1
|
Michailidou D, Grayson PC, Hermanson P, Chapa JAG, Cuthbertson D, Khalidi NA, Koening CL, Langford CA, McAlear CA, Moreland LW, Pagnoux C, Seo P, Sreih AG, Warrington KJ, Monach PA, Merkel PA, Lood C. Mitochondrial-mediated inflammation and platelet activation in giant cell arteritis. Clin Immunol 2023; 255:109746. [PMID: 37625669 PMCID: PMC10543636 DOI: 10.1016/j.clim.2023.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Markers of extracellular mitochondria are present in giant cell arteritis (GCA) patients. However, their role in promoting inflammation and platelet activation is no known. To investigate this, isolated mitochondria were opsonized with plasma from GCA patients or healthy individuals and incubated with peripheral blood mononuclear cells (PBMCs) or platelets and assessed for inflammatory cytokine production and platelet activation. Plasma from GCA patients promoted increased mitochondrial-mediated cytokine production by PBMCs as compared to healthy controls (p < 0.05). Mitochondria opsonized with plasma factors from patients with GCA induced higher platelet activation as compared to mitochondria opsonized with plasma factors from healthy individuals (p = 0.0015). Platelet levels of P-selectin were associated with disease activity in GCA (r = 0.34, p = 0.01). GCA patients have impaired ability to regulate the clearance of extracellular mitochondria, possibly contributing to excessive inflammation and platelet activation. Targeting key drivers of mitochondrial extrusion and/or their clearance could lead to new therapeutic interventions in GCA.
Collapse
Affiliation(s)
- Despina Michailidou
- Division of Rheumatology, University of Washington, Seattle, WA, USA; Division of Rheumatology, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA; Division of Rheumatology, Oklahoma City VA Health Care System, Oklahoma, OK, USA
| | - Peter C Grayson
- Systemic Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | | | - David Cuthbertson
- Health Informatics Institute, University of South Florida, South Florida, FL, USA
| | - Nader A Khalidi
- Division of Rheumatology, Mc Master University, Ontario, Canada
| | | | | | - Carol A McAlear
- Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Larry W Moreland
- Division of Rheumatology and Clinical Immunology, University of Colorado, Denver, CO, USA
| | | | - Philip Seo
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA
| | - Antoine G Sreih
- Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Paul A Monach
- Division of Rheumatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter A Merkel
- Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Yang H, Chen L, Liu Y. A large-scale plasma proteome Mendelian randomization study identifies novel causal plasma proteins related to primary biliary cholangitis. Front Immunol 2023; 14:1052616. [PMID: 36825008 PMCID: PMC9941641 DOI: 10.3389/fimmu.2023.1052616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND AND AIMS Primary biliary cholangitis (PBC) is a progressive chronic autoimmune cholestatic liver disease characterized by the destruction of small intrahepatic bile ducts leading to biliary cirrhosis. Liver biopsy is required in the diagnosis of Antimitochondrial antibody-negative patients. Therefore, novel biomarkers are needed for the non-invasive diagnosis of PBC. To identify novel biomarkers for PBC, we conducted large-scale plasma proteome Mendelian randomization (MR). METHODS A total of 21,593 protein quantitative trait loci (pQTLs) for 2297 circulating proteins were used and classified into four different groups. MR analyses were conducted in the four groups separately. Furthermore, the results were discovered and replicated in two different cohorts of PBC. Colocalization analysis and enrichment analysis were also conducted. RESULTS Three plasma proteins (ficolin-1, CD40 and protein FAM177A1) were identified and replicated as being associated with PBC. All of them showed significant protective effects against PBC. An increase in ficolin-1 (OR=0.890 [0.843-0.941], p=3.50×10-5), CD40 (OR=0.814 [0.741-0.895], p=1.96×10-5) and protein FAM177A1 (OR=0.822 [0.754-0.897], p=9.75×10-6) reduced the incidence of PBC. Ficolin-1 (PP4 = 0.994) and protein FAM177A1 (PP4 = 0.995) colocalized with the expression of the genes FCN1 and FAM177A1 in whole blood, respectively. Furthermore, CD40 (PP4 = 0.977) and protein FAM177A1 (PP4 = 0.897) strongly colocalized with PBC. CONCLUSIONS We expand the current biomarkers for PBC. In total, three (ficolin-1, CD40, and protein FAM177A1) plasma proteins were identified and replicated as being associated with PBC in MR analysis. All of them showed significant protective effects against PBC. These proteins can be potential biomarkers or drug targets for PBC.
Collapse
|
3
|
The Complement System, Aging, and Aging-Related Diseases. Int J Mol Sci 2022; 23:ijms23158689. [PMID: 35955822 PMCID: PMC9369321 DOI: 10.3390/ijms23158689] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/10/2022] Open
Abstract
The complement system is a part of the immune system and consists of multiple complement components with biological functions such as defense against pathogens and immunomodulation. The complement system has three activation pathways: the classical pathway, the lectin pathway, and the alternative pathway. Increasing evidence indicates that the complement system plays a role in aging. Complement plays a role in inflammatory processes, metabolism, apoptosis, mitochondrial function, and Wnt signaling pathways. In addition, the complement system plays a significant role in aging-related diseases, including Alzheimer’s disease, age-related macular degeneration, and osteoarthritis. However, the effect of complement on aging and aging-related diseases is still unclear. Thus, a better understanding of the potential relationship between complement, aging, and aging-related diseases will provide molecular targets for treating aging, while focusing on the balance of complement in during treatment. Inhibition of a single component does not result in a good outcome. In this review, we discussed the research progress and effects of complement in aging and aging-related diseases.
