1
|
Zhou Y, Yang Y, Tian R, Cheang WS. Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro. Sci Rep 2025; 15:1542. [PMID: 39789118 PMCID: PMC11718003 DOI: 10.1038/s41598-025-85144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects. In this study, we investigated the protective effects of pterostilbene on LPS-stimulated mouse brain endothelial (bEnd.3) cells and underlying mechanisms. The results showed that pterostilbene effectively upregulated the expressions of tight junction (TJ) proteins such as zonula occludens (ZO)-1 and claudin-5 and downregulated the expression of adhesion molecules such as intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, preventing BBB damage under LPS stimulation. Pterostilbene decreased the LPS-triggered expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 as well as the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nitric oxide (NO). Meanwhile, we found that pterostilbene exerted an inhibitory effect on nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in bEnd.3 cells upon LPS stimulation. Additionally, pterostilbene exhibited antioxidant effects by activating heme oxygenase 1 (HO-1). These findings indicated that pterostilbene protected against lipopolysaccharide (LPS)-induced inflammation, oxidative stress and blood-brain barrier (BBB) disruption in bEnd.3 cells.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yifan Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Rui Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
2
|
Hwang B, Kim J, Park S, Chung HJ, Kim H, Choi YH, Kim WJ, Myung SC, Jeong TB, Kim KM, Jung JC, Lee MW, Kim JW, Moon SK. Ethanol Extracts of Cornus alba Improve Benign Prostatic Hyperplasia by Inhibiting Prostate Cell Proliferation through Modulating 5 Alpha-Reductase/Androgen Receptor Axis-Mediated Signaling. World J Mens Health 2024; 42:830-841. [PMID: 38606866 PMCID: PMC11439794 DOI: 10.5534/wjmh.230200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE The aim of this study was to investigate the efficacy of ethanol extracts of Cornus alba (ECA) against benign prostatic hyperplasia (BPH) in vitro and in vivo. MATERIALS AND METHODS The prostate stromal cells (WPMY-1) and epithelial cells (RWPE-1) were used to examine the action mechanism of ECA in BPH in vitro. ECA efficacy was evaluated in vivo using a testosterone propionate (TP)-induced BPH rat model. RESULTS Treatment with ECA inhibited the proliferation of prostate cells by inducing G1-phase cell cycle arrest through the regulation of positive and negative proteins. Treatment of prostate cells with ECA resulted in alterations in the mitogen-activated protein kinases and protein kinase B signaling pathways. The transcriptional binding activity of the NF-κB motif was suppressed in both ECA-treated prostate cells. In addition, treatment with ECA altered the level of BPH-associated axis markers (5α-reductase, fibroblast growth factor-2, androgen receptor, epidermal growth factor, Bcl-2, and Bax) in both cell lines. Finally, the administration of ECA attenuated the enlargement of prostatic tissues in the TP-induced BPH rat model, accompanied by histology, immunoblot, and serum dihydrotestosterone levels. CONCLUSIONS These results demonstrated that ECA exerted beneficial effects on BPH both in vitro and in vivo and might provide valuable information in the development of preventive or therapeutic agents for improving BPH.
Collapse
Affiliation(s)
- Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Jongyeob Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Solbi Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Hyun Joo Chung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Molecular Biodesign Research Center, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, Korea
| | | | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Molecular Biodesign Research Center, Chung-Ang University College of Medicine, Seoul, Korea
| | - Tae-Bin Jeong
- Life Science Research Institute, Novarex Co., Ltd., Cheongju, Korea
| | - Kyung-Mi Kim
- Life Science Research Institute, Novarex Co., Ltd., Cheongju, Korea
| | - Jae-Chul Jung
- Life Science Research Institute, Novarex Co., Ltd., Cheongju, Korea
| | - Min-Won Lee
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Jin Wook Kim
- Department of Medical Informatics, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Urology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea.
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
- Molecular Biodesign Research Center, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
4
|
Nowak N, Czekanowska D, Gebarowski T, Wiglusz RJ. Highly cyto- and immune compatible new synthetic fluorapatite nanomaterials co-doped with rubidium(I) and europium(III) ions. BIOMATERIALS ADVANCES 2024; 156:213709. [PMID: 38039809 DOI: 10.1016/j.bioadv.2023.213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/16/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In the present study, biocompatible luminescent of nanosized fluorapatite doped with rubidium(I) (Rb+ ion) and europium(III) (Eu3+ ion) ions were synthesized via hydrothermal method. It was investigated the influence of co-doped Rb+ and Eu3+ ions on the structural, and morphological characteristics of the obtained fluorapatite materials. The characterization techniques utilized included: X-ray powder diffraction (XRPD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). Moreover, to establish the influence of the co-doped Rb+ and Eu3+ ions on the luminescence properties of the lanthanide ion, emission excitation, emission spectrum and luminescence decays were measured. This confirmed a distinct red emission originating from Eu3+ ions and an increased emission lifetime. To determine the biocompatibility of the obtained fluorapatite compounds, in vitro studies using normal dermal human fibroblasts were performed. The results of these studies clearly demonstrate the remarkable biocompatibility of our compounds. This discovery opens exciting prospects for the use of synthetic fluorapatites doped with Eu3+ and Rb+ ions in various biomedical contexts. In particular, these materials hold great promise for potential applications in regenerative engineering, but also serve as innovative and practical solutions as bone scaffolds and dental implants containing nano-fluorapatite. Further discussion of these properties can be found in this article, along with a discussion of their importance and potential in the field of biomedical applications. However, according to our pervious study and based on our current investigations but also based on available scientific records, it was proposed potential molecular mechanism of Rb+ ions in the process of osteoclastogenesis.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland.
| | - Dominika Czekanowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Tomasz Gebarowski
- Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| |
Collapse
|
5
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
6
|
Dong L, Chen Y, Wang K, Li H, Di G. Static electric field (SEF) exposure promotes the proliferation of B lymphocytes. Int Immunopharmacol 2023; 125:111006. [PMID: 37913568 DOI: 10.1016/j.intimp.2023.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
With the rapid development of ultra-high voltage direct current (UHV DC) transmission technology, the intensity of electric fields in the surrounding environment of UHV DC transmission lines significantly increased, which raised public concerns about the potential health effects of electric fields. Previous studies have shown that the exposure of electromagnetic field was associated with cancer. B lymphocytes can produce autoantibodies and tumor growth factors through proliferation, which contributes to the development of cancer. Therefore, this study explored the effect and mechanism of static electric field (SEF) generated by DC transmission lines on the proliferation levels of B lymphocytes. Male mice were exposed to SEF. After the exposure of 7 and 14 days, the proliferation levels of B lymphocytes in the spleens of mice were measured, respectively. To validate biological effect discovered in animal experiments and elucidate the mechanism of the effect from the perspective of signaling pathways, lymphocytes were exposed to SEF. After the exposure of 24, 48 or 72 h, the proliferation levels of B lymphocytes, the expression levels of key proteins and cell cycle were determined. This study found that SEF exposure activated NF-κB pathway by stimulating ERK1/2 pathway and promoted B lymphocytes to enter S phase from G0/G1 phase. Meanwhile, SEF exposure also promoted B lymphocytes to enter G2 phase. Namely, SEF exposure significantly promoted the proliferation of B lymphocytes. This discovery provided theoretical and practical support for the prevention or application of negative or positive effects caused by SEF exposure and provided directions for future research.
Collapse
Affiliation(s)
- Li Dong
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuhua Chen
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Kanyu Wang
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hanxin Li
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Guoqing Di
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, PR China.
| |
Collapse
|
7
|
Hong M, Xiao K, Lin P, Lin J. Five Rutaceae family ethanol extracts alleviate H 2O 2 and LPS-induced inflammation via NF-κB and JAK-STAT3 pathway in HaCaT cells. Chin J Nat Med 2022; 20:937-947. [PMID: 36549807 DOI: 10.1016/s1875-5364(22)60217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 12/24/2022]
Abstract
This study was designed to investigate the effects of five Rutaceae family ethanol extracts (FRFEE): Citrus medica Linn (CML), Citrus aurantium L. Cv. Daidai (CAD), Citrus medica Linn. var. sarcodactylis (Noot.) Swingle (CMS),Citrus sinensis L. Osbeck (CSO) and Zanthoxylum bungeanum Maxim (ZBM) on retarding the progression of H2O2 and LPS-induced HaCaT cells. Cell inflammatory injury model was established by H2O2 and LPS. The alleviative effects of FRFEE were evaluated by detecting the activity of superoxide dismutase (SOD), glutathione (GSH) and the generation of reactive oxygen species (ROS). The inflammatory signaling pathways of NF-κB and JAK-STAT3 were detected by Western blotting, the mRNA expression levels of inflammatory factors and skin barrier factors were detected by RT-PCR. 50% ethanol extracts of five medicinal and food homologous herbs of Rutaceae family showed different levels of anti-oxidant and anti-inflammatory activities. The FRFEE effectively improved SOD and GSH content and decreased ROS levels. Meanwhile, FRFEE strongly suppressed two inflammatory signaling pathways NF-κB and JAK-STAT3. The RT-PCR examination of inflammatory factors and skin barrier factor revealed significant anti-inflammatory effects of FRFEE. It was worth noting that among the five extracts, Zanthoxylum bungeanum Maxim extract had the best anti-inflammatory and anti-oxidation effects. In addition, it could strongly inhibit the expression of psoriasis factor CCL20. In summary, these results suggested that Zanthoxylum bungeanum Maxim extract could be used as an anti-psoriatic agent in the treatment of psoriasis among FRFEE.
