1
|
Wang R, Liao G, Tang DD. TET1 Regulates Nestin Expression and Human Airway Smooth Muscle Proliferation. Am J Respir Cell Mol Biol 2024; 71:420-429. [PMID: 38861343 PMCID: PMC11450309 DOI: 10.1165/rcmb.2024-0139oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
Asthma is characterized by aberrant airway smooth muscle (ASM) proliferation, which increases the thickness of the ASM layer within the airway wall and exacerbates airway obstruction during asthma attacks. The mechanisms that drive ASM proliferation in asthma are not entirely elucidated. Ten-eleven translocation methylcytosine dioxygenase (TET) is an enzyme that participates in the regulation of DNA methylation by catalyzing the hydroxylation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). The generation of 5-hmC disinhibits the gene silencing effect of 5-mC. In this study, TET1 activity and protein were enhanced in asthmatic human ASM cell cultures. Moreover, the concentration of 5-hmC was higher in asthmatic ASM cells than in nonasthmatic ASM cells. Knockdown (KD) of TET1, but not TET2, reduced the concentration of 5-hmC in asthmatic cells. Because the cytoskeletal protein nestin controls cell proliferation by modulating mTOR, we evaluated the effects of TET1 KD on this pathway. TET1 KD reduced nestin expression in ASM cells. In addition, TET1 inhibition alleviated the platelet-derived growth factor-induced phosphorylation of p70S6K, 4E-BP, S6, and Akt. TET1 inhibition also attenuated the proliferation of ASM cells. Taken together, these results suggest that TET1 drives ASM proliferation via the nestin-mTOR axis.
Collapse
Affiliation(s)
- Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
2
|
Petersen M, Dubielecka P. Adaptor protein Abelson interactor 1 in homeostasis and disease. Cell Commun Signal 2024; 22:468. [PMID: 39354505 PMCID: PMC11446139 DOI: 10.1186/s12964-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
Collapse
Affiliation(s)
- Max Petersen
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
- Center for the Biology of Aging, Brown University, Providence, RI, USA
- Legoretta Cancer Center, Brown University, Providence, RI, USA
| | - Pat Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.
- Center for the Biology of Aging, Brown University, Providence, RI, USA.
- Legoretta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Nayak AP, Javed E, Villalba DR, Wang Y, Morelli HP, Shah SD, Kim N, Ostrom RS, Panettieri RA, An SS, Tang DD, Penn RB. Prorelaxant E-type Prostanoid Receptors Functionally Partition to Different Procontractile Receptors in Airway Smooth Muscle. Am J Respir Cell Mol Biol 2023; 69:584-591. [PMID: 37523713 PMCID: PMC10633839 DOI: 10.1165/rcmb.2022-0445oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
Prostaglandin E2 imparts diverse physiological effects on multiple airway cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4). Gs-coupled EP2 and EP4 receptors are expressed on airway smooth muscle (ASM), yet their capacity to regulate the ASM contractile state remains subject to debate. We used EP2 and EP4 subtype-specific agonists (ONO-259 and ONO-329, respectively) in cell- and tissue-based models of human ASM contraction-magnetic twisting cytometry (MTC), and precision-cut lung slices (PCLSs), respectively-to study the EP2 and EP4 regulation of ASM contraction and signaling under conditions of histamine or methacholine (MCh) stimulation. ONO-329 was superior (<0.05) to ONO-259 in relaxing MCh-contracted PCLSs (log half maximal effective concentration [logEC50]: 4.9 × 10-7 vs. 2.2 × 10-6; maximal bronchodilation ± SE, 35 ± 2% vs. 15 ± 2%). However, ONO-259 and ONO-329 were similarly efficacious in relaxing histamine-contracted PCLSs. Similar differential effects were observed in MTC studies. Signaling analyses revealed only modest differences in ONO-329- and ONO-259-induced phosphorylation of the protein kinase A substrates VASP and HSP20, with concomitant stimulation with MCh or histamine. Conversely, ONO-259 failed to inhibit MCh-induced phosphorylation of the regulatory myosin light chain (pMLC20) and the F-actin/G-actin ratio (F/G-actin ratio) while effectively inhibiting their induction by histamine. ONO-329 was effective in reversing induced pMLC20 and the F/G-actin ratio with both MCh and histamine. Thus, the contractile-agonist-dependent differential effects are not explained by changes in the global levels of phosphorylated protein kinase A substrates but are reflected in the regulation of pMLC20 (cross-bridge cycling) and F/G-actin ratio (actin cytoskeleton integrity, force transmission), implicating a role for compartmentalized signaling involving muscarinic, histamine, and EP receptor subtypes.
Collapse
Affiliation(s)
- Ajay P. Nayak
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elham Javed
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dominic R. Villalba
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Henry P. Morelli
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D. Shah
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California; and
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Steven S. An
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Dale D. Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Raymond B. Penn
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Kinnunen M, Liu X, Niemelä E, Öhman T, Gawriyski L, Salokas K, Keskitalo S, Varjosalo M. The Impact of ETV6-NTRK3 Oncogenic Gene Fusions on Molecular and Signaling Pathway Alterations. Cancers (Basel) 2023; 15:4246. [PMID: 37686522 PMCID: PMC10486691 DOI: 10.3390/cancers15174246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal translocations creating fusion genes are common cancer drivers. The oncogenic ETV6-NTRK3 (EN) gene fusion joins the sterile alpha domain of the ETV6 transcription factor with the tyrosine kinase domain of the neurotrophin-3 receptor NTRK3. Four EN variants with alternating break points have since been detected in a wide range of human cancers. To provide molecular level insight into EN oncogenesis, we employed a proximity labeling mass spectrometry approach to define the molecular context of the fusions. We identify in total 237 high-confidence interactors, which link EN fusions to several key signaling pathways, including ERBB, insulin and JAK/STAT. We then assessed the effects of EN variants on these pathways, and showed that the pan NTRK inhibitor Selitrectinib (LOXO-195) inhibits the oncogenic activity of EN2, the most common variant. This systems-level analysis defines the molecular framework in which EN oncofusions operate to promote cancer and provides some mechanisms for therapeutics.
Collapse
Affiliation(s)
- Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Elina Niemelä
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Lisa Gawriyski
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Motaln H, Rogelj B. The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells 2023; 12:2041. [PMID: 37626851 PMCID: PMC10453230 DOI: 10.3390/cells12162041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Differentiated status, low regenerative capacity and complex signaling make neuronal tissues highly susceptible to translating an imbalance in cell homeostasis into cell death. The high rate of neurodegenerative diseases in the elderly population confirms this. The multiple and divergent signaling cascades downstream of the various stress triggers challenge researchers to identify the central components of the stress-induced signaling pathways that cause neurodegeneration. Because of their critical role in cell homeostasis, kinases have emerged as one of the key regulators. Among kinases, non-receptor tyrosine kinase (Abelson kinase) c-Abl appears to be involved in both the normal development of neural tissue and the development of neurodegenerative pathologies when abnormally expressed or activated. However, exactly how c-Abl mediates the progression of neurodegeneration remains largely unexplored. Here, we summarize recent findings on the involvement of c-Abl in normal and abnormal processes in nervous tissue, focusing on neurons, astrocytes and microglial cells, with particular reference to molecular events at the interface between stress signaling, DNA damage, and metabolic regulation. Because inhibition of c-Abl has neuroprotective effects and can prevent neuronal death, we believe that an integrated view of c-Abl signaling in neurodegeneration could lead to significantly improved treatment of the disease.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Zhang W, Wu Y, J Gunst S. Membrane adhesion junctions regulate airway smooth muscle phenotype and function. Physiol Rev 2023; 103:2321-2347. [PMID: 36796098 PMCID: PMC10243546 DOI: 10.1152/physrev.00020.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
7
|
Wang Y, Liao G, Wu Y, Wang R, Tang DD. The intermediate filament protein nestin serves as a molecular hub for smooth muscle cytoskeletal signaling. Respir Res 2023; 24:157. [PMID: 37316833 DOI: 10.1186/s12931-023-02473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The recruitment of the actin-regulatory proteins cortactin and profilin-1 (Pfn-1) to the membrane is important for the regulation of actin cytoskeletal reorganization and smooth muscle contraction. Polo-like kinase 1 (Plk1) and the type III intermediate filament protein vimentin are involved in smooth muscle contraction. Regulation of complex cytoskeletal signaling is not entirely elucidated. The aim of this study was to evaluate the role of nestin (a type VI intermediate filament protein) in cytoskeletal signaling in airway smooth muscle. METHODS Nestin expression in human airway smooth muscle (HASM) was knocked down by specific shRNA or siRNA. The effects of nestin knockdown (KD) on the recruitment of cortactin and Pfn-1, actin polymerization, myosin light chain (MLC) phosphorylation, and contraction were evaluated by cellular and physiological approaches. Moreover, we assessed the effects of non-phosphorylatable nestin mutant on these biological processes. RESULTS Nestin KD reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Moreover, contractile stimulation enhanced nestin phosphorylation at Thr-315 and the interaction of nestin with Plk1. Nestin KD also diminished phosphorylation of Plk1 and vimentin. The expression of T315A nestin mutant (alanine substitution at Thr-315) reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Furthermore, Plk1 KD diminished nestin phosphorylation at this residue. CONCLUSIONS Nestin is an essential macromolecule that regulates actin cytoskeletal signaling via Plk1 in smooth muscle. Plk1 and nestin form an activation loop during contractile stimulation.