Collapse
|
4
|
Becker YL, Gagné JP, Julien AS, Lévesque T, Allaeys I, Gougeard N, Rubio V, Boisvert FM, Jean D, Wagner E, Poirier GG, Fortin PR, Boilard É. Identification of mitofusin 1 and complement component 1q subcomponent-binding protein as mitochondrial targets in systemic lupus erythematosus. Arthritis Rheumatol 2022; 74:1193-1203. [PMID: 35128841 DOI: 10.1002/art.42082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Mitochondria are organelles that possess several bacterial features such as a double-stranded genome with hypomethylated CpG islets, formylated proteins, and cardiolipin-containing membranes. In systemic lupus erythematosus (SLE), mitochondria and their inner components are released into the extracellular space, potentially eliciting a pro-inflammatory response by the immune system. While cardiolipin and mitochondrial DNA and RNA are confirmed targets of autoantibodies, other antigenic mitochondrial proteins in SLE remain to be identified. Herein, we aim to characterize the protein repertoire recognized by anti-mitochondrial antibodies (AMA) in SLE patients. METHODS Using shotgun proteomic profiling, we identified 1345 proteins, 431 of which were associated with the mitochondrial proteome. Immunoreactivities to several of these candidates were assessed by direct ELISA in serum samples from a local cohort (healthy: n=30, SLE: n=87) and associated with demographic and disease characteristics. RESULTS We determined that IgGs to the C1q-binding protein (C1qBP) are significantly elevated in SLE patients included in our cohort (p=0.049) and are associated with positivity for lupus anticoagulant (p=0.049). IgG against the mitochondrial protein mitofusin 1 (Mfn1) displayed promising performances in the prediction of SLE diagnoses (aOR: 2.99, 95%CI: 1.39-6.43, p=0.0044) in our cohort. Moreover, anti-Mfn1 were associated with positivity to anti-phospholipids (p=0.011) and anti-dsDNA (p=0.0005). CONCLUSION This study presents the mitochondrial repertoire targeted in SLE, indicating that autoantibodies can recognize secreted and/or surface proteins of mitochondrial origin. Profiling of the AMA repertoire in large prospective cohorts may improve our knowledge on mitochondrial biomarkers and their usefulness for patient stratification.
Collapse
Affiliation(s)
- Yann Lc Becker
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada
| | - Jean-Philippe Gagné
- Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Laboratoire d'Immunologie et Histocompatibilité, CHU de Québec-Université Laval, Département de Médecine de Laboratoire, Québec, Qc, Canada
| | - Anne-Sophie Julien
- Département de mathématiques et statistique, Université Laval, Québec, Qc, Canada
| | - Tania Lévesque
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada
| | - Isabelle Allaeys
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada
| | - Nadine Gougeard
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Vicente Rubio
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | | | - Dominique Jean
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Wagner
- Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada.,Laboratoire d'Immunologie et Histocompatibilité, CHU de Québec-Université Laval, Département de Médecine de Laboratoire, Québec, Qc, Canada
| | - Guy G Poirier
- Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de Médecine, Université Laval, Québec, Qc, Canada
| | - Paul R Fortin
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Division de Rhumatologie, Département de Médecine, CHU de Québec - Université Laval, Québec, Qc, Canada
| | - Éric Boilard
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada
| |
Collapse
|
5
|
Abstract
Complement C4, a key molecule in the complement system that is one of chief constituents of innate immunity for immediate recognition and elimination of invading microbes, plays an essential role for the functions of both classical (CP) and lectin (LP) complement pathways. Complement C4 is the most polymorphic protein in complement system. A plethora of research data demonstrated that individuals with C4 deficiency are prone to microbial infections and autoimmune disorders. In this review, we will discuss the diversity of complement C4 proteins and its genetic structures. In addition, the current development of the regulation of complement C4 activation and its activation derivatives will be reviewed. Moreover, the review will provide the updates on the molecule interactions of complement C4 under the circumstances of bacterial and viral infections, as well as autoimmune diseases. Lastly, more evidence will be presented to support the paradigm that links microbial infections and autoimmune disorders under the condition of the deficiency of complement C4. We provide such an updated overview that would shed light on current research of complement C4. The newly identified targets of molecular interaction will not only lead to novel hypotheses on the study of complement C4 but also assist to propose new strategies for targeting microbial infections, as well as autoimmune disorders.
Collapse
Affiliation(s)
- Hongbin Wang
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, Elk Grove, CA, United States
- Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Mengyao Liu
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
6
|
Duvvuri B, Baddour AA, Deane KD, Feser ML, Nelson JL, Demoruelle MK, Lood C. Mitochondrial N-formyl methionine peptides associate with disease activity as well as contribute to neutrophil activation in patients with rheumatoid arthritis. J Autoimmun 2021; 119:102630. [PMID: 33713887 DOI: 10.1016/j.jaut.2021.102630] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Literature suggests that neutrophils of patients with rheumatoid arthritis (RA) are primed to respond to N-formyl methionine group (formylated peptides). Animal models indicate that formylated peptides contribute to joint damage via neutrophil recruitment and inflammation in joints. Non-steroidal anti-inflammatory drugs are also known to inhibit formyl peptide-induced neutrophil activation. The predominant source of formylated peptides in sterile inflammatory conditions like RA is mitochondria, organelles with prokaryotic molecular signatures. However, there is no direct evidence of mitochondrial formyl peptides (mtNFPs) in the circulation of patients with RA and their potential role in neutrophil-mediated inflammation in RA, including their clinical significance. METHODS Levels of mtNFPs (total fMet, MT-ND6) were analyzed using ELISA in plasma and serum obtained from patients in 3 cross-sectional RA cohorts (n = 275), a longitudinal inception cohort (n = 192) followed for a median of 8 years, and age/gender-matched healthy controls (total n = 134). Neutrophil activation assays were done in the absence or presence of formyl peptide receptor 1 (FPR1) inhibitor cyclosporine H. RESULTS Elevated levels of total fMet were observed in the circulation of patients with RA as compared to healthy controls (p < 0.0001) associating with disease activity and could distinguish patients with the active disease from patients with inactive disease or patients in remission. Baseline levels of total fMet correlated with current and future joint involvement, respectively and predicted the development of rheumatoid nodules (OR = 1.2, p = 0.04). Further, total fMet levels improved the prognostic ability of ACPA in predicting erosive disease (OR of 7.9, p = 0.001). Total fMet levels correlated with markers of inflammation and neutrophil activation. Circulating mtNFPs induced neutrophil activation in vitro through FPR1-dependent mechanisms. CONCLUSIONS Circulating mtNFPs could be novel biomarkers of disease monitoring and prognosis for RA and in investigating neutrophil-mediated inflammation in RA. We propose, FPR1 as a novel therapeutic target for RA.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Al Anoud Baddour
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | - Marie L Feser
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | - J Lee Nelson
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Scozzi D, Cano M, Ma L, Zhou D, Zhu JH, O'Halloran JA, Goss C, Rauseo AM, Liu Z, Sahu SK, Peritore V, Rocco M, Ricci A, Amodeo R, Aimati L, Ibrahim M, Hachem R, Kreisel D, Mudd PA, Kulkarni HS, Gelman AE. Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19. JCI Insight 2021; 6:143299. [PMID: 33444289 PMCID: PMC7934921 DOI: 10.1172/jci.insight.143299] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
BackgroundMitochondrial DNA (MT-DNA) are intrinsically inflammatory nucleic acids released by damaged solid organs. Whether circulating cell-free MT-DNA quantitation could be used to predict the risk of poor COVID-19 outcomes remains undetermined.MethodsWe measured circulating MT-DNA levels in prospectively collected, cell-free plasma samples from 97 subjects with COVID-19 at hospital presentation. Our primary outcome was mortality. Intensive care unit (ICU) admission, intubation, vasopressor, and renal replacement therapy requirements were secondary outcomes. Multivariate regression analysis determined whether MT-DNA levels were independent of other reported COVID-19 risk factors. Receiver operating characteristic and area under the curve assessments were used to compare MT-DNA levels with established and emerging inflammatory markers of COVID-19.ResultsCirculating MT-DNA levels were highly elevated in patients who eventually died or required ICU admission, intubation, vasopressor use, or renal replacement therapy. Multivariate regression revealed that high circulating MT-DNA was an independent risk factor for these outcomes after adjusting for age, sex, and comorbidities. We also found that circulating MT-DNA levels had a similar or superior area under the curve when compared against clinically established measures of inflammation and emerging markers currently of interest as investigational targets for COVID-19 therapy.ConclusionThese results show that high circulating MT-DNA levels are a potential early indicator for poor COVID-19 outcomes.FundingWashington University Institute of Clinical Translational Sciences COVID-19 Research Program and Washington University Institute of Clinical Translational Sciences (ICTS) NIH grant UL1TR002345.