Collapse
Affiliation(s)
- Mengsa Hong
- School of Life sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Kun Xiao
- School of Life sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Pei Lin
- School of Life sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jun Lin
- School of Life sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Han X, Chen Z, Yuan J, Wang G, Han X, Wu H, Shi H, Chou G, Yang L, Wu X. Artemisia annua water extract attenuates DNCB-induced atopic dermatitis by restraining Th2 cell mediated inflammatory responses in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115160. [PMID: 35245629 DOI: 10.1016/j.jep.2022.115160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. (A. annua) is a traditional Chinese medicine that has been used since ancient times to treat malaria, eczema, dermatomycosis, jaundice, and boils. Modern pharmacological studies show that it has immunosuppressive and anti-inflammatory effects. However, the mechanism of A. annua in the treatment of atopic dermatitis (AD) remains unclear. AIM OF THE STUDY This study was aimed to investigate the effect of A. annua water extract (AWE) on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model and tried to explore its possible underlying mechanisms. MATERIALS AND METHODS AD was induced in BALB/c mice by the topical repeated application of DNCB. Oral drug intervention of AWE and dexamethasone (DEX, positive control) began from the 7th day and continued for 13 consecutive days. The clinical skin score, ear thickness and the weight of ear and spleen were assessed. The ear tissue were stained with toluidine blue and hematoxylin and eosin (H&E) to detect inflammatory cell infiltration. IgE, terleukin (IL)-4 and IL-13 levels in the serum and IgE level in splenocytes were quantified by enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of IL-4, IL-6, IL-13, IL-17, tumor necrosis factor (TNF)-α and thymic stromal lymphopoietin (TSLP) were measured by quantitative real time polymerase chain reaction. The phosphorylation levels of mitogen-activated protein kinases (MAPKs)-p38 and nuclear factor (NF)-κB in ear tissue were detected by Western blot. RESULTS Results demonstrated that AWE treatment significantly attenuated the AD-like symptoms in DNCB-induced BALB/c mice, including the skin dermatitis severity and ear edema. Further study disclosed that AWE treatment suppressed the expressions of IgE, IL-4, IL-6, IL-13, IL-17, TNF-α and TSLP at mRNA and protein levels. Moreover, AWE showed inhibitory effect on the phosphorylation of p38 MAPK and NFκB in ear tissues of AD mice. CONCLUSIONS Collectively, our results suggested that AWE suppressed DNCB-induced AD in mice probably by restraining Th2 type inflammatory response. These findings might pave the road for the potential clinical application of AWE for AD treatment.
Collapse
Affiliation(s)
- Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyu Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gaorui Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guixin Chou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Revisiting the melanomagenic pathways and current therapeutic approaches. Mol Biol Rep 2022; 49:9651-9671. [DOI: 10.1007/s11033-022-07412-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
|
10
|
Allegra M, Tutone M, Tesoriere L, Attanzio A, Culletta G, Almerico AM. Evaluation of the IKKβ Binding of Indicaxanthin by Induced-Fit Docking, Binding Pose Metadynamics, and Molecular Dynamics. Front Pharmacol 2021; 12:701568. [PMID: 34566634 PMCID: PMC8461089 DOI: 10.3389/fphar.2021.701568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Indicaxanthin, a betaxanthin belonging to the betalain class of compounds, has been recently demonstrated to exert significant antiproliferative effects inducing apoptosis of human melanoma cells through the inhibition of NF-κB as the predominant pathway. Specifically, Indicaxanthin inhibited IκBα degradation in A375 cells. In resting cells, NF-κB is arrested in the cytoplasm by binding to its inhibitor protein IκBα. Upon stimulation, IκBα is phosphorylated by the IKK complex, and degraded by the proteasome, liberating free NF-κB into the nucleus to initiate target gene transcription. Inhibition of the IKK complex leads to the arrest of the NF-κB pathway. Methods: To acquire details at the molecular level of Indicaxanthin’s inhibitory activity against hIKKβ, molecular modeling and simulation techniques including induced-fit docking (IFD), binding pose metadynamics (BPMD), molecular dynamics simulations, and MM-GBSA (molecular mechanics-generalized Born surface area continuum solvation) have been performed. Results: The computational calculations performed on the active and inactive form, and the allosteric binding site of hIKKβ, revealed that Indicaxanthin inhibits prevalently the active form of the hIKKβ. MM-GBSA computations provide further evidence of Indicaxanthin’s stability inside the active binding pocket with a binding free energy of −22.2 ± 4.3 kcal/mol with respect to the inactive binding pocket with a binding free energy of −20.7 ± 4.7 kcal/mol. BPMD and MD simulation revealed that Indicaxanthin is likely not an allosteric inhibitor of hIKKβ. Conclusion: As a whole, these in silico pieces of evidence show that Indicaxanthin can inhibit the active form of the hIKKβ adding novel mechanistic insights on its recently discovered ability to impair NF-κB signaling in melanoma A375 cells. Moreover, our results suggest the phytochemical as a new lead compound for novel, more potent IKKβ inhibitors to be employed in the treatment of cancer and inflammation-related conditions.
Collapse
Affiliation(s)
- Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Luisa Tesoriere
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Alessandro Attanzio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
11
|
George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants (Basel) 2021; 10:antiox10091455. [PMID: 34573087 PMCID: PMC8466984 DOI: 10.3390/antiox10091455] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition where the body cells multiply in an uncontrollable manner. Chemoprevention of cancer is a broad term that describes the involvement of external agents to slow down or suppress cancer growth. Synthetic and natural compounds are found useful in cancer chemoprevention. The occurrence of global cancer type varies, depending on many factors such as environmental, lifestyle, genetic etc. Cancer is often preventable in developed countries with advanced treatment modalities, whereas it is a painful death sentence in developing and low-income countries due to the lack of modern therapies and awareness. One best practice to identify cancer control measures is to study the origin and risk factors associated with common types. Based on these factors and the health status of patients, stage, and severity of cancer, type of treatment is decided. Even though there are well-established therapies, cancer still stands as one of the major causes of death and a public health burden globally. Research shows that most cancers can be prevented, treated, or the incidence can be delayed. Phytochemicals from various medicinal plants were reported to reduce various risk factors associated with different types of cancer through their chemopreventive role. This review highlights the role of bioactive compounds or natural products from plants in the chemoprevention of cancer. There are many plant based dietary factors involved in the chemoprevention process. The review discusses the process of carcinogenesis and chemoprevention using plants and phytocompounds, with special reference to five major chemopreventive phytocompounds. The article also summarizes the important chemopreventive mechanisms and signaling molecules involved in the process. Since the role of antioxidants in chemoprevention is inevitable, an insight into plant-based antioxidant compounds that fight against this dreadful disease at various stages of carcinogenesis and disease progression is discussed. This will fill the research gap in search of chemopreventive natural compounds and encourage scientists in clinical trials of anticancer agents from plants.
Collapse
|
12
|
Teixido C, Castillo P, Martinez-Vila C, Arance A, Alos L. Molecular Markers and Targets in Melanoma. Cells 2021; 10:2320. [PMID: 34571969 PMCID: PMC8469294 DOI: 10.3390/cells10092320] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Melanoma develops as a result of several genetic alterations, with UV radiation often acting as a mutagenic risk factor. Deep knowledge of the molecular signaling pathways of different types of melanoma allows better characterization and provides tools for the development of therapies based on the intervention of signals promoted by these cascades. The latest World Health Organization classification acknowledged the specific genetic drivers leading to melanoma and classifies melanocytic lesions into nine distinct categories according to the associate cumulative sun damage (CSD), which correlates with the molecular alterations of tumors. The largest groups are melanomas associated with low-CSD or superficial spreading melanomas, characterized by frequent presentation of the BRAFV600 mutation. High-CSD melanomas include lentigo maligna type and desmoplastic melanomas, which often have a high mutation burden and can harbor NRAS, BRAFnon-V600E, or NF1 mutations. Non-CSD-associated melanomas encompass acral and mucosal melanomas that usually do not show BRAF, NRAS, or NF1 mutations (triple wild-type), but in a subset may have KIT or SF3B1 mutations. To improve survival, these driver alterations can be treated with targeted therapy achieving significant antitumor activity. In recent years, relevant improvement in the prognosis and survival of patients with melanoma has been achieved, since the introduction of BRAF/MEK tyrosine kinase inhibitors and immune checkpoint inhibitors. In this review, we describe the current knowledge of molecular pathways and discuss current and potential therapeutic targets in melanoma, focusing on their clinical relevance of development.
Collapse
Affiliation(s)
- Cristina Teixido
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (P.C.); (L.A.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
| | - Paola Castillo
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (P.C.); (L.A.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
| | - Clara Martinez-Vila
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain;
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1–3, 08243 Manresa, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain;
| | - Llucia Alos
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (P.C.); (L.A.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
| |
Collapse
|
13
|
Liu SJ, Hu SQ, Chen YC, Guo J. Uncovering the mechanism of quercetin for treating spermatogenesis impairment by a network pharmacology approach. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1961878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Si-Jia Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Su-Qin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yu-Cai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Yang LX, Guo HB, Liu SY, Feng HP, Shi J. ETS1 promoted cell growth, metastasis and epithelial-mesenchymal transition process in melanoma by regulating miR-16-mediated SOX4 expression. Melanoma Res 2021; 31:298-308. [PMID: 34039939 DOI: 10.1097/cmr.0000000000000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanoma is a malignant tumor with high metastasis and mortality. Epithelial-mesenchymal transition (EMT) was reported to be involved in the growth and metastasis of melanoma. To investigate these sections further, we showed that E26 transformation specific 1 (ETS1) could regulate growth, metastasis and EMT process of melanoma by regulating microRNA(miR)-16/SRY-related HMG box (SOX) 4 expression. MiR-16, ETS1, SOX4 and nuclear factor κB (NF-κB) expression levels in melanoma cells were examined using qPCR. ETS1, SOX4, EMT-related proteins and NF-κB signaling pathway-related proteins were examined using western blot. Cell counting kit-8 assay, transwell assay were applied to evaluate the cell proliferation, migration and invasion of melanoma cells, respectively. Besides, a dual-luciferase reporter assay was employed to verify the binding relationship between ETS1 and miR-16, miR-16 and SOX4, miR-16 and NF-κB1. We showed that ETS1 and SOX4 were upregulated in melanoma cells, while miR-16 was downregulated. MiR-16 overexpression suppressed growth, metastasis and EMT process of melanoma. We found ETS1 could bind to the promoter region of miR-16 and inhibited its transcription. ETS1 silence could inhibit growth, metastasis and EMT process of melanoma, and inhibition of miR-16 could reverse the effects. Besides, miR-16 is directly bound to SOX4 and downregulated its expression. Rescued experiments confirmed that SOX4 overexpression abolished the inhibition effect of miR-16 mimics on growth, metastasis and EMT process of melanoma. Finally, NF-κB1 as the target of miR-16 mediated downstream biological responses. ETS1 activated NF-κB signaling pathway through miR-16 via targeting SOX4, thus promoting growth, metastasis and EMT of melanoma.
