1
|
Li Y, Wang F, Ji B, Amati A, Cao L. FHL2 deteriorates IL-1β induced inflammation, apoptosis, and extracellular matrix degradation in chondrocyte-like ATDC5 cells by mTOR and NF-ĸB pathways. BMC Musculoskelet Disord 2025; 26:331. [PMID: 40186216 PMCID: PMC11971747 DOI: 10.1186/s12891-025-08536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The role of nuclear translocation in osteoarthritis (OA) pathogenesis has garnered increasing attention in recent years. Extensive research has demonstrated that FHL2 acts as a nuclear transmitter through interactions with other nuclear transcription factors. We aimed to investigate the role of FHL2 in an osteoarthritis cell model. METHODS OA cartilage model was established by chondrocyte-like ATDC5 cells induced by 1% insulin-transferrin-selenium and then treated with interleukin-1β (IL-1β, 10 ng/mL). Lentivirus transfection was employed to suppress the expression of FHL2. Immunofluorescence and flow cytometry were used to examine nuclear transcription and apoptosis, respectively. Western blotting was performed to analyze the expression of metabolism-related proteins, autophagy-related proteins, apoptosis-related proteins, as well as proteins associated with the NF-ĸB and mTOR pathways. RESULTS The elevated expression of FHL2 occurred in both the cytoplasm and the nucleus. Knockdown of FHL2 could inhibit IL-1β-induced phosphorylation of NF-ĸB p65 and stabilize the extracellular matrix (ECM) by decreasing MMP-3 and MMP-13 expression, to suppress COL II degradation in chondrocyte-like ATDC5 cells. Meanwhile, the knockdown of FHL2-activated autophagy in IL-1β-treated chondrocytes through mTOR signaling, characterized by an increased LC3-II/LC3-I ratio and Beclin-1. FHL2 downregulation inhibited IL-1β-induced apoptosis by suppressing BAX and Caspase-3 expression, while enhancing BCL-2 protein levels. This mechanism may involve AKT phosphorylation and decreased expression of p-NF-ĸB p65. CONCLUSIONS FHL2 knockdown activated autophagy while suppressing inflammation, apoptosis, and ECM degradation. The mechanism underlying these processes may involve the inhibition of the mTOR and NF-ĸB signaling pathways.
Collapse
Affiliation(s)
- Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University Urumqi, Xinjiang, P.R. China
| | - Fei Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University Urumqi, Xinjiang, P.R. China
| | - Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University Urumqi, Xinjiang, P.R. China
| | - Abdusami Amati
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University Urumqi, Xinjiang, P.R. China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University Urumqi, Xinjiang, P.R. China.
| |
Collapse
|
2
|
Xiao Y, Yue Z, Zijing H, Yao Z, Sui M, Xuemin Z, Qiang Z, Xiao Y, Dapeng R. Mechanical compression induces chondrocyte hypertrophy by regulating Runx2 O-GlcNAcylation during temporomandibular joint condyle degeneration. Bone Joint Res 2025; 14:209-222. [PMID: 40058403 PMCID: PMC11890221 DOI: 10.1302/2046-3758.143.bjr-2024-0257.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Aims Excessive chondrocyte hypertrophy is a common feature in cartilage degeneration which is susceptible to joint overloading, but the relationship between mechanical overloading and chondrocyte hypertrophy still remains elusive. The aim of our study was to explore the mechanism of mechanical compression-induced chondrocyte hypertrophy. Methods In this study, the temporomandibular joint (TMJ) degeneration model was built through forced mandibular retrusion (FMR)-induced compression in TMJ. Chondrocytes were also mechanically compressed in vitro. The role of O-GlcNAcylation in mechanical compression-induced chondrocyte hypertrophy manifested through specific activator Thiamet G and inhibitor OSMI-1. Results Both in vivo and in vitro data revealed that chondrocyte hypertrophic differentiation is promoted by compression. Immunofluorescent and immunoblotting results showed that protein pan-O-GlcNAcylation levels were elevated in these hypertrophic chondrocytes. Pharmacologically inhibiting protein pan-O-GlcNAcylation by OSMI-1 partially mitigated the compression-induced hypertrophic differentiation of chondrocytes. Specifically, runt-related transcription factor 2 (Runx2) and SRY-Box 9 transcription factor (Sox9) were subjected to modification of O-GlcNAcylation under mechanical compression, and pharmacological activation or inhibition of O-GlcNAcylation affected the transcriptional activity of Runx2 but not Sox9. Furthermore, compression-induced protein pan-O-GlcNAcylation in chondrocytes was induced by enhanced expression of glucose transporter 1 (GLUT1), and depletion of GLUT1 by WZB117 dampened the effect of compression on chondrocyte hypertrophy. Conclusion Our study proposes a novel function of GLUT1-mediated protein O-GlcNAcylation in driving compression-induced hypertrophic differentiation of chondrocytes by O-GlcNAc modification of Runx2, which promoted its transcriptional activity and strengthened the expressions of downstream hypertrophic marker.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhang Yue
- Department of Orthodontics, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - He Zijing
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Yao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mao Sui
- College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Zeng Xuemin
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhang Qiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Xiao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ren Dapeng
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Wei G, Jia H, Zhang Z, Qin J, Ao J, Qian H. O-GlcNAcylation: Sagacious Orchestrator of Bone-, Joint-, and Spine-Related Diseases. J Proteome Res 2025; 24:981-994. [PMID: 39921656 PMCID: PMC11894655 DOI: 10.1021/acs.jproteome.4c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
O-linked beta-N-acetylglucosamine glycosylation (O-GlcNAcylation), a post-translational modification of proteins, occurs in multiple physiological and pathological processes. Despite comprehensive study of protein modifications, such as phosphorylation, acetylation, and ubiquitination in musculoskeletal diseases, the role of O-GlcNAcylation in this field has been largely overlooked. However, in recent years, several studies have initially elucidated the biological mechanisms through which O-GlcNAcylation regulates the development and progress of musculoskeletal diseases, including osteoarthritis, osteoporosis, osteosarcoma, and intervertebral disc degeneration. This review aims to systematically and comprehensively summarize the existing evidence, sketching the contours of the underlying mechanisms and related signaling pathways, discussing the limitations and controversies, and providing guidance for future studies on the role of O-GlcNAcylation modifications in musculoskeletal diseases.
Collapse
Affiliation(s)
- Guihuo Wei
- Department
of Orthopedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi 563000, China
| | - Hao Jia
- Department
of Orthopedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi 563000, China
| | - Zhuo Zhang
- Department
of Orthopedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi 563000, China
| | - Jianpu Qin
- Department
of Orthopedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi 563000, China
| | - Jun Ao
- Department
of Orthopedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi 563000, China
| | - Hu Qian
- Department
of Orthopedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
4
|
Kang D, Lee J, Yook G, Jeong S, Shin J, Kim MS, Kim YJ, Jung H, Ahn J, Kim TW, Chang MJ, Chang CB, Kang SB, Yang WH, Lee YH, Cho JW, Yi EC, Kang C, Kim JH. Regulation of senescence-associated secretory phenotypes in osteoarthritis by cytosolic UDP-GlcNAc retention and O-GlcNAcylation. Nat Commun 2025; 16:1094. [PMID: 39904978 PMCID: PMC11794700 DOI: 10.1038/s41467-024-55085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025] Open
Abstract
UDP-GlcNAc serves as a building block for glycosaminoglycan (GAG) chains in cartilage proteoglycans and simultaneously acts as a substrate for O-GlcNAcylation. Here, we show that transporters for UDP-GlcNAc to the endoplasmic reticulum (ER) and Golgi are significantly downregulated in osteoarthritic cartilage, leading to increased cytosolic UDP-GlcNAc and O-GlcNAcylation in chondrocytes. Mechanistically, upregulated O-GlcNAcylation governs the senescence-associated secretory phenotype (SASP) by stabilizing GATA4 via O-GlcNAcylation at S406, which compromises its degradation by p62-mediated selective autophagy. Elevated O-GlcNAcylation in the superficial layer of osteoarthritic cartilage coincides with increased GATA4 levels. The topical deletion of Gata4 in this cartilage layer ameliorates post-traumatic osteoarthritis (OA) in mice while inhibiting O-GlcNAc transferase mitigates OA by decreasing GATA4 levels. Excessive glucosamine-induced O-GlcNAcylation stabilizes GATA4 in chondrocytes and exacerbates post-traumatic OA in mice. Our findings elucidate the role of UDP-GlcNAc compartmentalization in regulating secretory pathways associated with chronic joint inflammation, providing a senostatic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Donghyun Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jeeyeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Geunho Yook
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Sehan Jeong
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jungkwon Shin
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Mi-Sung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yi-Jun Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, South Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jinsung Ahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Tae Woo Kim
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Moon Jong Chang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Chong Bum Chang
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Yong-Ho Lee
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Won Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Chanhee Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea.
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
5
|
Zhang N, Meng Y, Mao S, Ni H, Huang C, Shen L, Fu K, Lv L, Yu C, Meekrathok P, Kuang C, Chen F, Zhang Y, Yuan K. FBXO31-mediated ubiquitination of OGT maintains O-GlcNAcylation homeostasis to restrain endometrial malignancy. Nat Commun 2025; 16:1274. [PMID: 39894887 PMCID: PMC11788441 DOI: 10.1038/s41467-025-56633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Protein O-GlcNAcylation is a post-translational modification coupled to cellular metabolic plasticity. Aberrant O-GlcNAcylation has been observed in many cancers including endometrial cancer (EC), a common malignancy in women. However, clinical characterization of dysregulated O-GlcNAcylation homeostasis in EC and interrogating its molecular mechanism remain incomplete. Here we report that O-GlcNAcylation level is positively correlated with EC histologic grade in a Chinese cohort containing 219 tumors, validated in The Cancer Genome Atlas dataset. Increasing O-GlcNAcylation in patient-derived endometrial epithelial organoids promotes proliferation and stem-like cell properties, whereas decreasing O-GlcNAcylation limits the growth of endometrial cancer organoids. CRISPR screen and biochemical characterization reveal that tumor suppressor F-box only protein 31 (FBXO31) regulates O-GlcNAcylation homeostasis in EC by ubiquitinating the O-GlcNAc transferase OGT. Downregulation of O-GlcNAcylation impedes EC tumor formation in mouse models. Collectively, our study highlights O-GlcNAcylation as a useful stratification marker and a therapeutic vulnerability for the advanced, poorly differentiated EC cases.
