1
|
Nouri Z, Biglari S, Tabatabaiefar MA, Vahidnezhad F, Hozhabrpour A, March ME, Margolis DJ, Gudjonsson JE, Hakonarson H, Vahidnezhad H. Filaggrinopathies-FLG/FLG2: Diagnostic Complexities and Immunotherapy. J Invest Dermatol 2025:S0022-202X(24)03045-8. [PMID: 39927906 DOI: 10.1016/j.jid.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
FLG and FLG2 proteins are expressed in the outer layers of the epidermis, where they are vital in epidermal differentiation and skin barrier formation. Filaggrinopathies involving dysfunctions in these proteins are associated with a spectrum of phenotypic presentations, from monogenic to multifactorial conditions. This review examines biosynthesis and function of FLG and FLG2 proteins and evaluates their molecular pathogenesis in filaggrinopathies. Moreover, genotype-phenotype correlations are assessed, emphasizing genetic diagnosis complexities and diverse immune dysregulation patterns. Finally, it examines ongoing immunotherapeutic approaches by targeting different cytokines as promising treatment options for filaggrinopathies management.
Collapse
Affiliation(s)
- Zahra Nouri
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sajjad Biglari
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Fatemeh Vahidnezhad
- Department of Computer Science and Engineering Technology, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Amir Hozhabrpour
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious disease, Iran University of Medical Sciences, Tehran, Iran
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David J Margolis
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Kida M, Abe J, Hori H, Hirai Y. PRSS3/mesotrypsin as a putative regulator of the biophysical characteristics of epidermal keratinocytes in superficial layers. Sci Rep 2024; 14:12383. [PMID: 38811772 PMCID: PMC11137022 DOI: 10.1038/s41598-024-63271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Mesotrypsin, encoded by the PRSS3 gene, is a distinctive trypsin isoform renowned for its exceptional resistance to traditional trypsin inhibitors and unique substrate specificity. Within the skin epidermis, this protein primarily expresses in the upper layers of the stratified epidermis and plays a crucial role in processing pro-filaggrin (Pro-FLG). Although prior studies have partially elucidated its functions using primary cultured keratinocytes, challenges persist due to these cells' differentiation-activated cell death program. In the present study, HaCaT keratinocytes, characterized by minimal endogenous mesotrypsin expression and sustained proliferation in differentiated states, were utilized to further scrutinize the function of mesotrypsin. Despite the ready degradation of the intact form of active mesotrypsin in these cells, fusion with Venus, flanked by a peptide linker, enables evasion from the protein elimination machinery, thus facilitating activation of the Pro-FLG processing system. Inducing Venus-mesotrypsin expression in the cells resulted in a flattened phenotype and reduced proliferative capacity. Moreover, these cells displayed altered F-actin assembly, enhanced E-cadherin adhesive activity, and facilitated tight junction formation without overtly influencing epidermal differentiation. These findings underscore mesotrypsin's potentially pivotal role in shaping the characteristic cellular morphology of upper epidermal layers.
Collapse
Affiliation(s)
- Moeko Kida
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Haruna Hori
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan.
| |
Collapse
|
3
|
Maeda K, Zhou Z, Guo M, Zhang J, Chen L, Yang F. Functional properties and skin care effects of sodium trehalose sulfate. Skin Res Technol 2024; 30:e13666. [PMID: 38606717 PMCID: PMC11010266 DOI: 10.1111/srt.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND It is known that heparinoid, a mucopolysaccharide polysulfate, is effective in improving rough skin and promoting blood circulation as medicines for diseased areas. However, heparinoid has a molecular weight of more than 5000 and cannot penetrate healthy stratum corneum. OBJECTIVE We tested the efficacy of sulfated oligosaccharides with a molecular weight of less than 2000 on the human skin barrier function and moisturizing function. METHODS We measured the transepidermal water loss (TEWL) of a three-dimensional human epidermis model cultured for 3 days after topical application of sulfated oligosaccharides, then observed the effects on TEWL suppression. The mRNA levels of proteins involved in intercellular lipid transport and storage in the stratum corneum, and moisture retention were measured using RT-qPCR. RESULTS An increase in the mRNA levels of the ATP-binding cassette subfamily A member 12 (ABCA12), which transports lipids into stratum granulosum, was confirmed. Increases were also observed in the mRNA levels of filaggrin (FLG), which is involved in the generation of natural moisturizing factors, and of caspase-14, calpain-1 and bleomycin hydrolase, which are involved in the degradation of FLG. Antibody staining confirmed that the application of sodium trehalose sulfate to 3D model skin resulted in more ABCA12, ceramide, transglutaminase1, and FLG than those in controls. In a randomized, placebo-controlled, double-blind study, participants with low stratum corneum water content applied a lotion and emulsion containing sodium trehalose sulfate to their faces for 4 weeks. Sodium trehalose sulfate decreased the TEWL and increased the stratum corneum water content. CONCLUSION These results suggest that cosmetics containing sodium trehalose sulfate act on the epidermis by increasing barrier factors and moisturizing factors, thereby ameliorating dry skin.