Collapse
Affiliation(s)
| | - Hu-Bing Guo
- The First Department of Orthopaedic Surgery, The First Hospital of Tianshui, Tianshui, Gansu Province, P.R. China
| | | | | | | |
Collapse
|
15
|
Zhang L, Jiang X, Zhang J, Gao H, Yang L, Li D, Zhang Q, Wang B, Cui L, Wang X. (-)-Syringaresinol suppressed LPS-induced microglia activation via downregulation of NF-κB p65 signaling and interaction with ERβ. Int Immunopharmacol 2021; 99:107986. [PMID: 34303280 DOI: 10.1016/j.intimp.2021.107986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Albiziae Cortex (AC) is a well-known traditional Chinese medicine with sedative-hypnotic effects and neuroprotective ability. However, the bioactive components of AC responsible for the neuro-protective actitivity remain unknown. Here, we investigated the anti-neuroinflammatory effects of (-)-syringaresinol (SYR) extracted from AC in microglia cells and wild-type mice. As a result, (-)-SYR significantly reduced lipopolysaccharide (LPS)-induced production of interleukin - 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin -1 beta (IL-1β), cycloxygenase-2 (COX-2), and nitric oxide (NO) in BV2 microglia cells. (-)-SYR also significantly reduced M1 marker CD40 expression and increased M2 marker CD206 expression. Moreover, we found that (-)-SYR inhibited LPS-induced NF-κB activation by suppressing the translocation of NF-κB p65 into the nucleus in a concentration-dependent manner. Meanwhile, estrogen receptor β (ERβ) was found to be implied in the anti-inflammatory activity of (-)-SYR in BV2 microglia. In vivo experiments revealed that administration of (-)-SYR in mice significantly reduced microglia/astrocytes activation and mRNA levels of proinflammatory mediators. Taken together, our data indicated that (-)-SYR exerted the anti-neuroinflammatory effects by inhibiting NF-κB activation and modulation of microglia polarization, and via interaction with ERβ. The anti-neuroinflammatory activity of (-)-SYR may provide a new therapeutic avenue for the treatment of brain diseases associated with inflammation.
Collapse
Affiliation(s)
- Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China.
| | - Xiaolin Jiang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Jinlu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hejun Gao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Botao Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China.
| |
Collapse
|
16
|
Context-dependent modulation of aggressiveness of pediatric tumors by individual oncogenic RAS isoforms. Oncogene 2021; 40:4955-4966. [PMID: 34172934 PMCID: PMC8342309 DOI: 10.1038/s41388-021-01904-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
A prototypic pediatric cancer that frequently shows activation of RAS signaling is embryonal rhabdomyosarcoma (ERMS). ERMS also show aberrant Hedgehog (HH)/GLI signaling activity and can be driven by germline mutations in this pathway. We show, that in ERMS cell lines derived from sporadic tumors i.e. from tumors not caused by an inherited genetic variant, HH/GLI signaling plays a subordinate role, because oncogenic mutations in HRAS, KRAS, or NRAS (collectively named oncRAS) inhibit the main HH target GLI1 via the MEK/ERK-axis, but simultaneously increase proliferation and tumorigenicity. oncRAS also modulate expression of stem cell markers in an isoform- and context-dependent manner. In Hh-driven murine ERMS that are caused by a Patched mutation, oncHRAS and mainly oncKRAS accelerate tumor development, whereas oncNRAS induces a more differentiated phenotype. These features occur when the oncRAS mutations are induced at the ERMS precursor stage, but not when induced in already established tumors. Moreover, in contrast to what is seen in human cell lines, oncRAS mutations do not alter Hh signaling activity and marginally affect expression of stem cell markers. Together, all three oncRAS mutations seem to be advantageous for ERMS cell lines despite inhibition of HH signaling and isoform-specific modulation of stem cell markers. In contrast, oncRAS mutations do not inhibit Hh-signaling in Hh-driven ERMS. In this model, oncRAS mutations seem to be advantageous for specific ERMS populations that occur within a specific time window during ERMS development. In addition, this window may be different for individual oncRAS isoforms, at least in the mouse.
Collapse
|
17
|
Han NR, Ko SG, Moon PD, Park HJ. Chloroquine attenuates thymic stromal lymphopoietin production via suppressing caspase-1 signaling in mast cells. Biomed Pharmacother 2021; 141:111835. [PMID: 34146852 DOI: 10.1016/j.biopha.2021.111835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) produced by mast cells is involved in allergic inflammation pathogenesis. Chloroquine (CQ) is known to be an anti-malarial drug; however, additional protective functions of CQ have been discovered. This study aims to clarify an anti-inflammatory effect of CQ through modulating TSLP levels using an in vitro model of phorbol myristate acetate (PMA) + A23187-activated human mast cell line (HMC-1) and an in vivo model of PMA-irritated ear edema. CQ treatment reduced the production and mRNA expression levels of TSLP in activated HMC-1 cells. CQ down-regulated caspase-1 (CASP1), MAPKs, and NF-κB levels enhanced by stimulation with PMA + A23187. Moreover, ear thickness in ear edema was suppressed following CQ treatment. CQ decreased CASP1 and NF-κB levels in the ear tissue. TSLP levels in the ear tissue and serum were reduced following CQ treatment. Collectively, the above findings elucidate that CQ inhibits the pro-inflammatory mechanisms of TSLP via the down-regulation of distinct intracellular signaling cascade in mast cells. Therefore, CQ may have protective roles against TSLP-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
18
|
Bernard BJ, Nigam N, Burkitt K, Saloura V. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin Epigenetics 2021; 13:45. [PMID: 33637115 PMCID: PMC7912509 DOI: 10.1186/s13148-021-01021-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Chromatin modifiers and their implications in oncogenesis have been an exciting area of cancer research. These are enzymes that modify chromatin via post-translational modifications such as methylation, acetylation, sumoylation, phosphorylation, in addition to others. Depending on the modification, chromatin modifiers can either promote or repress transcription. SET and MYN-domain containing 3 (SMYD3) is a chromatin modifier that has been implicated in the development and progression of various cancer types. It was first reported to tri-methylate Histone 3 Lysine 4 (H3K4), a methylation mark known to promote transcription. However, since this discovery, other histone (H4K5 and H4K20, for example) and non-histone (VEGFR, HER2, MAP3K2, ER, and others) substrates of SMYD3 have been described, primarily in the context of cancer. This review aims to provide a background on basic characteristics of SMYD3, such as its protein structure and tissue expression profiles, discuss reported histone and non-histone substrates of SMYD3, and underscore prognostic and functional implications of SMYD3 in cancer. Finally, we briefly discuss ongoing efforts to develop inhibitors of SMYD3 for future therapeutic use. It is our hope that this review will help synthesize existing research on SMYD3 in an effort to propel future discovery.
Collapse
Affiliation(s)
- Benjamin J Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | - Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | | | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA.
| |
Collapse
|
19
|
Huang M, Wei Y, Dong J. Epimedin C modulates the balance between Th9 cells and Treg cells through negative regulation of noncanonical NF-κB pathway and MAPKs activation to inhibit airway inflammation in the ovalbumin-induced murine asthma model. Pulm Pharmacol Ther 2021; 65:102005. [PMID: 33636365 DOI: 10.1016/j.pupt.2021.102005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Allergic asthma is a common airway inflammatory disease and mainly caused by abnormal immune responses to allergens and viruses. The precise mechanisms of airway inflammation and airway hyper-responsiveness (AHR) are still not completely understood. CD4+ helper T cells (Th cells) serve as critical regulators of allergic immunity. The imbalance between T helper 9 (Th9) cells and forkhead box protein 3 (Foxp3)+ regulatory T (Treg) cells may contribute to airway inflammation in asthma. Epimedin C, a dominant compound isolated from Herba Epimedii, has shown anti-inflammatory effects and the immunoregulatory activity, such as increase of lymphocyte proliferation. However, the protective role of epimedin C in an experimental model of ovalbumin (OVA)-induced allergic airway inflammation and the underlying mechanism remain unknown. Female BALB/c mice were sensitized by intraperitoneal injection (i.p.) of OVA plus aluminum hydroxide (Alum) and subsequently challenged with an aerosol of 3% OVA in saline. Mice were treated with different concentrations of epimedin C (20 mg/kg/d, 40 mg/kg/d, 80 mg/kg/d) for 4 weeks. Experimental endpoints were evaluated via the analysis of AHR to acetyl-β-methacholine (Mch), differential inflammatory cell counts, concentrations of cytokines interleukin-9 (IL-9), IL-4 and IL-10 in bronchoalveolar lavage fluid (BALF), serum OVA-specific IgE level, as well as airway inflammation, mucus secretion and collagen deposition in mice. Mechanistically, we investigated the percentages of Th9 cells and Treg cells, as well as mRNA levels of IL-9 and transcription factor Foxp3 in lungs. Furthermore, the proteins expression of nuclear factor-κB (NF-κB) family members p105/p50, RelA, p100/p52 and RelB, as well as mitogen-activated protein kinase (MAPK) family members extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 MAPK was detected. Epimedin C dose-dependently attenuated AHR, airway inflammation, mucus hypersecretion and collagen deposition in OVA-induced murine asthma model. The expression levels of IL-9, IL-4 and OVA-specific IgE were significantly decreased while IL-10 was increased by epimedin C. We further confirmed that epimedin C decreased the percentage of lung Th9 cells with lower mRNA expression of IL-9 and increased the percentage of lung Treg cells with higher mRNA expression of Foxp3. In addition, epimedin C dose-dependently decreased the protein levels of p52, RelB, phosphorylation of ERK1/2 and p38 MAPK which are pivotal to the development of Th9 cells and Treg cells. Collectively, epimedin C could inhibit pathophysiological features of asthma by reconstruction of the balance between Th9 cells and Treg cells through regulation of the noncanonical NF-κB p52/RelB pathway and MAPKs activation. These findings suggest epimedin C as a potential remedy for inflammatory airway diseases.