Collapse
Affiliation(s)
- Na Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yang Meng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Huiling Ni
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Canhua Huang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Licong Shen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Kun Fu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Piyanat Meekrathok
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yu Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology & Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410000, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410000, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
6
|
Holicek V, Deen M, Bhosale S, Ashmus RA, Vocadlo DJ. An Efficient and Accessible Hectogram-Scale Synthesis for the Selective O-GlcNAcase Inhibitor Thiamet-G. ACS OMEGA 2024; 9:49223-49228. [PMID: 39713709 PMCID: PMC11656354 DOI: 10.1021/acsomega.4c06141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 12/24/2024]
Abstract
Altered levels of intracellular protein glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) have emerged as being involved in various cancers and neurodegenerative diseases. OGA inhibitors have proven critically useful as tools to help understand the roles of O-GlcNAc, yet accessing large quantities of inhibitors necessary for many animal studies remains a challenge. Herein is described a scalable method to produce Thiamet-G, a potent, selective, and widely used brain-permeable OGA inhibitor. This synthetic route begins with inexpensive precursor, requires no column chromatography, employs simple nontoxic reagents, and in a single campaign can furnish several hundred grams of crystalline Thiamet-G in an overall yield of 44% over six steps.
Collapse
Affiliation(s)
- Viktor Holicek
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5S 1P6, Canada
| | - Matthew Deen
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5S 1P6, Canada
| | - Sandeep Bhosale
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5S 1P6, Canada
| | - Roger A. Ashmus
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5S 1P6, Canada
| | - David J. Vocadlo
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5S 1P6, Canada
- Department
of Molecular Biology and Biochemistry, Simon
Fraser University, 8888
University Drive, Burnaby, British Columbia V5S 1P6, Canada
| |
Collapse
|
7
|
Yang Y, Zhou X, Deng H, Chen L, Zhang X, Wu S, Song A, Liang F. The role of O-GlcNAcylation in bone metabolic diseases. Front Physiol 2024; 15:1416967. [PMID: 38915778 PMCID: PMC11194333 DOI: 10.3389/fphys.2024.1416967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
O-GlcNAcylation, as a post-translational modification, can modulate cellular activities such as kinase activity, transcription-translation, protein degradation, and insulin signaling by affecting the function of the protein substrate, including cellular localization of proteins, protein stability, and protein/protein interactions. Accumulating evidence suggests that dysregulation of O-GlcNAcylation is associated with disease progression such as cancer, neurodegeneration, and diabetes. Recent studies suggest that O-GlcNAcylation is also involved in the regulation of osteoblast, osteoclast and chondrocyte differentiation, which is closely related to the initiation and development of bone metabolic diseases such as osteoporosis, arthritis and osteosarcoma. However, the potential mechanisms by which O-GlcNAcylation regulates bone metabolism are not fully understood. In this paper, the literature related to the regulation of bone metabolism by O-GlcNAcylation was summarized to provide new potential therapeutic strategies for the treatment of orthopedic diseases such as arthritis and osteoporosis.
Collapse
Affiliation(s)
- Yajing Yang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- School of Medicine, Xiamen University, Xiamen, China
| | - HuiLi Deng
- School of Medicine, Xiamen University, Xiamen, China
| | - Li Chen
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Xiaolin Zhang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Song Wu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Aiqun Song
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Fengxia Liang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| |
Collapse
|
8
|
Yan X, Zheng J, Ren W, Li S, Yang S, Zhi K, Gao L. O-GlcNAcylation: roles and potential therapeutic target for bone pathophysiology. Cell Commun Signal 2024; 22:279. [PMID: 38773637 PMCID: PMC11106977 DOI: 10.1186/s12964-024-01659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) protein modification (O-GlcNAcylation) is a critical post-translational modification (PTM) of cytoplasmic and nuclear proteins. O-GlcNAcylation levels are regulated by the activity of two enzymes, O-GlcNAc transferase (OGT) and O‑GlcNAcase (OGA). While OGT attaches O-GlcNAc to proteins, OGA removes O-GlcNAc from proteins. Since its discovery, researchers have demonstrated O-GlcNAcylation on thousands of proteins implicated in numerous different biological processes. Moreover, dysregulation of O-GlcNAcylation has been associated with several pathologies, including cancers, ischemia-reperfusion injury, and neurodegenerative diseases. In this review, we focus on progress in our understanding of the role of O-GlcNAcylation in bone pathophysiology, and we discuss the potential molecular mechanisms of O-GlcNAcylation modulation of bone-related diseases. In addition, we explore significant advances in the identification of O-GlcNAcylation-related regulators as potential therapeutic targets, providing novel therapeutic strategies for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Xiaohan Yan
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao District, Qingdao, 266555, Shandong, China
| | - Jingjing Zheng
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao District, Qingdao, 266555, Shandong, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao District, Qingdao, 266555, Shandong, China
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao District, Qingdao, 266555, Shandong, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao District, Qingdao, 266555, Shandong, China.
| |
Collapse
|
9
|
Vang S, Helton ES, Guo Y, Burpee B, Rose E, Easter M, Bollenbecker S, Hirsch MJ, Matthews EL, Jones LI, Howze PH, Rajasekaran V, Denson R, Cochran P, Attah IK, Olson H, Clair G, Melkani G, Krick S, Barnes JW. O-GlcNAc transferase regulates collagen deposition and fibrosis resolution in idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1387197. [PMID: 38665916 PMCID: PMC11043510 DOI: 10.3389/fimmu.2024.1387197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disease that is characterized by an excessive accumulation of extracellular matrix (ECM) proteins (e.g. collagens) in the parenchyma, which ultimately leads to respiratory failure and death. While current therapies exist to slow the progression, no therapies are available to resolve fibrosis. Methods We characterized the O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT)/O-GlcNAc axis in IPF using single-cell RNA-sequencing (scRNA-seq) data and human lung sections and isolated fibroblasts from IPF and non-IPF donors. The underlying mechanism(s) of IPF were further investigated using multiple experimental models to modulate collagen expression and accumulation by genetically and pharmacologically targeting OGT. Furthermore, we hone in on the transforming growth factor-beta (TGF-β) effector molecule, Smad3, by co-expressing it with OGT to determine if it is modified and its subsequent effect on Smad3 activation. Results We found that OGT and O-GlcNAc levels are upregulated in patients with IPF compared to non-IPF. We report that the OGT regulates collagen deposition and fibrosis resolution, which is an evolutionarily conserved process demonstrated across multiple species. Co-expression of OGT and Smad3 showed that Smad3 is O-GlcNAc modified. Blocking OGT activity resulted in decreased phosphorylation at Ser-423/425 of Smad3 attenuating the effects of TGF-β1 induced collagen expression/deposition. Conclusion OGT inhibition or knockdown successfully blocked and reversed collagen expression and accumulation, respectively. Smad3 is discovered to be a substrate of OGT and its O-GlcNAc modification(s) directly affects its phosphorylation state. These data identify OGT as a potential target in pulmonary fibrosis resolution, as well as other diseases that might have aberrant ECM/collagen accumulation.
Collapse
Affiliation(s)
- Shia Vang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric Scott Helton
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bailey Burpee
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elex Rose
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Molly Easter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Seth Bollenbecker
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meghan June Hirsch
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Emma Lea Matthews
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luke Isaac Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick Henry Howze
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vasanthi Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rebecca Denson
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Phillip Cochran
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Isaac Kwame Attah
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Heather Olson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jarrod Wesley Barnes
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Zaslow SJ, Oliveira-Paula GH, Chen W. Magnesium and Vascular Calcification in Chronic Kidney Disease: Current Insights. Int J Mol Sci 2024; 25:1155. [PMID: 38256228 PMCID: PMC10816532 DOI: 10.3390/ijms25021155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Magnesium (Mg) plays crucial roles in multiple essential biological processes. As the kidneys are the primary organ responsible for maintaining the blood concentration of Mg, people with chronic kidney disease (CKD) may develop disturbances in Mg. While both hyper- and hypomagnesemia may lead to adverse effects, the consequences associated with hypomagnesemia are often more severe and lasting. Importantly, observational studies have shown that CKD patients with hypomagnesemia have greater vascular calcification. Vascular calcification is accelerated and contributes to a high mortality rate in the CKD population. Both in vitro and animal studies have demonstrated that Mg protects against vascular calcification via several potential mechanisms, such as inhibiting the formation of both hydroxyapatite and pathogenic calciprotein particles as well as limiting osteogenic differentiation, a process in which vascular smooth muscle cells in the media layer of the arteries transform into bone-like cells. These preclinical findings have led to several important clinical trials that have investigated the effects of Mg supplementation on vascular calcification in people with CKD. Interestingly, two major clinical studies produced contradictory findings, resulting in a state of equipoise. This narrative review provides an overview of our current knowledge in the renal handling of Mg in health and CKD and the underlying mechanisms by which Mg may protect against vascular calcification. Lastly, we evaluate the strength of evidence from clinical studies on the efficacy of Mg supplementation and discuss future research directions.
Collapse
Affiliation(s)
- Shari J. Zaslow
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gustavo H. Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Chen
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Yoshimoto M, Sadamori K, Tokumura K, Tanaka Y, Fukasawa K, Hinoi E. Bioinformatic analysis reveals potential relationship between chondrocyte senescence and protein glycosylation in osteoarthritis pathogenesis. Front Endocrinol (Lausanne) 2023; 14:1153689. [PMID: 37265706 PMCID: PMC10229820 DOI: 10.3389/fendo.2023.1153689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative and progressive joint disease. Cellular senescence is an irreversible cell cycle arrest progressive with age, while protein glycosylation is the most abundant post-translational modification, regulating various cellular and biological pathways. The implication of either chondrocyte senescence or protein glycosylation in the OA pathogenesis has been extensively and individually studied. In this study, we aimed to investigate the possible relationship between chondrocyte senescence and protein glycosylation on the pathogenesis of OA using single-cell RNA sequencing datasets of clinical OA specimens deposited in the Gene Expression Omnibus database with a different cohort. We demonstrated that both cellular senescence signal and protein glycosylation pathways in chondrocytes are validly associated with OA pathogenesis. In addition, the cellular senescence signal is well-connected to the O-linked glycosylation pathway in OA chondrocyte and vice-versa. The expression levels of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family, which is essential for the biosynthesis of O-Glycans at the early stage, are highly upregulated in OA chondrocytes. Moreover, the expression levels of the GALNT family are prominently associated with chondrocyte senescence as well as pathological features of OA. Collectively, these findings uncover a crucial relationship between chondrocyte senescence and O-linked glycosylation on the OA pathophysiology, thereby revealing a potential target for OA.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Koki Sadamori
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Tokumura
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Tanaka
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Fukasawa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Division of Innovative Modality Development, Gifu University, Gifu, Japan
| |
Collapse
|
12
|
Qian Z, Li C, Zhao S, Zhang H, Ma R, Ge X, Jing J, Chen L, Ma J, Yang Y, Zheng L, Zhang K, He Z, Xue M, Lin Y, Jueraitetibaike K, Feng Y, Cao C, Tang T, Sun S, Teng H, Zhao W, Yao B. Age-related elevation of O-GlcNAc causes meiotic arrest in male mice. Cell Death Discov 2023; 9:163. [PMID: 37188682 PMCID: PMC10185674 DOI: 10.1038/s41420-023-01433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
In recent years, the postponement of childbearing has become a critical social issue. Male fertility is negatively associated with age because of testis aging. Spermatogenesis is impaired with age, but the molecular mechanism remains unknown. The dynamic posttranslational modification O-linked N-acetylglucosamine (O-GlcNAc), which is a type of monosaccharide modification, has been shown to drive the process of aging in various systems, but it has not yet been investigated in the testis and male reproductive aging. Thus, this study aims to investigate the alteration of O-GlcNAc with aging and explore the role of O-GlcNAc in spermatogenesis. Here, we demonstrate that the decline in spermatogenesis in aged mice is associated with elevation of O-GlcNAc. O-GlcNAc is specifically localized in differentiating spermatogonia and spermatocytes, indicating its crucial role in meiotic initiation and progression. Mimicking the age-related elevation of O-GlcNAc in young mice by disabling O-GlcNAcase (OGA) using the chemical inhibitor Thiamet-G can recapitulate the impairment of spermatogenesis in aged mice. Mechanistically, the elevation of O-GlcNAc in the testis leads to meiotic pachytene arrest due to defects in synapsis and recombination. Furthermore, decreasing O-GlcNAc in aged testes using an O-GlcNAc transferase (OGT) inhibitor can partially rescue the age-related impairment of spermatogenesis. Our results highlight that O-GlcNAc, as a novel posttranslational modification, participates in meiotic progression and drives the impairment of spermatogenesis during aging.