Collapse
Affiliation(s)
- Kazuhisa Maeda
- School of Bioscience and BiotechnologyTokyo University of TechnologyHachiojiTokyoJapan
| | - Zheng Zhou
- Mageline Biology Tech Co., Ltd.WuhanHubeiChina
| | - Miao Guo
- Mageline Biology Tech Co., Ltd.WuhanHubeiChina
| | | | - Lang Chen
- Bionics ProgramTokyo University of Technology Graduate SchoolHachiojiTokyoJapan
| | - Fan Yang
- Mageline Biology Tech Co., Ltd.WuhanHubeiChina
| |
Collapse
|
4
|
Peled A, Sprecher E. Proteolytic and Antiproteolytic Activity in the Skin: Gluing the Pieces Together. J Invest Dermatol 2024; 144:466-473. [PMID: 37865898 DOI: 10.1016/j.jid.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 10/23/2023]
Abstract
Epidermal differentiation is ultimately aimed at the formation of a functional barrier capable of protecting the organism from the environment while preventing loss of biologically vital elements. Epidermal differentiation entails a delicately regulated process of cell-cell junction formation and dissolution to enable upward cell migration and desquamation. Over the past two decades, the deciphering of the genetic basis of a number of inherited conditions has delineated the pivotal role played in this process by a series of proteases and protease inhibitors, including serpins, cathepsins, and cystatins, suggesting novel avenues for therapeutic intervention in both rare and common disorders of cornification.
Collapse
Affiliation(s)
- Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Dragan M, Chen Z, Li Y, Le J, Sun P, Haensel D, Sureshchandra S, Pham A, Lu E, Pham KT, Verlande A, Vu R, Gutierrez G, Li W, Jang C, Masri S, Dai X. Ovol1/2 loss-induced epidermal defects elicit skin immune activation and alter global metabolism. EMBO Rep 2023; 24:e56214. [PMID: 37249012 PMCID: PMC10328084 DOI: 10.15252/embr.202256214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole-body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor-encoding Ovol1 and Ovol2 in adult epidermis results in barrier dysregulation through impacting epithelial-mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long-term consequences of epidermal-specific Ovol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole-body metabolism that is in part mediated through aberrant immune activation.
Collapse
Affiliation(s)
- Morgan Dragan
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Zeyu Chen
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Department of Dermatology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Present address:
Institute of PsoriasisTongji University School of MedicineShanghaiChina
| | - Yumei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Johnny Le
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Peng Sun
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Daniel Haensel
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Program in Epithelial BiologyStanford University School of MedicineStanfordCAUSA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Anh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Eddie Lu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Katherine Thanh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Amandine Verlande
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Remy Vu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Wei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Selma Masri
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Xing Dai
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
- Department of Dermatology, School of MedicineUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
6
|
Paul AA, Szulc NA, Kobiela A, Brown SJ, Pokrzywa W, Gutowska-Owsiak D. In silico analysis of the profilaggrin sequence indicates alterations in the stability, degradation route, and intracellular protein fate in filaggrin null mutation carriers. Front Mol Biosci 2023; 10:1105678. [PMID: 37200867 PMCID: PMC10185843 DOI: 10.3389/fmolb.2023.1105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Loss of function mutation in FLG is the major genetic risk factor for atopic dermatitis (AD) and other allergic manifestations. Presently, little is known about the cellular turnover and stability of profilaggrin, the protein encoded by FLG. Since ubiquitination directly regulates the cellular fate of numerous proteins, their degradation and trafficking, this process could influence the concentration of filaggrin in the skin. Objective: To determine the elements mediating the interaction of profilaggrin with the ubiquitin-proteasome system (i.e., degron motifs and ubiquitination sites), the features responsible for its stability, and the effect of nonsense and frameshift mutations on profilaggrin turnover. Methods: The effect of inhibition of proteasome and deubiquitinases on the level and modifications of profilaggrin and processed products was assessed by immunoblotting. Wild-type profilaggrin sequence and its mutated variants were analysed in silico using the DEGRONOPEDIA and Clustal Omega tool. Results: Inhibition of proteasome and deubiquitinases stabilizes profilaggrin and its high molecular weight of presumably ubiquitinated derivatives. In silico analysis of the sequence determined that profilaggrin contains 18 known degron motifs as well as multiple canonical and non-canonical ubiquitination-prone residues. FLG mutations generate products with increased stability scores, altered usage of the ubiquitination marks, and the frequent appearance of novel degrons, including those promoting C-terminus-mediated degradation routes. Conclusion: The proteasome is involved in the turnover of profilaggrin, which contains multiple degrons and ubiquitination-prone residues. FLG mutations alter those key elements, affecting the degradation routes and the mutated products' stability.