Collapse
Affiliation(s)
- Muhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institute of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institute of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
20
|
Li YT, Tang BP, Zhang SP, Tang YY, Wang G, Jiang SH, Ge BM, Zhang DZ, Zhou CL, Liu QN, Zhang ML. Transcriptome analysis of immune-related genes in Sesarmops sinensis hepatopancreas in reaction to peptidoglycan challenge. Genomics 2021; 113:946-954. [PMID: 33503506 DOI: 10.1016/j.ygeno.2021.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 01/07/2023]
Abstract
Sesarmops sinensis is a dominant omnivorous crab species, which plays an important ecological function in salt marsh ecosystems. To better understand its immune system and immune related genes under pathogen infection, the transcriptome was analyzed by comparing the data of S. sinensis hepatopancreas stimulated by PBS and PGN. A set of assembly and annotation identified 39,039 unigenes with an average length of 1105 bp, obtaining 1300 differentially expressed genes (DEGs) in all, which included 466 remarkably up-regulated unigenes and 834 remarkably down-regulated unigenes. In addition, based on mensurable real time-polymerase chain reaction and high-throughput sequencing, several immune responsive genes were found to be markedly up-regulated under PGN stimulation. In conclusion, in addition to enriching the existing transcriptome data of S. sinensis, this study also clarified the immune response of S. sinensis to PGN stimulation, which will help us to further understand the crustacean's immune system.
Collapse
Affiliation(s)
- Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Si-Pei Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Bao-Ming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Mei-Ling Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
21
|
Zhai Z, Vaddi PK, Samson JM, Takegami T, Fujita M. NLRP1 Functions Downstream of the MAPK/ERK Signaling via ATF4 and Contributes to Acquired Targeted Therapy Resistance in Human Metastatic Melanoma. Pharmaceuticals (Basel) 2020; 14:ph14010023. [PMID: 33396632 PMCID: PMC7823742 DOI: 10.3390/ph14010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022] Open
Abstract
The BRAF V600E mutation leads to constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and its downstream effector responses. Uncovering the hidden downstream effectors can aid in understanding melanoma biology and improve targeted therapy efficacy. The inflammasome sensor, NACHT, LRR, and PYD domains-containing protein 1 (NLRP1), is responsible for IL-1β maturation and itself is a melanoma tumor promoter. Here, we report that NLRP1 is a downstream effector of MAPK/ERK signaling through the activating transcription factor 4 (ATF4), creating regulation in metastatic melanoma cells. We confirmed that the NLRP1 gene is a target of ATF4. Interestingly, ATF4/NLRP1 regulation by the MAPK/ERK pathway uses distinct mechanisms in melanoma cells before and after the acquired resistance to targeted therapy. In parental cells, ATF4/NLRP1 is regulated by the MAPK/ERK pathway through the ribosomal S6 kinase 2 (RSK2). However, vemurafenib (VEM) and trametinib (TRA)-resistant cells lose the signaling via RSK2 and activate the cAMP/protein kinase A (PKA) pathway to redirect ATF4/NLRP1. Therefore, NLRP1 expression and IL-1β secretion were downregulated in response to VEM and TRA in parental cells but enhanced in drug-resistant cells. Lastly, silencing NLRP1 in drug-resistant cells reduced their cell growth and inhibited colony formation. In summary, we demonstrated that NLRP1 functions downstream of the MAPK/ERK signaling via ATF4 and is a player of targeted therapy resistance in melanoma. Targeting NLRP1 may improve the therapeutic efficacy of targeted therapy in melanoma.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
| | - Prasanna K. Vaddi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
| | - Jenny Mae Samson
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
| | - Tomoya Takegami
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (P.K.V.); (J.M.S.); (T.T.)
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-4045; Fax: +1-303-724-4048
| |
Collapse
|
22
|
He T, Shen H, Wang S, Wang Y, He Z, Zhu L, Du X, Wang D, Li J, Zhong S, Huang W, Yang H. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:572-583. [PMID: 33230458 PMCID: PMC7562961 DOI: 10.1016/j.omtn.2020.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Aberrant activation of nuclear factor κB (NF-κB)/RELA is often found in lung adenocarcinoma (LUAD). In this study, we determined that microRNA-3613-5p (miR-3613-5p) plays a crucial role in RELA-mediated post-transcriptional regulation of LUAD cell proliferation. Expression of miR-3613-5p in clinical LUAD specimens is associated with poor prognosis in LUAD. Upregulation of miR-3613-5p promotes LUAD cell proliferation in vitro and in vivo. Our results suggested a mechanism whereby miR-3613-5p expression is induced by RELA through its direct interaction with JUN, thereby stimulating the AKT/mitogen-activated protein kinase (MAPK) pathway by directly targeting NR5A2. In addition, we also found that phosphorylation of AKT1 and MAPK3/1 co-transactivates RELA, thus constituting a RELA/JUN/miR-3613-5p/NR5A2/AKT1/MAPK3/1 positive feedback loop, leading to persistent NF-κB activation. Our findings also revealed that miR-3613-5p plays an oncogenic role in LUAD by promoting cell proliferation and acting as a key regulator of the positive feedback loop underlying the link between the NF-κB/RELA and AKT/MAPK pathways.
Collapse
Affiliation(s)
- Tao He
- Department of Biology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hongyou Shen
- Emergency Department, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Shuangmiao Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yanfang Wang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiwei He
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Litong Zhu
- Department of Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Xinyue Du
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Dan Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jiao Li
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Shizhen Zhong
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
23
|
Pflug KM, Sitcheran R. Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. Int J Mol Sci 2020; 21:E8470. [PMID: 33187137 PMCID: PMC7696043 DOI: 10.3390/ijms21228470] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022] Open
Abstract
NF-κB-inducing kinase (NIK), the essential upstream kinase, which regulates activation of the noncanonical NF-κB pathway, has important roles in regulating immunity and inflammation. In addition, NIK is vital for maintaining cellular health through its control of fundamental cellular processes, including differentiation, growth, and cell survival. As such aberrant expression or regulation of NIK is associated with several disease states. For example, loss of NIK leads to severe immune defects, while the overexpression of NIK is observed in inflammatory diseases, metabolic disorders, and the development and progression of cancer. This review discusses recent studies investigating the therapeutic potential of NIK inhibitors in various diseases.
Collapse
Affiliation(s)
- Kathryn M. Pflug
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| | - Raquel Sitcheran
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| |
Collapse
|
24
|
Blockade of RANKL/RANK signaling pathway by epigallocatechin gallate alleviates mast cell-mediated inflammatory reactions. Int Immunopharmacol 2020; 88:106872. [DOI: 10.1016/j.intimp.2020.106872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/29/2022]
|
25
|
Bi Y, Cui D, Xiong X, Zhao Y. The characteristics and roles of β-TrCP1/2 in carcinogenesis. FEBS J 2020; 288:3351-3374. [PMID: 33021036 DOI: 10.1111/febs.15585] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
β-transducin repeat-containing protein (β-TrCP), one of the well-characterized F-box proteins, acts as a substrate receptor and constitutes an active SCFβ-TrCP E3 ligase with a scaffold protein CUL1, a RING protein RBX1, and an adaptor protein SKP1. β-TrCP plays a critical role in the regulation of various physiological and pathological processes, including signal transduction, cell cycle progression, cell migration, DNA damage response, and tumorigenesis, by governing burgeoning amounts of key regulators for ubiquitination and proteasomal degradation. Given that a variety of β-TrCP substrates are well-known oncoproteins and tumor suppressors, and dysregulation of β-TrCP is frequently identified in human cancers, β-TrCP plays a vital role in carcinogenesis. In this review, we first briefly introduce the characteristics of β-TrCP1, β-TrCP2, and SCFβ-TrCP ubiquitin ligase, and then discuss SCFβ-TrCP ubiquitin ligase regulated biological processes by targeting its substrates for degradation. Moreover, we summarize the regulation of β-TrCP1 and β-TrCP2 at multiple layers and further discuss the various roles of β-TrCP1 and β-TrCP2 in human cancer, functioning as either an oncoprotein or a tumor suppressor in a manner dependent of cellular context. Finally, we provide novel insights for future perspectives on the potential of targeting β-TrCP1 and β-TrCP2 for cancer therapy.