Collapse
Affiliation(s)
- Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Yidi Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
8
|
Fan S, Shen Y, Li S, Xiang X, Li N, Li Y, Xu J, Cui M, Han X, Xia J, Huang Y. The S2 Subunit of Infectious Bronchitis Virus Affects Abl2-Mediated Syncytium Formation. Viruses 2023; 15:1246. [PMID: 37376546 DOI: 10.3390/v15061246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The S2 subunit serves a crucial role in infectious bronchitis virus (IBV) infection, particularly in facilitating membrane fusion. Using reverse genetic techniques, mutant strains of the S2 locus exhibited substantially different syncytium-forming abilities in chick embryonic kidney cells. To determine the precise formation mechanism of syncytium, we demonstrated the co-ordinated role of Abl2 and its mediated cytoskeletal regulatory pathway within the S2 subunit. Using a combination of fluorescence quantification, RNA silencing, and protein profiling techniques, the functional role of S2 subunits in IBV-infected cells was exhaustively determined. Our findings imply that Abl2 is not the primary cytoskeletal regulator, the viral S2 component is involved in indirect regulation, and the three different viral strains activate various cytoskeletal regulatory pathways through Abl2. CRK, CRKL, ABI1, NCKAP1, and ENAH also play a role in cytoskeleton regulation. Our research provides a point of reference for the development of an intracellular regulatory network for the S2 subunit and a foundation for the rational design of antiviral drug targets against Abl2.
Collapse
Affiliation(s)
- Shunyi Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Yuxi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Shuyun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Xuelian Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Nianling Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Yongxin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Jing Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| |
Collapse
|
9
|
Wang R, Khan S, Liao G, Wu Y, Tang DD. Nestin Modulates Airway Smooth Muscle Cell Migration by Affecting Spatial Rearrangement of Vimentin Network and Focal Adhesion Assembly. Cells 2022; 11:cells11193047. [PMID: 36231009 PMCID: PMC9562664 DOI: 10.3390/cells11193047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Airway smooth muscle cell migration plays a role in the progression of airway remodeling, a hallmark of allergic asthma. However, the mechanisms that regulate cell migration are not yet entirely understood. Nestin is a class VI intermediate filament protein that is involved in the proliferation/regeneration of neurons, cancer cells, and skeletal muscle. Its role in cell migration is not fully understood. Here, nestin knockdown (KD) inhibited the migration of human airway smooth muscle cells. Using confocal microscopy and the Imaris software, we found that nestin KD attenuated focal adhesion sizes during cell spreading. Moreover, polo-like kinase 1 (Plk1) and vimentin phosphorylation at Ser-56 have been previously shown to affect focal adhesion assembly. Here, nestin KD reduced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation), vimentin phosphorylation at Ser-56, the contacts of vimentin filaments to paxillin, and the morphology of focal adhesions. Moreover, the expression of vimentin phosphorylation-mimic mutant S56D (aspartic acid substitution at Ser-56) rescued the migration, vimentin reorganization, and focal adhesion size of nestin KD cells. Together, our results suggest that nestin promotes smooth muscle cell migration. Mechanistically, nestin regulates Plk1 phosphorylation, which mediates vimenitn phosphorylation, the connection of vimentin filaments with paxillin, and focal adhesion assembly.
Collapse
Affiliation(s)
| | | | | | | | - Dale D. Tang
- Correspondence: ; Tel.: +1-(518)-262-6416; Fax: +1-(518)-262-8101
| |
Collapse
|
10
|
Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022; 11:cells11172764. [PMID: 36078171 PMCID: PMC9454904 DOI: 10.3390/cells11172764] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a heterogeneous lung disease with variable phenotypes (clinical presentations) and distinctive endotypes (mechanisms). Over the last decade, considerable efforts have been made to dissect the cellular and molecular mechanisms of asthma. Aberrant T helper type 2 (Th2) inflammation is the most important pathological process for asthma, which is mediated by Th2 cytokines, such as interleukin (IL)-5, IL-4, and IL-13. Approximately 50% of mild-to-moderate asthma and a large portion of severe asthma is induced by Th2-dependent inflammation. Th2-low asthma can be mediated by non-Th2 cytokines, including IL-17 and tumor necrosis factor-α. There is emerging evidence to demonstrate that inflammation-independent processes also contribute to asthma pathogenesis. Protein kinases, adapter protein, microRNAs, ORMDL3, and gasdermin B are newly identified molecules that drive asthma progression, independent of inflammation. Eosinophils, IgE, fractional exhaled nitric oxide, and periostin are practical biomarkers for Th2-high asthma. Sputum neutrophils are easily used to diagnose Th2-low asthma. Despite progress, more studies are needed to delineate complex endotypes of asthma and to identify new and practical biomarkers for better diagnosis, classification, and treatment.
Collapse
|
11
|
Smooth Muscle Myosin Localizes at the Leading Edge and Regulates the Redistribution of Actin-regulatory Proteins during Migration. Cells 2022; 11:cells11152334. [PMID: 35954178 PMCID: PMC9367404 DOI: 10.3390/cells11152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Airway smooth muscle cell migration plays an essential role in airway development, repair, and remodeling. Smooth muscle myosin II has been traditionally thought to localize in the cytoplasm solely and regulates cell migration by affecting stress fiber formation and focal adhesion assembly. In this study, we unexpectedly found that 20-kDa myosin light chain (MLC20) and myosin-11 (MYH11), important components of smooth muscle myosin, were present at the edge of lamellipodia. The knockdown of MLC20 or MYH11 attenuated the recruitment of c-Abl, cortactinProfilin-1 (Pfn-1), and Abi1 to the cell edge. Moreover, myosin light chain kinase (MLCK) colocalized with integrin β1 at the tip of protrusion. The inhibition of MLCK attenuated the recruitment of c-Abl, cortactin, Pfn-1, and Abi1 to the cell edge. Furthermore, MLCK localization at the leading edge was reduced by integrin β1 knockdown. Taken together, our results demonstrate that smooth muscle myosin localizes at the leading edge and orchestrates the recruitment of actin-regulatory proteins to the tip of lamellipodia. Mechanistically, integrin β1 recruits MLCK to the leading edge, which catalyzes MLC20 phosphorylation. Activated myosin regulates the recruitment of actin-regulatory proteins to the leading edge, and promotes lamellipodial formation and migration.
Collapse
|
12
|
Anillin governs mitotic rounding during early epidermal development. BMC Biol 2022; 20:145. [PMID: 35710398 PMCID: PMC9205045 DOI: 10.1186/s12915-022-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background The establishment of tissue architecture requires coordination between distinct processes including basement membrane assembly, cell adhesion, and polarity; however, the underlying mechanisms remain poorly understood. The actin cytoskeleton is ideally situated to orchestrate tissue morphogenesis due to its roles in mechanical, structural, and regulatory processes. However, the function of many pivotal actin-binding proteins in mammalian development is poorly understood. Results Here, we identify a crucial role for anillin (ANLN), an actin-binding protein, in orchestrating epidermal morphogenesis. In utero RNAi-mediated silencing of Anln in mouse embryos disrupted epidermal architecture marked by adhesion, polarity, and basement membrane defects. Unexpectedly, these defects cannot explain the profoundly perturbed epidermis of Anln-depleted embryos. Indeed, even before these defects emerge, Anln-depleted epidermis exhibits abnormalities in mitotic rounding and its associated processes: chromosome segregation, spindle orientation, and mitotic progression, though not in cytokinesis that was disrupted only in Anln-depleted cultured keratinocytes. We further show that ANLN localizes to the cell cortex during mitotic rounding, where it regulates the distribution of active RhoA and the levels, activity, and structural organization of the cortical actomyosin proteins. Conclusions Our results demonstrate that ANLN is a major regulator of epidermal morphogenesis and identify a novel role for ANLN in mitotic rounding, a near-universal process that governs cell shape, fate, and tissue morphogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01345-9.