Collapse
Affiliation(s)
- Argho Aninda Paul
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian Kobiela
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Hori H, Kotani A, Abe J, Matsuguchi S, Hirai Y. Extracellular epimorphin impairs expression and processing of profilaggrin in HaCaT keratinocytes. Cytotechnology 2023; 75:123-133. [PMID: 36969570 PMCID: PMC10030722 DOI: 10.1007/s10616-022-00566-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The expression and processing of filaggrin, a filament-associated protein in the skin epidermis, is closely associated with keratinocyte cornification. The large precursor profilaggrin (Pro-FLG) is initially detected at the granular layer in keratohyalin granules, subsequently processed into 10 to 12 filaggrin monomers (mFLGs) for keratin assembly, and ultimately degraded into smaller peptides that behave as natural moisturizing factor (NMF) at the outermost epidermis. We previously reported that epimorphin (EPM) extruded upon external stimuli severely perturbs epidermal terminal differentiation. Using HaCaT keratinocytes with inducible expression and recombinant EPM and FLG, we investigated the effect of extracellular EPM on the expression profile of filaggrin. As expression and processing of Pro-FLG in primary keratinocytes are accompanied with apoptotic cell death, we employed HaCaT keratinocytes that grow and express filaggrin mRNA in standard culture medium. In response to ectopic stimulation with extracellular EPM, Pro-FLG expression decreased with elimination of keratohyalin granules in the cells, with filaggrin mRNA remained constant and profilaggrin processing was not accelerated. Additionally, using a recombinant form of mFLG engineered for intracellular localization, we found that extracellular EPM hindered proteolytic cleavage of mFLG for production of NMF. Taken together, extracellularly extruded EPM, an epidermal cornification blocker, not only decreases Pro-FLG expression but also reduces the production of NMF in HaCaT keratinocytes. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00566-8.
Collapse
Affiliation(s)
- Haruna Hori
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
- Present Address: Oppen Cosmetics Co, LTD. 2-17-1 Kisibeminami, Suita, 565-8501 Japan
| | - Ayaka Kotani
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| | - Shuji Matsuguchi
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| |
Collapse
|
8
|
Investigations into the filaggrin null phenotype: showcasing the methodology for CRISPR/Cas9 editing of human keratinocytes. J Invest Dermatol 2023:S0022-202X(23)00165-3. [PMID: 36893939 DOI: 10.1016/j.jid.2023.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/20/2023] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
Ever since the association between filaggrin (FLG) loss-of-function mutations and ichthyosis vulgaris and atopic dermatitis disease onset was identified, filaggrins function has been under investigation. Intra-individual genomic predisposition, immunological confounders, and environmental interactions complicate the comparison between FLG genotypes and related causal effects. Using CRISPR/Cas9, we generated human FLG knockout (ΔFLG) N/TERT-2G keratinocytes. Filaggrin deficiency was demonstrated by immunohistochemistry of human epidermal equivalent (HEE) cultures. Next to (partial) loss of structural proteins (IVL, HRNR, KRT2, and TGM1), the stratum corneum was more dense and lacked the typical basket weave appearance. In addition, electrical impedance spectroscopy and transepidermal water loss analyses highlighted a compromised epidermal barrier in ΔFLG-HEEs. Correction of FLG reinstated the presence of keratohyalin granules in the stratum granulosum, filaggrin protein expression, and expression of aforementioned proteins. The beneficial effects on stratum corneum formation were reflected by normalization of EIS and TEWL. This study demonstrates the causal phenotypical and functional consequences of filaggrin deficiency, indicating filaggrin is not only central in epidermal barrier function but also vital for epidermal differentiation by orchestrating the expression of other important epidermal proteins. These observations pave the way to fundamental investigations into the exact role of filaggrin in skin biology and disease.
Collapse
|
9
|
Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J Control Release 2023; 355:624-654. [PMID: 36775245 DOI: 10.1016/j.jconrel.2023.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Lipid vesicles can provide a cost-effective enhancement of skin drug absorption when vesicle production process is optimised. It is an important challenge to design the ideal vesicle, since their properties and features are related, as changes in one affect the others. Here, we review the main components, preparation and characterization methods commonly used, and the key properties that lead to highly efficient vesicles for transdermal drug delivery purposes. We stand by size, deformability degree and drug loading, as the most important vesicle features that determine the further transdermal drug absorption. The interest in this technology is increasing, as demonstrated by the exponential growth of publications on the topic. Although long-term preservation and scalability issues have limited the commercialization of lipid vesicle products, freeze-drying and modern escalation methods overcome these difficulties, thus predicting a higher use of these technologies in the market and clinical practice.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Teresa M Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain.
| |
Collapse
|
10
|
Haack AM, Overall CM, Auf dem Keller U. Degradomics technologies in matrisome exploration. Matrix Biol 2022; 114:1-17. [PMID: 36280126 DOI: 10.1016/j.matbio.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Consisting of a defined set of extracellular proteins secreted from resident cells and with minor contributions from serum proteins, the extracellular matrix (ECM) is an essential component of all tissues. Maintaining tissue homeostasis, structural support and cellular control through cell-ECM communication, the ECM has come to be viewed as not just a passive structural entity but rather as a dynamic signaling conduit between cells and the extracellular compartment. Proteins and their cleavage products mediate this communication, and aberrant signaling, either directly or indirectly distorting the ECM, results in pathological conditions including cancer, inflammation, fibrosis, and neurodegenerative diseases. Characterization of ECM components, the matrisome, the extracellular environment and their changes in disease is therefore of importance to understand and mitigate by developing novel therapeutics. Liquid chromatography-mass spectrometry (LC-MS) proteomics has been integral to protein and proteome research for decades and long superseded the obsolescent gel-based approaches. A continuous effort has ensured progress with increased sensitivity and throughput as more advanced equipment has been developed hand in hand with specialized enrichment, detection, and identification methods. Part of this effort lies in the field of degradomics, a branch of proteomics focused on discovering novel protease substrates by identification of protease-generated neo-N termini, the N-terminome, and characterizing the responsible protease networks. Various methods to do so have been developed, some specialized for specific tissue types, others for particular proteases, throughput, or ease of use. This review aims to provide an overview of the state-of-the-art proteomics techniques that have successfully been recently utilized to characterize proteolytic cleavages in the ECM and thereby guided new research and understanding of the ECM and matrisome biology.