Collapse
Affiliation(s)
- Davide Scozzi
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Marlene Cano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Dequan Zhou
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Ji Hong Zhu
- Division of Cardiothoracic Surgery, Department of Surgery
| | | | - Charles Goss
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Zhiyi Liu
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Sanjaya K Sahu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Monica Rocco
- Division of Anesthesiology, Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Alberto Ricci
- Division of Pulmonology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rachele Amodeo
- Laboratory Analysis-Flow Cytometry Section, Sapienza University of Rome, Rome, Italy
| | - Laura Aimati
- Laboratory Analysis-Flow Cytometry Section, Sapienza University of Rome, Rome, Italy
| | - Mohsen Ibrahim
- Division of Cardiothoracic Surgery, Department of Surgery.,Division of Thoracic Surgery and
| | - Ramsey Hachem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery
| | | | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Molecular Microbiology, and
| | - Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Wang P, Wu Q, Shuai ZW. Emerging role of ficolins in autoimmune diseases. Pharmacol Res 2021; 163:105266. [PMID: 33127557 DOI: 10.1016/j.phrs.2020.105266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Ficolins are pattern-recognition molecules (PRMs) that could form complexes with mannose-binding lectin-associated serine proteases (MASPs) to trigger complement activation via the lectin pathway, thereby mediating a series of immune responses including opsonization, phagocytosis and cytokine production. In the past few decades, accumulating evidence have suggested that ficolins play a major role in the onset and development of several autoimmune diseases (ADs), including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), Type 1 diabetes (T1D), inflammatory bowel disease (IBD), etc. In this review, we synthesized previous literatures and recent advances to elucidate the immunological regulations of ficolins and discuss the potential diagnostic ability of ficolins in ADs, as well as giving an insight into the future therapeutic options for ficolins in ADs.
Collapse
Affiliation(s)
- Peng Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, 199 Renai Road, Suzhou, Jiangsu, 215123, China.
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230016, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230016, Anhui, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230016, Anhui, China.
| |
Collapse
|
9
|
Pieczarka C, Andrade FA, Catarino SJ, Lidani KCF, Bavia L, Tizzot R, Skare T, de Messias-Reason IJ. Ficolin-1 and ficolin-3 polymorphisms and susceptibility to rheumatoid arthritis. Autoimmunity 2020; 53:400-407. [PMID: 32820945 DOI: 10.1080/08916934.2020.1809654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 10/23/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, which compromises the synovial membrane resulting in chronic inflammation. Ficolins are key proteins of the lectin pathway of complement able to recognize pathogen-associated molecular patterns, apoptotic cells, and cellular debris mediating the clearance by phagocytes. High ficolin-1 and ficolin-3 levels have been observed in RA patients, however, the influence of polymorphisms in the FCN1 gene in RA is not completely established, while no study evaluated FCN3 gene polymorphisms in RA to date. We investigated the influence of FCN1 and FCN3 gene polymorphisms in the susceptibility and clinical presentation of RA. A total of 148 patients with RA and up to 160 controls from Southern Brazil were genotyped by sequence-specific PCR (PCR-SSP) for five FCN1 promoter polymorphisms (rs2989727, rs10120023, rs17039495, rs10117466, and rs10858293) and three FCN3 gene variants (rs532781899, rs28362807, and rs4494157). The FCN1 g.-542GG (rs10120023) genotype and g.-542G allele, were associated with increased susceptibility to RA (p = .025, OR = 1.69 [1.07-2.69]; p = .041, OR = 1.47 [1.02-2.12], respectively) and related to decreased FCN1 gene expression in whole blood (p < .00001), according to gene expression databases. In addition, the FCN1 AAGAG haplotype was more prevalent in rheumatoid factor seronegative in comparison to seropositive patients (p = .006, OR = 0.042 [0.002-0.80]). There was no association of FCN3 polymorphisms with the susceptibility or clinical characteristics of RA. Our results indicate that the FCN1 rs10120023 [g.-542G>A] polymorphism in the promoter region might contribute to RA susceptibility, probably by impacting FCN1 gene expression.
Collapse
Affiliation(s)
- Cristhine Pieczarka
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Sandra Jeremias Catarino
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Regina Tizzot
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Thelma Skare
- Rheumatology Unit, Evangelical Mackenzie Hospital, Curitiba, Brazil
| | | |
Collapse
|
10
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Rahman J, Singh P, Merle NS, Niyonzima N, Kemper C. Complement's favourite organelle-Mitochondria? Br J Pharmacol 2020; 178:2771-2785. [PMID: 32840864 PMCID: PMC8359399 DOI: 10.1111/bph.15238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
The complement system, well known for its central role in innate immunity, is currently emerging as an unexpected, cell‐autonomous, orchestrator of normal cell physiology. Specifically, an intracellularly active complement system—the complosome—controls key pathways of normal cell metabolism during immune cell homeostasis and effector function. So far, we know little about the exact structure and localization of intracellular complement components within and among cells. A common scheme, however, is that they operate in crosstalk with other intracellular immune sensors, such as inflammasomes, and that they impact on the activity of key subcellular compartments. Among cell compartments, mitochondria appear to have built a particularly early and strong relationship with the complosome and extracellularly active complement—not surprising in view of the strong impact of the complosome on metabolism. In this review, we will hence summarize the current knowledge about the close complosome–mitochondria relationship and also discuss key questions surrounding this novel research area.