Collapse
|
13
|
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy 2022; 15:595-610. [PMID: 35592385 PMCID: PMC9112045 DOI: 10.2147/jaa.s267222] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Airway remodeling is a complex clinical feature of asthma that involves long-term disruption and modification of airway architecture, which contributes significantly to airway hyperresponsiveness (AHR) and lung function decline. It is characterized by thickening of the airway smooth muscle layer, deposition of a matrix below the airway epithelium, resulting in subepithelial fibrosis, changes within the airway epithelium, leading to disruption of the barrier, and excessive mucous production and angiogenesis within the airway wall. Airway remodeling contributes to stiffer and less compliant airways in asthma and leads to persistent, irreversible airflow obstruction. Current asthma treatments aim to reduce airway inflammation and exacerbations but none are targeted towards airway remodeling. Inhibiting the development of airway remodeling or reversing established remodeling has the potential to dramatically improve symptoms and disease burden in asthmatic patients. Integrins are a family of transmembrane heterodimeric proteins that serve as the primary receptors for extracellular matrix (ECM) components, mediating cell-cell and cell-ECM interactions to initiate intracellular signaling cascades. Cells present within the lungs, including structural and inflammatory cells, express a wide and varying range of integrin heterodimer combinations and permutations. Integrins are emerging as an important regulator of inflammation, repair, remodeling, and fibrosis in the lung, particularly in chronic lung diseases such as asthma. Here, we provide a comprehensive summary of the current state of knowledge on integrins in the asthmatic airway and how these integrins promote the remodeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiliation(s)
- Chitra Joseph
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Wang R, Wang Y, Liao G, Chen B, Panettieri RA, Penn RB, Tang DD. Abi1 mediates airway smooth muscle cell proliferation and airway remodeling via Jak2/STAT3 signaling. iScience 2022; 25:103833. [PMID: 35198891 PMCID: PMC8851273 DOI: 10.1016/j.isci.2022.103833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a complex pulmonary disorder with multiple pathological mechanisms. A key pathological feature of chronic asthma is airway remodeling, which is largely attributed to airway smooth muscle (ASM) hyperplasia that contributes to thickening of the airway wall and further drives asthma pathology. The cellular processes that mediate ASM cell proliferation are not completely elucidated. Using multiple approaches, we demonstrate that the adapter protein Abi1 (Abelson interactor 1) is upregulated in ∼50% of ASM cell cultures derived from patients with asthma. Loss-of-function studies demonstrate that Abi1 regulates the activation of Jak2 (Janus kinase 2) and STAT3 (signal transducers and activators of transcription 3) as well as the proliferation of both nonasthmatic and asthmatic human ASM cell cultures. These findings identify Abi1 as a molecular switch that activates Jak2 kinase and STAT3 in ASM cells and demonstrate that a dysfunctional Abi1-associated pathway contributes to the progression of asthma.
Collapse
Affiliation(s)
- Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Bohao Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Reynold A. Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson School of Medicine, New Brunswick, NJ 08901, USA
| | - Raymond B. Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dale D. Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
15
|
Gebski EB, Anaspure O, Panettieri RA, Koziol-White CJ. Airway smooth muscle and airway hyperresponsiveness in asthma: mechanisms of airway smooth muscle dysfunction. Minerva Med 2022; 113:4-16. [PMID: 33496164 PMCID: PMC9254130 DOI: 10.23736/s0026-4806.21.07283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Airway smooth muscle plays a pivotal role in modulating bronchomotor tone. Modulation of contractile and relaxation signaling is critical to alleviate the airway hyperresponsiveness (AHR) associated with asthma. Emerging studies examining the phenotype of ASM in the context of asthma provide rich avenues to develop more effective therapeutics to attenuate the AHR associated with the disease.
Collapse
Affiliation(s)
- Eric B Gebski
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Omkar Anaspure
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA -
| |
Collapse
|
16
|
Liao G, Wang R, Tang DD. Plk1 Regulates Caspase-9 Phosphorylation at Ser-196 and Apoptosis of Human Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2022; 66:223-234. [PMID: 34705620 PMCID: PMC8845127 DOI: 10.1165/rcmb.2021-0192oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022] Open
Abstract
Airway smooth muscle thickening, a key characteristic of chronic asthma, is largely attributed to increased smooth muscle cell proliferation and reduced smooth muscle apoptosis. Polo-like kinase 1 (Plk1) is a serine/threonine protein kinase that participates in the pathogenesis of airway smooth muscle remodeling. Although the role of Plk1 in cell proliferation and migration is recognized, its function in smooth muscle apoptosis has not been previously investigated. Caspase-9 (Casp9) is a key enzyme that participates in the execution of apoptosis. Casp9 phosphorylation at Ser-196 and Thr-125 is implicated in regulating its activity in cancer cells and epithelial cells. Here, exposure of human airway smooth muscle (HASM) cells to platelet-derived growth factorfor 24 hours enhanced the expression of Plk1 and Casp9 phosphorylation at Ser-196, but not Thr-125. Overexpression of Plk1 in HASM cells increased Casp9 phosphorylation at Ser-196. Moreover, the expression of Plk1 increased the levels of pro-Casp9 and pro-Casp3 and inhibited apoptosis, demonstrating a role of Plk1 in inhibiting apoptosis. Knockdown of Plk1 reduced Casp9 phosphorylation at Ser-196, reduced pro-Casp9/3 expression, and increased apoptosis. Furthermore, Casp9 phosphorylation at Ser-196 was upregulated in asthmatic HASM cells, which was associated with increased Plk1 expression. Knockdown of Plk1 in asthmatic HASM cells decreased Casp9 phosphorylation at Ser-196 and enhanced apoptosis. Together, these studies disclose a previously unknown mechanism that the Plk1-Casp9/3 pathway participates in the controlling of smooth muscle apoptosis.
Collapse
Affiliation(s)
- Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
17
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Wang Y, Liao G, Wang R, Tang DD. Acetylation of Abelson interactor 1 at K416 regulates actin cytoskeleton and smooth muscle contraction. FASEB J 2021; 35:e21811. [PMID: 34369620 PMCID: PMC8800440 DOI: 10.1096/fj.202100415r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Actin cytoskeletal reorganization plays an important role in regulating smooth muscle contraction, which is essential for the modulation of various physiological functions including airway tone. The adapter protein Abi1 (Abelson interactor 1) participates in the control of smooth muscle contraction. The mechanisms by which Abi1 coordinates smooth muscle function are not fully understood. Here, we found that contractile stimulation elicited Abi1 acetylation in human airway smooth muscle (HASM) cells. Mutagenesis analysis identified lysine‐416 (K416) as a major acetylation site. Replacement of K416 with Q (glutamine) enhanced the interaction of Abi1 with neuronal Wiskott‐Aldrich syndrome protein (N‐WASP), an important actin‐regulatory protein. Moreover, the expression of K416Q Abi1 promoted actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser‐19 and vimentin phosphorylation at Ser‐56. Furthermore, p300 is a lysine acetyltransferase that catalyzes acetylation of histone and non‐histone proteins in various cell types. Here, we discovered that a portion of p300 was localized in the cytoplasm of HASM cells. Knockdown of p300 reduced the agonist‐induced Abi1 acetylation in HASM cells and in mouse airway smooth muscle tissues. Smooth muscle conditional knockout of p300 inhibited actin polymerization and the contraction of airway smooth muscle tissues without affecting myosin light chain phosphorylation and vimentin phosphorylation. Together, our results suggest that contractile stimulation induces Abi1 acetylation via p300 in smooth muscle. Acetylation at K416 promotes the coupling of Abi1 with N‐WASP, which facilitates actin polymerization and smooth muscle contraction. This is a novel acetylation‐dependent regulation of the actin cytoskeleton in smooth muscle.
Collapse
Affiliation(s)
- Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
19
|
Piyadasa H, Hemshekhar M, Osawa N, Lloyd D, Altieri A, Basu S, Krokhin OV, Halayko AJ, Mookherjee N. Disrupting Tryptophan in the Central Hydrophobic Region Selectively Mitigates Immunomodulatory Activities of the Innate Defence Regulator Peptide IDR-1002. J Med Chem 2021; 64:6696-6705. [PMID: 33974425 DOI: 10.1021/acs.jmedchem.0c02065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Innate defense regulator (IDR) peptides show promise as immunomodulatory therapeutics. However, there is limited understanding of the relationship of IDR peptide sequence and/or structure with its immunomodulatory activity. We previously reported that an IDR peptide, IDR-1002, reduces airway hyperresponsiveness (AHR) and inflammation in a house dust mite (HDM)-challenged murine model of airway inflammation. Here, we examined the sequence-to-function relationship of IDR-1002 in HDM-challenged mice and human bronchial epithelial cells (HBEC). We demonstrated that the tryptophan (W8) in the central hydrophobic region of IDR-1002 is required for the peptide to (i) suppress the pro-inflammatory cytokine IL-33, and induce anti-inflammatory mediators IL-1RA and stanniocalcin-1 in HBEC, and (ii) reduce IL-33 abundance, and eosinophil and neutrophil infiltration, in the lungs of HDM-challenged mice, without affecting the capacity to improve AHR, suggesting multimodal activity in vivo. Findings from this study can be used to design IDR peptides with targeted impact on immunomodulation and pathophysiology in respiratory diseases.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Department of Pathology, School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| | - Natasha Osawa
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| | - Dylan Lloyd
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| | - Anthony Altieri
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E0J9, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E0J9, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| |
Collapse
|
20
|
Li Y, Guo X, Xue G, Wang H, Wang Y, Wang W, Yang S, Ni Q, Chen J, Lv L, Zhao Y, Ye M, Zhang L. RNA Splicing of the Abi1 Gene by MBNL1 contributes to macrophage-like phenotype modulation of vascular smooth muscle cell during atherogenesis. Cell Prolif 2021; 54:e13023. [PMID: 33759281 PMCID: PMC8088461 DOI: 10.1111/cpr.13023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Vascular smooth muscle cells (VSMC) switch to macrophage-like cells after cholesterol loading, and this change may play an important role in atherogenesis. Muscleblind-like splicing regulator 1 (MBNL1) is a well-known splicing factor that has been implicated in many cellular processes. However, the role of MBNL1 in VSMC macrophage-like transdifferentiation is largely unknown. In this study, we aim to characterize the role of MBNL1-induced gene splicing during atherogenesis. METHODS The expression of MBNL1 and Abelson interactor 1 (Abi1) splice variants (Abi1-e10 and Abi1-Δe10) was compared between artery tissues from healthy donors and atherosclerosis patients. Regulatory mechanisms of MBNL1-induced Abi1 gene splicing were studied, and the signal pathways mediated by Abi1 splice variants were investigated in VSMC. RESULTS Loss of MBNL1 was found in the macrophage-like VSMC (VSMC-M) in artery wall from atherosclerosis patients. In vitro and in vivo evidence confirmed that Abi1 is one of the MBNL1 target genes. Loss of MBNL1 significantly induces the Abi1-Δe10 isoform expression. Compared to the known actin organization activities of the Abi1 gene, we discovered a novel action of Abi1-Δe10, whereby Abi1-Δe10 activates Rac1 independent of upstream stimulation and triggers the Rac1-NOX1-ROS pathway, which results in increased expression of transcription factor Kruppel-like factor 4 (KLF4). While Abi1-Δe10 inhibits contractile VSMC biomarkers expression and cell contraction, it stimulates VSMC proliferation, migration and macrophage-like transdifferentiation. CONCLUSION Loss-of-function of MBNL1 activates VSMC-M transdifferentiation to promote atherogenesis through regulating Abi1 RNA splicing.
