1
|
Zhang C, Liu J, Wu J, Ranjan K, Cui X, Wang X, Zhang D, Zhu S. Key molecular DNA damage responses of human cells to radiation. Front Cell Dev Biol 2024; 12:1422520. [PMID: 39050891 PMCID: PMC11266142 DOI: 10.3389/fcell.2024.1422520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Our understanding of the DNA damage responses of human cells to radiation has increased remarkably over the recent years although some notable signaling events remain to be discovered. Here we provide a brief account of the key molecular events of the responses to reflect the current understanding of the key underlying mechanisms involved.
Collapse
Affiliation(s)
- Chencheng Zhang
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jibin Liu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jun Wu
- Nantong Tumor Hospital, Nantong, China
| | - Kamakshi Ranjan
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Xiaopeng Cui
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xingdan Wang
- Department of Radiotherapy, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Shudong Zhu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
- Argus Pharmaceuticals, Changsha, China
| |
Collapse
|
2
|
Laverty DJ, Gupta SK, Bradshaw GA, Hunter AS, Carlson BL, Calmo NM, Chen J, Tian S, Sarkaria JN, Nagel ZD. ATM inhibition exploits checkpoint defects and ATM-dependent double strand break repair in TP53-mutant glioblastoma. Nat Commun 2024; 15:5294. [PMID: 38906885 PMCID: PMC11192742 DOI: 10.1038/s41467-024-49316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Determining the balance between DNA double strand break repair (DSBR) pathways is essential for understanding treatment response in cancer. We report a method for simultaneously measuring non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). Using this method, we show that patient-derived glioblastoma (GBM) samples with acquired temozolomide (TMZ) resistance display elevated HR and MMEJ activity, suggesting that these pathways contribute to treatment resistance. We screen clinically relevant small molecules for DSBR inhibition with the aim of identifying improved GBM combination therapy regimens. We identify the ATM kinase inhibitor, AZD1390, as a potent dual HR/MMEJ inhibitor that suppresses radiation-induced phosphorylation of DSBR proteins, blocks DSB end resection, and enhances the cytotoxic effects of TMZ in treatment-naïve and treatment-resistant GBMs with TP53 mutation. We further show that a combination of G2/M checkpoint deficiency and reliance upon ATM-dependent DSBR renders TP53 mutant GBMs hypersensitive to TMZ/AZD1390 and radiation/AZD1390 combinations. This report identifies ATM-dependent HR and MMEJ as targetable resistance mechanisms in TP53-mutant GBM and establishes an approach for simultaneously measuring multiple DSBR pathways in treatment selection and oncology research.
Collapse
Affiliation(s)
- Daniel J Laverty
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | | | | | | | | | - Jiajia Chen
- Mayo Clinic, Rochester, MN, 55905, USA
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | - Zachary D Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Pastor F, Charles E, Belmudes L, Chabrolles H, Cescato M, Rivoire M, Burger T, Passot G, Durantel D, Lucifora J, Couté Y, Salvetti A. Deciphering the phospho-signature induced by hepatitis B virus in primary human hepatocytes. Front Microbiol 2024; 15:1415449. [PMID: 38841065 PMCID: PMC11150682 DOI: 10.3389/fmicb.2024.1415449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Phosphorylation is a major post-translation modification (PTM) of proteins which is finely tuned by the activity of several hundred kinases and phosphatases. It controls most if not all cellular pathways including anti-viral responses. Accordingly, viruses often induce important changes in the phosphorylation of host factors that can either promote or counteract viral replication. Among more than 500 kinases constituting the human kinome only few have been described as important for the hepatitis B virus (HBV) infectious cycle, and most of them intervene during early or late infectious steps by phosphorylating the viral Core (HBc) protein. In addition, little is known on the consequences of HBV infection on the activity of cellular kinases. The objective of this study was to investigate the global impact of HBV infection on the cellular phosphorylation landscape early after infection. For this, primary human hepatocytes (PHHs) were challenged or not with HBV, and a mass spectrometry (MS)-based quantitative phosphoproteomic analysis was conducted 2- and 7-days post-infection. The results indicated that while, as expected, HBV infection only minimally modified the cell proteome, significant changes were observed in the phosphorylation state of several host proteins at both time points. Gene enrichment and ontology analyses of up- and down-phosphorylated proteins revealed common and distinct signatures induced by infection. In particular, HBV infection resulted in up-phosphorylation of proteins involved in DNA damage signaling and repair, RNA metabolism, in particular splicing, and cytoplasmic cell-signaling. Down-phosphorylated proteins were mostly involved in cell signaling and communication. Validation studies carried out on selected up-phosphorylated proteins, revealed that HBV infection induced a DNA damage response characterized by the appearance of 53BP1 foci, the inactivation of which by siRNA increased cccDNA levels. In addition, among up-phosphorylated RNA binding proteins (RBPs), SRRM2, a major scaffold of nuclear speckles behaved as an antiviral factor. In accordance with these findings, kinase prediction analysis indicated that HBV infection upregulates the activity of major kinases involved in DNA repair. These results strongly suggest that HBV infection triggers an intrinsic anti-viral response involving DNA repair factors and RBPs that contribute to reduce HBV replication in cell culture models.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Emilie Charles
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Lucid Belmudes
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CEA, CNRS, FR2048, Grenoble, France
| | - Hélène Chabrolles
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Marion Cescato
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | | | - Thomas Burger
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CEA, CNRS, FR2048, Grenoble, France
| | - Guillaume Passot
- Service de Chirurgie Générale et Oncologique, Hôpital Lyon Sud, Hospices Civils de Lyon Et CICLY, EA3738, Université Claude Bernard Lyon, Lyon, France
| | - David Durantel
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Julie Lucifora
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CEA, CNRS, FR2048, Grenoble, France
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| |
Collapse
|
4
|
Gonzáles-Córdova RA, Dos Santos TR, Gachet-Castro C, Andrade Vieira J, Trajano-Silva LAM, Sakamoto-Hojo ET, Baqui MMA. Trypanosoma cruzi infection induces DNA double-strand breaks and activates DNA damage response pathway in host epithelial cells. Sci Rep 2024; 14:5225. [PMID: 38433244 PMCID: PMC10909859 DOI: 10.1038/s41598-024-53589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, invades many cell types affecting numerous host-signalling pathways. During the T. cruzi infection, we demonstrated modulations in the host RNA polymerase II activity with the downregulation of ribonucleoproteins affecting host transcription and splicing machinery. These alterations could be a result of the initial damage to the host DNA caused by the presence of the parasite, however, the mechanisms are not well understood. Herein, we examined whether infection by T. cruzi coincided with enhanced DNA damage in the host cell. We studied the engagement of the DNA damage response (DDR) pathways at the different time points (0-24 h post-infection, hpi) by T. cruzi in LLC-MK2 cells. In response to double-strand breaks (DSB), maximum phosphorylation of the histone variant H2AX is observed at 2hpi and promotes recruitment of the DDR p53-binding protein (53BP1). During T. cruzi infection, Ataxia-telangiectasia mutated protein (ATM) and DNA-PK protein kinases remained active in a time-dependent manner and played roles in regulating the host response to DSB. The host DNA lesions caused by the infection are likely orchestrated by the non-homologous end joining (NHEJ) pathway to maintain the host genome integrity.
Collapse
Affiliation(s)
- Raul Alexander Gonzáles-Córdova
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Thamires Rossi Dos Santos
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Camila Gachet-Castro
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Johnathan Andrade Vieira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Lays Adrianne Mendonça Trajano-Silva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
- Department of Biology, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, 14040-901, Brazil
| | - Munira Muhammad Abdel Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil.
| |
Collapse
|
5
|
Vazifehmand R, Ali DS, Homaie FM, Jalalvand FM, Othman Z, Deming C, Stanslas J, Sekawi Z. Effects of HSV-G47Δ Oncolytic Virus on Telomerase and Telomere Length Alterations in Glioblastoma Multiforme Cancer Stem Cells Under Hypoxia and Normoxia Conditions. Curr Cancer Drug Targets 2024; 24:1262-1274. [PMID: 38357955 DOI: 10.2174/0115680096274769240115165344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Due to the existence of tumor stem cells with tumorigenicity properties and resistance patterns, treatment of glioblastoma is not easy. Hypoxia is a major concern in glioblastoma therapy. Telomerase activity and telomere length alterations have been known to play a critical role in glioblastoma progression and invasion. OBJECTIVE This study aimed to investigate the effects of HSV-G47Δ oncolytic virus on telomerase and telomere length alterations in U251GBMCSCs (U251-Glioblastoma cancer stem cells) under hypoxia and normoxia conditions. METHODS U251-CSCs were exposed to the HSV-G47Δ virus in optimized MOI (Multiplicity of infection= 1/14 hours). An absolute telomere length and gene expression of telomerase subunits were determined using an absolute human telomere length quantification PCR assay. Furthermore, a bioinformatics pathway analysis was carried out to evaluate physical and genetic interactions between dysregulated genes with other potential genes and pathways. RESULTS Data revealed that U251CSCs had longer telomeres when exposed to HSV-G47Δ in normoxic conditions but had significantly shorter telomeres in hypoxic conditions. Furthermore, hTERC, DKC1, and TEP1 genes were significantly dysregulated in hypoxic and normoxic microenvironments. The analysis revealed that the expression of TERF2 was significantly reduced in both microenvironments, and two critical genes from the MRN complex, MER11 and RAD50, were significantly upregulated in normoxic conditions. RAD50 showed a significant downregulation pattern in the hypoxic niche. Our results suggested that repair complex in the telomeric structure could be targeted by HSV-G47Δ in both microenvironments. CONCLUSION In the glioblastoma treatment strategy, telomerase and telomere complex could be potential targets for HSV-G47Δ in both microenvironments.