Collapse
Affiliation(s)
- Zhang Qian
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chuwei Li
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hong Zhang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Li Chen
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yang Yang
- Basic Medical Laboratory, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Lu Zheng
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Kemei Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Zhaowanyue He
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Mengqi Xue
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Ying Lin
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Kadiliya Jueraitetibaike
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yuming Feng
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chun Cao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Ting Tang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Shanshan Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hui Teng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Wei Zhao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
13
|
Abstract
O-GlcNAcylation is a dynamic post-translational modification performed by two opposing enzymes: O-GlcNAc transferase and O-GlcNAcase. O-GlcNAcylation is generally believed to act as a metabolic integrator in numerous signalling pathways. The stoichiometry of this modification is tightly controlled throughout all stages of development, with both hypo/hyper O-GlcNAcylation resulting in broad defects. In this Primer, we discuss the role of O-GlcNAcylation in developmental processes from stem cell maintenance and differentiation to cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Ignacy Czajewski
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark
| |
Collapse
|
14
|
Zhang Z, Huang Z, Awad M, Elsalanty M, Cray J, Ball LE, Maynard JC, Burlingame AL, Zeng H, Mansky KC, Ruan HB. O-GlcNAc glycosylation orchestrates fate decision and niche function of bone marrow stromal progenitors. eLife 2023; 12:e85464. [PMID: 36861967 PMCID: PMC10032655 DOI: 10.7554/elife.85464] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/01/2023] [Indexed: 03/03/2023] Open
Abstract
In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPβ-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.
Collapse
Affiliation(s)
- Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Zan Huang
- Department of Integrative Biology and Physiology, University of Minnesota Medical SchoolMinneapolisUnited States
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural UniversityNanjingChina
| | - Mohamed Awad
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health SciencesPomonaUnited States
| | - Mohammed Elsalanty
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health SciencesPomonaUnited States
| | - James Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, and Division of Biosciences, The Ohio State University College of DentistryColumbusUnited States
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South CarolinaCharlestonUnited States
| | - Jason C Maynard
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Hu Zeng
- Division of Rheumatology, Department of Internal Medicine, Mayo ClinicRochesterUnited States
- Department of Immunology, Mayo ClinicRochesterUnited States
| | - Kim C Mansky
- Department of Developmental and Surgical Sciences, School of Dentistry, University of MinnesotaMinneapolisUnited States
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| |
Collapse
|
15
|
McTague A, Tazhitdinova R, Timoshenko AV. O-GlcNAc-Mediated Regulation of Galectin Expression and Secretion in Human Promyelocytic HL-60 Cells Undergoing Neutrophilic Differentiation. Biomolecules 2022; 12:biom12121763. [PMID: 36551191 PMCID: PMC9776088 DOI: 10.3390/biom12121763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we have tested the hypothesis that the expression and secretion of galectins are driven through mechanisms globally impacted by homeostatic regulation involving the post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc). We showed that neutrophilic differentiation of HL-60 cells induced by all-trans retinoic acid (ATRA) and 6-diazo-5-oxo-L-norleucine (DON) was associated with a significant drop of cellular O-GlcNAc levels in serum-contained and serum-free cell culture media. Galectin gene and protein expression profiles in HL-60 cells were specifically modified by ATRA and by inhibitors of O-GlcNAc cycle enzymes, however overall trends for each drug were similar between cells growing in the presence or absence of serum except for LGALS9 and LGALS12. The secretion of four galectins (-1, -3, -9, and -10) by HL-60 cells in a serum-free medium was stimulated by O-GlcNAc-reducing ATRA and DON while O-GlcNAc-elevating thiamet G (O-GlcNAcase inhibitor) failed to change the basal levels of extracellular galectins. Taken together, these results demonstrate that O-GlcNAc homeostasis is essential not only for regulation of galectin expression in cells but also for the secretion of multiple members of this protein family, which can be an important novel aspect of unconventional secretion mechanisms.
Collapse
|
16
|
Gratal P, Mediero A, Lamuedra A, Matamoros-Recio A, Herencia C, Herrero-Beaumont G, Martín-Santamaría S, Largo R. 6-shogaol treatment improves experimental knee OA exerting a pleiotropic effect over immune innate signaling response in chondrocytes. Br J Pharmacol 2022; 179:5089-5108. [PMID: 35760458 DOI: 10.1111/bph.15908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/09/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of osteoarthritis (OA) implicates a low-grade inflammation associated to the activation of the innate immune system. Toll like receptor (TLR) stimulation triggers the release of inflammatory mediators, which aggravate OA severity. The aim was to study the preventive effect of 6-shogaol (6S), a potential TLR4 inhibitor, on the treatment of experimental knee OA. EXPERIMENTAL APPROACH OA was induced in C57BL6 mice by surgical section of the medial meniscotibial ligament, which received 6S for eight weeks. Cartilage damage, inflammatory mediator presence, and disease markers were assessed in the joint tissues by immunohistochemistry. Computational modelling was used to predict binding modes of 6S into the TLR4/MD2 receptor and its permeability across cellular membranes. Employing LPS-stimulated chondrocytes and MAPK assay, we clarified 6S action mechanisms. KEY RESULTS 6S treatment was able to prevent articular cartilage lesions, synovitis, and the presence of pro-inflammatory mediators and disease markers in OA animals. Molecular modelling studies predicted 6S interaction with the TLR4/MD-2 heterodimer in an antagonist conformation through its binding into the MD-2 pocket. In cell culture, we confirmed that 6S reduced LPS-induced TLR4 inflammatory signaling pathways. Besides, MAPK assay demonstrated that 6S directly inhibits the ERK1/2 phosphorylation activity. CONCLUSION AND IMPLICATIONS 6S evoked a preventive action on cartilage and synovial inflammation in OA mice. 6S effect may take place not only by hindering the interaction between TLR4 ligands and the TLR4/MD-2 complex in chondrocytes, but also through inhibition of ERK phosphorylation, implying a pleiotropic effect on different mediators activated during OA, which proposes it as an attractive drug for OA treatment.
Collapse
Affiliation(s)
- Paula Gratal
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Aránzazu Mediero
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Ana Lamuedra
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Alejandra Matamoros-Recio
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Carmen Herencia
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
17
|
Hu Y, You C, Song C, Shi Y, Ye L. The Beneficial Effect of Global O-GlcNAcylation on Odontogenic Differentiation of Human Dental Pulp Cells via mTORC1 pathway. Arch Oral Biol 2022; 138:105427. [DOI: 10.1016/j.archoralbio.2022.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/12/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
|
18
|
Lamuedra A, Gratal P, Calatrava L, Ruiz-Perez VL, Palencia-Campos A, Portal-Núñez S, Mediero A, Herrero-Beaumont G, Largo R. Blocking chondrocyte hypertrophy in conditional Evc knockout mice does not modify cartilage damage in osteoarthritis. FASEB J 2022; 36:e22258. [PMID: 35334131 DOI: 10.1096/fj.202101791rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
Chondrocytes in osteoarthritic (OA) cartilage acquire a hypertrophic-like phenotype, where Hedgehog (Hh) signaling is pivotal. Hh overexpression causes OA-like cartilage lesions, whereas its downregulation prevents articular destruction in mouse models. Mutations in EVC and EVC2 genes disrupt Hh signaling, and are responsible for the Ellis-van Creveld syndrome skeletal dysplasia. Since Ellis-van Creveld syndrome protein (Evc) deletion is expected to hamper Hh target gene expression we hypothesized that it would also prevent OA progression avoiding chondrocyte hypertrophy. Our aim was to study Evc as a new therapeutic target in OA, and whether Evc deletion restrains chondrocyte hypertrophy and prevents joint damage in an Evc tamoxifen induced knockout (EvccKO ) model of OA. For this purpose, OA was induced by surgical knee destabilization in wild-type (WT) and EvccKO adult mice, and healthy WT mice were used as controls (n = 10 knees/group). Hypertrophic markers and Hh genes were measured by qRT-PCR, and metalloproteinases (MMP) levels assessed by western blot. Human OA chondrocytes and cartilage samples were obtained from patients undergoing knee joint replacement surgery. Cyclopamine (CPA) was used for Hh pharmacological inhibition and IL-1 beta as an inflammatory insult. Our results showed that tamoxifen induced inactivation of Evc inhibited Hh overexpression and partially prevented chondrocyte hypertrophy during OA, although it did not ameliorate cartilage damage in DMM-EvccKO mice. Hh pathway inhibition did not modify the expression of proinflammatory mediators induced by IL-1 beta in human OA chondrocytes in culture. We found that hypertrophic-IHH-and inflammatory-COX-2-markers co-localized in OA cartilage samples. We concluded that tamoxifen induced inactivation of Evc partially prevented chondrocyte hypertrophy in DMM-EvccKO mice, but it did not ameliorate cartilage damage. Overall, our results suggest that chondrocyte hypertrophy per se is not a pathogenic event in the progression of OA.