Collapse
Affiliation(s)
- Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nathalie Niyonzima
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Scozzi D, Cano M, Ma L, Zhou D, Zhu JH, O'Halloran JA, Goss C, Rauseo AM, Liu Z, Peritore V, Rocco M, Ricci A, Amodeo R, Aimati L, Ibrahim M, Hachem R, Kreisel D, Mudd PA, Kulkarni HS, Gelman AE. Circulating Mitochondrial DNA is an Early Indicator of Severe Illness and Mortality from COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32766574 DOI: 10.1101/2020.07.30.227553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial DNA (MT-DNA) are intrinsically inflammatory nucleic acids released by damaged solid organs. Whether the appearance of cell-free MT-DNA is linked to poor COVID-19 outcomes remains undetermined. Here, we quantified circulating MT-DNA in prospectively collected, cell-free plasma samples from 97 subjects with COVID-19 at the time of hospital presentation. Circulating MT-DNA were sharply elevated in patients who eventually died, required ICU admission or intubation. Multivariate regression analysis revealed that high circulating MT-DNA levels is an independent risk factor for all of these outcomes after adjusting for age, sex and comorbidities. Additionally, we found that circulating MT-DNA has a similar or superior area-under-the curve when compared to clinically established measures of systemic inflammation, as well as emerging markers currently of interest as investigational targets for COVID-19 therapy. These results show that high circulating MT-DNA levels is a potential indicator for poor COVID-19 outcomes.
Collapse
|
13
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel) 2020; 12:E1792. [PMID: 32635486 PMCID: PMC7408476 DOI: 10.3390/cancers12071792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Łódź, Poland;
| | | |
Collapse
|
14
|
Loss of Complement Factor H impairs antioxidant capacity and energy metabolism of human RPE cells. Sci Rep 2020; 10:10320. [PMID: 32587311 PMCID: PMC7316856 DOI: 10.1038/s41598-020-67292-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022] Open
Abstract
Polymorphisms in the Complement Factor H (CFH) gene, coding for the Factor H protein (FH), can increase the risk for age-related macular degeneration (AMD). AMD-associated CFH risk variants, Y402H in particular, impair FH function leading to complement overactivation. Whether this alone suffices to trigger AMD pathogenesis remains unclear. In AMD, retinal homeostasis is compromised due to the dysfunction of retinal pigment epithelium (RPE) cells. To investigate the impact of endogenous FH loss on RPE cell balance, we silenced CFH in human hTERT-RPE1 cells. FH reduction led to accumulation of C3, at both RNA and protein level and increased RPE vulnerability toward oxidative stress. Mild hydrogen-peroxide exposure in combination with CFH knock-down led to a reduction of glycolysis and mitochondrial respiration, paralleled by an increase in lipid peroxidation, which is a key aspect of AMD pathogenesis. In parallel, cell viability was decreased. The perturbations of energy metabolism were accompanied by transcriptional deregulation of several glucose metabolism genes as well as genes modulating mitochondrial stability. Our data suggest that endogenously produced FH contributes to transcriptional and metabolic homeostasis and protects RPE cells from oxidative stress, highlighting a novel role of FH in AMD pathogenesis.
Collapse
|
15
|
West EE, Kunz N, Kemper C. Complement and human T cell metabolism: Location, location, location. Immunol Rev 2020; 295:68-81. [PMID: 32166778 PMCID: PMC7261501 DOI: 10.1111/imr.12852] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
The complement system represents one of the evolutionary oldest arms of our immune system and is commonly recognized as a liver-derived and serum-active system critical for providing protection against invading pathogens. Recent unexpected findings, however, have defined novel and rather "uncommon" locations and activities of complement. Specifically, the discovery of an intracellularly active complement system-the complosome-and its key role in the regulation of cell metabolic pathways that underly normal human T cell responses have taught us that there is still much to be discovered about this system. Here, we summarize the current knowledge about the emerging functions of the complosome in T cell metabolism. We further place complosome activities among the non-canonical roles of other intracellular innate danger sensing systems and argue that a "location-centric" view of complement evolution could logically justify its close connection with the regulation of basic cell physiology.
Collapse
Affiliation(s)
- Erin E. West
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Koucký M, Malíčková K, Kopřivová H, Cindrová-Davies T, Čapek V, Pařízek A. Serum mannose-binding lectin (MBL) concentrations are reduced in non-pregnant women with previous adverse pregnancy outcomes. Scand J Immunol 2020; 92:e12892. [PMID: 32335925 DOI: 10.1111/sji.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 11/28/2022]
Abstract
Mannose-binding lectin (MBL) is an important component of the innate immunity, and it is responsible not only for opsonization of micro-organisms, but also for efferocytosis. The aim of this study was to investigate whether MBL concentrations and lectin complement pathway activity are altered in non-pregnant women with previous adverse pregnancy outcomes. Patients were divided into four groups on the basis of their history of pregnancy complications, including control patients who had uncomplicated pregnancies and term deliveries (control, n = 33), and three groups of patients with a history of pregnancy complications, including preterm labour (n = 29), recurrent miscarriage (n = 19) or unexplained intrauterine foetal death (IUFD; n = 17). All women enrolled in the study had an interval of three to six months following their previous pregnancy, and they agreed to have a blood sample taken. We found significantly higher MBL concentrations and functional activity of the lectin complement pathway in healthy controls who had previous uneventful term pregnancies (1341 ng/mL; activity 100% (IQR: 62%-100%)), compared to women with the history of IUFD (684 ng/mL, P = .008; activity 8.5% (IQR: 0%-97.8%), P = .011), recurrent miscarriage (524 ng/mL, P = .022; activity 44% (IQR: 4%-83%), P = .011) or preterm labour (799 ng/mL, P = .022; activity 62.5% (IQR: 0%-83%), P = .003). Our results suggest that inadequate function of the complement lectin pathway is associated with a higher risk of preterm labour, recurrent miscarriage and unexplained intrauterine foetal death.