Collapse
Affiliation(s)
- Reza Vazifehmand
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | | | | | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Chau Deming
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Liu XD, Zhang YT, McGrail DJ, Zhang X, Lam T, Hoang A, Hasanov E, Manyam G, Peterson CB, Zhu H, Kumar SV, Akbani R, Pilie PG, Tannir NM, Peng G, Jonasch E. SETD2 Loss and ATR Inhibition Synergize to Promote cGAS Signaling and Immunotherapy Response in Renal Cell Carcinoma. Clin Cancer Res 2023; 29:4002-4015. [PMID: 37527013 PMCID: PMC10592192 DOI: 10.1158/1078-0432.ccr-23-1003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/13/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Immune checkpoint blockade (ICB) demonstrates durable clinical benefits in a minority of patients with renal cell carcinoma (RCC). We aimed to identify the molecular features that determine the response and develop approaches to enhance it. EXPERIMENTAL DESIGN We investigated the effects of SET domain-containing protein 2 (SETD2) loss on the DNA damage response pathway, the cytosolic DNA-sensing pathway, the tumor immune microenvironment, and the response to ataxia telangiectasia and rad3-related (ATR) and checkpoint inhibition in RCC. RESULTS ATR inhibition activated the cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3)-dependent cytosolic DNA-sensing pathway, resulting in the concurrent expression of inflammatory cytokines and immune checkpoints. Among the common RCC genotypes, SETD2 loss is associated with preferential ATR activation and sensitizes cells to ATR inhibition. SETD2 knockdown promoted the cytosolic DNA-sensing pathway in response to ATR inhibition. Treatment with the ATR inhibitor VE822 concurrently upregulated immune cell infiltration and immune checkpoint expression in Setd2 knockdown Renca tumors, providing a rationale for ATR inhibition plus ICB combination therapy. Setd2-deficient Renca tumors demonstrated greater vulnerability to ICB monotherapy or combination therapy with VE822 than Setd2-proficient tumors. Moreover, SETD2 mutations were associated with a higher response rate and prolonged overall survival in patients with ICB-treated RCC but not in patients with non-ICB-treated RCC. CONCLUSIONS SETD2 loss and ATR inhibition synergize to promote cGAS signaling and enhance immune cell infiltration, providing a mechanistic rationale for the combination of ATR and checkpoint inhibition in patients with RCC with SETD2 mutations.
Collapse
Affiliation(s)
- Xian-De Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- These authors contributed equally
| | - Yan-Ting Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- These authors contributed equally
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xuesong Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Truong Lam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anh Hoang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elshad Hasanov
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganiraju Manyam
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haifeng Zhu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick G. Pilie
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
8
|
Mre11-Rad50: the DNA end game. Biochem Soc Trans 2023; 51:527-538. [PMID: 36892213 DOI: 10.1042/bst20220754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
The Mre11-Rad50-(Nbs1/Xrs2) complex is an evolutionarily conserved factor for the repair of DNA double-strand breaks and other DNA termini in all kingdoms of life. It is an intricate DNA associated molecular machine that cuts, among other functions, a large variety of free and obstructed DNA termini for DNA repair by end joining or homologous recombination, yet leaves undamaged DNA intact. Recent years have brought progress in both the structural and functional analyses of Mre11-Rad50 orthologs, revealing mechanisms of DNA end recognition, endo/exonuclease activities, nuclease regulation and DNA scaffolding. Here, I review our current understanding and recent progress on the functional architecture Mre11-Rad50 and how this chromosome associated coiled-coil ABC ATPase acts as DNA topology specific endo-/exonuclease.
Collapse
|
9
|
Rotheneder M, Stakyte K, van de Logt E, Bartho JD, Lammens K, Fan Y, Alt A, Kessler B, Jung C, Roos WP, Steigenberger B, Hopfner KP. Cryo-EM structure of the Mre11-Rad50-Nbs1 complex reveals the molecular mechanism of scaffolding functions. Mol Cell 2023; 83:167-185.e9. [PMID: 36577401 DOI: 10.1016/j.molcel.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/14/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022]
Abstract
The DNA double-strand break repair complex Mre11-Rad50-Nbs1 (MRN) detects and nucleolytically processes DNA ends, activates the ATM kinase, and tethers DNA at break sites. How MRN can act both as nuclease and scaffold protein is not well understood. The cryo-EM structure of MRN from Chaetomium thermophilum reveals a 2:2:1 complex with a single Nbs1 wrapping around the autoinhibited Mre11 nuclease dimer. MRN has two DNA-binding modes, one ATP-dependent mode for loading onto DNA ends and one ATP-independent mode through Mre11's C terminus, suggesting how it may interact with DSBs and intact DNA. MRNs two 60-nm-long coiled-coil domains form a linear rod structure, the apex of which is assembled by the two joined zinc-hook motifs. Apices from two MRN complexes can further dimerize, forming 120-nm spanning MRN-MRN structures. Our results illustrate the architecture of MRN and suggest how it mechanistically integrates catalytic and tethering functions.
Collapse
Affiliation(s)
- Matthias Rotheneder
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Kristina Stakyte
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Erik van de Logt
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Joseph D Bartho
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Katja Lammens
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Yilan Fan
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Aaron Alt
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Brigitte Kessler
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Christophe Jung
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Wynand P Roos
- Institute for Toxicology, Johannes-Gutenberg-Universität, Mainz, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany.
| |
Collapse
|
10
|
Alternative telomere maintenance mechanism in Alligator sinensis provides insights into aging evolution. iScience 2022; 26:105850. [PMID: 36636341 PMCID: PMC9829719 DOI: 10.1016/j.isci.2022.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Lifespan is a life-history trait that undergoes natural selection. Telomeres are hallmarks of aging, and shortening rate predicts species lifespan, making telomere maintenance mechanisms throughout different lifespans a worthy topic for study. Alligators are suitable for the exploration of anti-aging molecular mechanisms, because they exhibit low or even negligible mortality in adults and no significant telomere shortening. Telomerase reverse transcriptase (TERT) expression is absent in the adult Alligator sinensis, as in humans. Selection analyses on telomere maintenance genes indicated that ATM, FANCE, SAMHD1, HMBOX1, NAT10, and MAP3K4 experienced positive selection on A. sinensis. Repressed pleiotropic ATM kinase in A. sinensis suggests their fitness optimum shift. In ATM downstream, Alternative Lengthening of Telomeres (ALT)-related genes were clustered in a higher expression pattern in A. sinensis, which covers 10-15% of human cancers showing no telomerase activities. In summary, we demonstrated how telomere shortening, telomerase activities, and ALT contributed to anti-aging strategies.
Collapse
|
11
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
12
|
Relations between Structure and Zn(II) Binding Affinity Shed Light on the Mechanisms of Rad50 Hook Domain Functioning and Its Phosphorylation. Int J Mol Sci 2022; 23:ijms231911140. [PMID: 36232441 PMCID: PMC9569753 DOI: 10.3390/ijms231911140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The metal binding at protein–protein interfaces is still uncharted territory in intermolecular interactions. To date, only a few protein complexes binding Zn(II) in an intermolecular manner have been deeply investigated. The most notable example of such interfaces is located in the highly conserved Rad50 protein, part of the Mre11-Rad50-Nbs1 (MRN) complex, where Zn(II) is required for homodimerization (Zn(Rad50)2). The high stability of Zn(Rad50)2 is conserved not only for the protein derived from the thermophilic archaeon Pyrococcus furiosus (logK12 = 20.95 for 130-amino-acid-long fragment), which was the first one studied, but also for the human paralog studied here (logK12 = 19.52 for a 183-amino-acid-long fragment). As we reported previously, the extremely high stability results from the metal-coupled folding process where particular Rad50 protein fragments play a critical role. The sequence–structure–stability analysis based on human Rad50 presented here separates the individual structural components that increase the stability of the complex, pointing to amino acid residues far away from the Zn(II) binding site as being largely responsible for the complex stabilization. The influence of the individual components is very well reflected by the previously published crystal structure of the human Rad50 zinc hook (PDB: 5GOX). In addition, we hereby report the effect of phosphorylation of the zinc hook domain, which exerts a destabilizing effect on the domain. This study identifies factors governing the stability of metal-mediated protein–protein interactions and illuminates their molecular basis.
Collapse
|
13
|
McKerrow W, Wang X, Mendez-Dorantes C, Mita P, Cao S, Grivainis M, Ding L, LaCava J, Burns KH, Boeke JD, Fenyö D. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc Natl Acad Sci U S A 2022; 119:e2115999119. [PMID: 35169076 PMCID: PMC8872788 DOI: 10.1073/pnas.2115999119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Retrotransposons are genomic DNA sequences that copy themselves to new genomic locations via RNA intermediates; LINE-1 is the only active and autonomous retrotransposon in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues but is derepressed in many cancers, where LINE-1 retrotransposition is correlated with p53 mutation and copy number alteration (CNA). In cell lines, inducing LINE-1 expression can cause double-strand breaks (DSBs) and replication stress. Reanalyzing multiomic data from breast, ovarian, endometrial, and colon cancers, we confirmed correlations between LINE-1 expression, p53 mutation status, and CNA. We observed a consistent correlation between LINE-1 expression and the abundance of DNA replication complex components, indicating that LINE-1 may also induce replication stress in human tumors. In endometrial cancer, high-quality phosphoproteomic data allowed us to identify the DSB-induced ATM-MRN-SMC S phase checkpoint pathway as the primary DNA damage response (DDR) pathway associated with LINE-1 expression. Induction of LINE-1 expression in an in vitro model led to increased phosphorylation of MRN complex member RAD50, suggesting that LINE-1 directly activates this pathway.
Collapse
Affiliation(s)
- Wilson McKerrow
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Xuya Wang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Carlos Mendez-Dorantes
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Paolo Mita
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108
| | - Mark Grivainis
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Kathleen H Burns
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biomedical Engineering, Tandon School of Engineering, Brooklyn, NY11201
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
14
|
Chesnokova V, Zonis S, Apostolou A, Estrada HQ, Knott S, Wawrowsky K, Michelsen K, Ben-Shlomo A, Barrett R, Gorbunova V, Karalis K, Melmed S. Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage. Cell Rep 2021; 37:110068. [PMID: 34910915 PMCID: PMC8716125 DOI: 10.1016/j.celrep.2021.110068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Microenvironmental factors modulating age-related DNA damage are unclear. Non-pituitary growth hormone (npGH) is induced in human colon, non-transformed human colon cells, and fibroblasts, and in 3-dimensional intestinal organoids with age-associated DNA damage. Autocrine/paracrine npGH suppresses p53 and attenuates DNA damage response (DDR) by inducing TRIM29 and reducing ATM phosphorylation, leading to reduced DNA repair and DNA damage accumulation. Organoids cultured up to 4 months exhibit aging markers, p16, and SA-β-galactosidase and decreased telomere length, as well as DNA damage accumulation, with increased npGH, suppressed p53, and attenuated DDR. Suppressing GH in aged organoids increases p53 and decreases DNA damage. WT mice exhibit age-dependent colon DNA damage accumulation, while in aged mice devoid of colon GH signaling, DNA damage remains low, with elevated p53. As age-associated npGH induction enables a pro-proliferative microenvironment, abrogating npGH signaling could be targeted as anti-aging therapy by impeding DNA damage and age-related pathologies. Chesnokova et al. show that non-pituitary growth hormone (npGH) is induced in aging DNA-damaged colon epithelium and suppresses DNA damage response by attenuating the phosphorylation of DNA repair proteins. npGH induction promotes DNA damage accumulation, resulting in age-associated colon microenvironment changes. Accordingly, disrupted GH signaling in aging mice prevents accumulated DNA damage.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Svetlana Zonis
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Athanasia Apostolou
- Emulate Inc, Boston, MA 02210, USA; Graduate Program, Department of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Hannah Q Estrada
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simon Knott
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kolja Wawrowsky
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathrin Michelsen
- Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anat Ben-Shlomo
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Barrett
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
15
|
Mahmood I, Azfaralariff A, Mohamad A, Airianah OB, Law D, Dyari HRE, Lim YC, Fazry S. Mutated Shiitake extracts inhibit melanin-producing neural crest-derived cells in zebrafish embryo. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109033. [PMID: 33737223 DOI: 10.1016/j.cbpc.2021.109033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 ml) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 μg/ml) than WE (EC50 = 52.8 ± 1.19 μg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 μg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 β (pGSK3β) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.