Collapse
Affiliation(s)
- Ana Lamuedra
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Paula Gratal
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Lucía Calatrava
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Víctor Luis Ruiz-Perez
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain.,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, Madrid, Spain
| | | | - Sergio Portal-Núñez
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - Aránzazu Mediero
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
19
|
Ota Y, Yoshida H, Endo Y, Sayo T, Takahashi Y. A Connecting Link between Hyaluronan Synthase 3-Mediated Hyaluronan Production and Epidermal Function. Int J Mol Sci 2022; 23:ijms23052424. [PMID: 35269567 PMCID: PMC8910372 DOI: 10.3390/ijms23052424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 01/31/2023] Open
Abstract
Hyaluronan (HA), an essential component of the extracellular matrix of the skin, is synthesized by HA synthases (HAS1-3). To date, epidermal HA has been considered a major player in regulating cell proliferation and differentiation. However, a previous study reported that depletion of epidermal HA by Streptomyces hyaluronidase (St-HAase) has no influence on epidermal structure and function. In the present study, to further explore roles of epidermal HA, we examined effects of siRNA-mediated knockdown of HAS3, as well as conventional HA-depletion methods using St-HAase and 4-methylumbelliferone (4MU), on epidermal turnover and architecture in reconstructed skin or epidermal equivalents. Consistent with previous findings, HA depletion by St-HAase did not have a substantial influence on the epidermal architecture and turnover in skin equivalents. 4MU treatment resulted in reduced keratinocyte proliferation and epidermal thinning but did not seem to substantially decrease the abundance of extracellular HA. In contrast, siRNA-mediated knockdown of HAS3 in epidermal equivalents resulted in a significant reduction in epidermal HA content and thickness, accompanied by decreased keratinocyte proliferation and differentiation. These results suggest that HAS3-mediated HA production, rather than extracellularly deposited HA, may play a role in keratinocyte proliferation and differentiation, at least in the developing epidermis in reconstructed epidermal equivalents.
Collapse
|
20
|
Weng Y, Wang Z, Fukuhara Y, Tanai A, Ikegame M, Yamada D, Takarada T, Izawa T, Hayano S, Yoshida K, Kamioka H, Okamura H. O-GlcNAcylation drives calcium signaling toward osteoblast differentiation: A bioinformatics-oriented study. Biofactors 2021; 47:992-1015. [PMID: 34418170 DOI: 10.1002/biof.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to reveal the possible mechanisms by which O-linked-N-acetylglucosaminylation (O-GlcNAcylation) regulates osteoblast differentiation using a series of bioinformatics-oriented experiments. To examine the influence of O-GlcNAcylation levels on osteoblast differentiation, osteoblastic MC3T3-E1 cells were treated with O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) inhibitors. Correlations between the levels of O-GlcNAcylation and the expression of osteogenic markers as well as OGT were evaluated by qPCR and western blotting. The O-GlcNAcylated proteins assumed to correlate with Runx2 expression were retrieved from several public databases and used for further bioinformatics analysis. Following the findings of the bioinformatics analysis, intracellular calcium ([Ca2+ ]i ) was monitored in the cells treated with OGT and OGA inhibitors using a confocal laser-scanning microscope (CLS). The interaction effect between O-GlcNAcylation and [Ca2+ ]i on osteogenic marker expression was determined using stable OGT knockdown MC3T3-E1 cells. O-GlcNAcylation was positively associated with osteoblast differentiation. The time-course profile of global O-GlcNAcylated proteins showed a distinctive pattern with different molecular weights during osteoblast differentiation. The expression pattern of several O-GlcNAcylated proteins was significantly similar to that of Runx2 expression. Bioinformatic analysis of the retrieved Runx2-related-O-GlcNAcylated-proteins revealed the importance of [Ca2+ ]i . CLS showed that alteration of O-GlcNAcylation rapidly changed [Ca2+ ]i in MC3T3-E1 cells. O-GlcNAcylation and [Ca2+ ]i showed an interaction effect on the expression of osteogenic markers. OGT knockdown disrupted the [Ca2+ ]i -induced expression changes of osteogenic markers. O-GlcNAcylation interacts with [Ca2+ ]i and elicits osteoblast differentiation by regulating the expression of osteogenic markers.
Collapse
Affiliation(s)
- Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoko Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Airi Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Izawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Hayano
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
21
|
Kim SM, Zhang S, Park J, Sung HJ, Tran TDT, Chung C, Han IO. REM Sleep Deprivation Impairs Learning and Memory by Decreasing Brain O-GlcNAc Cycling in Mouse. Neurotherapeutics 2021; 18:2504-2517. [PMID: 34312767 PMCID: PMC8804064 DOI: 10.1007/s13311-021-01094-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Rapid eye movement (REM) sleep is implicated learning and memory (L/M) functions and hippocampal long-term potentiation (LTP). Here, we demonstrate that REM sleep deprivation (REMSD)-induced impairment of contextual fear memory in mouse is linked to a reduction in hexosamine biosynthetic pathway (HBP)/O-GlcNAc flux in mouse brain. In mice exposed to REMSD, O-GlcNAcylation, and O-GlcNAc transferase (OGT) were downregulated while O-GlcNAcase was upregulated compared to control mouse brain. Foot shock fear conditioning (FC) induced activation of protein kinase A (PKA) and cAMP response element binding protein (CREB), which were significantly inhibited in brains of the REMSD group. Intriguingly, REMSD-induced defects in L/M functions and FC-induced PKA/CREB activation were restored upon increasing O-GlcNAc cycling with glucosamine (GlcN) or Thiamet G. Furthermore, Thiamet G restored the REMSD-induced decrease in dendritic spine density. Suppression of O-GlcNAcylation by the glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitor, 6-diazo-5-oxo-L-norleucine (DON), or OGT inhibitor, OSMI-1, impaired memory function, and inhibited FC-induced PKA/CREB activation. DON additionally reduced the amplitude of baseline field excitatory postsynaptic potential (fEPSP) and magnitude of long-term potentiation (LTP) in normal mouse hippocampal slices. To our knowledge, this is the first study to provide comprehensive evidence of dynamic O-GlcNAcylation changes during the L/M process in mice and defects in this pathway in the brain of REM sleep-deprived mice. Our collective results highlight HBP/O-GlcNAc cycling as a novel molecular link between sleep and cognitive function.
Collapse
Affiliation(s)
- Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - Hyun Jae Sung
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - Thuy-Duong Thi Tran
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
22
|
Masbuchin AN, Rohman MS, Liu PY. Role of Glycosylation in Vascular Calcification. Int J Mol Sci 2021; 22:9829. [PMID: 34575990 PMCID: PMC8469761 DOI: 10.3390/ijms22189829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is an important step in post-translational protein modification. Altered glycosylation results in an abnormality that causes diseases such as malignancy and cardiovascular diseases. Recent emerging evidence highlights the importance of glycosylation in vascular calcification. Two major types of glycosylation, N-glycosylation and O-glycosylation, are involved in vascular calcification. Other glycosylation mechanisms, which polymerize the glycosaminoglycan (GAG) chain onto protein, resulting in proteoglycan (PG), also have an impact on vascular calcification. This paper discusses the role of glycosylation in vascular calcification.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
23
|
Kim MJ, Kim HS, Lee S, Min KY, Choi WS, You JS. Hexosamine Biosynthetic Pathway-Derived O-GlcNAcylation Is Critical for RANKL-Mediated Osteoclast Differentiation. Int J Mol Sci 2021; 22:ijms22168888. [PMID: 34445596 PMCID: PMC8396330 DOI: 10.3390/ijms22168888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) performed by O-GlcNAc transferase (OGT) is a nutrient-responsive post-translational modification (PTM) via the hexosamine biosynthetic pathway (HBP). Various transcription factors (TFs) are O-GlcNAcylated, affecting their activities and significantly contributing to cellular processes ranging from survival to cellular differentiation. Given the pleiotropic functions of O-GlcNAc modification, it has been studied in various fields; however, the role of O-GlcNAcylation during osteoclast differentiation remains to be explored. Kinetic transcriptome analysis during receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation revealed that the nexus of major nutrient metabolism, HBP was critical for this process. We observed that the critical genes related to HBP activation, including Nagk, Gfpt1, and Ogt, were upregulated, while the global O-GlcNAcylation was increased concomitantly during osteoclast differentiation. The O-GlcNAcylation inhibition by the small-molecule inhibitor OSMI-1 reduced osteoclast differentiation in vitro and in vivo by disrupting the translocation of NF-κB p65 and nuclear factor of activated T cells c1 (NFATc1) into the nucleus by controlling their PTM O-GlcNAcylation. Furthermore, OSMI-1 had a synergistic effect with bone target therapy on osteoclastogenesis. Lastly, knocking down Ogt with shRNA (shOgt) mimicked OSMI-1’s effect on osteoclastogenesis. Targeting O-GlcNAcylation during osteoclast differentiation may be a valuable therapeutic approach for osteoclast-activated bone diseases.
Collapse
Affiliation(s)
- Myoung Jun Kim
- School of Medicine, Konkuk University, Seoul 05029, Korea; (M.J.K.); (S.L.); (K.Y.M.); (W.S.C.)
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Korea;
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
| | - Sangyong Lee
- School of Medicine, Konkuk University, Seoul 05029, Korea; (M.J.K.); (S.L.); (K.Y.M.); (W.S.C.)
| | - Keun Young Min
- School of Medicine, Konkuk University, Seoul 05029, Korea; (M.J.K.); (S.L.); (K.Y.M.); (W.S.C.)
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Seoul 05029, Korea; (M.J.K.); (S.L.); (K.Y.M.); (W.S.C.)
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University, Chungju 27478, Korea
| | - Jueng Soo You
- School of Medicine, Konkuk University, Seoul 05029, Korea; (M.J.K.); (S.L.); (K.Y.M.); (W.S.C.)
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University, Chungju 27478, Korea
- Correspondence: ; Tel.: +82-2-2049-6235
| |
Collapse
|
24
|
The Hexosamine Biosynthetic Pathway as a Therapeutic Target after Cartilage Trauma: Modification of Chondrocyte Survival and Metabolism by Glucosamine Derivatives and PUGNAc in an Ex Vivo Model. Int J Mol Sci 2021; 22:ijms22147247. [PMID: 34298867 PMCID: PMC8305151 DOI: 10.3390/ijms22147247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) is essential for the production of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the building block of glycosaminoglycans, thus playing a crucial role in cartilage anabolism. Although O-GlcNAcylation represents a protective regulatory mechanism in cellular processes, it has been associated with degenerative diseases, including osteoarthritis (OA). The present study focuses on HBP-related processes as potential therapeutic targets after cartilage trauma. Human cartilage explants were traumatized and treated with GlcNAc or glucosamine sulfate (GS); PUGNAc, an inhibitor of O-GlcNAcase; or azaserine (AZA), an inhibitor of GFAT-1. After 7 days, cell viability and gene expression analysis of anabolic and catabolic markers, as well as HBP-related enzymes, were performed. Moreover, expression of catabolic enzymes and type II collagen (COL2) biosynthesis were determined. Proteoglycan content was assessed after 14 days. Cartilage trauma led to a dysbalanced expression of different HBP-related enzymes, comparable to the situation in highly degenerated tissue. While GlcNAc and PUGNAc resulted in significant cell protection after trauma, only PUGNAc increased COL2 biosynthesis. Moreover, PUGNAc and both glucosamine derivatives had anti-catabolic effects. In contrast, AZA increased catabolic processes. Overall, “fueling” the HBP by means of glucosamine derivatives or inhibition of deglycosylation turned out as cells and chondroprotectives after cartilage trauma.