Collapse
Affiliation(s)
- Aleksander M Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, Department of Oral Biological and Medical Sciences, Centre for Blood Research, University of British Columbia, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Zobiri O, Zucchi H, Dimitrov A, Marrot L. Repeated Exposures to UVA1 and Particulate Matter‒Associated Pollutants Trigger Epidermal Barrier Dysfunction in Skin Epithelialization Model. J Invest Dermatol 2022; 142:3331-3335.e8. [PMID: 35750150 DOI: 10.1016/j.jid.2022.05.1091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Olivia Zobiri
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Helene Zucchi
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Laurent Marrot
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| |
Collapse
|
12
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
13
|
Morizane S, Sunagawa K, Nomura H, Ouchida M. Aberrant serine protease activities in atopic dermatitis. J Dermatol Sci 2022; 107:2-7. [PMID: 35817663 DOI: 10.1016/j.jdermsci.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease; the three major factors responsible for AD, i.e., epidermal barrier dysfunction, allergic inflammation, and itching, interact with each other to form a pathological condition. Excessive protease activities are characteristic abnormalities that affect the epidermal barrier in patients with AD. In normal skin, epidermal serine protease activities are controlled by kallikrein-related peptidases (KLKs) and their inhibitors, including lympho-epithelial Kazal-type-related inhibitor (LEKTI). In AD lesions, KLKs are excessively expressed, which results in the enhancement of epidermal serine protease activities and facilitates the invasion by allergens and microorganisms. In addition, some KLKs can activate protease-activated receptor 2 (PAR2) in epidermal keratinocytes and peripheral nerves, resulting in the induction of inflammation and itching. Furthermore, in AD patients with single nucleotide polymorphism (SNP) such as E420K and D386N of SPINK5 which encodes LEKTI, LEKTI function is attenuated, resulting in the activation of KLKs and easy invasion by allergens and microorganisms. Further analysis is needed to elucidate the detailed mechanism underlying the control of serine protease activities, which may lead to the development of new therapeutic and prophylactic agents for AD.
Collapse
Affiliation(s)
- Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | - Ko Sunagawa
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Hayato Nomura
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Mamoru Ouchida
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| |
Collapse
|
14
|
Tokura Y, Hayano S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol Int 2022; 71:14-24. [PMID: 34344611 DOI: 10.1016/j.alit.2021.07.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis (AD) is a heterogenous disorder and can be classified into different types. Stratification of subtypes may enable personalized medicine approaches. AD can be categorized into the IgE-high, extrinsic subtype and the IgE-normal, intrinsic subtype. While extrinsic AD is the major subtype possessing skin barrier impairment (high incidence of filaggrin mutations), intrinsic AD occupies about 20% of AD with female dominance and preserved barrier. Extrinsic AD exhibits protein allergy and food allergy, but intrinsic AD shows metal allergy possibly in association with suprabasin deficiency. In particular, accumulated knowledge of food allergy has more clearly characterized extrinsic AD. European American (EA) and Asian AD subtypes have been also proposed. Asian patients with AD are characterized by a unique blended immune dysregulation and barrier feature phenotype between EA patients with AD and those with psoriasis. In another ethnic study, filaggrin loss-of-function mutations are not prevalent in African American patients with AD, and Th1/Th17 attenuation and Th2/Th22 skewing were seen in these patients. Recent endotype classification provides new insights for AD and other allergic disorders. Endotype is defined as the molecular mechanisms underlying the visible features/phenotype. Endotype repertoire harbors activation of type 2 cytokines, type 1 cytokines, and IL-17/IL-22, impairment of epidermal barrier, and abnormalities of intercellular lipids. Classification of endotype has been attempted with serum markers. These lines of evidence indicate a need for personalized or precision medicine appropriate for each subtype of AD.
Collapse
Affiliation(s)
- Yoshiki Tokura
- Allergic Disease Research Center, Chutoen General Medical Center, Kakegawa, Japan; Department of Dermatology, Chutoen General Medical Center, Kakegawa, Japan.
| | - Satoshi Hayano
- Allergic Disease Research Center, Chutoen General Medical Center, Kakegawa, Japan; Department of Pediatrics, Chutoen General Medical Center, Kakegawa, Japan
| |
Collapse
|
15
|
New Functions of Low-Molecular-Weight Hyaluronic Acid on Epidermis Filaggrin Production and Degradation. COSMETICS 2021. [DOI: 10.3390/cosmetics8040118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a high-molecular-weight polysaccharide with high moisturizing power. It is composed of repeating disaccharides of N-acetyl-D-glucosamine and D-glucuronic acid. Low-molecular-weight hyaluronan (LMHA) is obtained by changing the molecular weight or modifying the functional groups of HA and is commonly used together with HA in cosmetics. The objective of this study was to determine whether LMHA promotes the synthesis of filaggrin (FLG). We also investigated whether LMHA activates FLG-degrading enzymes. Three-dimensional (3D) models of the human epidermis were cultured with LMHA. Real-time PCR was used to quantify the mRNA levels of profilaggrin (proFLG), involucrin (IVL), and FLG-degrading enzymes. FLG protein levels were measured by fluorescent antibody staining and Western blotting. The mRNA was quantified using a 3D epidermis model, and it was observed that the mRNA levels of proFLG, IVL, caspase-14 (CASP14), and bleomycin hydrolase were increased by the application of LMHA. Immunofluorescence results showed an increase in FLG proteins, and results from experiments using 3D epidermis models showed that LMHA increased the activity of CASP14. This suggests that the topical application of LMHA would result in an increase in natural moisturizing factor and promote moisturization of the stratum corneum.
