) encoding all members of the ANO family (except ANO7) are expressed in pregnant USM tissue. Anoctamin 1 mRNA expression was decreased 15.2-fold in pregnant USM compared to nonpregnant. Anoctamin 1 protein is expressed in pregnant human USM tissue. Functional organ bath studies with pregnant human USM tissue demonstrated that the ANO1 antagonist benzbromarone attenuates the force and frequency of oxytocin-induced contractions. In human USM cells, siRNA knockdown of ANO1 decreases F-/G-actin ratios. CONCLUSION Multiple members of the ANO family, including the calcium-activated chloride channel ANO1, are expressed in human USM. Antagonism of ANO1 by pharmacological inhibition and genetic knockdown leads to an attenuation of contraction in pregnant human USM. Anoctamin 1 is a potentially novel target for tocolysis.
Collapse
Affiliation(s)
- Jennifer Danielsson
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Joy Vink
- 2 Department of Obstetrics and Gynecology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Shunsuke Hyuga
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Xiao Wen Fu
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hiromi Funayama
- 3 Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ronald Wapner
- 2 Department of Obstetrics and Gynecology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrew M Blanks
- 4 Cell and Developmental Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - George Gallos
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
38
|
Lin MJ, Yu BP. Colonic Hypermotility in a Rat Model of Irritable Bowel Syndrome Is Associated with Upregulation of TMEM16A in Myenteric Plexus. Dig Dis Sci 2018; 63:3329-3338. [PMID: 30155840 PMCID: PMC6244964 DOI: 10.1007/s10620-018-5261-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common disease with intestinal dysmotility, whose mechanism remains elusive. TMEM16A is a calcium-activated chloride channel (CaCC) involved in intestinal slow-wave generation. AIMS To investigate whether TMEM16A is involved in colonic dysmotility in IBS. METHODS A rat model of IBS was established by chronic water avoidance stress (WAS). Colonic pathological alterations were evaluated histologically, and intestinal motility was assessed by intestinal transit time (ITT) and fecal water content (FWC). Visceral sensitivity was determined by visceromotor response (VMR) to colorectal distension (CRD). TMEM16A expression was evaluated by RT-PCR, Western blot, and immunofluorescence. Colonic muscle strip contractility was measured by isometric transducers, and the effect of niflumic acid (NFA), a CaCC antagonist, on colonic motility was examined. RESULTS After 10 days of WAS exposure, ITT was decreased and FWC was elevated. Furthermore, VMR magnitude of WAS rats in response to CRD was significantly enhanced. Protein and mRNA levels of TMEM16A in colon were considerably increased after WAS. The percentage of TMEM16A-positive neurons in myenteric plexus (MP) of WAS rats was significantly higher than controls. Pharmacological blockade of TMEM16A activity by NFA considerably enhanced ITT, with concentration-dependent declines in FWC and VMR magnitude in NFA-treated rats. Further, spontaneous contraction of colonic strips of NFA-treated rats was significantly ameliorated in a concentration-dependent manner in vitro. CONCLUSIONS Upregulation of TMEM16A in MP neurons may play an important role in chronic stress-induced colonic hypermotility, making CaCC-blocking drugs a putatively effective treatment method for colonic hypermotility in IBS.