Collapse
|
25
|
Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, Zhou Y, Liu C, Sang N, Liu H, Zou J, Gou K, Yang X, Zhao Y. DHODH and cancer: promising prospects to be explored. Cancer Metab 2021; 9:22. [PMID: 33971967 PMCID: PMC8107416 DOI: 10.1186/s40170-021-00250-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zeping Zuo
- The Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Huan Liu
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaowei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Samart P, Luanpitpong S, Rojanasakul Y, Issaragrisil S. O-GlcNAcylation homeostasis controlled by calcium influx channels regulates multiple myeloma dissemination. J Exp Clin Cancer Res 2021; 40:100. [PMID: 33726758 PMCID: PMC7968185 DOI: 10.1186/s13046-021-01876-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) cell motility is a critical step during MM dissemination throughout the body, but how it is regulated remains largely unknown. As hypercalcemia is an important clinical feature of MM, high calcium (Ca2+) and altered Ca2+ signaling could be a key contributing factor to the pathological process. METHODS Bioinformatics analyses were employed to assess the clinical significance of Ca2+ influx channels in clinical specimens of smoldering and symptomatic MM. Functional and regulatory roles of influx channels and downstream signaling in MM cell migration and invasion were conducted and experimental MM dissemination was examined in a xenograft mouse model using in vivo live imaging and engraftment analysis. RESULTS Inhibition of TRPM7, ORAI1, and STIM1 influx channels, which are highly expressed in MM patients, and subsequent blockage of Ca2+ influx by CRISPR/Cas9 and small molecule inhibitors, effectively inhibit MM cell migration and invasion, and attenuate the experimental MM dissemination. Mechanistic studies reveal a nutrient sensor O-GlcNAcylation as a downstream regulator of Ca2+ influx that specifically targets cell adhesion molecules. Hyper-O-GlcNAcylation following the inhibition of Ca2+ influx channels induces integrin α4 and integrin β7 downregulation via ubiquitin-proteasomal degradation and represses the aggressive MM phenotype. CONCLUSIONS Our findings unveil a novel regulatory mechanism of MM cell motility via Ca2+ influx/O-GlcNAcylation axis that directly targets integrin α4 and integrin β7, providing mechanistic insights into the pathogenesis and progression of MM and demonstrating potential predictive biomarkers and therapeutic targets for advanced MM.
Collapse
Affiliation(s)
- Parinya Samart
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Yon Rojanasakul
- WVU Cancer Institute and Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand
| |
Collapse
|
27
|
Mueller T, Ouyang X, Johnson MS, Qian WJ, Chatham JC, Darley-Usmar V, Zhang J. New Insights Into the Biology of Protein O-GlcNAcylation: Approaches and Observations. FRONTIERS IN AGING 2021; 1:620382. [PMID: 35822169 PMCID: PMC9261361 DOI: 10.3389/fragi.2020.620382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
O-GlcNAcylation is a protein posttranslational modification that results in the addition of O-GlcNAc to Ser/Thr residues. Since its discovery in the 1980s, it has been shown to play an important role in a broad range of cellular functions by modifying nuclear, cytosolic, and mitochondrial proteins. The addition of O-GlcNAc is catalyzed by O-GlcNAc transferase (OGT), and its removal is catalyzed by O-GlcNAcase (OGA). Levels of protein O-GlcNAcylation change in response to nutrient availability and metabolic, oxidative, and proteotoxic stress. OGT and OGA levels, activity, and target engagement are also regulated. Together, this results in adaptive and, on occasions, detrimental responses that affect cellular function and survival, which impact a broad range of pathologies and aging. Over the past several decades, approaches and tools to aid the investigation of the regulation and consequences of protein O-GlcNAcylation have been developed and enhanced. This review is divided into two sections: 1) We will first focus on current standard and advanced technical approaches for assessing enzymatic activities of OGT and OGT, assessing the global and specific protein O-GlcNAcylation and 2) we will summarize in vivo findings of functional consequences of changing protein O-GlcNAcylation, using genetic and pharmacological approaches.
Collapse
Affiliation(s)
- Toni Mueller
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xiaosen Ouyang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michelle S. Johnson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - John C. Chatham
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Muha V, Authier F, Szoke-Kovacs Z, Johnson S, Gallagher J, McNeilly A, McCrimmon RJ, Teboul L, van Aalten DMF. Loss of O-GlcNAcase catalytic activity leads to defects in mouse embryogenesis. J Biol Chem 2021; 296:100439. [PMID: 33610549 PMCID: PMC7988489 DOI: 10.1016/j.jbc.2021.100439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
O-GlcNAcylation is an essential post-translational modification that has been implicated in neurodevelopmental and neurodegenerative disorders. O-GlcNAcase (OGA), the sole enzyme catalyzing the removal of O-GlcNAc from proteins, has emerged as a potential drug target. OGA consists of an N-terminal OGA catalytic domain and a C-terminal pseudo histone acetyltransferase (HAT) domain with unknown function. To investigate phenotypes specific to loss of OGA catalytic activity and dissect the role of the HAT domain, we generated a constitutive knock-in mouse line, carrying a mutation of a catalytic aspartic acid to alanine. These mice showed perinatal lethality and abnormal embryonic growth with skewed Mendelian ratios after day E18.5. We observed tissue-specific changes in O-GlcNAc homeostasis regulation to compensate for loss of OGA activity. Using X-ray microcomputed tomography on late gestation embryos, we identified defects in the kidney, brain, liver, and stomach. Taken together, our data suggest that developmental defects during gestation may arise upon prolonged OGA inhibition specifically because of loss of OGA catalytic activity and independent of the function of the HAT domain.
Collapse
Affiliation(s)
- Villő Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Florence Authier
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Sara Johnson
- The Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | - Jennifer Gallagher
- Division of Molecular & Clinical Medicine, University of Dundee, Dundee, UK
| | - Alison McNeilly
- System Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Rory J McCrimmon
- Division of Molecular & Clinical Medicine, University of Dundee, Dundee, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
29
|
Chen Y, Zhao X, Wu H. Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2). Arterioscler Thromb Vasc Biol 2021; 41:20-34. [PMID: 33115268 PMCID: PMC7770073 DOI: 10.1161/atvbaha.120.313791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite successful therapeutic strategies in the prevention and treatment of arteriosclerosis, the cardiovascular complications remain a major clinical and societal issue worldwide. Increased vascular calcification promotes arterial stiffness and accelerates cardiovascular morbidity and mortality. Upregulation of the Runx2 (Runt-related transcription factor 2), an essential osteogenic transcription factor for bone formation, in the cardiovascular system has emerged as an important regulator for adverse cellular events that drive cardiovascular pathology. This review discusses the regulatory mechanisms that are critical for Runx2 expression and function and highlights the dynamic and complex cross talks of a wide variety of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and O-linked β-N-acetylglucosamine modification, in regulating Runx2 stability, cellular localization, and osteogenic transcriptional activity. How the activation of an array of signaling cascades by circulating and local microenvironmental factors upregulates Runx2 in vascular cells and promotes Runx2-mediated osteogenic transdifferentiation of vascular smooth muscle cells and expression of inflammatory cytokines that accelerate macrophage infiltration and vascular osteoclast formation is summarized. Furthermore, the increasing appreciation of a new role of Runx2 upregulation in promoting vascular smooth muscle cell phenotypic switch, and Runx2 modulated by O-linked β-N-acetylglucosamine modification and Runx2-dependent repression of smooth muscle cell-specific gene expression are discussed. Further exploring the regulation of this key osteogenic transcription factor and its new perspectives in the vasculature will provide novel insights into the transcriptional regulation of vascular smooth muscle cell phenotype switch, reprograming, and vascular inflammation that promote the pathogenesis of arteriosclerosis.