Collapse
Affiliation(s)
- Yinan Li
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiangjiang Guo
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Han Wang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yuli Wang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Weilun Wang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qihong Ni
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jiaquan Chen
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lei Lv
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yiping Zhao
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Meng Ye
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Mahood T, Pascoe CD, Karakach TK, Jha A, Basu S, Ezzati P, Spicer V, Mookherjee N, Halayko AJ. Integrating Proteomes for Lung Tissues and Lavage Reveals Pathways That Link Responses in Allergen-Challenged Mice. ACS OMEGA 2021; 6:1171-1189. [PMID: 33490776 PMCID: PMC7818314 DOI: 10.1021/acsomega.0c04269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
To capture interplay between biological pathways, we analyzed the proteome from matched lung tissues and bronchoalveolar lavage fluid (BALF) of individual allergen-naïve and house dust mite (HDM)-challenged BALB/c mice, a model of allergic asthma. Unbiased label-free liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis quantified 2675 proteins from tissues and BALF of allergen-naïve and HDM-exposed mice. In comparing the four datasets, we found significantly greater diversity in proteins between lung tissues and BALF than in the changes induced by HDM challenge. The biological pathways enriched after allergen exposure were compartment-dependent. Lung tissues featured innate immune responses and oxidative stress, while BALF most strongly revealed changes in metabolism. We combined lung tissues and BALF proteomes, which principally highlighted oxidation reduction (redox) pathways, a finding influenced chiefly by the lung tissue dataset. Integrating lung and BALF proteomes also uncovered new proteins and biological pathways that may mediate lung tissue and BALF interactions after allergen challenge, for example, B-cell receptor signaling. We demonstrate that enhanced insight is fostered when different biological compartments from the lung are investigated in parallel. Integration of proteomes from lung tissues and BALF compartments reveals new information about protein networks in response to environmental challenge and interaction between intracellular and extracellular processes.
Collapse
Affiliation(s)
- Thomas
H. Mahood
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Christopher D. Pascoe
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Tobias K. Karakach
- Bioinformatics
Core Laboratory, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E
3P4, Canada
| | - Aruni Jha
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Sujata Basu
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Peyman Ezzati
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Victor Spicer
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Neeloffer Mookherjee
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Andrew J. Halayko
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| |
Collapse
|
22
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 783] [Impact Index Per Article: 156.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
23
|
Distinctive roles of Abi1 in regulating actin-associated proteins during human smooth muscle cell migration. Sci Rep 2020; 10:10667. [PMID: 32606387 PMCID: PMC7326921 DOI: 10.1038/s41598-020-67781-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Smooth muscle cell migration is essential for many diverse biological processes such as pulmonary/cardiovascular development and homeostasis. Abi1 (Abelson interactor 1) is an adapter protein that has been implicated in nonmuscle cell migration. However, the role and mechanism of Abi1 in smooth muscle migration are largely unknown. Here, Abi1 knockdown by shRNA reduced human airway smooth muscle cell migration, which was restored by Abi1 rescue. Abi1 localized at the tip of lamellipodia and its protrusion coordinated with F-actin at the leading cell edge of live cells. In addition, we identified profilin-1 (Pfn-1), a G-actin transporter, as a new partner for Abi1. Abi1 knockdown reduced the recruitment of Pfn-1 to the leading cell edge. Moreover, Abi1 knockdown reduced the localization of the actin-regulatory proteins c-Abl (Abelson tyrosine kinase) and N-WASP (neuronal Wiskott–Aldrich Syndrome Protein) at the cell edge without affecting other migration-related proteins including pVASP (phosphorylated vasodilator stimulated phosphoprotein), cortactin and vinculin. Furthermore, we found that c-Abl and integrin β1 regulated the positioning of Abi1 at the leading edge. Taken together, the results suggest that Abi1 regulates cell migration by affecting Pfn-1 and N-WASP, but not pVASP, cortactin and focal adhesions. Integrin β1 and c-Abl are important for the recruitment of Abi1 to the leading edge.
Collapse
|
24
|
Wang Y, Wang R, Tang DD. Ste20-like Kinase-mediated Control of Actin Polymerization Is a New Mechanism for Thin Filament-associated Regulation of Airway Smooth Muscle Contraction. Am J Respir Cell Mol Biol 2020; 62:645-656. [PMID: 31913659 PMCID: PMC7193783 DOI: 10.1165/rcmb.2019-0310oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
It has been reported that actin polymerization is regulated by protein tyrosine phosphorylation in smooth muscle on contractile stimulation. The role of protein serine/threonine phosphorylation in modulating actin dynamics is underinvestigated. SLK (Ste20-like kinase) is a serine/threonine protein kinase that plays a role in apoptosis, cell cycle, proliferation, and migration. The function of SLK in smooth muscle is mostly unknown. Here, SLK knockdown (KD) inhibited acetylcholine (ACh)-induced actin polymerization and contraction without affecting myosin light chain phosphorylation at Ser-19 in human airway smooth muscle. Stimulation with ACh induced paxillin phosphorylation at Ser-272, which was reduced in SLK KD cells. However, SLK did not catalyze paxillin Ser-272 phosphorylation in vitro. But, SLK KD attenuated Plk1 (polo-like kinase 1) phosphorylation at Thr-210. Plk1 mediated paxillin phosphorylation at Ser-272 in vitro. Expression of the nonphosphorylatable paxillin mutant S272A (substitution of alanine at Ser-272) attenuated the agonist-enhanced F-actin/G-actin ratios without affecting myosin light chain phosphorylation. Because N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) phosphorylation at Tyr-256 (an indication of its activation) promotes actin polymerization, we also assessed the role of paxillin phosphorylation in N-WASP activation. S272A paxillin inhibited the ACh-enhanced N-WASP phosphorylation at Tyr-256. Together, these results suggest that SLK regulates paxillin phosphorylation at Ser-272 via Plk1, which modulates N-WASP activation and actin polymerization in smooth muscle. SLK-mediated actin cytoskeletal reorganization may facilitate force transmission between the contractile units and the extracellular matrix.
Collapse
Affiliation(s)
- Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
25
|
Rezey AC, Gerlach BD, Wang R, Liao G, Tang DD. Plk1 Mediates Paxillin Phosphorylation (Ser-272), Centrosome Maturation, and Airway Smooth Muscle Layer Thickening in Allergic Asthma. Sci Rep 2019; 9:7555. [PMID: 31101859 PMCID: PMC6525254 DOI: 10.1038/s41598-019-43927-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/01/2019] [Indexed: 01/09/2023] Open
Abstract
Allergic asthma is characterized by airway smooth muscle layer thickening, which is largely attributed to cell division that requires the formation of centrosomes. Centrosomes play a pivotal role in regulating bipolar spindle formation and cell division. Before mitosis, centrosomes undergo maturation characterized by expansion of pericentriolar material proteins, which facilitates spindle formation and mitotic efficiency of many cell types. Although polo-like kinase 1 (Plk1) has been implicated in centrosome maturation, the mechanisms by which Plk1 regulates the cellular process are incompletely elucidated. Here, we identified paxillin as a new Plk1-interacting protein in human airway smooth muscle cells. We unexpectedly found that phosphorylated paxillin (Ser-272) was localized in centrosomes of human smooth muscle cells, which regulated centrosome maturation and spindle assembly. Plk1 knockdown inhibited paxillin Ser-272 phosphorylation, centrosome maturation, and cell division. Furthermore, exposure to allergens enhanced airway smooth muscle layer and paxillin phosphorylation at this residue in mice, which was reduced by smooth muscle conditional knockout of Plk1. These findings suggest that Plk1 regulates centrosome maturation and cell division in part by modulating paxillin phosphorylation on Ser-272. Furthermore, Plk1 contributes to the pathogenesis of allergen-induced thickening of the airway smooth muscle layer by affecting paxillin phosphorylation at this position.