Collapse
Affiliation(s)
- Ibrahim Mahmood
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmad Azfaralariff
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Azhar Mohamad
- Malaysian Nuclear Agency, Bangi 43000, Kajang, Selangor, Malaysia
| | - Othman B Airianah
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovative Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Douglas Law
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Herryawan Ryadi Eziwar Dyari
- Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Yi Chieh Lim
- Danish Cancer Society Research Centre, Strand boulevard 49, Copenhagen 2100, Denmark
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovative Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
16
|
COMMD4 functions with the histone H2A-H2B dimer for the timely repair of DNA double-strand breaks. Commun Biol 2021; 4:484. [PMID: 33875784 PMCID: PMC8055684 DOI: 10.1038/s42003-021-01998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Genomic stability is critical for normal cellular function and its deregulation is a universal hallmark of cancer. Here we outline a previously undescribed role of COMMD4 in maintaining genomic stability, by regulation of chromatin remodelling at sites of DNA double-strand breaks. At break-sites, COMMD4 binds to and protects histone H2B from monoubiquitination by RNF20/RNF40. DNA damage-induced phosphorylation of the H2A-H2B heterodimer disrupts the dimer allowing COMMD4 to preferentially bind H2A. Displacement of COMMD4 from H2B allows RNF20/40 to monoubiquitinate H2B and for remodelling of the break-site. Consistent with this critical function, COMMD4-deficient cells show excessive elongation of remodelled chromatin and failure of both non-homologous-end-joining and homologous recombination. We present peptide-mapping and mutagenesis data for the potential molecular mechanisms governing COMMD4-mediated chromatin regulation at DNA double-strand breaks. Amila Suraweera et al. use a range of biochemical and in vitro cellular assays to examine the role of the COMMD4 in DNA repair. Their results suggest that COMMD4 interacts with the histone H2A-H2B during repair of double-stranded DNA breaks, thereby maintaining genomic stability by regulating chromatin structure.
Collapse
|
17
|
Abad E, Civit L, Potesil D, Zdrahal Z, Lyakhovich A. Enhanced DNA damage response through RAD50 in triple negative breast cancer resistant and cancer stem-like cells contributes to chemoresistance. FEBS J 2021; 288:2184-2202. [PMID: 33090711 DOI: 10.1111/febs.15588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/10/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
A growing body of evidence supports the notion that cancer resistance is driven by a small subset of cancer stem cells (CSC), responsible for tumor initiation, growth, and metastasis. Both CSC and chemoresistant cancer cells may share common qualities to activate a series of self-defense mechanisms against chemotherapeutic drugs. Here, we aimed to identify proteins in chemoresistant triple-negative breast cancer (TNBC) cells and corresponding CSC-like spheroid cells that may contribute to their resistance. We have identified several candidate proteins representing the subfamilies of DNA damage response (DDR) system, the ATP-binding cassette, and the 26S proteasome degradation machinery. We have also demonstrated that both cell types exhibit enhanced DDR when compared to corresponding parental counterparts, and identified RAD50 as one of the major contributors in the resistance phenotype. Finally, we have provided evidence that depleting or blocking RAD50 within the Mre11-Rad50-NBS1 (MRN) complex resensitizes CSC and chemoresistant TNBC cells to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Etna Abad
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Civit
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - David Potesil
- Research Group Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- Research Group Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alex Lyakhovich
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
18
|
Kay JE, Corrigan JJ, Armijo AL, Nazari IS, Kohale IN, Torous DK, Avlasevich SL, Croy RG, Wadduwage DN, Carrasco SE, Dertinger SD, White FM, Essigmann JM, Samson LD, Engelward BP. Excision of mutagenic replication-blocking lesions suppresses cancer but promotes cytotoxicity and lethality in nitrosamine-exposed mice. Cell Rep 2021; 34:108864. [PMID: 33730582 PMCID: PMC8527524 DOI: 10.1016/j.celrep.2021.108864] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
N-Nitrosodimethylamine (NDMA) is a DNA-methylating agent that has been discovered to contaminate water, food, and drugs. The alkyladenine DNA glycosylase (AAG) removes methylated bases to initiate the base excision repair (BER) pathway. To understand how gene-environment interactions impact disease susceptibility, we study Aag-knockout (Aag-/-) and Aag-overexpressing mice that harbor increased levels of either replication-blocking lesions (3-methyladenine [3MeA]) or strand breaks (BER intermediates), respectively. Remarkably, the disease outcome switches from cancer to lethality simply by changing AAG levels. To understand the underlying basis for this observation, we integrate a suite of molecular, cellular, and physiological analyses. We find that unrepaired 3MeA is somewhat toxic, but highly mutagenic (promoting cancer), whereas excess strand breaks are poorly mutagenic and highly toxic (suppressing cancer and promoting lethality). We demonstrate that the levels of a single DNA repair protein tip the balance between blocks and breaks and thus dictate the disease consequences of DNA damage.
Collapse
Affiliation(s)
- Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Amanda L Armijo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Ilana S Nazari
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Ishwar N Kohale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | | | | - Robert G Croy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Dushan N Wadduwage
- The John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - John M Essigmann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
| |
Collapse
|
19
|
Karamat U, Ejaz S. Overexpression of RAD50 is the Marker of Poor Prognosis and Drug Resistance in Breast Cancer Patients. Curr Cancer Drug Targets 2021; 21:163-176. [PMID: 33038913 DOI: 10.2174/1568009620666201009125507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of breast cancer is increasing at an alarming rate and thus demands exploration of the most relevant diagnostic biomarkers. RAD50 is a cancer susceptibility gene that encodes a DNA damage repairing protein. Its role in breast cancer as clinico-pathological specific biomarker has yet to be explored. OBJECTIVE This study was aimed to investigate the RAD50 expression and its promoter's methylation level variations in breast invasive carcinoma patients having different clinico-pathological features. This study further explored the mutational spectrum of RAD50 and the correlation of its expression with the survival of patients and the effectiveness of drugs used for treatment. METHODS Enrichment analysis of RAD50 was accomplished using the platform of GeneCards. The information regarding RAD50 expression, its promoter methylation and impact on survival of patient was retrieved from TCGA and CPTAC databases. However, the effect of RAD50 expression on tumor's response to various drugs was deduced through the analysis of CCLE and genomic of GDSC dataset. RESULTS The promoter hyper-methylation and elevated expression of RAD50 was documented in various subgroups of breast invasive carcinoma. The subjects having low/medium expression levels were observed to survive longer than patients exhibiting high expression of RAD50 except for post-menopausal subjects. The frequency of missense mutations was higher in RAD50 than truncating mutations. Most of the drugs were found to have a positive correlation with RAD50 expression. CONCLUSION The status of RAD50 promoter's methylation inversely correlates with the expression level of RAD50. While RAD50 is overexpressed in breast cancer patients and thus makes tumor resistant against many anti-cancer drugs.
Collapse
Affiliation(s)
- Uzma Karamat
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Faculty of Science, The Islamia University of Bahwalpur, Bahwalpur, Pakistan
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Faculty of Science, The Islamia University of Bahawalpur, Bahwalpur, Pakistan
| |
Collapse
|
20
|
Alblihy A, Alabdullah ML, Toss MS, Algethami M, Mongan NP, Rakha EA, Madhusudan S. RAD50 deficiency is a predictor of platinum sensitivity in sporadic epithelial ovarian cancers. MOLECULAR BIOMEDICINE 2020; 1:19. [PMID: 35006434 PMCID: PMC8607373 DOI: 10.1186/s43556-020-00023-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
Intrinsic or acquired resistance seriously limits the use of platinating agents in advanced epithelial ovarian cancers. Increased DNA repair capacity is a key route to platinum resistance. RAD50 is a critical component of the MRN complex, a ‘first responder’ to DNA damage and essential for the repair of DSBs and stalled replication forks. We hypothesised a role for RAD50 in ovarian cancer pathogenesis and therapeutics. Clinicopathological significance of RAD50 expression was evaluated in clinical cohorts of ovarian cancer at the protein level (n = 331) and at the transcriptomic level (n = 1259). Sub-cellular localization of RAD50 at baseline and following cisplatin therapy was tested in platinum resistant (A2780cis, PEO4) and sensitive (A2780, PEO1) ovarian cancer cells. RAD50 was depleted and cisplatin sensitivity was investigated in A2780cis and PEO4 cells. RAD50 deficiency was associated with better progression free survival (PFS) at the protein (p = 0.006) and transcriptomic level (p < 0.001). Basal level of RAD50 was higher in platinum resistant cells. Following cisplatin treatment, increased nuclear localization of RAD50 was evident in A2780cis and PEO4 compared to A2780 and PEO1 cells. RAD50 depletion using siRNAs in A2780cis and PEO4 cells increased cisplatin cytotoxicity, which was associated with accumulation of DSBs, S-phase cell cycle arrest and increased apoptosis. We provide evidence that RAD50 deficiency is a predictor of platinum sensitivity. RAD50 expression-based stratification and personalization could be viable clinical strategy in ovarian cancers.