Collapse
|
16
|
Kim J, Kim MG, Jeong SH, Kim HJ, Son SW. STAT3 maintains skin barrier integrity by modulating SPINK5 and KLK5 expression in keratinocytes. Exp Dermatol 2021; 31:223-232. [PMID: 34378233 DOI: 10.1111/exd.14445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022]
Abstract
Skin barrier dysfunction induces skin inflammation. Signal transducer and activator of transcription 3 (STAT3) is known to be involved in Th17-mediated immune responses and barrier integrity in the cornea and intestine; however, its role in the skin barrier remains largely unknown. In this study, we elucidated the potential role of STAT3 in the skin barrier and its effect on kallikrein-related peptidase 5 (KLK5) and serine protease inhibitor Kazal-type 5 (SPINK5) expression using a mouse model with keratinocyte-specific ablation of STAT3. Keratinocyte-specific loss of STAT3 induced a cutaneous inflammatory phenotype with pruritus and intense scratching behaviour in mice. Transcriptomic analysis revealed that the genes associated with impaired skin barrier function, including KLK5, were upregulated. The effect of STAT3 on KLK5 expression in keratinocytes was not only substantiated by the increase in KLK5 expression following treatment with STAT3 siRNA but also by its decreased expression following STAT3 overexpression. Overexpression and IL-17A-mediated stimulation of STAT3 increased the expression of SPINK5, which was blocked by STAT3 siRNA. These results suggest that the expression of SPINK5 and KLK5 in keratinocytes could be dependent on STAT3 and that STAT3 might play an essential role in the maintenance of skin barrier homeostasis.
Collapse
Affiliation(s)
- Jaehyung Kim
- BK21 Graduate Program, Department of Biomedical Sciences and Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - Min-Gyu Kim
- BK21 Graduate Program, Department of Biomedical Sciences and Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, Korea
| | - Hee Joo Kim
- Department of Dermatology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Sang Wook Son
- BK21 Graduate Program, Department of Biomedical Sciences and Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Nauroy P, Zingkou E, Sotiropoulou G, Kiritsi D. Forschen für die Praxis: Die Rolle epidermaler Proteasen in der Progression der rezessiven dystrophen Epidermolysis bullosa. J Dtsch Dermatol Ges 2021; 19:828-832. [PMID: 34139072 DOI: 10.1111/ddg.14396_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Pauline Nauroy
- Klinik für Dermatologie und Venerologie, Universitätsklinikum Freiburg
| | - Eleni Zingkou
- Klinik für Dermatologie und Venerologie, Universitätsklinikum Freiburg.,Klinik für Pharmazie, Fakultät für Gesundheitswissenschaften, Universitätsklinikum Freiburg
| | - Georgia Sotiropoulou
- Klinik für Pharmazie, Fakultät für Gesundheitswissenschaften, Universitätsklinikum Freiburg
| | - Dimitra Kiritsi
- Klinik für Dermatologie und Venerologie, Universitätsklinikum Freiburg
| |
Collapse
|
18
|
Nauroy P, Zingkou E, Sotiropoulou G, Kiritsi D. Research in practice: Towards deciphering the role of epidermal proteases in recessive dystrophic epidermolysis bullosa progression. J Dtsch Dermatol Ges 2021; 19:828-832. [PMID: 33768660 DOI: 10.1111/ddg.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable severe skin disease caused by loss of collagen VII, an extracellular protein that ensures skin cohesion. It manifests in skin blistering and unresolved cycles of wounding and healing that progressively lead to dermal stiffening and early development of aggressive cutaneous squamous cell carcinomas. Inflammation and subsequent tissue fibrosis highly contribute to RDEB pathogenicity and targeting them could provide new therapeutic options. Kallikreins (KLKs) are epidermal secreted proteases, which contribute to skin desquamation and inflammation. Kallikreins are involved in the pathogenesis of several inflammatory skin disorders, but interestingly also in the initiation and progression of different cancers. Our project aims at deciphering the role of KLKs in inflammation, fibrosis, and tumor development in RDEB.