Collapse
Affiliation(s)
- Michal Koucký
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Karin Malíčková
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Helena Kopřivová
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Tereza Cindrová-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Antonín Pařízek
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
17
|
Westman J, Grinstein S, Marques PE. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Front Immunol 2020; 10:3030. [PMID: 31998312 PMCID: PMC6962235 DOI: 10.3389/fimmu.2019.03030] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clearance of cellular debris is required to maintain the homeostasis of multicellular organisms. It is intrinsic to processes such as tissue growth and remodeling, regeneration and resolution of injury and inflammation. Most of the removal of effete and damaged cells is performed by macrophages and neutrophils through phagocytosis, a complex phenomenon involving ingestion and degradation of the disposable particles. The study of the clearance of cellular debris has been strongly biased toward the removal of apoptotic bodies; as a result, the mechanisms underlying the removal of necrotic cells have remained relatively unexplored. Here, we will review the incipient but growing knowledge of the phagocytosis of necrotic debris, from their recognition and engagement to their internalization and disposal. Critical insights into these events were gained recently through the development of new in vitro and in vivo models, along with advances in live-cell and intravital microscopy. This review addresses the classes of "find-me" and "eat-me" signals presented by necrotic cells and their cognate receptors in phagocytes, which in most cases differ from the extensively characterized counterparts in apoptotic cell engulfment. The roles of damage-associated molecular patterns, chemokines, lipid mediators, and complement components in recruiting and activating phagocytes are reviewed. Lastly, the physiological importance of necrotic cell removal is emphasized, highlighting the key role of impaired debris clearance in autoimmunity.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Genster N, Østrup O, Schjalm C, Eirik Mollnes T, Cowland JB, Garred P. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo. Sci Rep 2017; 7:3852. [PMID: 28634324 PMCID: PMC5478672 DOI: 10.1038/s41598-017-04121-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022] Open
Abstract
Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested. Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference between wildtype and ficolin deficient mice in morbidity and mortality by LPS-induced inflammation. Moreover, there was no difference between wildtype and ficolin deficient mice in the inflammatory cytokine profiles after LPS challenge. These findings were substantiated by microarray analysis revealing an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Østrup
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and K.J. Jebsen TREC, University of Tromsø, Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Maestraggi Q, Lebas B, Clere-Jehl R, Ludes PO, Chamaraux-Tran TN, Schneider F, Diemunsch P, Geny B, Pottecher J. Skeletal Muscle and Lymphocyte Mitochondrial Dysfunctions in Septic Shock Trigger ICU-Acquired Weakness and Sepsis-Induced Immunoparalysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7897325. [PMID: 28589148 PMCID: PMC5447268 DOI: 10.1155/2017/7897325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
Abstract
Fundamental events driving the pathological processes of septic shock-induced multiorgan failure (MOF) at the cellular and subcellular levels remain debated. Emerging data implicate mitochondrial dysfunction as a critical factor in the pathogenesis of sepsis-associated MOF. If macrocirculatory and microcirculatory dysfunctions undoubtedly participate in organ dysfunction at the early stage of septic shock, an intrinsic bioenergetic failure, sometimes called "cytopathic hypoxia," perpetuates cellular dysfunction. Short-term failure of vital organs immediately threatens patient survival but long-term recovery is also severely hindered by persistent dysfunction of organs traditionally described as nonvital, such as skeletal muscle and peripheral blood mononuclear cells (PBMCs). In this review, we will stress how and why a persistent mitochondrial dysfunction in skeletal muscles and PBMC could impair survival in patients who overcome the first acute phase of their septic episode. First, muscle wasting protracts weaning from mechanical ventilation, increases the risk of mechanical ventilator-associated pneumonia, and creates a state of ICU-acquired muscle weakness, compelling the patient to bed. Second, failure of the immune system ("immunoparalysis") translates into its inability to clear infectious foci and predisposes the patient to recurrent nosocomial infections. We will finally emphasize how mitochondrial-targeted therapies could represent a realistic strategy to promote long-term recovery after sepsis.
Collapse
Affiliation(s)
- Quentin Maestraggi
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service de Réanimation Médicale, avenue Molière, 67098 Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
| | - Benjamin Lebas
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| | - Raphaël Clere-Jehl
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service de Réanimation Médicale, avenue Molière, 67098 Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
| | - Pierre-Olivier Ludes
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| | - Thiên-Nga Chamaraux-Tran
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Francis Schneider
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service de Réanimation Médicale, avenue Molière, 67098 Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
| | - Pierre Diemunsch
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| | - Bernard Geny
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Physiologie et d'Explorations Fonctionnelles, 1 Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | - Julien Pottecher
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| |
Collapse
|
20
|
mosGCTL-7, a C-Type Lectin Protein, Mediates Japanese Encephalitis Virus Infection in Mosquitoes. J Virol 2017; 91:JVI.01348-16. [PMID: 28250133 DOI: 10.1128/jvi.01348-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an arthropod-borne flavivirus prevalent in Asia and the Western Pacific and is the leading cause of viral encephalitis. JEV is maintained in a transmission cycle between mosquitoes and vertebrate hosts, but the molecular mechanisms by which the mosquito vector participates in transmission are unclear. We investigated the expression of all C-type lectins during JEV infection in Aedes aegypti The C-type lectin mosquito galactose-specific C-type lectin 7 (mosGCTL-7) (VectorBase accession no. AAEL002524) was significantly upregulated by JEV infection and facilitated infection in vivo and in vitro mosGCTL-7 bound to the N-glycan at N154 on the JEV envelope protein. This recognition of viral N-glycan by mosGCTL-7 is required for JEV infection, and we found that this interaction was Ca2+ dependent. After mosGCTL-7 bound to the glycan, mosPTP-1 bound to mosGCTL-7, promoting JEV entry. The viral burden in vivo and in vitro was significantly decreased by mosPTP-1 double-stranded RNA (dsRNA) treatment, and infection was abolished by anti-mosGCTL-7 antibodies. Our results indicate that the mosGCTL-7/mosPTP-1 pathway plays a key role in JEV infection in mosquitoes. An improved understanding of the mechanisms underlying flavivirus infection in mosquitoes will provide further opportunities for developing new strategies to control viral dissemination in nature.IMPORTANCE Japanese encephalitis virus is a mosquito-borne flavivirus and is the primary cause of viral encephalitis in the Asia-Pacific region. Twenty-four countries in the WHO Southeast Asia and Western Pacific regions have endemic JEV transmission, which exposes >3 billion people to the risks of infection, although JEV primarily affects children. C-type lectins are host factors that play a role in flavivirus infection in humans, swine, and other mammals. In this study, we investigated C-type lectin functions in JEV-infected Aedes aegypti and Culex pipiens pallens mosquitoes and cultured cells. JEV infection changed the expression of almost all C-type lectins in vivo and in vitro, and mosGCTL-7 bound to the JEV envelope protein via an N-glycan at N154. Cell surface mosPTP-1 interacted with the mosGCTL-7-JEV complex to facilitate virus infection in vivo and in vitro Our findings provide further opportunities for developing new strategies to control arbovirus dissemination in nature.
Collapse
|
21
|
Kolev M, Kemper C. Keeping It All Going-Complement Meets Metabolism. Front Immunol 2017; 8:1. [PMID: 28149297 PMCID: PMC5241319 DOI: 10.3389/fimmu.2017.00001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023] Open
Abstract
The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity—indicating that complement’s function is likely broader than initially anticipated—the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond “classic” immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature—mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement’s emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather “predictable” but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.