Collapse
Affiliation(s)
- Adel Alblihy
- Translational Oncology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG51PB, UK
| | - Muslim L Alabdullah
- Translational Oncology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG51PB, UK.,Academic Pathology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG51PB, UK
| | - Michael S Toss
- Academic Pathology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG51PB, UK
| | - Mashael Algethami
- Translational Oncology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG51PB, UK
| | - Nigel P Mongan
- Faculty of medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Emad A Rakha
- Academic Pathology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG51PB, UK
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG51PB, UK. .,Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK. .,Division of Cancer & Stem Cells, School of Medicine, Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
| |
Collapse
|
21
|
Chansel-Da Cruz M, Hohl M, Ceppi I, Kermasson L, Maggiorella L, Modesti M, de Villartay JP, Ileri T, Cejka P, Petrini JHJ, Revy P. A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans. Cell Rep 2020; 33:108559. [PMID: 33378670 PMCID: PMC7788285 DOI: 10.1016/j.celrep.2020.108559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
The MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50E1035Δ) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain. This mutation represents a human RAD50 separation-of-function mutation that impairs DNA repair, DNA replication, and DNA end resection without affecting ATM-dependent DNA damage response. Purified recombinant proteins indicate that RAD50E1035Δ impairs MRE11 nuclease activity. The corresponding mutation in Saccharomyces cerevisiae causes severe thermosensitive defects in both DNA repair and Tel1ATM-dependent signaling. These findings demonstrate that a minor heptad break in the RAD50 coiled coil suffices to impede MRE11 complex functions in human and yeast. Furthermore, these results emphasize the importance of the RAD50 coiled coil to regulate MRE11-dependent DNA end resection in humans.
Collapse
Affiliation(s)
- Marie Chansel-Da Cruz
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée la Ligue contre le Cancer, Paris, France; University of Paris-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Genomic Vision, R&D Innovation Department, Bagneux, France
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Laëtitia Kermasson
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée la Ligue contre le Cancer, Paris, France; University of Paris-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Jean-Pierre de Villartay
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée la Ligue contre le Cancer, Paris, France; University of Paris-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Talia Ileri
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée la Ligue contre le Cancer, Paris, France; University of Paris-Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
22
|
Sikkink SK, Mine S, Freis O, Danoux L, Tobin DJ. Stress-sensing in the human greying hair follicle: Ataxia Telangiectasia Mutated (ATM) depletion in hair bulb melanocytes in canities-prone scalp. Sci Rep 2020; 10:18711. [PMID: 33128003 PMCID: PMC7603349 DOI: 10.1038/s41598-020-75334-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Canities (or hair greying) is an age-linked loss of the natural pigment called melanin from hair. While the specific cause(s) underlying the loss of melanogenically-active melanocytes from the anagen hair bulbs of affected human scalp remains unclear, oxidative stress sensing appears to be a key factor involved. In this study, we examined the follicular melanin unit in variably pigmented follicles from the aging human scalp of healthy individuals (22-70 years). Over 20 markers were selected within the following categories: melanocyte-specific, apoptosis, cell cycle, DNA repair/damage, senescence and oxidative stress. As expected, a reduction in melanocyte-specific markers in proportion to the extent of canities was observed. A major finding of our study was the intense and highly specific nuclear expression of Ataxia Telangiectasia Mutated (ATM) protein within melanocytes in anagen hair follicle bulbs. ATM is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks and functions as an important sensor of reactive oxygen species (ROS) in human cells. The incidence and expression level of ATM correlated with pigmentary status in canities-affected hair follicles. Moreover, increased staining of the redox-associated markers 8-OHdG, GADD45 and GP-1 were also detected within isolated bulbar melanocytes, although this change was not clearly associated with donor age or canities extent. Surprisingly, we were unable to detect any specific change in the expression of other markers of oxidative stress, senescence or DNA damage/repair in the canities-affected melanocytes compared to surrounding bulbar keratinocytes. By contrast, several markers showed distinct expression of markers for oxidative stress and apoptosis/differentiation in the inner root sheath (IRS) as well as other parts of the hair follicle. Using our in vitro model of primary human scalp hair follicle melanocytes, we showed that ATM expression increased after incubation with the pro-oxidant hydrogen peroxide (H2O2). In addition, this ATM increase was prevented by pre-incubation of cells with antioxidants. The relationship between ATM and redox stress sensing was further evidenced as we observed that the inhibition of ATM expression by chemical inhibition promoted the loss of melanocyte viability induced by oxidative stress. Taken together these new findings illustrate the key role of ATM in the protection of human hair follicle melanocytes from oxidative stress/damage within the human scalp hair bulb. In conclusion, these results highlight the remarkable complexity and role of redox sensing in the status of human hair follicle growth, differentiation and pigmentation.
Collapse
Affiliation(s)
- Stephen K Sikkink
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK.
| | - Solene Mine
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Olga Freis
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Louis Danoux
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK. .,The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
23
|
Dunlop CR, Wallez Y, Johnson TI, Bernaldo de Quirós Fernández S, Durant ST, Cadogan EB, Lau A, Richards FM, Jodrell DI. Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. Br J Cancer 2020; 123:1424-1436. [PMID: 32741974 PMCID: PMC7591912 DOI: 10.1038/s41416-020-1016-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Personalised medicine strategies may improve outcomes in pancreatic ductal adenocarcinoma (PDAC), but validation of predictive biomarkers is required. Having developed a clinical trial to assess the ATR inhibitor, AZD6738, in combination with gemcitabine (ATRi/gem), we investigated ATM loss as a predictive biomarker of response to ATRi/gem in PDAC. METHODS Through kinase inhibition, siRNA depletion and CRISPR knockout of ATM, we assessed how ATM targeting affected the sensitivity of PDAC cells to ATRi/gem. Using flow cytometry, immunofluorescence and immunoblotting, we investigated how ATRi/gem synergise in ATM-proficient and ATM-deficient cells, before assessing the impact of ATM loss on ATRi/gem sensitivity in vivo. RESULTS Complete loss of ATM function (through pharmacological inhibition or CRISPR knockout), but not siRNA depletion, sensitised to ATRi/gem. In ATM-deficient cells, ATRi/gem-induced replication catastrophe was augmented, while phospho-Chk2-T68 and phospho-KAP1-S824 persisted via DNA-PK activity. ATRi/gem caused growth delay in ATM-WT xenografts in NSG mice and induced regression in ATM-KO xenografts. CONCLUSIONS ATM loss augments replication catastrophe-mediated cell death induced by ATRi/gem and may predict clinical responsiveness to this combination. ATM status should be carefully assessed in tumours from patients with PDAC, since distinction between ATM-low and ATM-null could be critical in maximising the success of clinical trials using ATM expression as a predictive biomarker.
Collapse
Affiliation(s)
- Charles R Dunlop
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Yann Wallez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | | | | | - Alan Lau
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Reginato G, Cejka P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair (Amst) 2020; 91-92:102869. [PMID: 32480356 DOI: 10.1016/j.dnarep.2020.102869] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
When DNA breaks, the ends need to be stabilized and processed to facilitate subsequent repair, which can occur by either direct but error-prone end-joining with another broken DNA molecule or a more accurate homology-directed repair by the recombination machinery. At the same time, the presence of broken DNA triggers a signaling cascade that regulates the repair events and cellular progression through the cell cycle. The MRE11 nuclease, together with RAD50 and NBS1 forms a complex termed MRN that participates in all these processes. Although MRE11 was first identified more than 20 years ago, deep insights into its mechanism of action and regulation are much more recent. Here we review how MRE11 functions within MRN, and how the complex is further regulated by CtIP and its phosphorylation in a cell cycle dependent manner. We describe how RAD50, NBS1 and CtIP convert MRE11, exhibiting per se a 3'→5' exonuclease activity, into an ensemble that instead degrades primarily the 5'-terminated strand by endonucleolytic cleavage at DNA break sites to generate 3' overhangs, as required for the initiation of homologous recombination. The unique mechanism of DNA end resection by MRN-CtIP makes it a very flexible toolkit to process DNA breaks with a variety of secondary structures and protein blocks. Such a block can also be the Ku heterodimer, and emerging evidence suggests that MRN-CtIP may often need to remove Ku from DNA ends before initiating homologous recombination. Misregulation of DNA break repair results in mutations and chromosome rearrangements that can drive cancer development. Therefore, a detailed understanding of the underlying processes is highly relevant for human health.
Collapse
Affiliation(s)
- Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
25
|
Remali J, Aizat WM, Ng CL, Lim YC, Mohamed-Hussein ZA, Fazry S. In silico analysis on the functional and structural impact of Rad50 mutations involved in DNA strand break repair. PeerJ 2020; 8:e9197. [PMID: 32509463 PMCID: PMC7247530 DOI: 10.7717/peerj.9197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DNA double strand break repair is important to preserve the fidelity of our genetic makeup after DNA damage. Rad50 is one of the components in MRN complex important for DNA repair mechanism. Rad50 mutations can lead to microcephaly, mental retardation and growth retardation in human. However, Rad50 mutations in human and other organisms have never been gathered and heuristically compared for their deleterious effects. It is important to assess the conserved region in Rad50 and its homolog to identify vital mutations that can affect functions of the protein. METHOD In this study, Rad50 mutations were retrieved from SNPeffect 4.0 database and literature. Each of the mutations was analyzed using various bioinformatic analyses such as PredictSNP, MutPred, SNPeffect 4.0, I-Mutant and MuPro to identify its impact on molecular mechanism, biological function and protein stability, respectively. RESULTS We identified 103 mostly occurred mutations in the Rad50 protein domains and motifs, which only 42 mutations were classified as most deleterious. These mutations are mainly situated at the specific motifs such as Walker A, Q-loop, Walker B, D-loop and signature motif of the Rad50 protein. Some of these mutations were predicted to negatively affect several important functional sites that play important roles in DNA repair mechanism and cell cycle signaling pathway, highlighting Rad50 crucial role in this process. Interestingly, mutations located at non-conserved regions were predicted to have neutral/non-damaging effects, in contrast with previous experimental studies that showed deleterious effects. This suggests that software used in this study may have limitations in predicting mutations in non-conserved regions, implying further improvement in their algorithm is needed. In conclusion, this study reveals the priority of acid substitution associated with the genetic disorders. This finding highlights the vital roles of certain residues such as K42E, C681A/S, CC684R/S, S1202R, E1232Q and D1238N/A located in Rad50 conserved regions, which can be considered for a more targeted future studies.
Collapse
Affiliation(s)
- Juwairiah Remali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Yi Chieh Lim
- Danish Cancer Society, Research Centre Strand Boulevard, Copenhagen, Denmark
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Pusat Penyelidikan Tasik Chini, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
26
|
Völkening L, Vatselia A, Asgedom G, Bastians H, Lavin M, Schindler D, Schambach A, Bousset K, Dörk T. RAD50 regulates mitotic progression independent of DNA repair functions. FASEB J 2020; 34:2812-2820. [PMID: 31908056 DOI: 10.1096/fj.201902318r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 11/11/2022]
Abstract
The Mre11A/RAD50/NBN complex (MRN) is an essential regulator of the cellular damage response after DNA double-strand breaks (DSBs). More recent work has indicated that MRN may also impact on the duration of mitosis. We show here that RAD50-deficient fibroblasts exhibit a marked delay in mitotic progression that can be rescued by lentiviral transduction of RAD50. The delay was observed throughout all mitotic phases in live cell imaging using GFP-labeled H2B as a fluorescent marker. In complementation assays with RAD50 phosphorylation mutants, modifications at Ser635 had little effect on mitotic progression. By contrast with RAD50, fibroblast strains deficient in ATM or NBN did not show a significant slowing of mitotic progression. Ataxia-telangiectasia-like disorder (ATLD) fibroblasts with nuclease-deficient MRE11A (p.W210C) tended to show slower mitosis, though by far not as significant as RAD50-deficient cells. Inhibitor studies indicated that ATM kinase activity might not grossly impact on mitotic progression, while treatment with MRE11A inhibitor PFM39 modestly prolonged mitosis. Inhibition of ATR kinase significantly prolonged mitosis but this effect was mostly independent of RAD50 status. Taken together, our data unravel a mitotic role of RAD50 that can be separated from its known functions in DNA repair.