Collapse
Affiliation(s)
- Yanli Bi
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrui Cui
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Alam MB, Kwon YG, Simu SY, Abrar Shahriyar S, Lee SH. Attenuation of Inflammatory Symptoms by Icariside B2 in Carrageenan and LPS-Induced Inflammation Models via Regulation of MAPK/NF-κB Signaling Cascades. Biomolecules 2020; 10:1037. [PMID: 32664577 PMCID: PMC7408066 DOI: 10.3390/biom10071037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/03/2022] Open
Abstract
: Prolonged inflammatory responses can lead to the development of several chronic diseases, such as autoimmune disorders and the development of natural therapeutic agents is required. A murine model was used to assess the anti-inflammatory effects of the megastigmane glucoside, icariside B2 (ICSB), and the assessment was carried out in vitro, and in vivo. The in vitro anti-inflammatory effects of ICSB were tested using LPS-stimulated BV2 cells, and the protein expression levels of inflammatory genes and cytokines were assessed. Mice were subcutaneously injected with 1% carrageenan (CA) to induce acute phase inflammation in the paw. Inflammation was assessed by measuring paw volumes hourly; subsequently, the mice were euthanized and the right hind paw skin was expunged and processed for reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses. ICSB inhibits LPS-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) generation by reducing the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). ICSB also inhibits the COX-2 enzyme with an IC50 value of 7.80±0.26 µM. Molecular docking analysis revealed that ICSB had a strong binding affinity with both murine and human COX-2 proteins with binding energies of -8 kcal/mol and -7.4 kcal/mol, respectively. ICSB also reduces the manifestation of pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, at their transcriptional and translational level. ICSB hinders inhibitory protein κBα (IκBα) phosphorylation, thereby terminating the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) nuclear translocation. ICSB also represses the mitogen-activated protein kinases (MAPKs) signaling pathways. ICSB (50 mg/kg) showed an anti-edema effect in CA-induced mice and suppressed the CA-induced increases in iNOS and COX-2 protein levels. ICSB attenuated inflammatory responses by downregulating NF-κB expression through interference with extracellular signal-regulated kinase (ERK) and p38 phosphorylation, and by modulating the expression levels of iNOS, COX-2, TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Md Badrul Alam
- School of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (Y.-G.K.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea
| | - Yoon-Gyung Kwon
- School of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (Y.-G.K.)
| | - Shakina Yesmin Simu
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Sk Abrar Shahriyar
- Biomedical Science, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Sang Han Lee
- School of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (Y.-G.K.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea
- knu BnC, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
27
|
17-Aminogeldanamycin Inhibits Constitutive Nuclear Factor-Kappa B (NF-κB) Activity in Patient-Derived Melanoma Cell Lines. Int J Mol Sci 2020; 21:ijms21113749. [PMID: 32466509 PMCID: PMC7312877 DOI: 10.3390/ijms21113749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma remains incurable skin cancer, and targeting heat shock protein 90 (HSP90) is a promising therapeutic approach. In this study, we investigate the effect of 17-aminogeldanamycin, a potent HSP90 inhibitor, on nuclear factor-kappa B (NF-κB) activity in BRAFV600E and NRASQ61R patient-derived melanoma cell lines. We performed time-lapse microscopy and flow cytometry to monitor changes in cell confluence and viability. The NF-κB activity was determined by immunodetection of phospho-p65 and assessment of expression of NF-κB-dependent genes by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Constitutive activity of p65/NF-κB was evident in all melanoma cell lines. Differences in its level might be associated with genetic alterations in CHUK, IL1B, MAP3K14, NFKBIE, RIPK1, and TLR4, while differences in transcript levels of NF-κB-inducible genes revealed by PCR array might result from the contribution of other regulatory mechanisms. 17-Aminogeldanamycin markedly diminished the level of phospho-p65, but the total p65 protein level was unaltered, indicating that 17-aminogeldanamycin inhibited activation of p65/NF-κB. This conclusion was supported by significantly reduced expression of selected NF-κB-dependent genes: cyclin D1 (CCND1), C-X-C motif chemokine ligand 8 (CXCL8), and vascular endothelial growth factor (VEGF), as shown at transcript and protein levels, as well as secretion of IL-8 and VEGF. Our study indicates that 17-aminogeldanamycin can be used for efficient inhibition of NF-κB activity and the simultaneous diminution of IL-8 and VEGF levels in the extracellular milieu of melanoma.
Collapse
|
28
|
Hu KL, Chang HM, Zhao HC, Yu Y, Li R, Qiao J. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Hum Reprod Update 2020; 25:326-343. [PMID: 30649364 PMCID: PMC6450039 DOI: 10.1093/humupd/dmy046] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Initially identified as suppressors of metastasis in various types of cancer, kisspeptins are a family of neuropeptides that are key regulators of the mammalian reproductive axis. Accumulating evidence has shown that kisspeptin is able to control both the pulsatile and surge GnRH release, playing fundamental roles in female reproduction, which include the secretion of gonadotropins, puberty onset, brain sex differentiation, ovulation and the metabolic regulation of fertility. Furthermore, recent studies have demonstrated the involvement of the kisspeptin system in the processes of implantation and placentation. This review summarizes the current knowledge of the pathophysiological role and utility of these local placental regulatory factors as potential biomarkers during the early human gestation. OBJECTIVE AND RATIONALE A successful pregnancy, from the initiation of embryo implantation to parturition, is a complex process that requires the orchestration of a series of events. This review aims to concisely summarize what is known about the role of the kisspeptin system in implantation, placentation, early human pregnancy and pregnancy-related disorders, and to develop strategies for predicting, diagnosing and treating these abnormalities. SEARCH METHODS Using the PubMed and Google Scholar databases, we performed comprehensive literature searches in the English language describing the advancement of kisspeptins and the kisspeptin receptor (KISS1R) in implantation, placentation and early pregnancy in humans, since its initial identification in 1996 and ending in July 2018. OUTCOMES Recent studies have shown the coordinated spatial and temporal expression patterns of kisspeptins and KISS1R during human pregnancy. The experimental data gathered recently suggest putative roles of kisspeptin signaling in the regulation of trophoblast invasion, embryo implantation, placentation and early pregnancy. Dysregulation of the kisspeptin system may negatively affect the processes of implantation as well as placentation. Clinical studies indicate that the circulating levels of kisspeptins or the expression levels of kisspeptin/KISS1R in the placental tissues may be used as potential diagnostic markers for women with miscarriage and gestational trophoblastic neoplasia. WIDER IMPLICATIONS Comprehensive research on the pathophysiological role of the kisspeptin/KISS1R system in implantation and placentation will provide a dynamic and powerful approach to understanding the processes of early pregnancy, with potential applications in observational and analytic screening as well as the diagnosis, prognosis and treatment of implantation failure and early pregnancy-related disorders.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hong-Cui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
29
|
Zhang Y, Zhou S, Cai W, Han G, Li J, Chen M, Li H. Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep 2020; 22:265-276. [PMID: 32377698 PMCID: PMC7248463 DOI: 10.3892/mmr.2020.11102] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) may play an important role via senescence in the mechanism of osteoarthritis (OA) development. The synovial membrane is highly sensitive to H/R due to its oxygen consumption feature. Excessive mechanical loads and oxidative stress caused by H/R induce a senescence-associated secretory phenotype (SASP), which is related to the development of OA. The aim of the present study was to investigate the differences of SASP manifestation in synovial tissue masses between tissues from healthy controls and patients with OA. The present study used tumor necrosis factor-α (TNF-α) to pre-treat synovial tissue and fibroblast-like synoviocytes (FLS) to observe the effect of inflammatory cytokines on the synovial membrane before H/R. It was determined that H/R increased interleukin (IL)-1β and IL-6 expression levels in TNF-α-induced cell culture supernatants, increased the proportion of SA-β-gal staining, and increased the expression levels of high mobility group box 1, caspase-8, p16, p21, matrix metalloproteinase (MMP)-3 and MMP-13 in the synovium. Furthermore, H/R opened the mitochondrial permeability transition pore, caused the loss of mitochondrial membrane potential (ΔΨm) and increased the release of reactive oxygen species (ROS). Moreover, H/R caused the expansion of the mitochondrial matrix and rupture of the mitochondrial extracorporeal membrane, with a decrease in the number of cristae. In addition, H/R induced activation of the JNK signaling pathway in FLS to induce cell senescence. Thus, the present results indicated that H/R may cause inflammation and escalate synovial inflammation induced by TNF-α, which may lead to the pathogenesis of OA by increasing changes in synovial SASP and activating the JNK signaling pathway. Therefore, further studies expanding on the understanding of the pathogenesis of H/R etiology in OA are required.
Collapse
Affiliation(s)
- Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weisong Cai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mao Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
30
|
Kostopoulou E, Rojas Gil AP, Spiliotis BE. Investigation of the role of β-TrCP in growth hormone transduction defect (GHTD). Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0029. [PMID: 32114520 DOI: 10.1515/hmbci-2019-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/16/2019] [Indexed: 11/15/2022]
Abstract
Background Growth hormone(GH) and epidermal growth factor (EGF) stimulate cell growth and differentiation, and crosstalking between their signaling pathways is important for normal cellular development. Growth hormone transduction defect (GHTD) is characterized by excessive GH receptor (GHR) degradation, due to over-expression of the E3 ubiquitin ligase, cytokine inducible SH2-containing protein (CIS). GH induction of GHTD fibroblasts after silencing of messenger RNA (mRNA) CIS (siCIS) or with higher doses of GH restores normal GH signaling. β-Transducing-repeat-containing protein (β-TrCP), another E3 ubiquitin ligase, also plays a role in GHR endocytosis. We studied the role of β-TrCP in the regulation of the GH/GHR and EGF/EGF receptor (EGFR) pathways in normal and GHTD fibroblasts. Materials and methods Fibroblast cultures were developed from gingival biopsies of a GHTD (P) and a control child (C). Protein expression and cellular localization of β-TrCP were studied by Western immunoblotting and immunofluorescence, respectively, after: (1) GH 200 μg/L human GH (hGH) induction, either with or without silence CIS (siCIS), and (2) inductions with 200 μg/L GH or 1000 μg/L GH or 50 ng/mL EGF. Results After induction with: (1) GH200/siCIS, the protein expression and cytoplasmic-membrane localization of β-TrCP were increased in the patient, (2) GH200 in the control and GH1000 in the patient, the protein and cytoplasmic-membrane localization of β-TrCP were increased and (3) EGF, the protein expression and cytoplasmic-membrane localization of β-TrCP were increased in both the control and the patient. Conclusions (1) β-TrCP appears to be part of the negative regulatory mechanism of the GH/GHR and EGF/EGFR pathways. (2) There appears to be a negative correlation between β-TrCP and CIS. (3) In the control and GHTD patient, β-TrCP increases when CIS is suppressed, possibly as a compensatory inhibitor of the GH/GHR pathway.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Paediatric Endocrine Research Laboratory, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras 26500, Greece, Phone: +30 6972070117, Fax: +30 2610993462
| | - Andrea Paola Rojas Gil
- Faculty of Human Movement and Quality of Life Sciences Department of Nursing, University of Peloponnese, Sparta, Greece
| | - Bessie E Spiliotis
- Paediatric Endocrine Research Laboratory, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras 26500, Greece
| |
Collapse
|
31
|
Yang X, Li Y, Lv R, Qian H, Chen X, Yang CF. Study on the Multitarget Mechanism and Key Active Ingredients of Herba Siegesbeckiae and Volatile Oil against Rheumatoid Arthritis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8957245. [PMID: 31885670 PMCID: PMC6899322 DOI: 10.1155/2019/8957245] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Herba Siegesbeckiae (HS, Xixiancao in Chinese) is widely used to treat inflammatory joint diseases such as rheumatoid arthritis (RA) and arthritis, and its molecular mechanisms and active ingredients have not been completely elucidated. METHODS In this study, the small molecule ligand library of HS was built based on Traditional Chinese Medicine Systems Pharmacology (TCMSP). The essential oil from HS was extracted through hydrodistillation and analyzed by Gas Chromatography-Mass Spectrometer (GC-MS). The target of RA was screened based on Comparative Toxicogenomics Database (CTD). The key genes were output by the four algorithms' maximum neighborhood component (MNC), degree, maximal clique centrality (MCC), and stress in cytoHubba in Cytoscape, while biological functions and pathways were also analyzed. The key active ingredients and mechanism of HS and essential oil against RA were verified by molecular docking technology (Sybyl 2.1.1) in treating RA. The interaction between 6 active ingredients (degree ≥ 5) and CSF2, IL1β, TNF, and IL6 was researched based on the software Ligplot. RESULTS There were 31 small molecule constituents of HS and 16 main chemical components of essential oil (relative content >1%) of HS. There were 47 chemical components in HS. Networks showed that 9 core targets (TNF, IL1β, CSF2, IFNG, CTLA4, IL18, CD26, CXCL8, and IL6) of RA were based on Venn diagrams. In addition, molecular docking simulation indicated that CSF2, IL1β, TNF, and IL6 had good binding activity with the corresponding compounds (degree > 10).The 6 compounds (degree ≥ 5) of HS and essential oil had good interaction with 5 or more targets. CONCLUSION This study validated and predicted the mechanism and key active ingredients of HS and volatile oil in treating RA. Additionally, this study provided a good foundation for further experimental studies.