Collapse
Affiliation(s)
- Meng-juan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 238 Jiefang Rd, Wuhan, 430060 Hubei People’s Republic of China
- Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, People’s Republic of China
| | - Bao-ping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 238 Jiefang Rd, Wuhan, 430060 Hubei People’s Republic of China
- Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, People’s Republic of China
| |
Collapse
|
39
|
Vieira Frez FC, Martins Colombo Perles JV, Robert Linden D, Gibbons SJ, Amilcar Martins H, Almeida Brito Romualdo D, de Souza SR, Daion Piovezana Bossolani G, Zanoni JN. Restoration of density of interstitial cells of Cajal in the jejunum of diabetic rats after quercetin supplementation. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2017; 109:190-195. [PMID: 28004965 DOI: 10.17235/reed.2016.4338/2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Interstitial cells of Cajal (ICC) are required for normal motility in the gastrointestinal tract. Depletion of ICC has been associated with diabetic gastroenteropathy. PURPOSE To determine the effect of quercertin supplementation on anoctamin-1 (Ano1) immunoreactive ICC in the myenteric region (ICC-MY) and deep muscular plexus (ICC-DMP) in the jejunum of diabetic rats. METHODS Thirty-two 90-day-old male Wistar rats were distributed into the following groups: normoglycemic (C), normoglycemic supplemented with quercetin (CQ; 40 mg daily), diabetic (D), and diabetic supplemented with quercetin (DQ; 40 mg daily). Diabetes was induced by streptozotocin injection. After 120 days, preparations of the jejunal muscular and submucosal layers were immunostained for Ano1 to visualize ICC. Evaluation of the immunofluorescence intensity as well as density of ICC was performed. RESULTS The density of ICC-MY was 46% lower in group D compared to group C (p < 0.01); ICC-DMP were reduced by 37% (p > 0.05). After quercertin treatment, the densities of ICC-MY were significantly higher in the DQ group compared to group D (ICC-MY: 58%, p < 0.05). Supplementation with quercetin in normoglycemic animals (CQ) compared with group C did not significantly change the ICC density (p > 0.05). CONCLUSIONS In STZ-treated diabetic rats, diabetes promoted a reduction in the density of jejunal ICC-MY with no significant effect on ICC-DMP. Supplementation with quercetin (DQ) appeared to protect ICC-MY from depletion in diabetes possibly due to its antioxidant action.
Collapse
|
40
|
Saravanaperumal SA, Gibbons SJ, Malysz J, Sha L, Linden DR, Szurszewski JH, Farrugia G. Extracellular Cl - regulates electrical slow waves and setting of smooth muscle membrane potential by interstitial cells of Cajal in mouse jejunum. Exp Physiol 2017; 103:40-57. [PMID: 28971566 DOI: 10.1113/ep086367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to investigate the roles of extracellular chloride in electrical slow waves and resting membrane potential of mouse jejunal smooth muscle by replacing chloride with the impermeant anions gluconate and isethionate. What is the main finding and its importance? The main finding was that in smooth muscle cells, the resting Cl- conductance is low, whereas transmembrane Cl- movement in interstitial cells of Cajal (ICCs) is a major contributor to the shape of electrical slow waves. Furthermore, the data confirm that ICCs set the smooth muscle membrane potential and that altering Cl- homeostasis in ICCs can alter the smooth muscle membrane potential. Intracellular Cl- homeostasis is regulated by anion-permeable channels and transporters and contributes to excitability of many cell types, including smooth muscle and interstitial cells of Cajal (ICCs). Our aims were to investigate the effects on electrical activity in mouse jejunal muscle strips of replacing extracellular Cl- (Cl-o ) with the impermeant anions gluconate and isethionate. On reducing Cl-o , effects were observed on electrical slow waves, with small effects on smooth muscle membrane voltage (Em ). Restoration of Cl- hyperpolarized smooth muscle Em proportional to the change in Cl-o concentration. Replacement of 90% of Cl-o with gluconate reversibly abolished slow waves in five of nine preparations. Slow waves were maintained in isethionate. Gluconate and isethionate substitution had similar concentration-dependent effects on peak amplitude, frequency, width at half peak amplitude, rise time and decay time of residual slow waves. Gluconate reduced free ionized Ca2+ in Krebs solutions to 0.13 mm. In Krebs solutions containing normal Cl- and 0.13 mm free Ca2+ , slow wave frequency was lower, width at half peak amplitude was smaller, and decay time was faster. The transient hyperpolarization following restoration of Cl-o was not observed in W/Wv mice, which lack pacemaker ICCs in the small intestine. We conclude that in smooth muscle cells, the resting Cl- conductance is low, whereas transmembrane Cl- movement in ICCs plays a major role in generation or propagation of slow waves. Furthermore, these data support a role for ICCs in setting smooth muscle Em and that altering Cl- homeostasis in ICCs can alter smooth muscle Em .