Collapse
Affiliation(s)
- Lea Völkening
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Anna Vatselia
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Girmay Asgedom
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Holger Bastians
- Institute of Molecular Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Martin Lavin
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Detlev Schindler
- Institute of Human Genetics, Biocenter, University Würzburg, Würzburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Kristine Bousset
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Zhang C, Ren X, Wang X, Wan Q, Ding K, Chen L. FgRad50 Regulates Fungal Development, Pathogenicity, Cell Wall Integrity and the DNA Damage Response in Fusarium graminearum. Front Microbiol 2020; 10:2970. [PMID: 31998262 PMCID: PMC6962240 DOI: 10.3389/fmicb.2019.02970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Rad50 is a member of the double strand break repair epistasis group of proteins that play important roles in regulating DNA damage checkpoint signaling, telomere maintenance, homologous recombination and non-homologous end-joining in eukaryotes. However, the function of Rad50 in fungal plant pathogens remains unknown. In this study, we report the functional investigation of FgRad50 in the wheat head blight pathogen Fusarium graminearum. FgRad50 is an ortholog of Saccharomyces cerevisiae Rad50 that could restore the sensitivity of the yeast Rad50 mutant to DNA damage agents. The FgRad50 deletion mutant (ΔFgRad50) exhibited defective vegetative growth, asexual/sexual development and virulence, as well as disrupted deoxynivalenol biosynthesis. Moreover, deletion of FgRad50 resulted in hypersensitivity to DNA damage agents. Unexpectedly, FgRad50 plays a key role in responses to cell wall-damaging agents by negatively regulating phosphorylation of FgMgv1, a MAP kinase in the cell wall integrity (CWI) pathway. Taken together, these results suggest that FgRad50 plays critical roles in fungal development, virulence and secondary metabolism in F. graminearum, as well as CWI and the DNA damage response.
Collapse
Affiliation(s)
- Chengqi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xintong Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qiong Wan
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Kejian Ding
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Chen
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
28
|
Riches LC, Trinidad AG, Hughes G, Jones GN, Hughes AM, Thomason AG, Gavine P, Cui A, Ling S, Stott J, Clark R, Peel S, Gill P, Goodwin LM, Smith A, Pike KG, Barlaam B, Pass M, O'Connor MJ, Smith G, Cadogan EB. Pharmacology of the ATM Inhibitor AZD0156: Potentiation of Irradiation and Olaparib Responses Preclinically. Mol Cancer Ther 2019; 19:13-25. [PMID: 31534013 DOI: 10.1158/1535-7163.mct-18-1394] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/13/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022]
Abstract
AZD0156 is a potent and selective, bioavailable inhibitor of ataxia-telangiectasia mutated (ATM) protein, a signaling kinase involved in the DNA damage response. We present preclinical data demonstrating abrogation of irradiation-induced ATM signaling by low doses of AZD0156, as measured by phosphorylation of ATM substrates. AZD0156 is a strong radiosensitizer in vitro, and using a lung xenograft model, we show that systemic delivery of AZD0156 enhances the tumor growth inhibitory effects of radiation treatment in vivo Because ATM deficiency contributes to PARP inhibitor sensitivity, preclinically, we evaluated the effect of combining AZD0156 with the PARP inhibitor olaparib. Using ATM isogenic FaDu cells, we demonstrate that AZD0156 impedes the repair of olaparib-induced DNA damage, resulting in elevated DNA double-strand break signaling, cell-cycle arrest, and apoptosis. Preclinically, AZD0156 potentiated the effects of olaparib across a panel of lung, gastric, and breast cancer cell lines in vitro, and improved the efficacy of olaparib in two patient-derived triple-negative breast cancer xenograft models. AZD0156 is currently being evaluated in phase I studies (NCT02588105).
Collapse
Affiliation(s)
- Lucy C Riches
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Gareth Hughes
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gemma N Jones
- Translational Medicine, Oncology R&D, Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Adina M Hughes
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Paul Gavine
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Andy Cui
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Stephanie Ling
- Quantitative Biology, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jonathan Stott
- Quantitative Biology, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Roger Clark
- Quantitative Biology, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Samantha Peel
- Quantitative Biology, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Pendeep Gill
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Louise M Goodwin
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kurt G Pike
- Chemistry, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bernard Barlaam
- Chemistry, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Martin Pass
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mark J O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Graeme Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elaine B Cadogan
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
29
|
ATM and ATR Influence Meiotic Crossover Formation Through Antagonistic and Overlapping Functions in Caenorhabditis elegans. Genetics 2019; 212:431-443. [PMID: 31015193 DOI: 10.1534/genetics.119.302193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/14/2019] [Indexed: 01/08/2023] Open
Abstract
During meiosis, formation of double-strand breaks (DSBs) and repair by homologous recombination between homologs creates crossovers (COs) that facilitate chromosome segregation. CO formation is tightly regulated to ensure the integrity of this process. The DNA damage response kinases, Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) have emerged as key regulators of CO formation in yeast, flies, and mice, influencing DSB formation, repair pathway choice, and cell cycle progression. The molecular networks that ATM and ATR influence during meiosis are still being resolved in other organisms. Here, we show that Caenorhabditis elegans ATM and ATR homologs, ATM-1 and ATL-1 respectively, act at multiple steps in CO formation to ultimately ensure that COs are formed on all chromosomes. We show a role for ATM-1 in regulating the choice of repair template, biasing use of the homologous chromosome instead of the sister chromatid. Our data suggest a model in which ATM-1 and ATL-1 have antagonistic roles in very early repair processing, but are redundantly required for accumulation of the RAD-51 recombinase at DSB sites. We propose that these features of ATM-1 and ATL-1 ensure both CO formation on all chromosomes and accurate repair of additional DSBs.
Collapse
|
30
|
Chesnokova V, Zonis S, Barrett R, Kameda H, Wawrowsky K, Ben-Shlomo A, Yamamoto M, Gleeson J, Bresee C, Gorbunova V, Melmed S. Excess growth hormone suppresses DNA damage repair in epithelial cells. JCI Insight 2019; 4:e125762. [PMID: 30728323 PMCID: PMC6413789 DOI: 10.1172/jci.insight.125762] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Growth hormone (GH) decreases with age, and GH therapy has been advocated by some to sustain lean muscle mass and vigor in aging patients and advocated by athletes to enhance performance. Environmental insults and aging lead to DNA damage, which - if unrepaired - results in chromosomal instability and tumorigenesis. We show that GH suppresses epithelial DNA damage repair and blocks ataxia telangiectasia mutated (ATM) kinase autophosphorylation with decreased activity. Decreased phosphorylation of ATM target proteins p53, checkpoint kinase 2 (Chk2), and histone 2A variant led to decreased DNA repair by nonhomologous end-joining. In vivo, prolonged high GH levels resulted in a 60% increase in unrepaired colon epithelial DNA damage. GH suppression of ATM was mediated by induced tripartite motif containing protein 29 (TRIM29) and attenuated tat interacting protein 60 kDa (Tip60). By contrast, DNA repair was increased in human nontumorous colon cells (hNCC) where GH receptor (GHR) was stably suppressed and in colon tissue derived from GHR-/- mice. hNCC treated with etoposide and GH showed enhanced transformation, as evidenced by increased growth in soft agar. In mice bearing human colon GH-secreting xenografts, metastatic lesions were increased. The results elucidate a mechanism underlying GH-activated epithelial cell transformation and highlight an adverse risk for inappropriate adult GH treatment.
Collapse
Affiliation(s)
| | | | - Robert Barrett
- Board of Governors Regenerative Medicine Institute
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, and
| | | | | | | | | | - John Gleeson
- Board of Governors Regenerative Medicine Institute
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, and
| | - Catherine Bresee
- Biostatistics and Bioinformatics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|
31
|
pRAD50: a novel and clinically applicable pharmacodynamic biomarker of both ATM and ATR inhibition identified using mass spectrometry and immunohistochemistry. Br J Cancer 2018; 119:1233-1243. [PMID: 30385821 PMCID: PMC6251026 DOI: 10.1038/s41416-018-0286-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 01/26/2023] Open
Abstract
Background AZD0156 and AZD6738 are potent and selective inhibitors of ataxia-telangiectasia-kinase (ATM) and ataxia-telangiectasia-mutated and Rad3-related (ATR), respectively, important sensors/signallers of DNA damage. Methods We used multiplexed targeted-mass-spectrometry to select pRAD50(Ser635) as a pharmacodynamic biomarker for AZD0156-mediated ATM inhibition from a panel of 45 peptides, then developed and tested a clinically applicable immunohistochemistry assay for pRAD50(Ser635) detection in FFPE tissue. Results We found moderate pRAD50 baseline levels across cancer indications. pRAD50 was detectable in 100% gastric cancers (n = 23), 99% colorectal cancers (n = 102), 95% triple-negative-breast cancers (TNBC) (n = 40) and 87.5% glioblastoma-multiformes (n = 16). We demonstrated AZD0156 target inhibition in TNBC patient-derived xenograft models; where AZD0156 monotherapy or post olaparib treatment, resulted in a 34–72% reduction in pRAD50. Similar inhibition of pRAD50 (68%) was observed following ATM inhibitor treatment post irinotecan in a colorectal cancer xenograft model. ATR inhibition, using AZD6738, increased pRAD50 in the ATM-proficient models whilst in ATM-deficient models the opposite was observed, suggesting pRAD50 pharmacodynamics post ATR inhibition may be ATM-dependent and could be useful to determine ATM functionality in patients treated with ATR inhibitors. Conclusion Together these data support clinical utilisation of pRAD50 as a biomarker of AZD0156 and AZD6738 pharmacology to elucidate clinical pharmacokinetic/pharmacodynamic relationships, thereby informing recommended Phase 2 dose/schedule.