Collapse
Affiliation(s)
- Pauline Nauroy
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Eleni Zingkou
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
19
|
Abstract
Skin barrier dysfunction caused by endogenous or exogenous factors can lead to various disorders such as xerosis cutis, ichthyoses, and atopic dermatitis. Filaggrin is a pivotal structural protein of the stratum corneum (SC) and provides natural moisturizing factors that play a role in skin barrier functions. Filaggrin aggregates keratin filaments, resulting in the formation of a keratin network, which binds cornified envelopes and collapse keratinocytes to flattened corneocytes. This complex network contributes to the physical strength of the skin. Filaggrin is degraded by caspase-14, calpain 1, and bleomycin hydrolases into amino acids and amino acid metabolites such as trans-urocanic acid and pyrrolidone carboxylic acid, which are pivotal natural moisturizing factors in the SC. Accordingly, filaggrin is important for the pathophysiology of skin barrier disorders, and its deficiency or dysfunction leads to a variety of skin disorders. Here, the roles and biology of filaggrin, related skin diseases, and a therapeutic strategy targeting filaggrin are reviewed. In addition, several drug candidates of different mode of actions targeting filaggrin, along with their clinical efficacy, are discussed.
Collapse
|
20
|
Basharat S, Gilani SA, Iftikhar F, Murtaza MA, Basharat A, Sattar A, Qamar MM, Ali M. Capsaicin: Plants of the Genus Capsicum and Positive Effect of Oriental Spice on Skin Health. Skin Pharmacol Physiol 2021; 33:331-341. [PMID: 33401283 DOI: 10.1159/000512196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 08/28/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Capsaicin, the main pungent ingredient in hot chili peppers, causes excitation of small sensory neurons. It also provides the basic pungent flavor in Capsicum fruits. SUMMARY Capsaicin plays a vital role as an agonist for the TRPV1 (transient receptor potential cation channel, subfamily V, member 1) receptor. TRPV1 is essential for the reduction of oxidative stress, pain sensations, and inflammation. Therefore, it has many pros related to health issue. Activation and positive impact of TRPV1 via capsaicin has been studied in various dermatological conditions and in other skin-related issues. Past studies documented that capsaicin plays a vital role in the prevention of atopic dermatitis as well as psoriasis. Moreover, TRPV1 is also very important for skin health because it acts as a capsaicin receptor. It is found in nociceptive nerve fibers and nonneural structures. It prompts the release of a compound that is involved in communicating pain between the spinal cord nerves and other parts of the body. Key Messages: Here, we summarize the growing evidence for the beneficial role of capsaicin and TRPV1 and how they help in the relief of skin diseases such as inflammation, permeation, dysfunction, atopic dermatitis, and psoriasis and in pain amplification syndrome.
Collapse
Affiliation(s)
- Shahnai Basharat
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Sargodha, Pakistan,
| | - Syed Amir Gilani
- Dean, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Faiza Iftikhar
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Sargodha, Pakistan
| | | | - Ayesha Basharat
- Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Ahsan Sattar
- Food Microbiology and Technology, Bahaudin Zikriya University, Multan, Pakistan
| | - Muhammad Mustafa Qamar
- Department of Physical Therapy, Sargodha Medical College, The University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ali
- Institute of Allied Health Sciences, Sargodha Medical College, The University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
21
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
22
|
DeVore SB, Gonzalez T, Sherenian MG, Herr AB, Khurana Hershey GK. On the surface: Skin microbial exposure contributes to allergic disease. Ann Allergy Asthma Immunol 2020; 125:628-638. [PMID: 32853786 PMCID: PMC11656525 DOI: 10.1016/j.anai.2020.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To discuss the skin microbiome modulates immunity by interactions between skin immunology with keratinocytes to combat pathogens. Allergic disorders are classified by immunoglobulin E sensitivity and aberrant TH2 cell responses, and an increasing number of studies have described the associations with skin microbiome fluctuations. In this review, we discuss commensal-epidermal homeostasis and its influence on allergic disease. DATA SOURCES All included references were obtained from the PubMed database. STUDY SELECTIONS Studies addressing relevant aspects of commensal-epidermal homeostasis, skin microbiome dysbiosis, microbiome-targeted therapeutics, and prevention in allergy were included. RESULTS Homeostasis between the commensal microbiome and the epidermis is important in protecting against allergic disease. Commensals promote antiallergic TH1 and TH17 immunophenotypes within the skin and induce keratinocytes to secrete antimicrobial peptides and alarmins that enhance barrier function and antagonize proallergic organisms. Perturbations in this homeostasis, however, is associated with allergic disease development. Atopic dermatitis is associated with decreases in skin commensals and increases in the pathogen, Staphylococcus aureus. Fluctuations in the skin microbiome contributes to decreased barrier dysfunction, allergic sensitization, and TH2 cytokine secretion. Little is known about how the skin microbiome affects food allergy, allergic rhinitis, and asthma, and it is poorly understood how cutaneous inflammation influences systemic allergic responses. Therapies are targeted toward maintenance of the skin barrier, replacement of healthy commensals, and anti-TH2 biologic therapy. CONCLUSION Although the effects of commensal-epidermal homeostasis on allergy within the skin are becoming increasingly clear, future studies are necessary to assess its effects on extracutaneous allergic disorders and explore potential therapeutics targeting the skin microbiome.