Collapse
Affiliation(s)
- Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA.
| |
Collapse
|
26
|
Khadangi F, Bossé Y. Extracellular regulation of airway smooth muscle contraction. Int J Biochem Cell Biol 2019; 112:1-7. [PMID: 31042549 DOI: 10.1016/j.biocel.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms governing the contraction of airway smooth muscle have always been at the forefront of asthma research. New extracellular molecules affecting the contraction of airway smooth muscle are steadily being discovered. Although interesting, this is disconcerting for researchers trying to find a mend for the significant part of asthma symptoms caused by contraction. Additional efforts are being deployed to understand the intracellular signaling pathways leading to contraction. The goal being to find common pathways that are essential to convey the contractile signal emanating from any single or combination of extracellular molecules. Not only these pathways exist and their details are being slowly unveiled, but some carry the signal inside-out to interact back with extracellular molecules. These latter represent targets with promising therapeutic potential, not only because they are molecules downstream of pathways essential for contraction but also because their extracellular location makes them readily accessible by inhaled drugs.
Collapse
|
27
|
Cohen J, Raviv S, Adir O, Padmanabhan K, Soffer A, Luxenburg C. The Wave complex controls epidermal morphogenesis and proliferation by suppressing Wnt-Sox9 signaling. J Cell Biol 2019; 218:1390-1406. [PMID: 30867227 PMCID: PMC6446834 DOI: 10.1083/jcb.201807216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 02/08/2023] Open
Abstract
The Wave complex promotes Arp2/3-mediated actin polymerization. Cohen et al. show that Wave complex activity regulates epidermal shape and growth. Without Wave complex activity, F-actin content is down-regulated and ectopic activity of the Wnt/β-catenin–SOX9 pathway is triggered. This activity induces epidermal hyperproliferation and disrupts tissue architecture. Development of the skin epidermis requires tight spatiotemporal control over the activity of several signaling pathways; however, the mechanisms that orchestrate these events remain poorly understood. Here, we identify a key role for the Wave complex proteins ABI1 and Wave2 in regulating signals that control epidermal shape and growth. In utero RNAi-mediated silencing of Abi1 or Wasf2 induced cellular hyperproliferation and defects in architecture of the interfollicular epidermis (IFE) and delayed hair follicle growth. Unexpectedly, SOX9, a hair follicle growth regulator, was aberrantly expressed throughout the IFE of the mutant embryos, and its forced overexpression mimicked the Wave complex loss-of-function phenotype. Moreover, Wnt signaling, which regulates SOX9+ cell specification, was up-regulated in Wave complex loss-of-function IFE. Importantly, we show that the Wave complex regulates filamentous actin content and that a decrease in actin levels is sufficient to elevate Wnt/β-catenin signaling. Our results identify a novel role for Wave complex– and actin-regulated signaling via Wnt and SOX9 in skin development.
Collapse
Affiliation(s)
- Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Tang DD, Liao G, Gerlach BD. Reorganization of the Vimentin Network in Smooth Muscle. ACTA ACUST UNITED AC 2019; 2:0108011-108015. [PMID: 32328567 DOI: 10.1115/1.4042313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/21/2018] [Indexed: 12/15/2022]
Abstract
Vimentin intermediate filaments (IFs) link to desmosomes (intercellular junctions) on the membrane and dense bodies in the cytoplasm, which provides a structural base for intercellular and intracellular force transmission in smooth muscle. There is evidence to suggest that the vimentin framework plays an important role in mediating smooth muscle mechanical properties such as tension and contractile responses. Contractile activation induces vimentin phosphorylation at Ser-56 and vimentin network reorientation, facilitating contractile force transmission among and within smooth muscle cells. p21-activated kinase 1 and polo-like kinase 1 catalyze vimentin phosphorylation at Ser-56, whereas type 1 protein phosphatase dephosphorylates vimentin at this residue. Vimentin filaments are also involved in other cell functions including migration and nuclear positioning. This review recapitulates our current knowledge how the vimentin network modulates mechanical and biological properties of smooth muscle.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12118 e-mail:
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12118
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12118
| |
Collapse
|
29
|
Long J, Liao G, Wang Y, Tang DD. Specific protein 1, c-Abl and ERK1/2 form a regulatory loop. J Cell Sci 2019; 132:jcs222380. [PMID: 30559247 PMCID: PMC6340136 DOI: 10.1242/jcs.222380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
The tyrosine kinase c-Abl participates in the regulation of various cellular functions including cell proliferation, adhesion, migration, smooth muscle contraction and cancer progression. However, knowledge regarding transcriptional regulation of c-Abl is surprisingly limited. Sp1 is a founding member of the Sp1 transcription factor family that has been implicated in housekeeping gene expression, tumor cell proliferation and differentiation. Here, we show that knockdown and rescue of Sp1 affected growth factor-mediated c-Abl expression in cells. c-Abl promoter activity was also affected by Sp1 knockdown. This is the first evidence to suggest that Sp1 is an important transcription factor to regulate c-Abl expression. In addition, Sp1 phosphorylation at Thr-453 and Thr-739 has been proposed to regulate its activity in Drosophila cells. We unexpectedly found that growth factors did not induce Sp1 phosphorylation at these two residues. In contrast, growth factor stimulation upregulated Sp1 expression. Intriguingly, inhibition of ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) reduced expression of Sp1 and c-Abl. Furthermore, c-Abl knockdown diminished ERK1/2 phosphorylation and Sp1 expression. Taken together, these studies suggest that Sp1 can modulate c-Abl expression at transcription level. Conversely, c-Abl affects ERK1/2 activation and Sp1 expression in cells.
Collapse
Affiliation(s)
- Jiaoyue Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12118, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12118, USA
| | - Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12118, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12118, USA
| |
Collapse
|
30
|
Liao G, Wang R, Rezey AC, Gerlach BD, Tang DD. MicroRNA miR-509 Regulates ERK1/2, the Vimentin Network, and Focal Adhesions by Targeting Plk1. Sci Rep 2018; 8:12635. [PMID: 30135525 PMCID: PMC6105636 DOI: 10.1038/s41598-018-30895-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Polo-like kinase 1 (Plk1) has been implicated in mitosis, cytokinesis, and proliferation. The mechanisms that regulate Plk1 expression remain to be elucidated. It is reported that miR-100 targets Plk1 in certain cancer cells. Here, treatment with miR-100 did not affect Plk1 protein expression in human airway smooth muscle cells. In contrast, treatment with miR-509 inhibited the expression of Plk1 in airway smooth muscle cells. Exposure to miR-509 inhibitor enhanced Plk1 expression in cells. Introduction of miR-509 reduced luciferase activity of a Plk1 3'UTR reporter. Mutation of miR-509 targeting sequence in Plk1 3'UTR resisted the reduction of the luciferase activity. Furthermore, miR-509 inhibited the PDGF-induced phosphorylation of MEK1/2 and ERK1/2, and cell proliferation without affecting the expression of c-Abl, a tyrosine kinase implicated in cell proliferation. Moreover, we unexpectedly found that vimentin filaments contacted paxillin-positive focal adhesions. miR-509 exposure inhibited vimentin phosphorylation at Ser-56, vimentin network reorganization, focal adhesion formation, and cell migration. The effects of miR-509 on ERK1/2 and vimentin were diminished in RNAi-resistant Plk1 expressing cells treated with miR-509. Taken together, these findings unveil previously unknown mechanisms that miR-509 regulates ERK1/2 and proliferation by targeting Plk1. miR-509 controls vimentin cytoskeleton reorganization, focal adhesion assembly, and cell migration through Plk1.
Collapse
Affiliation(s)
- Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
31
|
Wang Y, Rezey AC, Wang R, Tang DD. Role and regulation of Abelson tyrosine kinase in Crk-associated substrate/profilin-1 interaction and airway smooth muscle contraction. Respir Res 2018; 19:4. [PMID: 29304860 PMCID: PMC5756382 DOI: 10.1186/s12931-017-0709-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway smooth muscle contraction is critical for maintenance of appropriate airway tone, and has been implicated in asthma pathogenesis. Smooth muscle contraction requires an "engine" (myosin activation) and a "transmission system" (actin cytoskeletal remodeling). However, the mechanisms that control actin remodeling in smooth muscle are not fully elucidated. The adapter protein Crk-associated substrate (CAS) regulates actin dynamics and the contraction in smooth muscle. In addition, profilin-1 (Pfn-1) and Abelson tyrosine kinase (c-Abl) are also involved in smooth muscle contraction. The interplays among CAS, Pfn-1 and c-Abl in smooth muscle have not been previously investigated. METHODS The association of CAS with Pfn-1 in mouse tracheal rings was evaluated by co-immunoprecipitation. Tracheal rings from c-Abl conditional knockout mice were used to assess the roles of c-Abl in the protein-protein interaction and smooth muscle contraction. Decoy peptides were utilized to evaluate the importance of CAS/Pfn-1 coupling in smooth muscle contraction. RESULTS Stimulation with acetylcholine (ACh) increased the interaction of CAS with Pfn-1 in smooth muscle, which was regulated by CAS tyrosine phosphorylation and c-Abl. The CAS/Pfn-1 coupling was also modified by the phosphorylation of cortactin (a protein implicated in Pfn-1 activation). In addition, ACh activation promoted the spatial redistribution of CAS and Pfn-1 in smooth muscle cells, which was reduced by c-Abl knockdown. Inhibition of CAS/Pfn-1 interaction by a decoy peptide attenuated the ACh-induced actin polymerization and contraction without affecting myosin light chain phosphorylation. Furthermore, treatment with the Src inhibitor PP2 and the actin polymerization inhibitor latrunculin A attenuated the ACh-induced c-Abl tyrosine phosphorylation (an indication of c-Abl activation). CONCLUSIONS Our results suggest a novel activation loop in airway smooth muscle: c-Abl promotes the CAS/Pfn-1 coupling and actin polymerization, which conversely facilitates c-Abl activation. The positive feedback may render c-Abl in active state after contractile stimulation.