Collapse
|
32
|
Cytotoxicity and Toxicity Evaluation of Xanthone Crude Extract on Hypoxic Human Hepatocellular Carcinoma and Zebrafish ( Danio rerio) Embryos. TOXICS 2018; 6:toxics6040060. [PMID: 30304811 PMCID: PMC6316214 DOI: 10.3390/toxics6040060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC50 = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 μg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC50 = 109.38 ± 1.80 μg/mL) and three times less sensitive when treated with >500 μg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC50 = 10.11 ± 0.05 μg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 μg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.
Collapse
|
33
|
Hellweg CE, Chishti AA, Diegeler S, Spitta LF, Henschenmacher B, Baumstark-Khan C. Molecular Signaling in Response to Charged Particle Exposures and its Importance in Particle Therapy. Int J Part Ther 2018; 5:60-73. [PMID: 31773020 PMCID: PMC6871585 DOI: 10.14338/ijpt-18-00016.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Energetic, charged particles elicit an orchestrated DNA damage response (DDR) during their traversal through healthy tissues and tumors. Complex DNA damage formation, after exposure to high linear energy transfer (LET) charged particles, results in DNA repair foci formation, which begins within seconds. More protein modifications occur after high-LET, compared with low-LET, irradiation. Charged-particle exposure activates several transcription factors that are cytoprotective or cytodestructive, or that upregulate cytokine and chemokine expression, and are involved in bystander signaling. Molecular signaling for a survival or death decision in different tumor types and healthy tissues should be studied as prerequisite for shaping sensitizing and protective strategies. Long-term signaling and gene expression changes were found in various tissues of animals exposed to charged particles, and elucidation of their role in chronic and late effects of charged-particle therapy will help to develop effective preventive measures.
Collapse
Affiliation(s)
- Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Arif Ali Chishti
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Sebastian Diegeler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Luis F. Spitta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Bernd Henschenmacher
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Christa Baumstark-Khan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| |
Collapse
|
34
|
Lu S, Fan X, Chen L, Lu X. A novel method of using Deep Belief Networks and genetic perturbation data to search for yeast signaling pathways. PLoS One 2018; 13:e0203871. [PMID: 30208101 PMCID: PMC6135403 DOI: 10.1371/journal.pone.0203871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/29/2018] [Indexed: 01/25/2023] Open
Abstract
Perturbing a signaling system with a serial of single gene deletions and then observing corresponding expression changes in model organisms, such as yeast, is an important and widely used experimental technique for studying signaling pathways. People have developed different computational methods to analyze the perturbation data from gene deletion experiments for exploring the signaling pathways. The most popular methods/techniques include K-means clustering and hierarchical clustering techniques, or combining the expression data with knowledge, such as protein-protein interactions (PPIs) or gene ontology (GO), to search for new pathways. However, these methods neither consider nor fully utilize the intrinsic relation between the perturbation of a pathway and expression changes of genes regulated by the pathway, which served as the main motivation for developing a new computational method in this study. In our new model, we first find gene transcriptomic modules such that genes in each module are highly likely to be regulated by a common signal. We then use the expression status of those modules as readouts of pathway perturbations to search for up-stream pathways. Systematic evaluation, such as through gene ontology enrichment analysis, has provided evidence that genes in each transcriptomic module are highly likely to be regulated by a common signal. The PPI density analysis and literature search revealed that our new perturbation modules are functionally coherent. For example, the literature search revealed that 9 genes in one of our perturbation module are related to cell cycle and all 10 genes in another perturbation module are related by DNA damage, with much evidence from the literature coming from in vitro or/and in vivo verifications. Hence, utilizing the intrinsic relation between the perturbation of a pathway and the expression changes of genes regulated by the pathway is a useful method of searching for signaling pathways using genetic perturbation data. This model would also be suitable for analyzing drug experiment data, such as the CMap data, for finding drugs that perturb the same pathways.
Collapse
Affiliation(s)
- Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Xiaonan Fan
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Automation, Northwestern Polytechnical University, Shanxi, People’s Republic of China
| | - Lujia Chen
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
35
|
Timm S, Lorat Y, Jakob B, Taucher-Scholz G, Rübe CE. Clustered DNA damage concentrated in particle trajectories causes persistent large-scale rearrangements in chromatin architecture. Radiother Oncol 2018; 129:600-610. [PMID: 30049456 DOI: 10.1016/j.radonc.2018.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE High linear-energy-transfer (LET) irradiation (IR) is characterized by unique depth-dose distribution and advantageous biologic effectiveness compared to low-LET-IR, offering promising alternatives for radio-resistant tumors in clinical oncology. While low-LET-IR induces single DNA lesions such as double-strand breaks (DSBs), localized energy deposition along high-LET particle trajectories induces clustered DNA lesions that are more challenging to repair. During DNA damage response (DDR) 53BP1 and ATM are required for Kap1-dependent chromatin relaxation, thereby sustaining heterochromatic DSB repair. Here, spatiotemporal dynamics of chromatin restructuring were visualized during DDR after high-LET and low-LET-IR. MATERIAL AND METHODS Human fibroblasts were irradiated with high-LET carbon/calcium ions or low-LET photons. At 0.1 h, 0.5 h, 5 h and 24 h post-IR fluorophore- and gold-labeled repair factors (53BP1, pATM, pKAP-1, pKu70) were visualized by immunofluorescence and transmission electron microscopy, to monitor formation and repair of DNA damage in chromatin ultrastructure. To track chromatin remodeling at damage sites, decondensed regions (DCR) were delineated based on local chromatin concentration densities. RESULTS Low-LET-IR induced single DNA lesions throughout the nucleus, but nearly all DSBs were efficiently rejoined without visible chromatin decompaction. High-LET-IR induced clustered DNA damage and triggered profound changes in chromatin structure along particle trajectories. In DCR multiple heterochromatic DSBs exhibited delayed repair despite cooperative activity of 53BP1, pATM, pKap-1. These closely localized DSBs may disturb efficient repair and subsequent chromatin restoration, thereby affecting large-scale genome organization. CONCLUSION Clustered damage concentrated in particle trajectories causes persistent rearrangements in chromatin architecture, which may affect structural and functional organization of cell nuclei.
Collapse
Affiliation(s)
- Sara Timm
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany
| | - Yvonne Lorat
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia E Rübe
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany.
| |
Collapse
|
36
|
Adams DL, Adams DK, He J, Kalhor N, Zhang M, Xu T, Gao H, Reuben JM, Qiao Y, Komaki R, Liao Z, Edelman MJ, Tang CM, Lin SH. Sequential Tracking of PD-L1 Expression and RAD50 Induction in Circulating Tumor and Stromal Cells of Lung Cancer Patients Undergoing Radiotherapy. Clin Cancer Res 2017; 23:5948-5958. [PMID: 28679765 DOI: 10.1158/1078-0432.ccr-17-0802] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/22/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Evidence suggests that PD-L1 can be induced with radiotherapy and may be an immune escape mechanism in cancer. Monitoring this response is limited, as repetitive biopsies during therapy are impractical, dangerous, and miss tumor stromal cells. Monitoring PD-L1 expression in both circulating tumor cells (CTCs) and circulating stromal cells (CStCs) in blood-based biopsies might be a practical alternative for sequential, noninvasive assessment of changes in tumor and stromal cells.Experimental Design: Peripheral blood was collected before and after radiotherapy from 41 patients with lung cancer, as were primary biopsies. We evaluated the expression of PD-L1 and formation of RAD50 foci in CTCs and a CStC subtype, cancer-associated macrophage-like cells (CAMLs), in response to DNA damage caused by radiotherapy at the tumor site.Results: Only 24% of primary biopsies had sufficient tissue for PD-L1 testing, tested with IHC clones 22c3 and 28-8. A CTC or CAML was detectable in 93% and 100% of samples, prior to and after radiotherapy, respectively. RAD50 foci significantly increased in CTCs (>7×, P < 0.001) and CAMLs (>10×, P = 0.001) after radiotherapy, confirming their origin from the radiated site. PD-L1 expression increased overall, 1.6× in CTCs (P = 0.021) and 1.8× in CAMLs (P = 0.004): however, individual patient PD-L1 expression varied, consistently low/negative (51%), consistently high (17%), or induced (31%).Conclusions: These data suggest that RAD50 foci formation in CTCs and CAMLs may be used to track cells subjected to radiation occurring at primary tumors, and following PD-L1 expression in circulating cells may be used as a surrogate for tracking adaptive changes in immunotherapeutic targets. Clin Cancer Res; 23(19); 5948-58. ©2017 AACR.
Collapse
Affiliation(s)
| | - Diane K Adams
- Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | | | | | - Ming Zhang
- Hebei General Hospital, Shijiazhuang, China
| | - Ting Xu
- MD Anderson Cancer Center, Houston, Texas
| | - Hui Gao
- MD Anderson Cancer Center, Houston, Texas
| | | | - Yawei Qiao
- MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | |
Collapse
|
37
|
Pennisi R, Antoccia A, Leone S, Ascenzi P, di Masi A. Hsp90α regulates ATM and NBN functions in sensing and repair of DNA double-strand breaks. FEBS J 2017. [PMID: 28631426 DOI: 10.1111/febs.14145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90α) regulates cell proteostasis and mitigates the harmful effects of endogenous and exogenous stressors on the proteome. Indeed, the inhibition of Hsp90α ATPase activity affects the cellular response to ionizing radiation (IR). Although the interplay between Hsp90α and several DNA damage response (DDR) proteins has been reported, its role in the DDR is still unclear. Here, we show that ataxia-telangiectasia-mutated kinase (ATM) and nibrin (NBN), but not 53BP1, RAD50, and MRE11, are Hsp90α clients as the Hsp90α inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) induces ATM and NBN polyubiquitination and proteosomal degradation in normal fibroblasts and lymphoblastoid cell lines. Hsp90α-ATM and Hsp90α-NBN complexes are present in unstressed and irradiated cells, allowing the maintenance of ATM and NBN stability that is required for the MRE11/RAD50/NBN complex-dependent ATM activation and the ATM-dependent phosphorylation of both NBN and Hsp90α in response to IR-induced DNA double-strand breaks (DSBs). Hsp90α forms a complex also with ph-Ser1981-ATM following IR. Upon phosphorylation, NBN dissociates from Hsp90α and translocates at the DSBs, while phThr5/7-Hsp90α is not recruited at the damaged sites. The inhibition of Hsp90α affects nuclear localization of MRE11 and RAD50, impairs DDR signaling (e.g., BRCA1 and CHK2 phosphorylation), and slows down DSBs repair. Hsp90α inhibition does not affect DNA-dependent protein kinase (DNA-PK) activity, which possibly phosphorylates Hsp90α and H2AX after IR. Notably, Hsp90α inhibition causes H2AX phosphorylation in proliferating cells, this possibly indicating replication stress events. Overall, present data shed light on the regulatory role of Hsp90α on the DDR, controlling ATM and NBN stability and influencing the DSBs signaling and repair.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Antonio Antoccia
- Department of Sciences, Roma Tre University, Roma, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Stefano Leone
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Roma, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| |
Collapse
|
38
|
Park YB, Hohl M, Padjasek M, Jeong E, Jin KS, Krężel A, Petrini JHJ, Cho Y. Eukaryotic Rad50 functions as a rod-shaped dimer. Nat Struct Mol Biol 2017; 24:248-257. [PMID: 28134932 PMCID: PMC5625350 DOI: 10.1038/nsmb.3369] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/05/2017] [Indexed: 11/08/2022]
Abstract
The Rad50 hook interface is crucial for assembly and various functions of the Mre11 complex. Previous analyses suggested that Rad50 molecules interact within (intracomplex) or between (intercomplex) dimeric complexes. In this study, we determined the structure of the human Rad50 hook and coiled-coil domains. The data suggest that the predominant structure is the intracomplex, in which the two parallel coiled coils proximal to the hook form a rod shape, and that a novel interface within the coiled-coil domains of Rad50 stabilizes the interaction of Rad50 protomers in the dimeric assembly. In yeast, removal of the coiled-coil interface compromised Tel1 activation without affecting DNA repair, while simultaneous disruption of that interface and the hook phenocopied a null mutation. The results demonstrate that the hook and coiled-coil interfaces coordinately promote intracomplex assembly and define the intracomplex as the functional form of the Mre11 complex.