Collapse
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | - Xinyang Zhao
- Department of Biochemistry, University of Alabama at Birmingham
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, Oregon 97239
| |
Collapse
|
30
|
Sheikh MA, Emerald BS, Ansari SA. Stem cell fate determination through protein O-GlcNAcylation. J Biol Chem 2021; 296:100035. [PMID: 33154167 PMCID: PMC7948975 DOI: 10.1074/jbc.rev120.014915] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Embryonic and adult stem cells possess the capability of self-renewal and lineage-specific differentiation. The intricate balance between self-renewal and differentiation is governed by developmental signals and cell-type-specific gene regulatory mechanisms. A perturbed intra/extracellular environment during lineage specification could affect stem cell fate decisions resulting in pathology. Growing evidence demonstrates that metabolic pathways govern epigenetic regulation of gene expression during stem cell fate commitment through the utilization of metabolic intermediates or end products of metabolic pathways as substrates for enzymatic histone/DNA modifications. UDP-GlcNAc is one such metabolite that acts as a substrate for enzymatic mono-glycosylation of various nuclear, cytosolic, and mitochondrial proteins on serine/threonine amino acid residues, a process termed protein O-GlcNAcylation. The levels of GlcNAc inside the cells depend on the nutrient availability, especially glucose. Thus, this metabolic sensor could modulate gene expression through O-GlcNAc modification of histones or other proteins in response to metabolic fluctuations. Herein, we review evidence demonstrating how stem cells couple metabolic inputs to gene regulatory pathways through O-GlcNAc-mediated epigenetic/transcriptional regulatory mechanisms to govern self-renewal and lineage-specific differentiation programs. This review will serve as a primer for researchers seeking to better understand how O-GlcNAc influences stemness and may catalyze the discovery of new stem-cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Muhammad Abid Sheikh
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
31
|
Xu TH, Du Y, Sheng Z, Li Y, Qiu X, Tian B, Yao L. OGT-Mediated KEAP1 Glycosylation Accelerates NRF2 Degradation Leading to High Phosphate-Induced Vascular Calcification in Chronic Kidney Disease. Front Physiol 2020; 11:1092. [PMID: 33192538 PMCID: PMC7649800 DOI: 10.3389/fphys.2020.01092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Unraveling the complex regulatory pathways that mediate the effects of phosphate on vascular smooth muscle cells (VSMCs) may provide novel targets and therapies to limit the destructive effects of vascular calcification (VC) in patients with chronic kidney disease (CKD). Our previous studies have highlighted several signaling networks associated with VSMC autophagy, but the underlying mechanisms remain poorly understood. Thereafter, the current study was performed to characterize the functional relevance of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in high phosphate-induced VC in CKD settings. We generated VC models in 5/6 nephrectomized rats in vivo and VSMC calcification models in vitro. Artificial modulation of OGT (knockdown and overexpression) was performed to explore the role of OGT in VSMC autophagy and VC in thoracic aorta, and in vivo experiments were used to substantiate in vitro findings. Mechanistically, co-immunoprecipitation (Co-IP) assay was performed to examine interaction between OGT and kelch like ECH associated protein 1 (KEAP1), and in vivo ubiquitination assay was performed to examine ubiquitination extent of nuclear factor erythroid 2-related factor 2 (NRF2). OGT was highly expressed in high phosphate-induced 5/6 nephrectomized rats and VSMCs. OGT silencing was shown to suppress high phosphate-induced calcification of VSMCs. OGT enhances KEAP1 glycosylation and thereby results in degradation and ubiquitination of NRF2, concurrently inhibiting VSMC autophagy to promote VSMC calcification in 5/6 nephrectomized rats. OGT inhibits VSMC autophagy through the KEAP1/NRF2 axis and thus accelerates high phosphate-induced VC in CKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Protein O-GlcNAcylation Promotes Trophoblast Differentiation at Implantation. Cells 2020; 9:cells9102246. [PMID: 33036308 PMCID: PMC7599815 DOI: 10.3390/cells9102246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Embryo implantation begins with blastocyst trophectoderm (TE) attachment to the endometrial epithelium, followed by the breaching of this barrier by TE-derived trophoblast. Dynamic protein modification with O-linked β-N-acetylglucosamine (O-GlcNAcylation) is mediated by O-GlcNAc transferase and O-GlcNAcase (OGA), and couples cellular metabolism to stress adaptation. O-GlcNAcylation is essential for blastocyst formation, but whether there is a role for this system at implantation remains unexplored. Here, we used OGA inhibitor thiamet g (TMG) to induce raised levels of O-GlcNAcylation in mouse blastocysts and human trophoblast cells. In an in vitro embryo implantation model, TMG promoted mouse blastocyst breaching of the endometrial epithelium. TMG reduced expression of TE transcription factors Cdx2, Gata2 and Gata3, suggesting that O-GlcNAcylation stimulated TE differentiation to invasive trophoblast. TMG upregulated transcription factors OVOL1 and GCM1, and cell fusion gene ERVFRD1, in a cell line model of syncytiotrophoblast differentiation from human TE at implantation. Therefore O-GlcNAcylation is a conserved pathway capable of driving trophoblast differentiation. TE and trophoblast are sensitive to physical, chemical and nutritive stress, which can occur as a consequence of maternal pathophysiology or during assisted reproduction, and may lead to adverse neonatal outcomes and associated adult health risks. Further investigation of how O-GlcNAcylation regulates trophoblast populations arising at implantation is required to understand how peri-implantation stress affects reproductive outcomes.
Collapse
|
33
|
Takeuchi T, Horimoto Y, Oyama M, Nakatani S, Kobata K, Tamura M, Arata Y, Hatanaka T. Osteoclast Differentiation Is Suppressed by Increased O-GlcNAcylation Due to Thiamet G Treatment. Biol Pharm Bull 2020; 43:1501-1505. [PMID: 32999159 DOI: 10.1248/bpb.b20-00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoclasts are the only bone-resorbing cells in organisms and understanding their differentiation mechanism is crucial for the treatment of osteoporosis. In the present study, we investigated the effect of Thiamet G, an O-GlcNAcase specific inhibitor, on osteoclastogenic differentiation. Thiamet G treatment increased global O-GlcNAcylation in murine RAW264 cells and suppressed receptor activator of nuclear factor-κB ligand (RANKL)-dependent formation in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells, thereby suppressing the upregulation of osteoclast specific genes. Meanwhile, knockdown of O-linked N-acetylglucosamine (O-GlcNAc) transferase promoted the formation TRAP-positive multinuclear cells. Thiamet G treatment also suppressed RANKL and macrophage colony-stimulating factor (M-CSF) dependent osteoclast formation and bone-resorbing activity in mouse primary bone marrow cells and human peripheral blood mononuclear cells. These results indicate that the promotion of O-GlcNAc modification specifically suppresses osteoclast formation and its activity and suggest that chemicals affecting O-GlcNAc modification might potentially be useful in the prevention or treatment of osteoporosis in future.
Collapse
Affiliation(s)
| | | | - Midori Oyama
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences
| | - Sachie Nakatani
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences
| | - Kenji Kobata
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences
| | | | | | - Tomomi Hatanaka
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences.,Tokai University, School of Medicine
| |
Collapse
|
34
|
Herrero-Beaumont G, Largo R. Glucosamine and O-GlcNAcylation: a novel immunometabolic therapeutic target for OA and chronic, low-grade systemic inflammation? Ann Rheum Dis 2020; 79:1261-1263. [PMID: 32554393 DOI: 10.1136/annrheumdis-2020-217454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Gabriel Herrero-Beaumont
- Rheumatology, Fundacion Jimenez Diaz, Madrid, Spain
- Joint and Bone Research Unit, Rheumatology Department, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Raquel Largo
- Joint and Bone Research Unit, Rheumatology Department, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| |
Collapse
|
35
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|
36
|
Disorganization of chondrocyte columns in the growth plate does not aggravate experimental osteoarthritis in mice. Sci Rep 2020; 10:10745. [PMID: 32612184 PMCID: PMC7329885 DOI: 10.1038/s41598-020-67518-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease mainly affecting articular cartilage (AC) with a relevant biomechanical component. During endochondral ossification growth plate (GP) chondrocytes arrange in columns. GPs do not ossify in skeletally mature rodents. In neonatal mice, an altered joint loading induces GP chondrocyte disorganization. We aimed to study whether experimental OA involves GP disorganization in adult mice and to assess if it may have additional detrimental effects on AC damage. Knee OA was induced by destabilization of the medial meniscus (DMM) in wild-type (WT) adult mice, and in Tamoxifen-inducible Ellis-van-Creveld syndrome protein (Evc) knockouts (EvccKO), used as a model of GP disorganization due to Hedgehog signalling disruption. Chondrocyte column arrangement was assessed in the tibial GP and expressed as Column Index (CI). Both DMM-operated WT mice and non-operated-EvccKO showed a decreased CI, indicating GP chondrocyte column disarrangement, although in the latter, it was not associated to AC damage. The most severe GP chondrocyte disorganization occurred in DMM-EvccKO mice, in comparison to the other groups. However, this altered GP structure in DMM-EvccKO mice did not exacerbate AC damage. Further studies are needed to confirm the lack of interference of GP alterations on the analysis of AC employing OA mice.
Collapse
|
37
|
Elbatrawy AA, Kim EJ, Nam G. O‐GlcNAcase: Emerging Mechanism, Substrate Recognition and Small‐Molecule Inhibitors. ChemMedChem 2020; 15:1244-1257. [DOI: 10.1002/cmdc.202000077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/22/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmed A. Elbatrawy
- Center for Neuro-Medicine Brain Science Institute Korea Institutes of Science and Technology Seoul 02792 (Republic of Korea
- Division of Bio-Med KIST school Korea University of Science and Technology (UST) Gajungro 217 Youseong-gu Daejeon (Republic of Korea
| | - Eun Ju Kim
- Daegu University Department of Science Education-Chemistry Gyeongsan-si, Gyeongsangbuk-do Gyeongbuk 38453 (Republic of Korea
| | - Ghilsoo Nam
- Center for Neuro-Medicine Brain Science Institute Korea Institutes of Science and Technology Seoul 02792 (Republic of Korea
- Division of Bio-Med KIST school Korea University of Science and Technology (UST) Gajungro 217 Youseong-gu Daejeon (Republic of Korea
| |
Collapse
|
38
|
Zhao L, Wang X, Pomlok K, Liao H, Yang G, Yang X, Chen YG. DDB1 promotes the proliferation and hypertrophy of chondrocytes during mouse skeleton development. Dev Biol 2020; 465:100-107. [PMID: 32479761 DOI: 10.1016/j.ydbio.2020.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
The proliferation and hypertrophy of chondrocytes play important roles in endochondral ossification, which is tightly regulated during skeleton development. However, the regulation mechanism remains largely unknown. Here we show that DDB1 (Damaged DNA Binding Protein 1) has a critical function in the development of growth plates. Using chondrocyte-specific DDB1 knockout mice, we found that DDB1 deletion in chondrocytes results in dwarfism due to the aberrant skeleton development. The structure of growth plate in tibia becomes disordered at P21, not in femur. But at P70, the changes are severer in femur than tibia. Chondrocyte proliferation and differentiation are attenuated and asynchronous in both tibia and femur at P7 and P21. Furthermore, DDB1 deficiency induces p27 upregulation and subsequent cell cycle arrest in primary chondrocytes. Therefore, our data reveal that DDB1 is essential for the skeleton development by controlling chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Lianzheng Zhao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kumpanat Pomlok
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hongwei Liao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
39
|
Park J, Lai MKP, Arumugam TV, Jo DG. O-GlcNAcylation as a Therapeutic Target for Alzheimer's Disease. Neuromolecular Med 2020; 22:171-193. [PMID: 31894464 DOI: 10.1007/s12017-019-08584-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and the number of elderly patients suffering from AD has been steadily increasing. Despite worldwide efforts to cope with this disease, little progress has been achieved with regard to identification of effective therapeutics. Thus, active research focusing on identification of new therapeutic targets of AD is ongoing. Among the new targets, post-translational modifications which modify the properties of mature proteins have gained attention. O-GlcNAcylation, a type of PTM that attaches O-linked β-N-acetylglucosamine (O-GlcNAc) to a protein, is being sought as a new target to treat AD pathologies. O-GlcNAcylation has been known to modify the two important components of AD pathological hallmarks, amyloid precursor protein, and tau protein. In addition, elevating O-GlcNAcylation levels in AD animal models has been shown to be effective in alleviating AD-associated pathology. Although studies investigating the precise mechanism of reversal of AD pathologies by targeting O-GlcNAcylation are not yet complete, it is clearly important to examine O-GlcNAcylation regulation as a target of AD therapeutics. This review highlights the mechanisms of O-GlcNAcylation and its role as a potential therapeutic target under physiological and pathological AD conditions.
Collapse
Affiliation(s)
- Jinsu Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore, 117593, Singapore.