Collapse
Affiliation(s)
- Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
32
|
Abstract
Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Albany Medical College, Albany, NY, United States.
| |
Collapse
|
33
|
Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res 2017; 18:54. [PMID: 28390425 PMCID: PMC5385055 DOI: 10.1186/s12931-017-0544-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle cell migration has been implicated in the development of respiratory and cardiovascular systems; and airway/vascular remodeling. Cell migration is a polarized cellular process involving a protrusive cell front and a retracting trailing rear. There are three cytoskeletal systems in mammalian cells: the actin cytoskeleton, the intermediate filament network, and microtubules; all of which regulate all or part of the migrated process. The dynamic actin cytoskeleton spatially and temporally regulates protrusion, adhesions, contraction, and retraction from the cell front to the rear. c-Abl tyrosine kinase plays a critical role in regulating actin dynamics and migration of airway smooth muscle cells and nonmuscle cells. Recent studies suggest that intermediate filaments undergo reorganization during migration, which coordinates focal adhesion dynamics, cell contraction, and nucleus rigidity. In particular, vimentin intermediate filaments undergo phosphorylation and reorientation in smooth muscle cells, which may regulate cell contraction and focal adhesion assembly/disassembly. Motile cells are characterized by a front-rear polarization of the microtubule framework, which regulates all essential processes leading to cell migration through its role in cell mechanics, intracellular trafficking, and signaling. This review recapitulates our current knowledge how the three cytoskeletal systems spatially and temporally modulate the migratory properties of cells. We also summarize the potential role of migration-associated biomolecules in lung and vascular diseases.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| |
Collapse
|
34
|
Li J, Wang R, Gannon OJ, Rezey AC, Jiang S, Gerlach BD, Liao G, Tang DD. Polo-like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle. J Biol Chem 2016; 291:23693-23703. [PMID: 27662907 PMCID: PMC5095422 DOI: 10.1074/jbc.m116.749341] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a serine/threonine-protein kinase that has been implicated in mitosis, cytokinesis, and smooth muscle cell proliferation. The role of Plk1 in smooth muscle contraction has not been investigated. Here, stimulation with acetylcholine induced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in smooth muscle. Contractile stimulation also activated Plk1 in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer signal of a Plk1 sensor. Moreover, knockdown of Plk1 in smooth muscle attenuated force development. Smooth muscle conditional knock-out of Plk1 also diminished contraction of mouse tracheal rings. Plk1 knockdown inhibited acetylcholine-induced vimentin phosphorylation at Ser-56 without affecting myosin light chain phosphorylation. Expression of T210A Plk1 inhibited the agonist-induced vimentin phosphorylation at Ser-56 and contraction in smooth muscle. However, myosin light chain phosphorylation was not affected by T210A Plk1. Ste20-like kinase (SLK) is a serine/threonine-protein kinase that has been implicated in spindle orientation and microtubule organization during mitosis. In this study knockdown of SLK inhibited Plk1 phosphorylation at Thr-210 and activation. Finally, asthma is characterized by airway hyperresponsiveness, which largely stems from airway smooth muscle hyperreactivity. Here, smooth muscle conditional knock-out of Plk1 attenuated airway resistance and airway smooth muscle hyperreactivity in a murine model of asthma. Taken together, these findings suggest that Plk1 regulates smooth muscle contraction by modulating vimentin phosphorylation at Ser-56. Plk1 activation is regulated by SLK during contractile activation. Plk1 contributes to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Jia Li
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Ruping Wang
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Olivia J Gannon
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Alyssa C Rezey
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Sixin Jiang
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Brennan D Gerlach
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Guoning Liao
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208
| |
Collapse
|
35
|
Nicholson CJ, Seta F, Lee S, Morgan KG. MicroRNA-203 mimics age-related aortic smooth muscle dysfunction of cytoskeletal pathways. J Cell Mol Med 2016; 21:81-95. [PMID: 27502584 PMCID: PMC5192880 DOI: 10.1111/jcmm.12940] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Increased aortic stiffness is a biomarker for subsequent adverse cardiovascular events. We have previously reported that vascular smooth muscle Src-dependent cytoskeletal remodelling, which contributes to aortic plasticity, is impaired with ageing. Here, we use a multi-scale approach to determine the molecular mechanisms behind defective Src-dependent signalling in an aged C57BL/6 male mouse model. Increased aortic stiffness, as measured in vivo by pulse wave velocity, was found to have a comparable time course to that in humans. Bioinformatic analyses predicted several miRs to regulate Src-dependent cytoskeletal remodelling. qRT-PCR was used to determine the relative levels of predicted miRs in aortas and, notably, the expression of miR-203 increased almost twofold in aged aorta. Increased miR-203 expression was associated with a decrease in both mRNA and protein expression of Src, caveolin-1 and paxillin in aged aorta. Probing with phospho-specific antibodies confirmed that overexpression of miR-203 significantly attenuated Src and extracellular signal regulated kinase (ERK) signalling, which we have previously found to regulate vascular smooth muscle stiffness. In addition, transfection of miR-203 into aortic tissue from young mice increased phenylephrine-induced aortic stiffness ex vivo, mimicking the aged phenotype. Upstream of miR-203, we found that DNA methyltransferases (DNMT) 1, 3a, and 3b are also significantly decreased in the aged mouse aorta and that DNMT inhibition significantly increases miR-203 expression. Thus, the age-induced increase in miR-203 may be caused by epigenetic promoter hypomethylation in the aorta. These findings indicate that miR-203 promotes a re-programming of Src/ERK signalling pathways in vascular smooth muscle, impairing the regulation of stiffness in aged aorta.
Collapse
Affiliation(s)
| | - Francesca Seta
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sophie Lee
- Department of Health Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
36
|
Li J, Wang R, Tang DD. Vimentin dephosphorylation at ser-56 is regulated by type 1 protein phosphatase in smooth muscle. Respir Res 2016; 17:91. [PMID: 27457922 PMCID: PMC4960799 DOI: 10.1186/s12931-016-0415-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/21/2016] [Indexed: 11/22/2022] Open
Abstract
Background The intermediate filament protein vimentin undergoes reversible phosphorylation and dephosphorylation at Ser-56, which plays an important role in regulating the contraction-relaxation cycles of smooth muscle. The protein phosphatases that mediate vimentin dephosphorylation in smooth muscle have not been previously investigated. Methods The associations of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) with vimentin in mouse tracheal rings was evaluated by co-immunoprecipitation. Lentivirus-mediated shRNA against PP1 was used to assess the role of PP1 in vimentin dephosphorylation and the vimentin-associated process in smooth muscle. Results Co-immunoprecipitation analysis showed that vimentin interacted with PP1, but barely with PP2A, in airway smooth muscle. Knockdown of PP1 by lentivirus-mediated shRNA increased the acetylcholine-induced vimentin phosphorylation and smooth muscle contraction. Because vimentin phosphorylation is able to modulate p130 Crk-associated substrate (p130CAS) and actin polymerization, we also evaluated the role of PP1 in the biological processes. Silencing of PP1 also enhanced the agonist-induced the dissociation of p130CAS from vimentin and F/G-actin ratios (an index of actin polymerization). However, PP1 knockdown did not affect c-Abl tyrosine phosphorylation, an important molecule that controls actin dynamics. Conclusions Taken together, these findings suggest that PP1 is a key protein serine/threonine phosphatase that controls vimentin Ser-56 dephosphorylation in smooth muscle. PP1 regulates actin polymerization by modulating the dissociation of p130CAS from vimentin, but not by affecting c-Abl tyrosine kinase.