Collapse
Affiliation(s)
- Young Bong Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Michał Padjasek
- Laboratory of Chemical Biology, University of Wrocław, Wrocław, Poland
| | - Eunyoung Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, South Korea
| | - Artur Krężel
- Laboratory of Chemical Biology, University of Wrocław, Wrocław, Poland
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
39
|
Ma J, Setton J, Morris L, Carrillo Albornoz PB, Barker C, Lok BH, Sherman E, Katabi N, Beal K, Ganly I, Powell SN, Lee N, Chan TA, Riaz N. Genomic analysis of exceptional responders to radiotherapy reveals somatic mutations in ATM. Oncotarget 2017; 8:10312-10323. [PMID: 28055970 PMCID: PMC5354661 DOI: 10.18632/oncotarget.14400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/30/2016] [Indexed: 12/04/2022] Open
Abstract
Radiation therapy is a mainstay of cancer treatment, yet the molecular determinants of clinical response are poorly understood. We identified exceptional responders to radiotherapy based on clinical response, and investigated the associated tumor sequencing data in order to identify additional patients with similar mutations. Among head and neck squamous cell cancer patients receiving palliative radiotherapy at our institution, we identified one patient with documented complete metabolic response. Targeted sequencing analysis of the tumor identified a somatic frame-shift mutation in ATM, a gene known to be associated with radio-sensitivity in the germline. To validate the association of somatic ATM mutation with radiotherapy response, we identified eight patients with ATM truncating mutations who received radiotherapy, all of whom demonstrated excellent responses with a median local control period of 4.62 years. Analysis of 22 DNA repair genes in The Cancer Genome Atlas (TCGA) data revealed mutations in 15.9% of 9064 tumors across 24 cancer types, with ATM mutations being the most prevalent. This is the first study to suggest that exceptional responses to radiotherapy may be determined by mutations in DNA repair genes. Sequencing of DNA repair genes merits attention in larger cohorts and may have significant implications for the personalization of radiotherapy.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Ataxia Telangiectasia Mutated Proteins/genetics
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/diagnostic imaging
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Carcinoma, Squamous Cell/diagnostic imaging
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/radiotherapy
- Computational Biology
- DNA Mutational Analysis
- Databases, Genetic
- Endometrial Neoplasms/diagnostic imaging
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/pathology
- Endometrial Neoplasms/radiotherapy
- Female
- Head and Neck Neoplasms/diagnostic imaging
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/radiotherapy
- Humans
- Lung Neoplasms/diagnostic imaging
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/radiotherapy
- Middle Aged
- Mutation
- Palliative Care
- Patient Selection
- Precision Medicine
- Radiation Tolerance/genetics
- Radiotherapy Dosage
- Retrospective Studies
- Squamous Cell Carcinoma of Head and Neck
- Treatment Outcome
Collapse
Affiliation(s)
- Jennifer Ma
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Christopher Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin H. Lok
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N. Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A. Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
40
|
Henrich SM, Usadel C, Werwein E, Burdova K, Janscak P, Ferrari S, Hess D, Klempnauer KH. Interplay with the Mre11-Rad50-Nbs1 complex and phosphorylation by GSK3β implicate human B-Myb in DNA-damage signaling. Sci Rep 2017; 7:41663. [PMID: 28128338 PMCID: PMC5269693 DOI: 10.1038/srep41663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
B-Myb, a highly conserved member of the Myb transcription factor family, is expressed ubiquitously in proliferating cells and controls the cell cycle dependent transcription of G2/M-phase genes. Deregulation of B-Myb has been implicated in oncogenesis and loss of genomic stability. We have identified B-Myb as a novel interaction partner of the Mre11-Rad50-Nbs1 (MRN) complex, a key player in the repair of DNA double strand breaks. We show that B-Myb directly interacts with the Nbs1 subunit of the MRN complex and is recruited transiently to DNA-damage sites. In response to DNA-damage B-Myb is phosphorylated by protein kinase GSK3β and released from the MRN complex. A B-Myb mutant that cannot be phosphorylated by GSK3β disturbs the regulation of pro-mitotic B-Myb target genes and leads to inappropriate mitotic entry in response to DNA-damage. Overall, our work suggests a novel function of B-Myb in the cellular DNA-damage signalling.
Collapse
Affiliation(s)
- Sarah Marie Henrich
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
- Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Clemens Usadel
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Eugen Werwein
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Kamila Burdova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland
| | - Karl-Heinz Klempnauer
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| |
Collapse
|
41
|
Assaying for Radioresistant DNA Synthesis, the Hallmark Feature of the Intra-S-Phase Checkpoint Using a DNA Fiber Technique. Methods Mol Biol 2017; 1599:13-23. [PMID: 28477108 DOI: 10.1007/978-1-4939-6955-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During S-phase the cell replicates its DNA which is critical to maintaining the integrity of the genome and cell survival amidst damaging events. The cell is equipped with a series of checkpoints to slow progress throughout the cycle and facilitate DNA repair. Ataxia telangiectasia mutated (ATM), defective in the human genetic disorder ataxia-telangiectasia (A-T), is the key to initiating a signaling cascade activating the intra-S-phase checkpoint. This was first identified in A-T cells as radioresistant DNA synthesis using 14C thymidine and 3H thymidine to pulse label replicating cells before and after damage. This technique has been superseded now by direct labeling that distinguishes DNA replication initiations from ongoing sites of replication which are the target for the intra-S-phase checkpoint. Here, we outline how sites of replication are pulse labeled with two different thymidine analogs before and after damage. The DNA is then stretched out as fibers for immunolabeling to enable visual distinction and counting of ongoing replication forks from new initiations. It is this extent of new initiations that is used to detect the intra-S-phase checkpoint after DNA damage.
Collapse
|
42
|
Mian E, Wiesmüller L. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair. Methods Mol Biol 2017; 1599:317-334. [PMID: 28477129 DOI: 10.1007/978-1-4939-6955-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells treated with and without pharmacological kinase inhibitors revealed ATM-dependent chromatin remodeling at the MLL break site giving access to DNA repair proteins but also nucleases triggering MLL rearrangements. This chapter summarizes these methods for functional characterization of ATM in patient LCLs and human cell lines.
Collapse
Affiliation(s)
- Elisabeth Mian
- Department of Obstetrics and Gynaecology, The University of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, The University of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany.
| |
Collapse
|
43
|
Jakob B, Taucher-Scholz G. Live Cell Imaging to Study Real-Time ATM-Mediated Recruitment of DNA Repair Complexes to Sites of Ionizing Radiation-Induced DNA Damage. Methods Mol Biol 2017; 1599:287-302. [PMID: 28477127 DOI: 10.1007/978-1-4939-6955-5_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Measurements of protein recruitment and the formation of repair complexes at DNA double-strand breaks in real time provide valuable insight into the regulation of the early DNA damage response. Here, we describe the use of live cell microscopy in combination with ionizing radiation as a tool to evaluate the influence of ATM and its site-specific phosphorylation of target proteins on these processes. Recommendations are made for the preparation of the cells and the design of specialized cell chambers for the localized (and/or targeted) irradiation with charged particles at accelerator beamlines as well as the microscopic equipment and protocol to obtain high-resolution, sensitive fluorescence measurements.
Collapse
Affiliation(s)
- Burkhard Jakob
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Biophysik, Planckstraße 1, 64291, Darmstadt, Germany.
| | - Gisela Taucher-Scholz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Biophysik, Planckstraße 1, 64291, Darmstadt, Germany
| |
Collapse
|
44
|
Smith RJ, Savoian MS, Weber LE, Park JH. Ataxia telangiectasia mutated (ATM) interacts with p400 ATPase for an efficient DNA damage response. BMC Mol Biol 2016; 17:22. [PMID: 27814680 PMCID: PMC5097431 DOI: 10.1186/s12867-016-0075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 10/29/2016] [Indexed: 11/13/2022] Open
Abstract
Background Ataxia telangiectasia mutated (ATM) and TRRAP proteins belong to the phosphatidylinositol 3-kinase-related kinase family and are involved in DNA damage repair and chromatin remodeling. ATM is a checkpoint kinase that is recruited to sites of DNA double-strand breaks where it phosphorylates a diverse range of proteins that are part of the chromatin and DNA repair machinery. As an integral subunit of the TRRAP-TIP60 complexes, p400 ATPase is a chromatin remodeler that is also targeted to DNA double-strand break sites. While it is understood that DNA binding transcriptional activators recruit p400 ATPase into a regulatory region of the promoter, how p400 recognises and moves to DNA double-strand break sites is far less clear. Here we investigate a possibility whether ATM serves as a shuttle to deliver p400 to break sites. Results Our data indicate that p400 co-immunoprecipitates with ATM independently of DNA damage state and that the N-terminal domain of p400 is vital for this interaction. Heterologous expression studies using Sf9 cells revealed that the ATM-p400 complex can be reconstituted without other mammalian bridging proteins. Overexpression of ATM-interacting p400 regions in U2OS cells induced dominant negative effects including the inhibition of both DNA damage repair and cell proliferation. Consistent with the dominant negative effect, the stable expression of an N-terminal p400 fragment showed a decrease in the association of p400 with ATM, but did not alter the association of p400 with TRRAP. Conclusion Taken together, our findings suggest that a protein–protein interaction between ATM and p400 ATPase occurs independently of DNA damage and contributes to efficient DNA damage response and repair. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0075-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca J Smith
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Matthew S Savoian
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Lauren E Weber
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jeong Hyeon Park
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
45
|
Chanut P, Britton S, Coates J, Jackson SP, Calsou P. Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks. Nat Commun 2016; 7:12889. [PMID: 27641979 PMCID: PMC5031800 DOI: 10.1038/ncomms12889] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Repair of single-ended DNA double-strand breaks (seDSBs) by homologous recombination (HR) requires the generation of a 3' single-strand DNA overhang by exonuclease activities in a process called DNA resection. However, it is anticipated that the highly abundant DNA end-binding protein Ku sequesters seDSBs and shields them from exonuclease activities. Despite pioneering works in yeast, it is unclear how mammalian cells counteract Ku at seDSBs to allow HR to proceed. Here we show that in human cells, ATM-dependent phosphorylation of CtIP and the epistatic and coordinated actions of MRE11 and CtIP nuclease activities are required to limit the stable loading of Ku on seDSBs. We also provide evidence for a hitherto unsuspected additional mechanism that contributes to prevent Ku accumulation at seDSBs, acting downstream of MRE11 endonuclease activity and in parallel with MRE11 exonuclease activity. Finally, we show that Ku persistence at seDSBs compromises Rad51 focus assembly but not DNA resection.