Collapse
Affiliation(s)
- Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital , London , UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK; Laboratory of Molecular Immunology, The Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
22
|
Geno KA, Kennedy RE, Sawyer P, Brown CJ, Nahm MH. Ficolin-2 inhibitors are present in sera after prolonged storage at -80 °C. PeerJ 2016; 4:e2705. [PMID: 27896034 PMCID: PMC5119277 DOI: 10.7717/peerj.2705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
Ficolins can activate the lectin pathway of the complement system that provides innate immune protection against pathogens, marks host cellular debris for clearance, and promotes inflammation. Baseline inflammation increases with aging in a phenomenon known as “inflammaging.” Although IL-6 and C-reactive protein are known to increase with age, contributions of many complement factors, including ficolins, to inflammaging have been little studied. Ficolin-2 is abundant in human serum and can recognize many target structures; therefore, ficolin-2 has potential to contribute to inflammaging. We hypothesized that inflammaging would alter ficolin-2 levels among older adults and examined 360 archived sera collected from older individuals. We found that these sera had apparently reduced ficolin-2 levels and that 84.2% of archived sera exhibited ficolin-2 inhibitors, which suppressed apparent amounts of ficolin-2 detected by enzyme-linked immunosorbent assay. Fresh serum samples were obtained from donors whose archived sera showed inhibitors, but the fresh sera did not have ficolin-2 inhibitors. Ficolin-2 inhibitors were present in other long-stored sera from younger persons. Furthermore, noninhibiting samples and fresh sera from older adults had apparently normal amounts of ficolin-2. Thus, ficolin-2 inhibitors may arise as an artifact of long-term storage of serum at −80 °C.
Collapse
Affiliation(s)
- Kimball Aaron Geno
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham , Birmingham , AL , United States
| | - Richard E Kennedy
- Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patricia Sawyer
- Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Cynthia J Brown
- Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL, United States; Birmingham/Atlanta Geriatric Research, Education, and Clinical Center, Birmingham Veteran's Affairs Medical Center, Birmingham, AL, United States
| | - Moon H Nahm
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Plasma biomarkers of risk for death in a multicenter phase 3 trial with uniform transplant characteristics post-allogeneic HCT. Blood 2016; 129:162-170. [PMID: 27827824 DOI: 10.1182/blood-2016-08-735324] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/26/2016] [Indexed: 11/20/2022] Open
Abstract
A phase 3 clinical trial (BMT CTN 0402) comparing tacrolimus/sirolimus (Tac/Sir) vs tacrolimus/methotrexate (Tac/Mtx) as graft-versus-host disease (GVHD) prophylaxis after matched-related allogeneic hematopoietic cell transplantation (HCT) recently showed no difference between study arms in acute GVHD-free survival. Within this setting of a prospective, multicenter study with uniform GVHD prophylaxis, conditioning regimen, and donor source, we explored the correlation of 10 previously identified biomarkers with clinical outcomes after allogeneic HCT. We measured biomarkers from plasma samples collected in 211 patients using enzyme-linked immunosorbent assay (Tac/Sir = 104, Tac/Mtx = 107). High suppression of tumorigenicity-2 (ST2) and T-cell immunoglobulin mucin-3 (TIM3) at day 28 correlated with 2-year nonrelapse mortality in multivariate analysis (P = .0050, P = .0075, respectively) and in a proportional hazards model with time-dependent covariates (adjusted hazard ratio: 2.43 [1.49-3.95], P = .0038 and 4.87 [2.53-9.34], P < .0001, respectively). High ST2 and TIM3 correlated with overall survival. Chemokine (C-X-C motif) ligand 9 (CXCL9) levels above the median were associated with chronic GVHD compared with levels below the median in a time-dependent proportional hazard analysis (P = .0069). Low L-Ficolin was associated with hepatic veno-occlusive disease (P = .0053, AUC = 0.80). We confirmed the correlation of plasma-derived proteins, previously assessed in single-center cohorts, with clinical outcomes after allogeneic HCT within this prospective, multicenter study.
Collapse
|
24
|
Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 2016; 274:74-97. [PMID: 27782323 DOI: 10.1111/imr.12468] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mannose-binding lectin (MBL), collectin-10, collectin-11, and the ficolins (ficolin-1, ficolin-2, and ficolin-3) are soluble pattern recognition molecules in the lectin complement pathway. These proteins act as mediators of host defense and participate in maintenance of tissue homeostasis. They bind to conserved pathogen-specific structures and altered self-antigens and form complexes with the pentraxins to modulate innate immune functions. All molecules exhibit distinct expression in different tissue compartments, but all are found to a varying degree in the circulation. A common feature of these molecules is their ability to interact with a set of serine proteases named MASPs (MASP-1, MASP-2, and MASP-3). MASP-1 and -2 trigger the activation of the lectin pathway and MASP-3 may be involved in the activation of the alternative pathway of complement. Furthermore, MASPs mediate processes related to coagulation, bradykinin release, and endothelial and platelet activation. Variant alleles affecting expression and structure of the proteins have been associated with a variety of infectious and non-infectious diseases, most commonly as disease modifiers. Notably, the severe 3MC (Malpuech, Michels, Mingarelli, and Carnevale) embryonic development syndrome originates from rare mutations affecting either collectin-11 or MASP-3, indicating a broader functionality of the complement system than previously anticipated. This review summarizes the characteristics of the molecules in the lectin pathway.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Jie Ma
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Abstract
Hepatic veno-occlusive disease (VOD), also known as sinusoidal obstruction syndrome (SOS), represents the most frequent complication in patients in early phase following hematopoietic stem-cell transplantation (HSCT). In its severe form, VOD/SOS can be associated with multiorgan failure and with a mortality rate >80% by day +100. Defibrotide (DF) (a mixture of 90% single-stranded phosphodiester oligonucleotides and 10% double-stranded phosphodiester oligonucleotides derived from controlled depolarization of porcine intestinal mucosal DNA) has been proposed for the treatment of SOS due to its ability to restore thrombo-fibrinolytic balance and protect endothelial cells. The present review highlights why the mechanisms of action of DF allow its successful use in the prevention and treatment of SOS following HSCT.