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
40
|
Sun C, Lan W, Li B, Zuo R, Xing H, Liu M, Li J, Yao Y, Wu J, Tang Y, Liu H, Zhou Y. Glucose regulates tissue-specific chondro-osteogenic differentiation of human cartilage endplate stem cells via O-GlcNAcylation of Sox9 and Runx2. Stem Cell Res Ther 2019; 10:357. [PMID: 31779679 PMCID: PMC6883626 DOI: 10.1186/s13287-019-1440-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The degenerative disc disease (DDD) is a major cause of low back pain. The physiological low-glucose microenvironment of the cartilage endplate (CEP) is disrupted in DDD. Glucose influences protein O-GlcNAcylation via the hexosamine biosynthetic pathway (HBP), which is the key to stem cell fate. Thiamet-G is an inhibitor of O-GlcNAcase for accumulating O-GlcNAcylated proteins while 6-diazo-5-oxo-L-norleucine (DON) inhibits HBP. Mechanisms of DDD are incompletely understood but include CEP degeneration and calcification. We aimed to identify the molecular mechanisms of glucose in CEP calcification in DDD. METHODS We assessed normal and degenerated CEP tissues from patients, and the effects of chondrogenesis and osteogenesis of the CEP were determined by western blot and immunohistochemical staining. Cartilage endplate stem cells (CESCs) were induced with low-, normal-, and high-glucose medium for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. CESCs were induced with low-glucose and high-glucose medium with or without Thiamet-G or DON for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. Sox9 and Runx2 O-GlcNAcylation were measured by immunofluorescence. The effects of O-GlcNAcylation on the downstream genes of Sox9 and Runx2 were determined by Q-PCR and western blot. RESULTS Degenerated CEPs from DDD patients lost chondrogenesis, acquired osteogenesis, and had higher protein O-GlcNAcylation level compared to normal CEPs from LVF patients. CESC chondrogenic differentiation gradually decreased while osteogenic differentiation gradually increased from low- to high-glucose differentiation medium. Furthermore, Thiamet-G promoted CESC osteogenic differentiation and inhibited chondrogenic differentiation in low-glucose differentiation medium; however, DON acted opposite role in high-glucose differentiation medium. Interestingly, we found that Sox9 and Runx2 were O-GlcNAcylated in differentiated CESCs. Finally, O-GlcNAcylation of Sox9 and Runx2 decreased chondrogenesis and increased osteogenesis in CESCs. CONCLUSIONS Our findings demonstrate the effect of glucose concentration on regulating the chondrogenic and osteogenic differentiation potential of CESCs and provide insight into the mechanism of how glucose concentration regulates Sox9 and Runx2 O-GlcNAcylation to affect the differentiation of CESCs, which may represent a target for CEP degeneration therapy.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Weiren Lan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bin Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Junlong Wu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yu Tang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Huan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Southwest Medical University, Lu Zhou, 646000, Sichuan, People's Republic of China.
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
41
|
Chondrocyte enlargement is a marker of osteoarthritis severity. Osteoarthritis Cartilage 2019; 27:1229-1234. [PMID: 31051241 DOI: 10.1016/j.joca.2019.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We aimed to assess whether an increase in chondrocyte size might be a feature of the articular cartilage (AC) hypertrophic-like phenotype both in experimental and in human osteoarthritis (OA). The anatomical location of these enlarged cells in the cartilage layers was also evaluated. METHODS Experimental OA was carried out in female rabbits alone or in combination with osteoporosis (OPOA). The rabbits were subjected to destabilization knee surgery to develop OA. Osteoporosis was induced with ovariectomy and methylprednisolone administration. Human OA samples obtained from knee replacement surgery were also studied. Cartilage lesions and chondrocyte size were assessed in AC sections. Immunostaining of type-X collagen and metalloproteinase-13 were used as markers of the AC hypertrophic transformation. Both the cell size and the gene expression of type-X collagen were further analyzed in primary murine chondrocyte cultures. RESULTS Compared to healthy AC, chondrocyte size was increased both in experimental and in human OA, in correlation with the severity of cartilage damage. No differences in chondrocyte size were found between deeper or more superficial regions of AC. In cell cultures, accretion of hypertrophic markers and cell enlargement were found to occur synchronized. CONCLUSIONS We observed an enhancement in the mean size of chondrocytes at the OA cartilage, which showed correlation with cartilage damage, both in human and in experimental OA. The enlarged chondrocytes were homogeneously distributed throughout the AC. Our results suggest that chondrocyte size could be a reliable measure of disease progression, of potential use in the histopathological assessment of OA cartilage.
Collapse
|
42
|
Yuan G, Xu L, Cai T, Hua B, Sun N, Yan Z, Lu C, Qian R. Clock mutant promotes osteoarthritis by inhibiting the acetylation of NFκB. Osteoarthritis Cartilage 2019; 27:922-931. [PMID: 30716535 DOI: 10.1016/j.joca.2019.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2018] [Accepted: 01/20/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To examine the effect of the circadian gene Clock on posttranscriptional function and pro-inflammatory mechanisms in osteoarthritis (OA). METHODS The cartilage from Clock mutant mice was assessed using histology, (OA) score, and real-time polymerase chain reaction (PCR) quantification of key pro-inflammatory genes. Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) translocation, posttranslational state and expression levels during day and night conditions were assessed using immunoblot and IP. The regulation of transcription by Clock in cartilage tissue was assessed by using chromatin immunoprecipitation (ChIP) and luciferase assays. Total acetylation level and pattern over 24 h were quantified using immunoblot and real-time PCR. Finally, the effects of exogenous Clock nanoparticle treatment were quantified by histology and immunoblot. RESULTS The Clock mutation significantly promoted the degradation of cartilage and the expression of the key pro-inflammatory mediators, IL-1β, IL-6 and MCP-1. The Clock mutation significantly promoted NFκB nuclear translocation. The circadian protein CLOCK positively regulates NFκB at the transcriptional level by binding the E-box domain. The Clock mutation significantly inhibited the total lysine acetylation level in cartilage and inhibited NFκB acetylation at the Lys310 residue but promoted phosphorylation at the Ser276 residue. The forced expression of Clock in vivo inhibited NFκB activation by increasing acetylation and decreasing phosphorylation levels and by decreasing cartilage damage and inflammation. CONCLUSIONS This study demonstrates the mutation of Clock promotes inflammatory activity by mediating the posttranscriptional regulation of NFκB in OA pathogenesis.
Collapse
Affiliation(s)
- G Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China
| | - L Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - T Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - B Hua
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - N Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Z Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - C Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| | - R Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
43
|
Christian S, Merz C, Evans L, Gradl S, Seidel H, Friberg A, Eheim A, Lejeune P, Brzezinka K, Zimmermann K, Ferrara S, Meyer H, Lesche R, Stoeckigt D, Bauser M, Haegebarth A, Sykes DB, Scadden DT, Losman JA, Janzer A. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia 2019; 33:2403-2415. [DOI: 10.1038/s41375-019-0461-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
|
44
|
Herrero-Beaumont G, Pérez-Baos S, Sánchez-Pernaute O, Roman-Blas JA, Lamuedra A, Largo R. Targeting chronic innate inflammatory pathways, the main road to prevention of osteoarthritis progression. Biochem Pharmacol 2019; 165:24-32. [PMID: 30825432 DOI: 10.1016/j.bcp.2019.02.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by cartilage degradation, osteophyte formation, subchondral bone sclerosis, and synovitis. Systemic factors such as obesity and the components of the metabolic syndrome seem to contribute to its progression. Breakdown of cartilage ensues from an altered balance between mechanical overload and its absorption by this tissue. There is in this context a status of persistent local inflammation by means of the chronic activation of innate immunity. A broad variety of danger-associated molecular patterns inside OA joint are able to activate pattern recognition receptors, mainly TLR (toll-like receptor) 2 and 4, which are overexpressed in the OA cartilage. Chronic activation of innate immune responses in chondrocytes results in a robust production of pro-inflammatory cytokines and chemokines, as well as of tissue-destructive enzymes, downstream of NF-κB and MAPK (mitogen activated protein kinase) dependent pathways. Besides, the toxic effects of an excess of glucose and/or fatty acids, which share the same pro-inflammatory intracellular signalling pathways, may add fuel to the fire. Not only high concentrations of glucose can render cells prone to inflammation, but also AGEs (advanced glycation end products) are integrated into the TLR signalling network through their own innate immune receptors. Considering these mechanisms, we argue for the control of both primary inflammation and proteolytic catabolism as a preventive strategy in OA, instead of focusing treatment on the enhancement of anabolic responses. Even though this approach would not return to normal already degraded cartilage, it nonetheless might avoid damage extension to the surrounding tissue.
Collapse
Affiliation(s)
| | - Sandra Pérez-Baos
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | | | - Jorge A Roman-Blas
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Ana Lamuedra
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Raquel Largo
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain.
| |
Collapse
|
45
|
Zhang Z, Parker MP, Graw S, Novikova LV, Fedosyuk H, Fontes JD, Koestler DC, Peterson KR, Slawson C. O-GlcNAc homeostasis contributes to cell fate decisions during hematopoiesis. J Biol Chem 2019; 294:1363-1379. [PMID: 30523150 PMCID: PMC6349094 DOI: 10.1074/jbc.ra118.005993] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The addition of a single β-d-GlcNAc sugar (O-GlcNAc) by O-GlcNAc-transferase (OGT) and O-GlcNAc removal by O-GlcNAcase (OGA) maintain homeostatic O-GlcNAc levels on cellular proteins. Changes in protein O-GlcNAcylation regulate cellular differentiation and cell fate decisions, but how these changes affect erythropoiesis, an essential process in blood cell formation, remains unclear. Here, we investigated the role of O-GlcNAcylation in erythropoiesis by using G1E-ER4 cells, which carry the erythroid-specific transcription factor GATA-binding protein 1 (GATA-1) fused to the estrogen receptor (GATA-1-ER) and therefore undergo erythropoiesis after β-estradiol (E2) addition. We observed that during G1E-ER4 differentiation, overall O-GlcNAc levels decrease, and physical interactions of GATA-1 with both OGT and OGA increase. RNA-Seq-based transcriptome analysis of G1E-ER4 cells differentiated in the presence of the OGA inhibitor Thiamet-G (TMG) revealed changes in expression of 433 GATA-1 target genes. ChIP results indicated that the TMG treatment decreases the occupancy of GATA-1, OGT, and OGA at the GATA-binding site of the lysosomal protein transmembrane 5 (Laptm5) gene promoter. TMG also reduced the expression of genes involved in differentiation of NB4 and HL60 human myeloid leukemia cells, suggesting that O-GlcNAcylation is involved in the regulation of hematopoietic differentiation. Sustained treatment of G1E-ER4 cells with TMG before differentiation reduced hemoglobin-positive cells and increased stem/progenitor cell surface markers. Our results show that alterations in O-GlcNAcylation disrupt transcriptional programs controlling erythropoietic lineage commitment, suggesting a role for O-GlcNAcylation in regulating hematopoietic cell fate.