Collapse
Affiliation(s)
- Pauline Chanut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Julia Coates
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Stephen P. Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer
| |
Collapse
|
46
|
Chang L, Huang J, Wang K, Li J, Yan R, Zhu L, Ye J, Wu X, Zhuang S, Li D, Zhang G. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy. BMC Cancer 2016; 16:190. [PMID: 26951044 PMCID: PMC4782334 DOI: 10.1186/s12885-016-2190-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Mre11-Rad50-Nbs1 (MRN) complex is well known for its crucial role in initiating DNA double strand breaks (DSBs) repair pathways to resistant irradiation (IR) injury and thus facilitating radioresistance which severely reduces radiocurability of nasopharyngeal cancer (NPC). Targeting native cellular MRN function would sensitize NPC cells to IR. METHODS A recombinant adenovirus containing a mutant Rad50 gene (Ad-RAD50) expressing Rad50 zinc hook domain but lacking the ATPase domain and the Mre11 interaction domain was constructed to disrupt native cellular MRN functions. The effects of Ad-RAD50 on the MRN functions were assessed in NPC cells lines using western blot, co-immunoprecipitation and confocal microscopy analyses. The increased radiosensitivity of transient Ad-RAD50 to IR was examined in NPC cells, including MTT assay, colony formation. The molecular mechanisms of radiosensitization were confirmed by neutral comet assay and western bolts. Nude mice subcutaneous injection, tumor growth curve and TUNEL assay were used to evaluate tumor regression and apoptosis in vivo. RESULTS Rad50 is remarkably upregulated in NPC cells after IR, implying the critical role of Rad50 in MRN functions. The transient expression of this mutant Rad50 decreased the levels of native cellular Rad50, Mre11 and Nbs1, weakened the interactions among these proteins, abrogated the G2/M arrest induced by DSBs and reduced the DNA repair ability in NPC cells. A combination of IR and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage, prevented proliferation and cell viability. Furthermore, Ad-RAD50 sensitized NPC cells to IR by causing dramatic tumor regression and inducing apoptosis in vivo. CONCLUSION Our findings define a novel therapeutic approach to NPC radiosensitization via targeted native cellular Rad50 disruption.
Collapse
Affiliation(s)
- Lihong Chang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Jiancong Huang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Kai Wang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otorhinolaryngology-Head & Neck Surgery, The First People's Hospital of Foshan, Cancheng District, NO.81 Lingnan Bei Road, Foshan, 528000, China.
| | - Jingjia Li
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Ruicheng Yan
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Zengcheng District People's Hospital of Guangzhou (Boji-Affiliated Hospital of Sun Yat-sen University), Zengcheng District, NO.1 Guangming Dong Road, Guangzhou, 511300, China.
| | - Ling Zhu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Nanhai Maternity and Child Healthcare Hospital, Nanhai District, NO.6 Guiping Xi Road, Foshan, 528000, China.
| | - Jin Ye
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Xifu Wu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Shimin Zhuang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, NO.26 Yuancun Erheng Road, Guangzhou, 510655, China.
| | - Daqing Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | - Gehua Zhang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
47
|
Kish A, Gaillard JC, Armengaud J, Elie C. Post-translational methylations of the archaeal Mre11:Rad50 complex throughout the DNA damage response. Mol Microbiol 2016; 100:362-78. [PMID: 26724682 DOI: 10.1111/mmi.13322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 12/31/2022]
Abstract
The Mre11:Rad50 complex is central to DNA double strand break repair in the Archaea and Eukarya, and acts through mechanical and nuclease activities regulated by conformational changes induced by ATP binding and hydrolysis. Despite the widespread use of Mre11 and Rad50 from hyperthermophilic archaea for structural studies, little is known in the regulation of these proteins in the Archaea. Using purification and mass spectrometry approaches allowing nearly full sequence coverage of both proteins from the species Sulfolobus acidocaldarius, we show for the first time post-translational methylation of the archaeal Mre11:Rad50 complex. Under basal growth conditions, extensive lysine methylations were identified in Mre11 and Rad50 dynamic domains, as well as methylation of a few aspartates and glutamates, including a key Mre11 aspartate involved in nuclease activity. Upon γ-irradiation induced DNA damage, additional methylated residues were identified in Rad50, notably methylation of Walker B aspartate and glutamate residues involved in ATP hydrolysis. These findings strongly suggest a key role for post-translational methylation in the regulation of the archaeal Mre11:Rad50 complex and in the DNA damage response.
Collapse
Affiliation(s)
- Adrienne Kish
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Charles Gaillard
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic", BP 17171, F-30200, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic", BP 17171, F-30200, Bagnols-sur-Cèze, France
| | - Christiane Elie
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
48
|
Lavin MF, Kozlov S, Gatei M, Kijas AW. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor. Biomolecules 2015; 5:2877-902. [PMID: 26512707 PMCID: PMC4693261 DOI: 10.3390/biom5042877] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022] Open
Abstract
The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.
Collapse
Affiliation(s)
- Martin F Lavin
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Sergei Kozlov
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Magtouf Gatei
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Amanda W Kijas
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| |
Collapse
|
49
|
Kijas AW, Lim YC, Bolderson E, Cerosaletti K, Gatei M, Jakob B, Tobias F, Taucher-Scholz G, Gueven N, Oakley G, Concannon P, Wolvetang E, Khanna KK, Wiesmüller L, Lavin MF. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1. Nucleic Acids Res 2015; 43:8352-67. [PMID: 26240375 PMCID: PMC4787824 DOI: 10.1093/nar/gkv754] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/14/2015] [Indexed: 02/07/2023] Open
Abstract
The MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the association of members of the complex or ATM activation. A phosphosite mutant (MRE11S676AS678A) cell line showed decreased cell survival and increased chromosomal aberrations after radiation exposure indicating a defect in DNA repair. Use of GFP-based DNA repair reporter substrates in MRE11S676AS678A cells revealed a defect in homology directed repair (HDR) but single strand annealing was not affected. More detailed investigation revealed that MRE11S676AS678A cells resected DNA ends to a greater extent at sites undergoing HDR. Furthermore, while ATM-dependent phosphorylation of Kap1 and SMC1 was normal in MRE11S676AS678A cells, there was no phosphorylation of Exonuclease 1 consistent with the defect in HDR. These results describe a novel role for ATM-dependent phosphorylation of MRE11 in limiting the extent of resection mediated through Exonuclease 1.
Collapse
Affiliation(s)
- Amanda W Kijas
- The University of Queensland, UQ Centre for Clinical Research, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Yi Chieh Lim
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Emma Bolderson
- Genome Stability Laboratory, Translational Research Institute, Queensland University of Technology, Queensland 4102, Australia
| | - Karen Cerosaletti
- Translational Research Program, Benaroya Research Institute, Seattle, WA 981010, USA
| | - Magtouf Gatei
- The University of Queensland, UQ Centre for Clinical Research, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Burkhard Jakob
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany
| | - Frank Tobias
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany
| | | | - Nuri Gueven
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Greg Oakley
- University of Nebraska College of Dentistry, Lincoln, NE 68583-0740, USA
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, Florida, FL 3261, USA
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane 4072, Australia
| | - Kum Kum Khanna
- Signal transduction, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, University of Ulm, Ulm 89075, Germany
| | - Martin F Lavin
- The University of Queensland, UQ Centre for Clinical Research, University of Queensland, Brisbane, Queensland 4029, Australia
| |
Collapse
|
50
|
Selvaratnam J, Paul C, Robaire B. Male Rat Germ Cells Display Age-Dependent and Cell-Specific Susceptibility in Response to Oxidative Stress Challenges. Biol Reprod 2015. [PMID: 26224006 DOI: 10.1095/biolreprod.115.131318] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
For decades male germ cells were considered unaffected by aging, due to the fact that males continue to generate sperm into old age; however, evidence indicates that germ cells from aged males are of lower quality than those of young males. The current study examines the effects of aging on pachytene spermatocytes and round spermatids, and is the first study to culture these cells in isolation for an extended period. Our objective is to determine the cell-specific responses germ cells have to aging and oxidative insult. Culturing isolated germ cells from young and aged Brown Norway rats revealed that germ cells from aged males displayed an earlier decline in viability, elevated levels of reactive oxygen species (ROS), and increased spermatocyte DNA damage, compared to young males. Furthermore, oxidative insult by prooxidant 3-morpholinosydnonimine provides insight into how spermatocytes and spermatids manage excess ROS. Genome-wide microarray analyses revealed that several transcripts for antioxidants, Sod1, Cat, and Prdxs, were up-regulated in response to ROS in germ cells from young males while being expressed at lower levels in the aged. In contrast, the expression of DNA damage repair genes Rad50 and Atm were increased in the germ cells from aged animals. Our data indicate that as germ cells undergo spermatogenesis, they adapt and respond to oxidative stress differently, depending on their phase of development, and the process of aging results in redox dysfunction. Thus, even at early stages of spermatogenesis, germ cells from aged males are unable to mount an appropriate response to manage oxidative stress.
Collapse
Affiliation(s)
- Johanna Selvaratnam
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Catriona Paul
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada Department of Obstetrics and Gynecology, McGill University, Montréal, Québec, Canada
| |
Collapse
|