Collapse
Affiliation(s)
| | - Simon J Gibbons
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - John Malysz
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lei Sha
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - David R Linden
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Joseph H Szurszewski
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
Zhou J, O'Connor MD, Ho V. The Potential for Gut Organoid Derived Interstitial Cells of Cajal in Replacement Therapy. Int J Mol Sci 2017; 18:ijms18102059. [PMID: 28954442 PMCID: PMC5666741 DOI: 10.3390/ijms18102059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022] Open
Abstract
Effective digestion requires propagation of food along the entire length of the gastrointestinal tract. This process involves coordinated waves of peristalsis produced by enteric neural cell types, including different categories of interstitial cells of Cajal (ICC). Impaired food transport along the gastrointestinal tract, either too fast or too slow, causes a range of gut motility disorders that affect millions of people worldwide. Notably, loss of ICC has been shown to affect gut motility. Patients that suffer from gut motility disorders regularly experience diarrhoea and/or constipation, insomnia, anxiety, attention lapses, irritability, dizziness, and headaches that greatly affect both physical and mental health. Limited treatment options are available for these patients, due to the scarcity of human gut tissue for research and transplantation. Recent advances in stem cell technology suggest that large amounts of rudimentary, yet functional, human gut tissue can be generated in vitro for research applications. Intriguingly, these stem cell-derived gut organoids appear to contain functional ICC, although their frequency and functional properties are yet to be fully characterised. By reviewing methods of gut organoid generation, together with what is known of the molecular and functional characteristics of ICC, this article highlights short- and long-term goals that need to be overcome in order to develop ICC-based therapies for gut motility disorders.
Collapse
Affiliation(s)
- Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Medical Sciences Research Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Michael D O'Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Medical Sciences Research Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Medical Sciences Research Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
42
|
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, Xiao Q. Cell-specific mechanisms of TMEM16A Ca 2+-activated chloride channel in cancer. Mol Cancer 2017; 16:152. [PMID: 28893247 PMCID: PMC5594453 DOI: 10.1186/s12943-017-0720-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
TMEM16A (known as anoctamin 1) Ca2+-activated chloride channel is overexpressed in many tumors. TMEM16A overexpression can be caused by gene amplification in many tumors harboring 11q13 amplification. TMEM16A expression is also controlled in many cancer cells via transcriptional regulation, epigenetic regulation and microRNAs. In addition, TMEM16A activates different signaling pathways in different cancers, e.g. the EGFR and CAMKII signaling in breast cancer, the p38 and ERK1/2 signaling in hepatoma, the Ras-Raf-MEK-ERK1/2 signaling in head and neck squamous cell carcinoma and bladder cancer, and the NFκB signaling in glioma. Furthermore, TMEM16A overexpression has been reported to promote, inhibit, or produce no effects on cell proliferation and migration in different cancer cells. Since TMEM16A exerts different roles in different cancer cells via activation of distinct signaling pathways, we try to develop the idea that TMEM16A regulates cancer cell proliferation and migration in a cell-dependent mechanism. The cell-specific role of TMEM16A may depend on the cellular environment that is predetermined by TMEM16A overexpression mechanisms specific for a particular cancer type. TMEM16A may exert its cell-specific role via its associated protein networks, phosphorylation by different kinases, and involvement of different signaling pathways. In addition, we discuss the role of TMEM16A channel activity in cancer, and its clinical use as a prognostic and predictive marker in different cancers. This review highlights the cell-type specific mechanisms of TMEM16A in cancer, and envisions the promising use of TMEM16A inhibitors as a potential treatment for TMEM16A-overexpressing cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Liang Zou
- Department of Anesthesiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| |
Collapse
|
43
|
|
44
|
Uranga JA, García-Martínez JM, García-Jiménez C, Vera G, Martín-Fontelles MI, Abalo R. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat. Neurogastroenterol Motil 2017; 29. [PMID: 28261911 DOI: 10.1111/nmo.13047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. METHODS Male Wistar rats received saline or cisplatin (2 mg kg-1 week-1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. KEY RESULTS Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). CONCLUSIONS & INFERENCES Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated.