Collapse
Affiliation(s)
- Alessandro Fulgenzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Maria Elena Ferrero
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Pilely K, Rosbjerg A, Genster N, Gal P, Pál G, Halvorsen B, Holm S, Aukrust P, Bakke SS, Sporsheim B, Nervik I, Niyonzima N, Bartels ED, Stahl GL, Mollnes TE, Espevik T, Garred P. Cholesterol Crystals Activate the Lectin Complement Pathway via Ficolin-2 and Mannose-Binding Lectin: Implications for the Progression of Atherosclerosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:5064-74. [PMID: 27183610 DOI: 10.4049/jimmunol.1502595] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/13/2016] [Indexed: 12/16/2023]
Abstract
Cholesterol crystals (CC) play an essential role in the formation of atherosclerotic plaques. CC activate the classical and the alternative complement pathways, but the role of the lectin pathway is unknown. We hypothesized that the pattern recognition molecules (PRMs) from the lectin pathway bind CC and function as an upstream innate inflammatory signal in the pathophysiology of atherosclerosis. We investigated the binding of the PRMs mannose-binding lectin (MBL), ficolin-1, ficolin-2, and ficolin-3, the associated serine proteases, and complement activation products to CC in vitro using recombinant proteins, specific inhibitors, as well as deficient and normal sera. Additionally, we examined the deposition of ficolin-2 and MBL in human carotid plaques by immunohistochemistry and fluorescence microscopy. The results showed that the lectin pathway was activated on CC by binding of ficolin-2 and MBL in vitro, resulting in activation and deposition of complement activation products. MBL bound to CC in a calcium-dependent manner whereas ficolin-2 binding was calcium-independent. No binding was observed for ficolin-1 or ficolin-3. MBL and ficolin-2 were present in human carotid plaques, and binding of MBL to CC was confirmed in vivo by immunohistochemistry, showing localization of MBL around CC clefts. Moreover, we demonstrated that IgM, but not IgG, bound to CC in vitro and that C1q binding was facilitated by IgM. In conclusion, our study demonstrates that PRMs from the lectin pathway recognize CC and provides evidence for an important role for this pathway in the inflammatory response induced by CC in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Peter Gal
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1113 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway; K.G. Jebsen Inflammation Research Center, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway; Hospital for Rheumatic Diseases, 2609 Lillehammer, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway; K.G. Jebsen Inflammation Research Center, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Siril Skaret Bakke
- Center of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bjørnar Sporsheim
- Center of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingunn Nervik
- Section for Children's and Women's Health, Department of Laboratory Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Nathalie Niyonzima
- Center of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Emil D Bartels
- Department of Clinical Biochemistry, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen O, Denmark
| | - Gregory L Stahl
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Tom Eirik Mollnes
- K.G. Jebsen Inflammation Research Center, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway; Research Laboratory, Nordland Hospital, 8038 Bodø, Norway; and K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9019 Tromsø, Norway
| | - Terje Espevik
- Center of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen O, Denmark;
| |
Collapse
|
27
|
Huber-Lang M, Gebhard F, Schmidt CQ, Palmer A, Denk S, Wiegner R. Complement therapeutic strategies in trauma, hemorrhagic shock and systemic inflammation – closing Pandora’s box? Semin Immunol 2016; 28:278-84. [DOI: 10.1016/j.smim.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
|
28
|
Nakahira K, Hisata S, Choi AMK. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid Redox Signal 2015; 23:1329-50. [PMID: 26067258 PMCID: PMC4685486 DOI: 10.1089/ars.2015.6407] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria, vital cellular power plants to generate energy, are involved in immune responses. Mitochondrial damage-associated molecular patterns (DAMPs) are molecules that are released from mitochondria to extracellular space during cell death and include not only proteins but also DNA or lipids. Mitochondrial DAMPs induce inflammatory responses and are critically involved in the pathogenesis of various diseases. RECENT ADVANCES Recent studies elucidate the molecular mechanisms by which mitochondrial DAMPs are released and initiate immune responses by use of genetically modulated cells or animals. Importantly, the levels of mitochondrial DAMPs in patients are often associated with severity and prognosis of human diseases, such as infection, asthma, ischemic heart disease, and cancer. CRITICAL ISSUES Although mitochondrial DAMPs can represent proinflammatory molecules in various experimental models, their roles in human diseases may be multifunctional and complex. It remains unclear where and how mitochondrial DAMPs are liberated into extracellular spaces and exert their biological functions particularly in vivo. In addition, while mitochondria can secrete several types of DAMPs during cell death, the interaction of each mitochondrial DAMP (e.g., synergistic effects) remains unclear. FUTURE DIRECTIONS Regulation of mitochondrial DAMP-mediated immune responses may be important to alter the progression of human diseases. In addition, measuring mitochondrial DAMPs in patients may be clinically useful as biomarkers to predict prognosis or response to therapies. Further studies of the mechanisms by which mitochondrial DAMPs impact the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway. Antioxid.
Collapse
Affiliation(s)
- Kiichi Nakahira
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Shu Hisata
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Augustine M K Choi
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
29
|
Bajic G, Degn SE, Thiel S, Andersen GR. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J 2015; 34:2735-57. [PMID: 26489954 DOI: 10.15252/embj.201591881] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023] Open
Abstract
The complement system is an essential element of the innate immune response that becomes activated upon recognition of molecular patterns associated with microorganisms, abnormal host cells, and modified molecules in the extracellular environment. The resulting proteolytic cascade tags the complement activator for elimination and elicits a pro-inflammatory response leading to recruitment and activation of immune cells from both the innate and adaptive branches of the immune system. Through these activities, complement functions in the first line of defense against pathogens but also contributes significantly to the maintenance of homeostasis and prevention of autoimmunity. Activation of complement and the subsequent biological responses occur primarily in the extracellular environment. However, recent studies have demonstrated autocrine signaling by complement activation in intracellular vesicles, while the presence of a cytoplasmic receptor serves to detect complement-opsonized intracellular pathogens. Furthermore, breakthroughs in both functional and structural studies now make it possible to describe many of the intricate molecular mechanisms underlying complement activation and the subsequent downstream events, as well as its cross talk with, for example, signaling pathways, the coagulation system, and adaptive immunity. We present an integrated and updated view of complement based on structural and functional data and describe the new roles attributed to complement. Finally, we discuss how the structural and mechanistic understanding of the complement system rationalizes the genetic defects conferring uncontrolled activation or other undesirable effects of complement.