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tammy Gonzalez
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael G Sherenian
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew B Herr
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
23
|
Di Paolo CT, Filippou PS, Yu Y, Poda G, Diamandis EP, Prassas I. Screening of chemical libraries in pursuit of kallikrein-5 specific inhibitors for the treatment of inflammatory dermatoses. Clin Chem Lab Med 2020; 57:1737-1743. [PMID: 31129650 DOI: 10.1515/cclm-2019-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/15/2019] [Indexed: 01/06/2023]
Abstract
Background Aberrant kallikrein activity is observed in a number of inflammatory dermatoses. Up-regulation of kallikrein-5 (KLK5) activity leads to uncontrolled skin desquamation and cleavage of proteinase-activated receptor-2 (PAR2), causing the release of pro-inflammatory cytokines and disruption of epidermal barrier function. This study aimed to identify KLK5-specific small molecule inhibitors which can serve as the foundation of a novel therapeutic for inflammatory skin disorders. Methods Five chemical libraries (13,569 compounds total) were screened against recombinant KLK5 using a fluorogenic enzymatic assay. Secondary validation was performed on the top 22 primary hits. All hits were docked in the KLK5 crystal structure to rationalize their potential interactions with the protein. Results A naturally occurring compound derived from the wood of Caesalpinia sappan (Brazilin) was identified as a novel KLK5 inhibitor (IC50: 20 μM, Ki: 6.4 μM). Docking suggests that the phenolic moiety of Brazilin binds in the S1-pocket of KLK5 and forms a H-bond with S195 side chain. KLK14 was also found to be susceptible to inhibition by Brazilin with a calculated IC50 value of 14.6 μM. Conclusions Natural KLK5 small molecule inhibitors such as Brazilin, are ideal for topical skin disease drug design and remain a promising therapeutic for severe cases of inflammatory skin disorders. Optimized KLK inhibitors may have increased efficacy as therapeutics and warrant further investigation.
Collapse
Affiliation(s)
- Caitlin T Di Paolo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Panagiota S Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,University Health Network, Department of Clinical Biochemistry, Toronto, Ontario, Canada
| | - Yijing Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Gennadiy Poda
- Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.,Head of the Department of Clinical Biochemistry, Mount Sinai Hospital and University Health Network, 60 Murray St., Box 32, Floor 6, Rm L6-201, Toronto, Ontario M5T 3L9, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 60 Murray Street, 6th Floor, Room 6-201 [Box 32], Toronto, Ontario M5T 3L9, Canada
| |
Collapse
|
24
|
Di Paolo CT, Diamandis EP, Prassas I. The role of kallikreins in inflammatory skin disorders and their potential as therapeutic targets. Crit Rev Clin Lab Sci 2020; 58:1-16. [PMID: 32568598 DOI: 10.1080/10408363.2020.1775171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin is a vital organ of the human body, serving numerous protective and functional roles that are essential for survival. Residing in the epidermis are various epidermal proteases responsible for the establishment and regulation of barrier function. The human tissue kallikrein-related peptidase family conserves homeostasis of the skin barrier through their roles in desquamation, antimicrobial defense, innate immune response, and barrier maintenance. The activity of kallikreins is tightly regulated and dysregulation of kallikrein activity is seen to contribute to the formation of several inflammatory skin disorders. This review highlights the roles of kallikreins in skin homeostasis and pathologies. Due to their part in these skin disorders, inhibitors of the skin kallikreins have become attractive therapeutics. Over the past few years, both natural and synthetic inhibitors of several kallikreins have been identified and are undergoing further development as treatments to restore compromised barrier function. This review summarizes the kallikrein inhibitors under development for this purpose. These inhibitors remain promising therapeutics in cases of severe skin inflammation not well managed by current therapies.
Collapse
Affiliation(s)
- Caitlin T Di Paolo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
25
|
Aging-associated alterations in epidermal function and their clinical significance. Aging (Albany NY) 2020; 12:5551-5565. [PMID: 32217811 PMCID: PMC7138575 DOI: 10.18632/aging.102946] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
Chronologically-aged skin displays multiple functional changes in both the dermis and the epidermis. It appears that epidermal dysfunction, compromised permeability homeostasis, reduced stratum corneum hydration and elevated skin surface pH predispose to the development of aging-associated cutaneous and extracutaneous disorders. Improvements in epidermal function have been shown to be an effective alternative therapy in the prevention and treatment of some aging-associated cutaneous disorders, including eczematous dermatitis, pruritus, and xerosis. Recent studies demonstrated that epidermal dysfunction leads to the development of chronic, low-grade systemic inflammation, termed ‘inflammaging,’ which is linked to the development of aging-associated systemic disorders. Thus, correction of epidermal dysfunction could comprise a novel strategy in the prevention and treatment of aging-associated systemic disorders as well. In this review, we summarize aging-associated alterations in epidermal function, their underlying mechanisms, and their clinical significance. Regimens to improve epidermal function in the elderly are also discussed.