Collapse
Affiliation(s)
- J A Uranga
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - J M García-Martínez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo de Compuestos químicos y materiales nanoestructurados con aplicaciones Avanzadas (QUINANOAP), Madrid, Spain
| | - C García-Jiménez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo de Compuestos químicos y materiales nanoestructurados con aplicaciones Avanzadas (QUINANOAP), Madrid, Spain
| | - G Vera
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - M I Martín-Fontelles
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - R Abalo
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| |
Collapse
|
45
|
Strege PR, Gibbons SJ, Mazzone A, Bernard CE, Beyder A, Farrugia G. EAVK segment "c" sequence confers Ca 2+-dependent changes to the kinetics of full-length human Ano1. Am J Physiol Gastrointest Liver Physiol 2017; 312:G572-G579. [PMID: 28336549 PMCID: PMC5495914 DOI: 10.1152/ajpgi.00429.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 01/31/2023]
Abstract
Anoctamin1 (Ano1 and TMEM16A) is a calcium-activated chloride channel specifically expressed in the interstitial cells of Cajal (ICC) of the gastrointestinal tract muscularis propria. Ano1 is necessary for normal electrical slow waves and ICC proliferation. The full-length human Ano1 sequence includes an additional exon, exon "0," at the NH2 terminus. Ano1 with exon 0 [Ano1(0)] had a lower EC50 for intracellular calcium ([Ca2+]i) and faster chloride current (ICl) kinetics. The Ano1 alternative splice variant with segment "c" encoding exon 13 expresses on the first intracellular loop four additional amino acid residues, EAVK, which alter ICl at low [Ca2+]i Exon 13 is expressed in 75-100% of Ano1 transcripts in most human tissues but only 25% in the human stomach. Our aim was to determine the effect of EAVK deletion on Ano1(0)ICl parameters. By voltage-clamp electrophysiology, we examined ICl in HEK293 cells transiently expressing Ano1(0) with or without the EAVK sequence [Ano1(0)ΔEAVK]. The EC50 values of activating and deactivating ICl for [Ca2+]i were 438 ± 7 and 493 ± 9 nM for Ano1(0) but higher for Ano1(0)ΔEAVK at 746 ± 47 and 761 ± 26 nM, respectively. Meanwhile, the EC50 values for the ratio of instantaneous to steady-state ICl were not different between variants. Congruently, the time constant of activation was slower for Ano1(0)ΔEAVK than Ano1(0) currents at intermediate [Ca2+]i These results suggest that EAVK decreases the calcium sensitivity of Ano1(0) current activation and deactivation by slowing activation kinetics. Differential expression of EAVK in the human stomach may function as a switch to increase sensitivity to [Ca2+]i via faster gating of Ano1.NEW & NOTEWORTHY Calcium-activated chloride channel anoctamin1 (Ano1) is necessary for normal slow waves in the gastrointestinal interstitial cells of Cajal. Exon 0 encodes the NH2 terminus of full-length human Ano1 [Ano1(0)], while exon 13 encodes residues EAVK on its first intracellular loop. Splice variants lack EAVK more often in the stomach than other tissues. Ano1(0) without EAVK [Ano1(0)ΔEAVK] has reduced sensitivity for intracellular calcium, attributable to slower kinetics. Differential expression of EAVK may function as a calcium-sensitive switch in the human stomach.
Collapse
|
46
|
Yin L, Menon R, Gupta R, Vaught L, Okunieff P, Vidyasagar S. Glucose enhances rotavirus enterotoxin-induced intestinal chloride secretion. Pflugers Arch 2017; 469:1093-1105. [PMID: 28488023 DOI: 10.1007/s00424-017-1987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Rotavirus causes severe diarrhea in small children and is typically treated using glucose-containing oral rehydration solutions; however, glucose may have a detrimental impact on these patients, because it increases chloride secretion and presumably water loss. The rotavirus enterotoxin nonstructural protein 4 (NSP4) directly inhibits glucose-mediated sodium absorption. We examined the effects of NSP4 and glucose on sodium and chloride transport in mouse small intestines and Caco-2 cells. Mouse small intestines and Caco-2 cells were incubated with NSP4114-135 in the presence/absence of glucose. Absorption and secretion of sodium and chloride, fluid movement, peak amplitude of intracellular calcium fluorescence, and expression of Ano1 and sodium-glucose cotransporter 1 were assessed. NHE3 activity increased, and chloride secretory activity decreased with age. Net chloride secretion increased, and net sodium absorption decreased in the intestines of 3-week-old mice compared to 8-week-old mice with NSP4. Glucose increased NSP4-stimulated chloride secretion. Glucose increased NSP4-stimulated increase in short-circuit current measurements (I sc) and net chloride secretion. Ano1 cells with siRNA knockdown showed a significant difference in I sc in the presence of NSP4 and glucose without a significant difference in peak calcium fluorescence intracellular when compared to non-silencing (N.S.) cells. The failure of glucose to stimulate significant sodium absorption was likely due to the inhibition of sodium-hydrogen exchange and sodium-glucose cotransport by NSP4. Since glucose enhances intestinal chloride secretion and fails to increase sodium absorption in the presence of NSP4, glucose-based oral rehydration solutions may not be ideal for the management of rotaviral diarrhea.