Collapse
Affiliation(s)
- Goran Bajic
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA, USA
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Akil A, Zhang Q, Mumaw CL, Raiker N, Yu J, Velez de Mendizabal N, Haneline LS, Robertson KA, Skiles J, Diaz-Ricart M, Carreras E, Renbarger J, Hanash S, Bies RR, Paczesny S. Biomarkers for Diagnosis and Prognosis of Sinusoidal Obstruction Syndrome after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2015; 21:1739-45. [PMID: 26172478 PMCID: PMC4568166 DOI: 10.1016/j.bbmt.2015.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022]
Abstract
Reliable, noninvasive methods for diagnosing and prognosing sinusoidal obstruction syndrome (SOS) early after hematopoietic cell transplantation (HCT) are needed. We used a quantitative mass spectrometry-based proteomics approach to identify candidate biomarkers of SOS by comparing plasma pooled from 20 patients with and 20 patients without SOS. Of 494 proteins quantified, we selected 6 proteins (L-Ficolin, vascular cell adhesion molecule-1 [VCAM1], tissue inhibitor of metalloproteinase-1, von Willebrand factor, intercellular adhesion molecule-1, and CD97) based on a differential heavy/light isotope ratio of at least 2 fold, information from the literature, and immunoassay availability. Next, we evaluated the diagnostic potential of these 6 proteins and 5 selected from the literature (suppression of tumorigenicity-2 [ST2], angiopoietin-2 (ANG2), hyaluronic acid [HA], thrombomodulin, and plasminogen activator inhibitor-1) in samples from 80 patients. The results demonstrate that together ST2, ANG2, L-Ficolin, HA, and VCAM1 compose a biomarker panel for diagnosis of SOS. L-Ficolin, HA, and VCAM1 also stratified patients at risk for SOS as early as the day of HCT. Prognostic Bayesian modeling for SOS onset based on L-Ficolin, HA, and VCAM1 levels on the day of HCT and clinical characteristics showed >80% correct prognosis of SOS onset. These biomarkers may provide opportunities for preemptive intervention to minimize SOS incidence and/or severity.
Collapse
Affiliation(s)
- Ayman Akil
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Qing Zhang
- Department of Genomics, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Christen L Mumaw
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nisha Raiker
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jeffrey Yu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Laura S Haneline
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kent A Robertson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jodi Skiles
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Enric Carreras
- Hospital Clinic, IDIBAPS, Barcelona, Spain; José Carreras Foundation & Leukemia Research Institute, Barcelona, Spain
| | - Jamie Renbarger
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Samir Hanash
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert R Bies
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
31
|
Geno KA, Spencer BL, Nahm MH. Rapid and efficient purification of ficolin-2 using a disposable CELLine bioreactor. J Immunol Methods 2015; 424:106-10. [PMID: 26021447 PMCID: PMC4560653 DOI: 10.1016/j.jim.2015.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
The human opsonin ficolin-2 (L-ficolin) is an innate pattern-recognizing molecule that binds to acetylated moieties. Upon binding, ficolin-2 activates complement through the lectin pathway, opsonizing the target to promote phagocytic clearance. Ficolin-2 has been found to interact with a growing number of pathogenic bacteria, fungi, and viruses. Ficolin-2 also has proposed roles in host homeostasis, including the clearance of apoptotic cells. Consequently, there is an increased interest in studying ficolin-2, and access to purified ficolin-2 is necessary for these studies. Ficolin-2 purified from serum, plasma, or cell culture supernatants has been a useful tool in the characterization of ficolin-2 function; however, available protocols are laborious and inefficient, requiring additional processing of starting materials (e.g., polyethylene glycol precipitation or dialysis) and multiple steps of purification. Here, we investigated a simple solution to the problem: use of a simple, disposable bioreactor requiring only standard tissue culture equipment. Using this system, we generated cell culture supernatants containing high concentrations of recombinant ficolin-2, which permitted rapid purification of high-purity recombinant ficolin-2 without processing the supernatants. Purified recombinant ficolin-2 retained its binding capacity and supported complement activation in vitro. Bioreactor cultivation will likely be generally useful in the production of other recombinant proteins in the study of the complement system.
Collapse
Affiliation(s)
- K Aaron Geno
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion, 619 19th Street South, Birmingham, AL 35233, USA.
| | - Brady L Spencer
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion, 619 19th Street South, Birmingham, AL 35233, USA.
| | - Moon H Nahm
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion, 619 19th Street South, Birmingham, AL 35233, USA; Department of Microbiology, University of Alabama at Birmingham, Bevill Biomedical Research Building, Suite 276/11, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
32
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
33
|
Role of Complement on Broken Surfaces After Trauma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:43-55. [PMID: 26306442 DOI: 10.1007/978-3-319-18603-0_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of both the complement and coagulation cascade after trauma and subsequent local and systemic inflammatory response represent a major scientific and clinical problem. After severe tissue injury and bone fracture, exposure of innate immunity to damaged cells and molecular debris is considered a main trigger of the posttraumatic danger response. However, the effects of cellular fragments (e.g., histones) on complement activation remain enigmatic. Furthermore, direct effects of "broken" bone and cartilage surfaces on the fluid phase response of complement and its interaction with key cells of connective tissues are still unknown. Here, we summarize data suggesting direct and indirect complement activation by extracellular and cellular danger associated molecular patterns. In addition, key complement components and the corresponding receptors (such as C3aR, C5aR) have been detected on "exposed surfaces" of the damaged regions. On a cellular level, multiple effects of complement activation products on osteoblasts, osteoclasts, chondrocytes and mesenchymal stem cells have been found.In conclusion, the complement system may be activated by trauma-altered surfaces and is crucially involved in connective tissue healing and posttraumatic systemic inflammatory response.
Collapse
|
34
|
Laffly E, Lacroix M, Martin L, Vassal-Stermann E, Thielens NM, Gaboriaud C. Human ficolin-2 recognition versatility extended: an update on the binding of ficolin-2 to sulfated/phosphated carbohydrates. FEBS Lett 2014; 588:4694-700. [PMID: 25447524 DOI: 10.1016/j.febslet.2014.10.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 01/18/2023]
Abstract
Ficolin-2 has been reported to bind to DNA and heparin, but the mechanism involved has not been thoroughly investigated. X-ray studies of the ficolin-2 fibrinogen-like domain in complex with several new ligands now show that sulfate and phosphate groups are prone to bind to the S3 binding site of the protein. Composed of Arg132, Asp133, Thr136 and Lys221, the S3 site was previously shown to mainly bind N-acetyl groups. Furthermore, DNA and heparin compete for binding to ficolin-2. Mutagenesis studies reveal that Arg132, and to a lesser extent Asp133, are important for this binding property. The versatility of the S3 site in binding N-acetyl, sulfate and phosphate groups is discussed through comparisons with homologous fibrinogen-like recognition proteins.
Collapse
Affiliation(s)
- Emmanuelle Laffly
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France
| | - Monique Lacroix
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France
| | - Lydie Martin
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France
| | - Emilie Vassal-Stermann
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France
| | - Nicole M Thielens
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France.
| | - Christine Gaboriaud
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France.
| |
Collapse
|