Collapse
Affiliation(s)
- Jia Li
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA.
| |
Collapse
|
37
|
Perez-Branguli F, Zagar Y, Shanley DK, Graef IA, Chédotal A, Mitchell KJ. Reverse Signaling by Semaphorin-6A Regulates Cellular Aggregation and Neuronal Morphology. PLoS One 2016; 11:e0158686. [PMID: 27392094 PMCID: PMC4938514 DOI: 10.1371/journal.pone.0158686] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/20/2016] [Indexed: 12/28/2022] Open
Abstract
The transmembrane semaphorin, Sema6A, has important roles in axon guidance, cell migration and neuronal connectivity in multiple regions of the nervous system, mediated by context-dependent interactions with plexin receptors, PlxnA2 and PlxnA4. Here, we demonstrate that Sema6A can also signal cell-autonomously, in two modes, constitutively, or in response to higher-order clustering mediated by either PlxnA2-binding or chemically induced multimerisation. Sema6A activation stimulates recruitment of Abl to the cytoplasmic domain of Sema6A and phos¡phorylation of this cytoplasmic tyrosine kinase, as well as phosphorylation of additional cytoskeletal regulators. Sema6A reverse signaling affects the surface area and cellular complexity of non-neuronal cells and aggregation and neurite formation of primary neurons in vitro. Sema6A also interacts with PlxnA2 in cis, which reduces binding by PlxnA2 of Sema6A in trans but not vice versa. These experiments reveal the complex nature of Sema6A biochemical functions and the molecular logic of the context-dependent interactions between Sema6A and PlxnA2.
Collapse
Affiliation(s)
- Francesc Perez-Branguli
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Yvrick Zagar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S968, CNRS_UMR7210, Institut de la Vision, Paris, France
| | - Daniel K. Shanley
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Isabella A. Graef
- Department of Pathology, Stanford University Medical School, Stanford, California, United States of America
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S968, CNRS_UMR7210, Institut de la Vision, Paris, France
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- * E-mail:
| |
Collapse
|
38
|
Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res 2015; 16:134. [PMID: 26517982 PMCID: PMC4628321 DOI: 10.1186/s12931-015-0296-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
39
|
Sekino S, Kashiwagi Y, Kanazawa H, Takada K, Baba T, Sato S, Inoue H, Kojima M, Tani K. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex. Cell Commun Signal 2015; 13:41. [PMID: 26428302 PMCID: PMC4589964 DOI: 10.1186/s12964-015-0119-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 09/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abl interactor (Abi) family proteins play significant roles in actin cytoskeleton organization through participation in the WAVE complex. Mammals possess three Abi proteins: Abi-1, Abi-2, and NESH/Abi-3. Abi-1 and Abi-2 were originally identified as Abl tyrosine kinase-binding proteins. It has been disclosed that Abi-1 acts as a bridge between c-Abl and WAVE2, and c-Abl-mediated WAVE2 phosphorylation promotes actin remodeling. We showed previously that NESH/Abi-3 is present in the WAVE2 complex, but neither binds to c-Abl nor promotes c-Abl-mediated phosphorylation of WAVE2. RESULTS In this study, we characterized NESH/Abi-3 in more detail, and compared its properties with those of Abi-1 and Abi-2. NESH/Abi-3 was ectopically expressed in NIH3T3 cells, in which Abi-1, but not NESH/Abi-3, is expressed. The expression of NESH/Abi-3 caused degradation of endogenous Abi-1, which led to the formation of a NESH/Abi-3-based WAVE2 complex. When these cells were plated on fibronectin-coated dishes, the translocation of WAVE2 to the plasma membrane was significantly reduced and the formation of peripheral lamellipodial structures was disturbed, suggesting that the NESH/Abi-3-based WAVE2 complex was unable to help produce lamellipodial protrusions. Next, Abi-1, Abi-2, or NESH/Abi-3 was expressed in v-src-transformed NIH3T3 cells. Only in NESH/Abi-3-expressed cells did treatment with an Abl kinase inhibitor, imatinib mesylate, or siRNA-mediated knockdown of c-Abl promote the formation of invadopodia, which are ventral membrane protrusions with extracellular matrix degradation activity. Structural studies showed that a linker region between the proline-rich regions and the Src homology 3 (SH3) domain of Abi-1 is crucial for its interaction with c-Abl and c-Abl-mediated phosphorylation of WAVE2. CONCLUSIONS The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based one, and NESH/Abi-3 may be involved in the formation of ventral protrusions under certain conditions.
Collapse
Affiliation(s)
- Saki Sekino
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Yuriko Kashiwagi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hitoshi Kanazawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Kazuki Takada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Seiichi Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
40
|
Liao G, Panettieri RA, Tang DD. MicroRNA-203 negatively regulates c-Abl, ERK1/2 phosphorylation, and proliferation in smooth muscle cells. Physiol Rep 2015; 3:3/9/e12541. [PMID: 26400984 PMCID: PMC4600385 DOI: 10.14814/phy2.12541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The nonreceptor tyrosine kinase c-Abl has a role in regulating smooth muscle cell proliferation, which contributes to the development of airway remodeling in chronic asthma. MicroRNAs (miRs) are small noncoding RNA molecules that regulate gene expression by binding to complementary sequences in the 3′ untranslated regions (3′ UTR) of target mRNAs. Previous analysis suggests that miR-203 is able to bind to the 3′ UTR of human c-Abl mRNA. In this report, treatment with miR-203 attenuated the expression of c-Abl mRNA and protein in human airway smooth muscle (HASM) cells. Furthermore, transfection with an miR-203 inhibitor enhanced the expression of c-Abl at mRNA and protein levels in HASM cells. Treatment with platelet-derived growth factor (PDGF) induced the proliferation and ERK1/2 phosphorylation in HASM cells. Exposure to miR-203 attenuated the PDGF-stimulated proliferation and ERK1/2 phosphorylation in HASM cells. The expression of c-Abl at protein and mRNA levels was higher in asthmatic HASM cells, whereas the level of miR-203 was reduced in asthmatic HASM cells as compared to control HASM cells. Taken together, our present results suggest that miR-203 is a negative regulator of c-Abl expression in smooth muscle cells. miR-203 regulates smooth muscle cell proliferation by controlling c-Abl expression, which in turn modulates the activation of ERK1/2.
Collapse
Affiliation(s)
- Guoning Liao
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | | - Dale D Tang
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| |
Collapse
|
41
|
Jiang S, Tang DD. Plk1 regulates MEK1/2 and proliferation in airway smooth muscle cells. Respir Res 2015; 16:93. [PMID: 26242183 PMCID: PMC4531535 DOI: 10.1186/s12931-015-0257-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/25/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polo-like kinase 1 (Plk1) is a serine/threonine protein kinase that has been implicated in the regulation of mitosis. In addition, the activation of mitogen-activated protein kinase (MAPK) is a key event in the early stage of the growth factor response. The role of Plk1 in MAPK phosphorylation in cells has not been investigated. METHODS Immunoblot analysis was used to evaluate Plk1 and MAPK phosphorylation in cells upon stimulation with platelet-derived growth factor (PDGF). We also generated stable Plk1 knockdown (KD) cells to assess the role of Plk1 in MAPK activation and cell proliferation. Furthermore, we used a non-phosphorylatable Plk1 mutant to determine the function of Plk1 phosphorylation in these processes. RESULTS Treatment with PDGF increased Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in human airway smooth muscle cells. Plk1 KD attenuated the PDGF-induced phosphorylation of MEK1/2 and ERK1/2 as well as cell proliferation. However, phosphorylation of Raf-1 and AKT upon stimulation with PDGF was not reduced in Plk1 KD cells. Furthermore, the expression of T210A Plk1 (alanine substitution at Thr-210) inhibited the PDGF-stimulated MEK1/2 phosphorylation, ERK1/2 phosphorylation and cell proliferation. CONCLUSIONS Together, these findings suggest that Plk1 is activated upon growth factor stimulation, which may control the activation of MEK1/2 and ERK1/2, and smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Sixin Jiang
- The Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| | - Dale D Tang
- The Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
42
|
Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. J Vasc Surg 2015; 64:202-209.e6. [PMID: 25935274 DOI: 10.1016/j.jvs.2014.12.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Approximately 30% of autogenous vein grafts develop luminal narrowing and fail because of intimal hyperplasia or negative remodeling. We previously found that vein graft cells from patients who later develop stenosis proliferate more in vitro in response to growth factors than cells from patients who maintain patent grafts. To discover novel determinants of vein graft outcome, we have analyzed gene expression profiles of these cells using a systems biology approach to cluster the genes into modules by their coexpression patterns and to correlate the results with growth data from our prior study and with new studies of migration and matrix remodeling. METHODS RNA from 4-hour serum- or platelet-derived growth factor (PDGF)-BB-stimulated human saphenous vein cells obtained from the outer vein wall (20 cell lines) was used for microarray analysis of gene expression, followed by weighted gene coexpression network analysis. Cell migration in microchemotaxis chambers in response to PDGF-BB and cell-mediated collagen gel contraction in response to serum were also determined. Gene function was determined using short-interfering RNA to inhibit gene expression before subjecting cells to growth or collagen gel contraction assays. These cells were derived from samples of the vein grafts obtained at surgery, and the long-term fate of these bypass grafts was known. RESULTS Neither migration nor cell-mediated collagen gel contraction showed a correlation with graft outcome. Although 1188 and 1340 genes were differentially expressed in response to treatment with serum and PDGF, respectively, no single gene was differentially expressed in cells isolated from patients whose grafts stenosed compared with those that remained patent. Network analysis revealed four unique groups of genes, which we term modules, associated with PDGF responses, and 20 unique modules associated with serum responses. The "yellow" and "skyblue" modules, from PDGF and serum analyses, respectively, correlated with later graft stenosis (P = .005 and P = .02, respectively). In response to PDGF, yellow was also associated with increased cell growth. For serum, skyblue was also associated with inhibition of collagen gel contraction. The hub genes for yellow and skyblue (ie, the gene most connected to other genes in the module), scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN), respectively, were tested for effects on proliferation and collagen contraction. Knockdown of SCARA5 increased proliferation by 29.9% ± 7.8% (P < .01), whereas knockdown of SBSN had no effect. Knockdown of SBSN increased collagen gel contraction by 24.2% ± 8.6% (P < .05), whereas knockdown of SCARA5 had no effect. CONCLUSIONS Using weighted gene coexpression network analysis of cultured vein graft cell gene expression, we have discovered two small gene modules, which comprise 42 genes, that are associated with vein graft failure. Further experiments are needed to delineate the venous cells that express these genes in vivo and the roles these genes play in vein graft healing, starting with the module hub genes SCARA5 and SBSN, which have been shown to have modest effects on cell proliferation or collagen gel contraction.