Collapse
Affiliation(s)
- Zhen Zhang
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | - Matthew P Parker
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | | | - Lesya V Novikova
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | - Halyna Fedosyuk
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | - Joseph D Fontes
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Devin C Koestler
- Biostatistics, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Kenneth R Peterson
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160; Anatomy and Cell Biology, Kansas City, Kansas 66160.
| | - Chad Slawson
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160.
| |
Collapse
|
46
|
Salimi F, Jafari-Nodooshan S, Zohourian N, Kolivand S, Hamedi J. Simultaneous anti-diabetic and anti-vascular calcification activity of Nocardia sp. UTMC 751. Lett Appl Microbiol 2018; 66:110-117. [PMID: 29223135 DOI: 10.1111/lam.12833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/04/2017] [Accepted: 11/15/2017] [Indexed: 02/03/2023]
Abstract
Alpha-amylase can act as a significant player in causing hyperglycaemia, leading to protein glycation, which is the main complication in this condition, besides causing vascular calcification (VC), an important vascular failure caused due to this. In order to find a natural source of the biocompounds with inhibitory effects on α-amylase, 15 fermentation broth extracts of actinobacteria (FBEA) (200 μg ml-1 ) have been screened. Finally, the effects of the most efficient FBE have been investigated on osteopontin (OPN, a VC marker) mRNA level in the vascular smooth muscle cells under the calcification conditions, and the chemical constituents of the most efficient FBE were analysed using gas chromatography and mass spectrometry (GC-MS) analysis. The tested FBEA showed anti-amylase (7·2-21%) and anti-denaturation (7·5-37%) activities. Among the tested FBEA, Nocardia sp. UTMC 751 FBE showed the highest anti-amylase activity (21%). This treatment group also displayed the minimum fructosamine and the maximum thiol groups content. In addition, this FBE reduced the mRNA level of the OPN (fourfold). The GC-MS analysis demonstrated the existence of three volatile and known antioxidants including pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-, pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)- and methyl ester of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid in the FBE of Nocardia sp. UTMC 751. The results indicated that Nocardia sp. UTMC 751 is a considerable source of bioactive compounds that are effective against the direct and indirect pathological targets involved in diabetes. This study highlights the significant potential of rare Actinomycetes in producing pharmaceutically important biocompounds. SIGNIFICANCE AND IMPACT OF THE STUDY Actinobacteria are one of the best natural libraries for discovering drugs. Various commercial drugs have been developed against infectious and metabolic disorders from actinobacteria; however, there is no report on their simultaneous inhibitory effect against diabetes, a life-threatening disease, and its related pathological processes, like inflammation and vascular calcification (VC). In this research, after several screening, Nocardia sp. UTMC 751 was introduced as the first microbial source exhibiting a simultaneous inhibitory activity on the targets, including hyperglycaemia and protein glycation, and other involved pathological processes like inflammation and VC.
Collapse
Affiliation(s)
- F Salimi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran
| | - S Jafari-Nodooshan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - N Zohourian
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran
| | - S Kolivand
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - J Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran
| |
Collapse
|
47
|
Cox NJ, Unlu G, Bisnett BJ, Meister TR, Condon BM, Luo PM, Smith TJ, Hanna M, Chhetri A, Soderblom EJ, Audhya A, Knapik EW, Boyce M. Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway. Biochemistry 2017; 57:91-107. [PMID: 29161034 DOI: 10.1021/acs.biochem.7b00870] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The COPII coat complex, which mediates secretory cargo trafficking from the endoplasmic reticulum, is a key control point for subcellular protein targeting. Because misdirected proteins cannot function, protein sorting by COPII is critical for establishing and maintaining normal cell and tissue homeostasis. Indeed, mutations in COPII genes cause a range of human pathologies, including cranio-lenticulo-sutural dysplasia (CLSD), which is characterized by collagen trafficking defects, craniofacial abnormalities, and skeletal dysmorphology. Detailed knowledge of the COPII pathway is required to understand its role in normal cell physiology and to devise new treatments for disorders in which it is disrupted. However, little is known about how vertebrates dynamically regulate COPII activity in response to developmental, metabolic, or pathological cues. Several COPII proteins are modified by O-linked β-N-acetylglucosamine (O-GlcNAc), a dynamic form of intracellular protein glycosylation, but the biochemical and functional effects of these modifications remain unclear. Here, we use a combination of chemical, biochemical, cellular, and genetic approaches to demonstrate that site-specific O-GlcNAcylation of COPII proteins mediates their protein-protein interactions and modulates cargo secretion. In particular, we show that individual O-GlcNAcylation sites of SEC23A, an essential COPII component, are required for its function in human cells and vertebrate development, because mutation of these sites impairs SEC23A-dependent in vivo collagen trafficking and skeletogenesis in a zebrafish model of CLSD. Our results indicate that O-GlcNAc is a conserved and critical regulatory modification in the vertebrate COPII-dependent trafficking pathway.
Collapse
Affiliation(s)
| | - Gokhan Unlu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | - Michael Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, Wisconsin 53706, United States
| | | | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University , Durham, North Carolina 27710, United States
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, Wisconsin 53706, United States
| | - Ela W Knapik
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | |
Collapse
|
48
|
Detection of O-Linked-N-Acetylglucosamine Modification and Its Associated Enzymes in Human Degenerated Intervertebral Discs. Asian Spine J 2017; 11:863-869. [PMID: 29279740 PMCID: PMC5738306 DOI: 10.4184/asj.2017.11.6.863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Study Design Human herniated discs were obtained from discectomy specimens for the immunohistochemical detection of O-GlcNAc and O-GlcNAcase (OGA)/O-GlcNAc transferase (OGT). Purpose This study aimed to quantify the extent of O-GlcNAcylation and its associated enzymes (OGT/OGA) in human degenerated intervertebral discs. Overview of Literature The O-GlcNAcylation of nuclear, cytoplasmic, and mitochondrial proteins as well as the effects of such post-translational modifications are currently the focus of extensive research. O-GlcNAcylation is believed to contribute to the etiology of chronic illnesses by acting as a nutrient and stress sensor in the cellular environment. Mature intervertebral disc cells are chondrocyte-like cells, and O-GlcNAc has been shown to promote chondrocyte apoptosis in vitro. We believe that O-GlcNAcylation is a key regulator of disc degeneration. Methods Fifty-six specimens were fixed for 24 hours in a 10% solution of neutral-buffered formaldehyde, dehydrated, and embedded in paraffin. Tissue slices (4-µm-thick) were used for hematoxylin-eosin staining and immunohistochemistry. Results We found that O-GlcNAcylation of cytoplasmic proteins was less than that of nuclear proteins in both single cells and cell clusters. Cytoplasmic O-GlcNAcylation occurs subsequent to nuclear O-GlcNAcylation and is directly proportional to disc degeneration. OGT and O-GlcNAc expression levels were identical in all specimens examined. Conclusions O-GlcNAc and OGA/OGT expression is shown to correlate for the first time with intervertebral disc cell degeneration. Increasing disc degeneration is associated with increasing O-GlcNAcylation in both nuclear and cytoplasmic proteins in human disc cells.
Collapse
|
49
|
Ishimura E, Nakagawa T, Moriwaki K, Hirano S, Matsumori Y, Asahi M. Augmented O-GlcNAcylation of AMP-activated kinase promotes the proliferation of LoVo cells, a colon cancer cell line. Cancer Sci 2017; 108:2373-2382. [PMID: 28973823 PMCID: PMC5715261 DOI: 10.1111/cas.13412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/23/2022] Open
Abstract
Increasing incidence of various cancers has been reported in diabetic patients. O‐linked N‐acetylglucosamine (O‐GlcNAc) modification of proteins at serine/threonine residues (O‐GlcNAcylation) is an essential post‐translational modification that is upregulated in diabetic patients and has been implicated in tumor growth. However, the mechanisms by which O‐GlcNAcylation promotes tumor growth remain unclear. Given that AMP‐activated kinase (AMPK) has been thought to play important roles in suppressing tumor growth, we evaluated the involvement of AMPK O‐GlcNAcylation on the growth of LoVo cells, a human colon cancer cell line. Results revealed that treatment with Thiamet G (TMG), an inhibitor of O‐GlcNAc hydrolase, increased both anchorage‐dependent and ‐independent growth of the cells. O‐GlcNAc transferase overexpression also increased the growth. These treatments increased AMPK O‐GlcNAcylation in a dose‐dependent manner, which led to reduced AMPK phosphorylation and mTOR activation. Chemical inhibition or activation of AMPK led to increased or decreased growth, respectively, which was consistent with the data with genetic inhibition of AMPK. In addition, TMG‐mediated acceleration of tumor growth was abolished by both chemical and genetic inhibition of AMPK. To examine the effects of AMPK O‐GlcNAcylation in vivo, the LoVo cells were s.c. transplanted onto the backs of BALB/c‐nu/nu mice. Injection of TMG promoted the growth and enhanced O‐GlcNAcylation of the tumors of the mice. Consistent with in vitro data, AMPK O‐GlcNAcylation was increased, which reduced AMPK phosphorylation and resulted in activation of mTOR. Collectively, the higher colon cancer risk of diabetic patients could be due to O‐GlcNAcylation‐mediated AMPK inactivation and subsequent activation of mTOR.
Collapse
Affiliation(s)
- Emi Ishimura
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki, Japan.,Department of Gastroenterology, Amagasaki Daimotsu Hospital, Amagasahi, Hyogo, 660-0828, Japan
| | - Takatoshi Nakagawa
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki, Japan
| | - Kazumasa Moriwaki
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki, Japan
| | - Seiichi Hirano
- Department of Gastroenterology, Takatsuki General Hospital, Takatsuki, Japan
| | | | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
50
|
Ma X, Li H, He Y, Hao J. The emerging link between O-GlcNAcylation and neurological disorders. Cell Mol Life Sci 2017; 74:3667-3686. [PMID: 28534084 PMCID: PMC11107615 DOI: 10.1007/s00018-017-2542-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/23/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is involved in the regulation of many cellular cascades and neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. In the brain, the expression of O-GlcNAcylation is notably heightened, as is that of O-linked N-acetylglucosaminyltransferase (OGT) and β-N-acetylglucosaminidase (OGA), the presence of which is prominent in many regions of neurological importance. Most importantly, O-GlcNAcylation is believed to contribute to the normal functioning of neurons; conversely, its dysregulation participates in the pathogenesis of neurological disorders. In neurodegenerative diseases, O-GlcNAcylation of the brain's key proteins, such as tau and amyloid-β, interacts with their phosphorylation, thereby triggering the formation of neurofibrillary tangles and amyloid plaques. An increase of O-GlcNAcylation by pharmacological intervention prevents neuronal loss. Additionally, O-GlcNAcylation is stress sensitive, and its elevation is cytoprotective. Increased O-GlcNAcylation ameliorated brain damage in victims of both trauma-hemorrhage and stroke. In this review, we summarize the current understanding of O-GlcNAcylation's physiological and pathological roles in the nervous system and provide a foundation for development of a therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - He Li
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yating He
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|