Collapse
Affiliation(s)
- Xin Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yahui Li
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Runlin Lv
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Haibing Qian
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xiangyun Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chang Fu Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
32
|
Kim HY, Rho SH, Lim JH, Park HJ, Jeong HJ. Protective effect of linoleic acid against inflammatory reactions by mast cell via caspase-1 cascade pathways. J Food Biochem 2019; 43:e12932. [PMID: 31368553 DOI: 10.1111/jfbc.12932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022]
Abstract
Blockade of caspase-1 was reported to be a new target for allergic inflammation treatment. Here, we present the effect of linoleic acid (LA), a constituent of Allium hookeri (AH), to alleviate mast cell-mediated allergic inflammation. Pretreatment of LA and AH significantly reduced caspase-1 activation without displaying host cell cytotoxicity in activated human mast cells. IC50 value of LA on caspase-1 activity is 0.014 μM. LA and AH pretreatment effectively regulated increased levels of interleukin (IL)-1β, IL-6, IL-8, thymic stromal lymphopoietin, and tumor necrosis factor on activated human mast cells. Moreover, LA and AH were effective against activations of nuclear factor-κB and mitogen-activated protein kinases in human mast cells. In summary, LA and AH alleviate allergic inflammatory reactions via blocking caspase-1 cascade signaling pathway. These results provide evidence for the anti-allergic inflammatory properties of LA and AH and corroborate its potential use for the treatment and prevention of allergic diseases. PRACTICAL APPLICATIONS: Allium hookeri (AH) is used as traditional food to treat various diseases and contains an essential fatty acid, linoleic acid (LA). LA and AH alleviate mast cell-mediated allergic inflammatory reactions via inhibiting inflammatory mediators. These results provide evidence for the anti-allergic inflammatory properties of LA and AH and corroborate its potential use for the treatment and prevention of allergic diseases.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Ho Rho
- School of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jin-Ho Lim
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, Republic of Korea
| | - Hyun Jin Park
- School of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
33
|
Ouyang Z, Huang Q, Liu B, Wu H, Liu T, Liu Y. Rubidium Chloride Targets Jnk/p38-Mediated NF-κB Activation to Attenuate Osteoclastogenesis and Facilitate Osteoblastogenesis. Front Pharmacol 2019; 10:584. [PMID: 31191317 PMCID: PMC6539219 DOI: 10.3389/fphar.2019.00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
Abstract
The unbalanced crosstalk between osteoclasts and osteoblasts could lead to disruptive bone homeostasis. Herein, we investigated the therapeutic effects of rubidium chloride (RbCl) on ovariectomized (OVX) and titanium (Ti) particle-induced calvaria osteolysis mouse models, showing that non-toxic RbCl attenuated RANKL-stimulated osteoclast formation and functionality while significantly enhancing osteogenesis in vitro. The expressions of osteoclast-specific genes were downregulated considerably by RbCl. Despite the direct inhibition of RANKL-induced activation of MAPK signaling, RbCl was able to target NF-κB directly and indirectly. We found that after the co-stimulation of the c-Jun N-terminal kinase (Jnk)/p38 activator and RANKL, RbCl inhibited the elevated expression of p-IKKα and the degradation of IκBα in osteoclast precursors, indicating indirect NF-κB inhibition via MAPK suppression. Furthermore, the two animal models demonstrated that RbCl attenuated tartrate-resistant acid phosphate (TRAP)-positive osteoclastogenesis and rescued bone loss caused by the hormonal dysfunction and wear particle in vivo. Altogether, these findings suggest that RbCl can target Jnk/p38-mediated NF-κB activation to attenuate osteoclastogenesis, while facilitating osteoblastogenesis both in vivo and in vitro, suggesting the possible future use of RbCl for surface coating of orthopedic implant biomaterials to protect against osteoporosis.
Collapse
Affiliation(s)
- Zhengxiao Ouyang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Bin Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Tang Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| |
Collapse
|
34
|
Weber R, Meister M, Muley T, Thomas M, Sültmann H, Warth A, Winter H, Herth FJ, Schneider MA. Pathways regulating the expression of the immunomodulatory protein glycodelin in non‑small cell lung cancer. Int J Oncol 2019; 54:515-526. [PMID: 30535430 PMCID: PMC6317686 DOI: 10.3892/ijo.2018.4654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Glycodelin [gene name, progesterone associated endometrial protein (PAEP)] was initially described as an immune system modulator in reproduction. Today, it is also known to be expressed in several types of cancer, including non‑small cell lung cancer (NSCLC). In this cancer type, the feasibility of its usage as a follow‑up biomarker and its potential role as an immune system modulator were described. It is assumed that NSCLC tumours secrete glycodelin to overcome immune surveillance. Therefore, targeting glycodelin might be a future approach with which to weaken the immune system defence of NSCLC tumours. In this context, it is important to understand the regulatory pathways of PAEP/glycodelin expression, as these are mostly unknown so far. In this study, we analysed the influence of several inducers and of their downstream pathways on PAEP/glycodelin expression in a human lung adenocarcinoma carcinoma (ADC; H1975) and a human lung squamous cell carcinoma (SQCC) cell line (2106T). PAEP/glycodelin expression was notably stimulated by the canonical transforming growth factor (TGF)‑β pathway in SQCC cells and the PKC signalling cascade in both cell lines. The PI3K/AKT pathway inhibited PAEP/glycodelin expression in the ADC cells and an antagonizing role towards the other investigated signalling cascades is suggested herein. Furthermore, the mitogen‑activated protein kinase kinase (MEK)/extracellular‑signal regulated kinases (ERK) pathway was, to a lesser extent, found to be associated with increased PAEP/glycodelin amounts. The phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT), MEK/ERK pathway and TGF‑β are targets of NSCLC drugs that are already approved or are currently under investigation. On the whole, the findings of this study provide evidence that inhibiting these targets affects the expression of glycodelin and its immunosuppressive effect in NSCLC tumours. Moreover, understanding the regulation of glycodelin expression may lead to the development of novel therapeutic approaches with which to weaken the immune system defence of NSCLC tumours in the future.
Collapse
Affiliation(s)
- Rebecca Weber
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
| | - Michael Thomas
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
| | - Holger Sültmann
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Division of Cancer Genome Research Group, German Cancer Research Centre (DKFZ) and German Cancer Consortium (DKTK)
| | - Arne Warth
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Institute of Pathology, University of Heidelberg, 69120 Heidelberg
| | - Hauke Winter
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Department of Surgery
| | - Felix J.F. Herth
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Department of Pneumology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Marc A. Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
| |
Collapse
|
35
|
Bernard S, Myers M, Fang WB, Zinda B, Smart C, Lambert D, Zou A, Fan F, Cheng N. CXCL1 Derived from Mammary Fibroblasts Promotes Progression of Mammary Lesions to Invasive Carcinoma through CXCR2 Dependent Mechanisms. J Mammary Gland Biol Neoplasia 2018; 23:249-267. [PMID: 30094610 PMCID: PMC6582941 DOI: 10.1007/s10911-018-9407-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
With improved screening methods, the numbers of abnormal breast lesions diagnosed in women have been increasing over time. However, it remains unclear whether these breast lesions will develop into invasive cancers. To more effectively predict the outcome of breast lesions and determine a more appropriate course of treatment, it is important to understand the underlying mechanisms that regulate progression of non-invasive lesions to invasive breast cancers. A hallmark of invasive breast cancers is the accumulation of fibroblasts. Fibroblast proliferation and activation in the mammary gland is in part regulated by the Transforming Growth Factor beta1 pathway (TGF-β). In animal models, TGF-β suppression of CCL2 and CXCL1 chemokine expression is associated with metastatic progression of mammary carcinomas. Here, we show that transgenic overexpression of the Polyoma middle T viral antigen in the mouse mammary gland of C57BL/6 mice results in slow growing non-invasive lesions that progress to invasive carcinomas in a stage dependent manner. Invasive carcinomas are associated with accumulation of fibroblasts that show decreased TGF-β expression and high levels of CXCL1, but not CCL2. Using co-transplant models, we show that decreased TGF-β signaling in fibroblasts contribute to mammary carcinoma progression through enhancement of CXCL1/CXCR2 dependent mechanisms. Using cell culture models, we show that CXCL1 mediated mammary carcinoma cell invasion through NF-κB, AKT, Stat3 and p42/44MAPK dependent mechanisms. These studies provide novel mechanistic insight into the progression of pre-invasive lesions and identify new stromal biomarkers, with important prognostic implications.