Collapse
|
43
|
Wang T, Wang R, Cleary RA, Gannon OJ, Tang DD. Recruitment of β-catenin to N-cadherin is necessary for smooth muscle contraction. J Biol Chem 2015; 290:8913-24. [PMID: 25713069 DOI: 10.1074/jbc.m114.621003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 01/26/2023] Open
Abstract
β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.
Collapse
Affiliation(s)
- Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Olivia J Gannon
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|
44
|
Wang T, Cleary RA, Wang R, Tang DD. Glia maturation factor-γ phosphorylation at Tyr-104 regulates actin dynamics and contraction in human airway smooth muscle. Am J Respir Cell Mol Biol 2015; 51:652-9. [PMID: 24818551 DOI: 10.1165/rcmb.2014-0125oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Actin dynamics plays an essential role in regulating airway smooth muscle contraction. The mechanisms that regulate actin dynamics in smooth muscle are not completely understood. Glia maturation factor (GMF) is a protein that has been reported to inhibit actin nucleation and to induce actin network debranching in vitro. The role of GMF in human smooth muscle cells and tissues has not been investigated. In this study, knockdown of GMF-γ by RNA interference enhanced actin polymerization and contraction in human airway smooth muscle (HASM) cells and tissues without affecting myosin phosphorylation (another important biochemical change during contractile activation). Activation of HASM cells and tissues with acetylcholine induced dissociation of GMF-γ from Arp2 of the Arp2/3 complex. Acetylcholine stimulation also increased GMF-γ phosphorylation at Tyr-104. GMF-γ phosphorylation at this residue was mediated by c-Abl tyrosine kinase. The GMF-γ mutant Y104F (phenylalanine substitution at Tyr-104) had higher association with Arp2 in HASM cells upon contractile activation. Furthermore, expression of mutant Y104F GMF-γ attenuated actin polymerization and contraction in smooth muscle. Thus, we propose a novel mechanism for the regulation of actin dynamics and smooth muscle contraction. In unstimulated smooth muscle, GMF-γ binds to the Arp2/3 complex, which induces actin disassembly and retains lower levels of F-actin. Upon contractile stimulation, phosphorylation at Tyr-104 mediated by c-Abl tyrosine kinase leads to the dissociation of GMF-γ from Arp2/3, by which GMF-γ no longer induces actin disassembly. Reduced actin disassembly renders F-actin in higher level, which facilitates smooth muscle contraction.
Collapse
Affiliation(s)
- Tao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | | | | | |
Collapse
|
45
|
Ohanian J, Pieri M, Ohanian V. Non-receptor tyrosine kinases and the actin cytoskeleton in contractile vascular smooth muscle. J Physiol 2014; 593:3807-14. [PMID: 25433074 DOI: 10.1113/jphysiol.2014.284174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/14/2014] [Indexed: 01/01/2023] Open
Abstract
The contractility of vascular smooth muscle cells within the walls of arteries is regulated by mechanical stresses and vasoactive signals. Transduction of these diverse stimuli into a cellular response occurs through many different mechanisms, one being reorganisation of the actin cytoskeleton. In addition to a structural role in maintaining cellular architecture it is now clear that the actin cytoskeleton of contractile vascular smooth muscle cells is a dynamic structure reacting to changes in the cellular environment. Equally clear is that disrupting the cytoskeleton or interfering with its rearrangement, has profound effects on artery contractility. The actin cytoskeleton associates with dense plaques, also called focal adhesions, at the plasma membrane of smooth muscle cells. Vasoconstrictors and mechanical stress induce remodelling of the focal adhesions, concomitant with cytoskeletal reorganisation. Recent work has shown that non-receptor tyrosine kinases and tyrosine phosphorylation of focal adhesion proteins such as paxillin and Hic-5 are important for actin cytoskeleton and focal adhesion remodelling and contraction.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Maria Pieri
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| |
Collapse
|
46
|
Tang DD, Cleary RA, Wang R, Gannon OJ. Reply to "Letter to the editor: 'KDAC and the regulation of nonnuclear smooth muscle protein acetylation'". Am J Physiol Cell Physiol 2014; 307:C494-5. [PMID: 25179806 DOI: 10.1152/ajpcell.00232.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Rachel A Cleary
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Ruping Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Olivia J Gannon
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| |
Collapse
|
47
|
Chen S, Tang DD. c-Abl tyrosine kinase regulates cytokinesis of human airway smooth muscle cells. Am J Respir Cell Mol Biol 2014; 50:1076-83. [PMID: 24392933 DOI: 10.1165/rcmb.2013-0438oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cytokinesis is a critical step of airway smooth muscle cell division that plays an essential role in the development and homeostasis of the respiratory system, as well as the progression of airway remodeling. The mechanisms that regulate smooth muscle cytokinesis are not fully understood. c-Abl (c-Abelson tyrosine kinase) is a nonreceptor protein tyrosine kinase that has a role in regulating actin dynamics and smooth muscle contraction. The role of c-Abl in cytokinesis has not been investigated. Here, c-Abl was found in the contractile ring, as evidenced by immunofluorescent microscopy. In addition, cortactin is a phosphorylatable protein that has been implicated in actin filament assembly. In this report, phosphorylated cortactin was also found in the contractile ring. Knockdown of c-Abl by RNA interference attenuated cortactin phosphorylation in the midzone and contractile ring formation. c-Abl knockdown decreased the number of cells undergoing cytokinesis, but increased the quantity of cells in metaphase/anaphase and the number of multinucleate cells. Treatment with the c-Abl pharmacological inhibitors, imatinib and GNF-5, had similar effects. Furthermore, the expression of a nonphosphorylatable cortactin mutant diminished cytokinesis. Finally, inhibition of actin filament assembly by latrunculin A attenuated c-Abl recruitment to the midzone. Thus, we propose a novel mechanism that regulates smooth muscle cell cytokinesis. c-Abl is recruited to the equator during cytokinesis, which may mediate cortactin phosphorylation. Phosphorylated cortactin may promote actin filament assembly, which facilitates contractile ring formation and cytokinesis. In addition, actin filament polymerization may facilitate the positioning of c-Abl to the contractile ring.
Collapse
Affiliation(s)
- Shu Chen
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | |
Collapse
|
48
|
Nikonova AS, Gaponova AV, Kudinov AE, Golemis EA. CAS proteins in health and disease: an update. IUBMB Life 2014; 66:387-95. [PMID: 24962474 DOI: 10.1002/iub.1282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/07/2014] [Indexed: 12/30/2022]
Abstract
The CAS family of scaffolding proteins has increasingly attracted scrutiny as important for regulation of cancer-associated signaling. BCAR1 (also known as p130Cas), NEDD9 (HEF1, Cas-L), EFS (Sin), and CASS4 (HEPL) are regulated by and mediate cell attachment, growth factor, and chemokine signaling. Altered expression and activity of CAS proteins are now known to promote metastasis and drug resistance in cancer, influence normal development, and contribute to the pathogenesis of heart and pulmonary disease. In this article, we provide an update on recently published studies describing signals regulating and regulated by CAS proteins, and evidence for biological activity of CAS proteins in normal development, cancer, and other pathological conditions.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
49
|
Li J, Chen S, Cleary RA, Wang R, Gannon OJ, Seto E, Tang DD. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues. Am J Physiol Cell Physiol 2014; 307:C288-95. [PMID: 24920679 DOI: 10.1152/ajpcell.00102.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction.
Collapse
Affiliation(s)
- Jia Li
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Shu Chen
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Rachel A Cleary
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Ruping Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Olivia J Gannon
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Edward Seto
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida
| | - Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| |
Collapse
|
50
|
Wang R, Cleary RA, Wang T, Li J, Tang DD. The association of cortactin with profilin-1 is critical for smooth muscle contraction. J Biol Chem 2014; 289:14157-69. [PMID: 24700464 DOI: 10.1074/jbc.m114.548099] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation.
Collapse
Affiliation(s)
- Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Jia Li
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|