Collapse
Affiliation(s)
- Liangjie Yin
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Rejeesh Menon
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Reshu Gupta
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Lauren Vaught
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA.
| |
Collapse
|
47
|
Malysz J, Gibbons SJ, Saravanaperumal SA, Du P, Eisenman ST, Cao C, Oh U, Saur D, Klein S, Ordog T, Farrugia G. Conditional genetic deletion of Ano1 in interstitial cells of Cajal impairs Ca 2+ transients and slow waves in adult mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2017; 312:G228-G245. [PMID: 27979828 PMCID: PMC5401988 DOI: 10.1152/ajpgi.00363.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/31/2023]
Abstract
Myenteric plexus interstitial cells of Cajal (ICC-MY) in the small intestine are Kit+ electrical pacemakers that express the Ano1/TMEM16A Ca2+-activated Cl- channel, whose functions in the gastrointestinal tract remain incompletely understood. In this study, an inducible Cre-LoxP-based approach was used to advance the understanding of Ano1 in ICC-MY of adult mouse small intestine. KitCreERT2/+;Ano1Fl/Fl mice were treated with tamoxifen or vehicle, and small intestines (mucosa free) were examined. Quantitative RT-PCR demonstrated ~50% reduction in Ano1 mRNA in intestines of conditional knockouts (cKOs) compared with vehicle-treated controls. Whole mount immunohistochemistry showed a mosaic/patchy pattern loss of Ano1 protein in ICC networks. Ca2+ transients in ICC-MY network of cKOs displayed reduced duration compared with highly synchronized controls and showed synchronized and desynchronized profiles. When matched, the rank order for Ano1 expression in Ca2+ signal imaged fields of view was as follows: vehicle controls>>>cKO(synchronized)>cKO(desynchronized). Maintenance of Ca2+ transients' synchronicity despite high loss of Ano1 indicates a large functional reserve of Ano1 in the ICC-MY network. Slow waves in cKOs displayed reduced duration and increased inter-slow-wave interval and occurred in regular- and irregular-amplitude oscillating patterns. The latter activity suggested ongoing interaction by independent interacting oscillators. Lack of slow waves and depolarization, previously reported for neonatal constitutive knockouts, were also seen. In summary, Ano1 in adults regulates gastrointestinal function by determining Ca2+ transients and electrical activity depending on the level of Ano1 expression. Partial Ano1 loss results in Ca2+ transients and slow waves displaying reduced duration, while complete and widespread absence of Ano1 in ICC-MY causes lack of slow wave and desynchronized Ca2+ transients.NEW & NOTEWORTHY The Ca2+-activated Cl- channel, Ano1, in interstitial cells of Cajal (ICC) is necessary for normal gastrointestinal motility. We knocked out Ano1 to varying degrees in ICC of adult mice. Partial knockout of Ano1 shortened the widths of electrical slow waves and Ca2+ transients in myenteric ICC but Ca2+ transient synchronicity was preserved. Near-complete knockout was necessary for transient desynchronization and loss of slow waves, indicating a large functional reserve of Ano1 in ICC.
Collapse
Affiliation(s)
- John Malysz
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | - Simon J Gibbons
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | | | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Seth T Eisenman
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | - Chike Cao
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | - Uhtaek Oh
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University, Seoul, Republic of Korea; and
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Sabine Klein
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Tamas Ordog
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
48
|
Sanger GJ, Pasricha PJ. Investigational drug therapies for the treatment of gastroparesis. Expert Opin Investig Drugs 2017; 26:331-342. [PMID: 28127997 DOI: 10.1080/13543784.2017.1288214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Gastroparesis is defined by nausea, vomiting, pain, early satiety and bloating, and characterized by delayed gastric emptying without obvious structural abnormalities. Metoclopramide is widely used, increasing gastric emptying and inhibiting nausea and vomiting. Other drugs are available in certain countries and some are used 'off-label' because they increase gastric emptying or inhibit emesis. However, correlation between gastroparesis symptoms and rates of gastric emptying is poor. For anti-emetic drugs, dose-ranging and Phase III trials in gastroparesis are lacking. Areas covered: Gastric motility may still be disordered, leading to nausea, even though gastric emptying is unchanged. One hypothesis is that interstitial cells of Cajal (ICC) are damaged by diabetes leading to gastric dysrhythmia and nausea. Novel approaches to treatment of nausea also include the use of ghrelin receptor agonists, highlighting a link between appetite and nausea. Expert opinion: There is an urgent need to diversify away from historical drug targets. In particular, there is a need to control nausea by regulating ICC functions and/or by facilitating appetite via ghrelin receptor agonists. It is also important to note that different upper gastrointestinal disorders (gastroparesis, chronic unexplained nausea and vomiting, functional dyspepsia) are difficult to distinguish apart, suggesting wider therapeutic opportunity.