Collapse
Affiliation(s)
- Shira Bernard
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Megan Myers
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Brandon Zinda
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Curtis Smart
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Diana Lambert
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - An Zou
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
36
|
Ramella NA, Andújar I, Ríos JL, Rosú SA, Tricerri MA, Schinella GR. Human apolipoprotein A-I Gly26Arg stimulation of inflammatory responses via NF-kB activation: Potential roles in amyloidosis? PATHOPHYSIOLOGY 2018; 25:397-404. [DOI: 10.1016/j.pathophys.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 01/29/2023] Open
|
37
|
Yu CC, Chen CA, Fu SL, Lin HY, Lee MS, Chiou WY, Su YC, Hung SK. Andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity. PLoS One 2018; 13:e0205666. [PMID: 30359388 PMCID: PMC6201887 DOI: 10.1371/journal.pone.0205666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/30/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Activation of Ras oncogene in human tumors is associated with radiation-associated metastatic potential. Although ionizing radiation is one important method of cancer treatments, it has been shown to enhance matrix metalloproteinases (MMPs) activity and facilitates a more aggressive cancer phenotype. Our previous studies showed that andrographolide with lower dose rates of radiation could inhibit RAS-transformed cancer metastasis in vivo; however, the molecular mechanisms are not yet clear. In this study, we aimed to explore the anti-metastatic effect of andrographolide combined with radiation on Ras-transformed cells. METHODS RAS-transformed cells were treated with andrographolide in the presence or absence of irradiation (2-4 Gy) or angiotensin II to examine cell invasion. In vivo tumorigenesis assays were also performed. The MMP-2 activity was detected by using Gelatin zymography. Signal transduction of NF-κB subunit, p65 and phosphor-ERK 1/2, were examined by using Western blotting analysis. RESULTS Treatment with andrographolide inhibited migration of Ras-transformed cells. Andrographolide treatment with radiation significantly inhibited cancer metastasis in vivo. We found that andrographolide exhibited anti-migration and anti-invasive ability against cancer metastasis via inhibition of MMP2 activity rather than affected MMP-9 and EMT. In addition, combined andrographolide with radiation appeared to be more effective in reducing MMP-2 expression, and this effect was accompanied by suppression of ERK activation that inhibits cancer cell migration and invasion. CONCLUSIONS These findings suggest that andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity.
Collapse
Affiliation(s)
- Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
| | - Chien-An Chen
- Department of Radiation Oncology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Yu-Chieh Su
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
38
|
Feng F, Qi Y, Dong C, Yang C. PVT1 regulates inflammation and cardiac function via the MAPK/NF-κB pathway in a sepsis model. Exp Ther Med 2018; 16:4471-4478. [PMID: 30546393 PMCID: PMC6256860 DOI: 10.3892/etm.2018.6814] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/22/2018] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate the role of plasmacytoma variant translocation gene 1 (PVT1) in the occurrence and development of sepsis-induced inflammation and cardiac dysfunction and its underlying mechanism. A sepsis rat model was first established by cecal ligation and puncture. The mRNA levels of PVT1 and microRNA-143 in the myocardial tissues of rats were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Cardiac function, levels of myocardial injury markers and inflammatory indicators were detected following PVT1 knockdown. The regulatory effect of microRNA-143 on PVT1 was assessed using a luciferase reporter gene assay and RT-qPCR analysis. The specific role of PVT1 in regulating the mitogen-activated protein kinase (MAPK)/nuclear factor (NF)-κB pathway was detected using western blot analysis. PVT1 was downregulated and microRNA-143 was upregulated in the myocardial tissues of sepsis rats. The left ventricular peak pressure was markedly decreased in the sepsis rats. By contrast, the left ventricular end diastolic pressure, levels of inflammatory indicators, myocardial injury markers and complement proteins of C5 and C5a were increased in the sepsis rats. The above changes were reversed by PVT1 knockdown or the upregulation of microRNA-143. MicroRNA-143 was confirmed as being bound to PVT1 using the luciferase reporter gene assay and RT-qPCR analysis. Upregulated PVT1 was capable of activating the MAPK/NF-κB pathway. Taken together, PVT1 was upregulated in the myocardial tissues of sepsis rats, which inhibited cardiac function and promoted the secretion of inflammatory factors; and the mechanism was associated with the MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Fang Feng
- Department of Critical Care Medicine, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Qi
- Department of Critical Care Medicine, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chenming Dong
- Department of Critical Care Medicine, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chaohui Yang
- Department of Critical Care Medicine, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
39
|
Kim E, Kang YG, Kim JH, Kim YJ, Lee TR, Lee J, Kim D, Cho JY. The Antioxidant and Anti-Inflammatory Activities of 8-Hydroxydaidzein (8-HD) in Activated Macrophage-Like RAW264.7 Cells. Int J Mol Sci 2018; 19:E1828. [PMID: 29933606 PMCID: PMC6073157 DOI: 10.3390/ijms19071828] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
8-Hydroxydaidzein (8-HD) is a daidzein metabolite isolated from soybeans. This compound has been studied for its anti-proliferation, depigmentation, and antioxidant activities. However, the anti-inflammatory activities of 8-HD are not well-understood. Through its antioxidant effects in ABTS and DPPH assays, 8-HD reduces the production of sodium nitroprusside (SNP)-induced radical oxygen species (ROS). By triggering various Toll-like receptors (TLRs), 8-HD suppresses the inflammatory mediator nitric oxide (NO) without cytotoxicity. We examined the regulatory mechanism of 8-HD in lipopolysaccharide (LPS)-induced conditions. We found that 8-HD diminishes inflammatory gene expression (e.g., inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-α) by regulating the transcriptional activities of nuclear factor (NF)-κB and activator protein 1 (AP-1). To find the potential targets of 8-HD, signaling pathways were investigated by immunoblotting analyses. These analyses revealed that 8-HD inhibits the activation of TAK1 and that phosphorylated levels of downstream molecules decrease in sequence. Together, our results demonstrate the antioxidant and anti-inflammatory actions of 8-HD and suggest its potential use in cosmetics or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea.
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Yong-Jin Kim
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea.
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea.
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
40
|
Bajpai VK, Alam MB, Quan KT, Ju MK, Majumder R, Shukla S, Huh YS, Na M, Lee SH, Han YK. Attenuation of inflammatory responses by (+)-syringaresinol via MAP-Kinase-mediated suppression of NF-κB signaling in vitro and in vivo. Sci Rep 2018; 8:9216. [PMID: 29907781 PMCID: PMC6003921 DOI: 10.1038/s41598-018-27585-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/16/2018] [Indexed: 01/23/2023] Open
Abstract
We examined the anti-inflammatory effects of (+)-syringaresinol (SGRS), a lignan isolated from Rubia philippinensis, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells using enzyme-based immuno assay, Western blotting, and RT-PCR analyses. Additionally, in vivo effects of SGRS in the acute inflammatory state were examined by using the carrageenan-induced hind paw edema assay in experimental mice. As a result, treatment with SGRS (25, 50, and 100 μM) inhibited protein expression of lipopolysaccharide-stimulated inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB) as well as production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) induced by LPS. Moreover, SGRS also reduced LPS-induced mRNA expression levels of iNOS and COX-2, including NO, PGE2, TNF-α, IL-1β, and IL-6 cytokines in a dose-dependent fashion. Furthermore, carrageenan-induced paw edema assay validated the in vivo anti-edema effect of SGRS. Interestingly, SGRS (30 mg/kg) suppressed carrageenan-induced elevation of iNOS, COX-2, TNF-α, IL-1β, and IL-6 mRNA levels as well as COX-2 and NF-κB protein levels, suggesting SGRS may possess anti-inflammatory activities.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Md Badrul Alam
- Departments of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mi-Kyoung Ju
- Departments of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rajib Majumder
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, 2567, Australia
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Sang Han Lee
- Departments of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
41
|
Pang Z, Junkins RD, Raudonis R, MacNeil AJ, McCormick C, Cheng Z, Lin TJ. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways. PLoS One 2018; 13:e0197491. [PMID: 29799862 PMCID: PMC5969770 DOI: 10.1371/journal.pone.0197491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLRs) recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88) and/or TIR-domain-containing adapter-inducing interferon-β (TRIF) pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1), a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS)-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2), whereas TRIF-interferon-stimulated response elements (ISRE)-mediated cytokine production (IFNβ, RANTES and IP-10) was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam J. MacNeil
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
42
|
Mantovani A, Schioppa T, Biswas SK, Marchesi F, Allavena P, Sica A. Tumor-Associated Macrophages and Dendritic Cells as Prototypic Type II Polarized Myeloid Populations. TUMORI JOURNAL 2018; 89:459-68. [PMID: 14870765 DOI: 10.1177/030089160308900501] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental signals polarize mononuclear phagocytes which can express different functional programmes. Fully polarized type I and type II (or alternatively activated) macrophages are the extremes of a continuum of functional states. Tumor-derived and T cell-derived cytokines stimulate tumor associated macrophages (TAM) to acquire a polarized type II phenotype. These functionally polarized cells, and similarly oriented or immature dendritic cells present in tumors, play a key role in subversion of adaptive immunity and in inflammatory circuits which promote tumor growth and progression.
Collapse
|
43
|
Song EH, Chung KS, Kang YM, Lee JH, Lee M, An HJ. Eupatilin suppresses the allergic inflammatory response in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:1-8. [PMID: 29655675 DOI: 10.1016/j.phymed.2017.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/21/2017] [Accepted: 08/31/2017] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Eupatilin, a pharmacologically active ingredient found in Artemisia asiatica, has been reported to have anti-oxidative, anti-inflammatory, and anti-apoptotic activities. However, molecular mechanisms underlying its anti-allergic properties are not yet clear. In this study, we investigated the effects of eupatilin on allergic inflammation in phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated human mast cells and a compound 48/80-induced anaphylactic shock model. METHODS Cytokine assays, histamine assays, quantitative real-time polymerase chain reaction analysis, western blot analysis and compound 48/80-induced anaphylactic shock model were used in this study. RESULTS Eupatilin significantly suppresses the expression and production of pro-inflammatory cytokines, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 in vitro and in vivo. In addition, eupatilin inhibits nuclear factor kappa B (NF-κB) activation by regulating the phosphorylation and degradation of IκBα via the Akt/IKK(α/β) pathway. Eupatilin treatment also attenuates the phosphorylation of p38, ERK, and JNK MAPKs. Furthermore, eupatilin blocked anaphylactic shock and decreased the release of histamine. CONCLUSIONS Anti-allergic inflammation may involve the expression and production of regulating pro-inflammatory cytokines via Akt/IKK(α/β) and MAPK activation of NF-κB. On the basis of these data, eupatilin is a potential candidate for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Eun-Hye Song
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Kyung-Sook Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Jong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dongduk Women's University, Seoul 136-714, Republic of Korea
| | - Minho Lee
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Republic of Korea.
| |
Collapse
|
44
|
Peyret V, Nazar M, Martín M, Quintar AA, Fernandez EA, Geysels RC, Fuziwara CS, Montesinos MM, Maldonado CA, Santisteban P, Kimura ET, Pellizas CG, Nicola JP, Masini-Repiso AM. Functional Toll-like Receptor 4 Overexpression in Papillary Thyroid Cancer by MAPK/ERK–Induced ETS1 Transcriptional Activity. Mol Cancer Res 2018. [DOI: 10.1158/1541-7786.mcr-17-0433] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Lim JM, Lee B, Min JH, Kim EY, Kim JH, Hong S, Kim JJ, Sohn Y, Jung HS. Effect of peiminine on DNCB-induced atopic dermatitis by inhibiting inflammatory cytokine expression in vivo and in vitro. Int Immunopharmacol 2018; 56:135-142. [DOI: 10.1016/j.intimp.2018.01.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
|
46
|
Janostiak R, Rauniyar N, Lam TT, Ou J, Zhu LJ, Green MR, Wajapeyee N. MELK Promotes Melanoma Growth by Stimulating the NF-κB Pathway. Cell Rep 2017; 21:2829-2841. [PMID: 29212029 PMCID: PMC5726781 DOI: 10.1016/j.celrep.2017.11.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023] Open
Abstract
Melanoma accounts for more than 80% of skin cancer-related deaths, and current therapies provide only short-term benefit to patients. Here, we show in melanoma cells that maternal embryonic leucine zipper kinase (MELK) is transcriptionally upregulated by the MAPK pathway via transcription factor E2F1. MELK knockdown or pharmacological inhibition blocked melanoma growth and enhanced the effectiveness of BRAFV600E inhibitor against melanoma cells. To identify mediators of MELK function, we performed stable isotope labeling with amino acids in cell culture (SILAC) and identified 469 proteins that had downregulated phosphorylation after MELK inhibition. Of these proteins, 139 were previously reported as substrates of BRAF or MEK, demonstrating that MELK is an important downstream mediator of the MAPK pathway. Furthermore, we show that MELK promotes melanoma growth by activating NF-κB pathway activity via Sequestosome 1 (SQSTM1/p62). Altogether, these results underpin an important role for MELK in melanoma growth downstream of the MAPK pathway.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Navin Rauniyar
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA; MS and Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06510, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA; MS and Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
47
|
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 2017; 413:122-134. [PMID: 29113871 DOI: 10.1016/j.canlet.2017.11.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Shireen Chikara
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Dalasanur Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
48
|
Lu L, Guo J, Hua Y, Huang K, Magaye R, Cornell J, Kelly DJ, Reid C, Liew D, Zhou Y, Chen A, Xiao W, Fu Q, Wang BH. Cardiac fibrosis in the ageing heart: Contributors and mechanisms. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:55-63. [PMID: 28316086 DOI: 10.1111/1440-1681.12753] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 01/30/2023]
Abstract
Cardiac fibrosis refers to an excessive deposition of extracellular matrix (ECM) in cardiac tissue. Fibrotic tissue is stiffer and less compliant, resulting in subsequent cardiac dysfunction and heart failure. Cardiac fibrosis in the ageing heart may involve activation of fibrogenic signalling and inhibition of anti-fibrotic signalling, leading to an imbalance of ECM turnover. Excessive accumulation of ECM such as collagen in older patients contributes to progressive ventricular dysfunction. Overexpression of collagen is derived from various sources, including higher levels of fibrogenic growth factors, proliferation of fibroblasts and cellular transdifferentiation. These may be triggered by factors, such as oxidative stress, inflammation, hypertension, cellular senescence and cell death, contributing to age-related fibrotic cardiac remodelling. In this review, we will discuss the fibrogenic contributors in age-related cardiac fibrosis, and the potential mechanisms by which fibrogenic processes can be interrupted for therapeutic intent.
Collapse
Affiliation(s)
- Lu Lu
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingbin Guo
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Hua
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kevin Huang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Ruth Magaye
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Jake Cornell
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Vic., Australia
| | - Christopher Reid
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,NHMRC Cardiovascular Centre of Research Excellence, School of Public Health, Curtin University, Perth, WA, Australia
| | - Danny Liew
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Xiao
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Qiang Fu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Hui Wang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
49
|
Park JH, Lee B, Kim HK, Kim EY, Kim JH, Min JH, Kim S, Sohn Y, Jung HS. Peimine Inhibits the Production of Proinflammatory Cytokines Through Regulation of the Phosphorylation of NF-κB and MAPKs in HMC-1 Cells. Pharmacogn Mag 2017; 13:S359-S364. [PMID: 28808406 PMCID: PMC5538180 DOI: 10.4103/0973-1296.210173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Peimine is a major biologically active component of Fritillaria ussuriensis. Peimine was investigated in chronic inflammation response, but it has not been studied in mast cell-related immediate allergic reaction. The present study aimed to evaluate anti-allergic effect of peimine in human mast cell (HMC-1). MATERIALS AND METHODS The effect of peimine on cell viability was measured by MTS assay in HMC-1. Histamine release was investigated in rat peritoneal mast cells (RPMCs). Interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) expressions were measured by ELISA assay and reverse transcription-polymerase chain reaction. Mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) were examined by Western blot. Passive cutaneous anaphylaxis (PCA) reactions were evaluated using Sprague-Dawley (SD) rats. RESULTS Peimine inhibited the production of pro-inflammatory cytokines, such as IL-6, IL-8, and TNF-α. Moreover, peimine reduced MAPKs phosphorylation and the nuclear NF-κB expression in PMACI-induced HMC-1. Peimine decreased PCA reactions in rats as well. CONCLUSION Our study proved that peimine might be suitable for the treatment of mast cell-derived allergic inflammatory reactions. SUMMARY Peimine inhibited the production of pro-inflammatory cytokines, such as IL-6, IL-8, and TNF-αPeimine reduced MAPKs phosphorylation and the nuclear NF-κB expression in PMACI-induced HMC-1Peimine decreased PCA reactions in ratsPeimine has anti-allergic effect through regulation of pro-inflammatory mechanism on mast cell. Abbreviations used: HMC-1: Human mast cell, MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, RPMCs: Rat peritoneal mast cells. IL-6: Interleukin 6, IL-8: Interleukin 8, TNF-α: Tumor necrosis factor-α, MAPKs: Mitogen-activated protein kinases; NF-κB: Nuclear factor-kappaB, PCA: Passive cutaneous anaphylaxis reactions, SD: Sprague-Dawley.
Collapse
Affiliation(s)
- Ji Hye Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Bina Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Hyun Kab Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Ju-Hee Min
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Sunkook Kim
- Multi-Functional Nano/Bio Electronics Laboratory, Kyung Hee University, Gyeonggi-do, Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|
50
|
Wang Y, Xiao H, Wu H, Yao C, He H, Wang C, Li W. G protein subunit α q regulates gastric cancer growth via the p53/p21 and MEK/ERK pathways. Oncol Rep 2017; 37:1998-2006. [PMID: 28350126 PMCID: PMC5367349 DOI: 10.3892/or.2017.5500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/02/2017] [Indexed: 12/15/2022] Open
Abstract
Genetic alterations in G protein subunit α q (GNAQ) have been reported in numerous types of human cancer. However, the role of GNAQ in human gastric cancer (GC) has not been explored. In the present study, we found that GNAQ was highly expressed in GC patient samples and GNAQ expression was related to patient age, GC differentiation status and adjuvant therapy, as determined by immunohistochemical assay. Lentivirus delivery of short hairpin RNA (shRNA) targeting GNAQ was used to explore the function of GNAQ in GC cells. Silencing of GNAQ markedly suppressed proliferation and colony formation in GC cells, and arrested the cell cycle at the S phase. Mechanistic analysis revealed that knockdown of GNAQ significantly increased the expression of p53 and p21, and decreased cyclin A and p-CDK2 protein expression. Moreover, the phosphorylation of ERK and MEK was also decreased after knockdown of GNAQ as determined by western blotting assay. Overall, our results suggest that GNAQ plays a critical role in regulating GC cell growth and survival via canonical oncogenic signaling pathways including MAPK and p53, and therefore serves as a promising new therapeutic target in GC.
Collapse
Affiliation(s)
- Yizhuo Wang
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal and Anal Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Haitao Wu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Cheng Yao
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hua He
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chang Wang
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Li
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|