Collapse
Affiliation(s)
- Gareth J Sanger
- a Professor of Neuropharmacology , Blizard Institute and the National Centre for Bowel Research, Barts The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Pankaj Jay Pasricha
- b Vice Chair of Medicine for Innovation and Commercialization , Johns Hopkins University School of Medicine, Director, Johns Hopkins Center for Neurogastroenterology, Professor of Medicine and Neurosciences, Professor of Innovation Management, Johns Hopkins Carey School of Business , Baltimore , MD , USA
| |
Collapse
|
49
|
Park KS, Cho KB, Hwang IS, Park JH, Jang BI, Kim KO, Jeon SW, Kim ES, Park CS, Kwon JG. Characterization of smooth muscle, enteric nerve, interstitial cells of Cajal, and fibroblast-like cells in the gastric musculature of patients with diabetes mellitus. World J Gastroenterol 2016; 22:10131-10139. [PMID: 28028361 PMCID: PMC5155172 DOI: 10.3748/wjg.v22.i46.10131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/01/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate histologic abnormalities in the gastric smooth muscle of patients with diabetes mellitus (DM).
METHODS Full-thickness gastric specimens were obtained from patients undergoing surgery for gastric cancer. H&E stain and Masson’s Trichrome stain were performed to assess the degree of fibrosis. Immunohistochemical staining using various antibodies was also performed [antibodies against protein gene product 9.5 (PGP9.5), neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), neurokinin-1 (NK1) receptor, c-Kit, and platelet-derived growth factor receptor-alpha, (PDGFRα)]. Immunofluorescent staining and evaluation with confocal microscopy were also conducted.
RESULTS Twenty-six controls and 35 diabetic patients (21 short-duration patients and 14 long-duration patients) were included. There were no significant differences in basic demographics between the two groups except in mean body mass index (BMI) (higher in the DM group). Proportions of moderate-to-severe intercellular fibrosis in the muscle layer were significantly higher in the DM group than in the control group (P < 0.01). On immunohistochemical staining, c-Kit- and PDGFRα-positive immunoreactivity were significantly decreased in the DM group compared with the control group (P < 0.05). There were no statistically significant differences in PGP9.5, nNOS, VIP, and neurokinin 1 expression. On immunofluorescent staining, cellularity of interstitial cells of Cajal (ICC) was observed to decrease with increasing duration of DM.
CONCLUSION Our study suggests that increased intercellular fibrosis, loss of ICC, and loss of fibroblast-like cells are found in the smooth muscle of DM patients. These abnormalities may contribute to changes in gastric motor activity in patients with DM.
Collapse
|
50
|
Ma K, Wang H, Yu J, Wei M, Xiao Q. New Insights on the Regulation of Ca 2+ -Activated Chloride Channel TMEM16A. J Cell Physiol 2016; 232:707-716. [PMID: 27682822 DOI: 10.1002/jcp.25621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
TMEM16A, also known as anoctamin 1, is a recently identified Ca2+ -activated chloride channel and the first member of a 10-member TMEM16 family. TMEM16A dysfunction is implicated in many diseases such as cancer, hypertension, and cystic fibrosis. TMEM16A channels are well known to be dually regulated by voltage and Ca2+ . In addition, recent studies have revealed that TMEM16A channels are regulated by many molecules such as calmodulin, protons, cholesterol, and phosphoinositides, and a diverse range of stimuli such as thermal and mechanical stimuli. A better understanding of the regulatory mechanisms of TMEM16A is important to understand its physiological and pathological role. Recently, the crystal structure of a TMEM16 family member from the fungus Nectria haematococcaten (nhTMEM16) is discovered, and provides valuable information for studying the structure and function of TMEM16A. In this review, we discuss the structure and function of TMEM16A channels based on the crystal structure of nhTMEM16A and focus on the regulatory mechanisms of TMEM16A channels. J. Cell. Physiol. 232: 707-716, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| |
Collapse
|