Collapse
|
26
|
Zhao BR, Zheng Y, Gao J, Wang XW. Maturation of an Antimicrobial Peptide Inhibits Aeromonas hydrophila Infection in Crayfish. THE JOURNAL OF IMMUNOLOGY 2019; 204:487-497. [PMID: 31852752 DOI: 10.4049/jimmunol.1900688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023]
Abstract
Rapid synthesis and release of active antimicrobial peptides (AMPs) is an important strategy in innate immune. Processing of the precursor into the active form is a common posttranslational modification of AMPs in mammals. However, in invertebrates, the mechanism of AMP maturation is largely unknown. In the current study, to our knowledge, a novel potential AMP, designated as PcnAMP, was identified because of its significant induction by bacterial infection in the red swamp crayfish (Procambarus clarkii). PcnAMP was cleaved into a short fragment postinfection. Using the purified native peptide, this cleavage was found to be mediated by trypsin after synthesis. Proteolysis produced an N-terminal peptide that exerted the antibacterial function. Although the N-terminal peptide did not show significant similarity to any other sequences, it was predicted to have an overall helical structure and high amphipathicity, both of which are typical features of many AMPs. The N-terminal active peptide exhibited a wide spectrum of antimicrobial activity. Atomic force microscope imaging and flow cytometry analysis showed that treatment with the active form of PcnAMP led to the collapse of the bacterial cell wall and permeabilization of the bacterial cell membrane. Thus, this study provided a new candidate for therapeutic agent development, and revealed new insights into the maturation of AMPs in invertebrates.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; and
| | - Yi Zheng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; and
| | - Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; and
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China
| |
Collapse
|
27
|
Maeno K. Direct Quantification of Natural Moisturizing Factors in Stratum Corneum using Direct Analysis in Real Time Mass Spectrometry with Inkjet-Printing Technique. Sci Rep 2019; 9:17789. [PMID: 31780805 PMCID: PMC6882842 DOI: 10.1038/s41598-019-54454-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023] Open
Abstract
Proper hydration of the stratum corneum, the skin's outermost layer, is essential for healthy skin. Water-soluble substances called natural moisturizing factors (NMF) are responsible for maintaining adequate moisture in the skin and are closely associated with a variety of the skin's functions. Therefore, quantitative analysis methods for NMF are indispensable when attempting to clarify one of the mechanisms of hydration and its effect on the skin. This study sought to develop a quick and simple analytical technique, which can quantify NMF from the skin without the need for extraction or separation, using direct analysis in real time-mass spectrometry (DART-MS). The goal was to deliver a high quantitative capability, so a unique inkjet printing technique was employed to evenly coat a stable isotope-labeled internal standard (SIL-IS) on tape-stripped skin. This technique allowed for the quantification of 26 NMF with established calibration curves and comparatively high linear correlations. The speed of measurement was found to be advantageous as 100 strips of tape can be measured in roughly 2 hours. The effectiveness of the inkjet coating was also verified by comparing its precision with that of conventional pipetting. This new technique can be an alternative method to quantify NMF rapidly and perhaps allow for a clearer elucidation of their function in skin.
Collapse
Affiliation(s)
- Katsuyuki Maeno
- Shiseido Global Innovation Center, 1-2-11, Takashima, Nishi-ku, Yokohama-shi, Kanagawa, 220-0011, Japan.
| |
Collapse
|
28
|
Nauroy P, Nyström A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Biol Plus 2019; 6-7:100019. [PMID: 33543017 PMCID: PMC7852331 DOI: 10.1016/j.mbplus.2019.100019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
As the outermost layer of the skin, the epidermis is playing a major role in organism homeostasis providing the first barrier against external aggressions. Although considered as an extracellular matrix (ECM)-poor subtissue, the epidermal microenvironment is a key regulator of skin homeostasis and functionality. Among the proteins essential for upholding the epidermal microenvironment are the members of the kallikrein (KLK) family composed of 15 secreted serine proteases. Most of the members of these epithelial-specific proteins are present in skin and regulate skin desquamation and inflammation. However, although epidermal products, the consequences of KLK activities are not confined to the epidermis but widespread in the skin. In this review starting with the location and proteolytic activation cascade of KLKs, we present KLKs involvement in skin homeostasis, regeneration and pathology. KLKs have a large variety of substrates including ECM proteins, and evidence suggests that they are involved in the different steps of skin wound healing as discussed here. KLKs are also used as prognosis/diagnosis markers for many cancer types and we are focusing later on KLKs in cutaneous cancers, although their pathogenicity remains to be fully elucidated. Dysregulation of the KLK cascade is directly responsible for skin diseases with heavy inflammatory aspects, highlighting their involvement in skin immune homeostasis. Future studies will be needed to support the therapeutic potential of adjusting KLK activities for treatment of inflammatory skin diseases and wound healing pathologies. Regulation of the microenvironment even in an extracellular matrix-poor tissue can heavily impact organ function. Extracellular activities of kallikreins maintain skin homeostasis by regulating desquamation and inflammation. The activation of skin epidermal-specific kallikrein family of proteases is regulated by an intricate proteolytic cascade. Kallikreins are emerging as players during skin wound healing. Dysregulated kallikrein expression and activity occur in cancers and inflammatory skin diseases.
Collapse
Key Words
- AD, atopic dermatitis
- CDSN, corneodesmosin
- DSC1, desmocollin 1
- DSG1, desmoglein 1
- Diseases
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- Epidermal microenvironment
- Epidermis
- Inflammation
- KLKs, kallikreins
- Kallikrein
- LEKTI, lympho-epithelial Kazal-type inhibitor
- NS, Netherton syndrome
- PAR1/2, protease activated-receptor 1/2
- SCC, squamous cell carcinoma
- Wound healing
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Pauline Nauroy
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| |
Collapse
|
29
|
Egawa M, Iwanaga S, Hosoi J, Goto M, Yamanishi H, Miyai M, Katagiri C, Tokunaga K, Asai T, Ozeki Y. Label-free stimulated Raman scattering microscopy visualizes changes in intracellular morphology during human epidermal keratinocyte differentiation. Sci Rep 2019; 9:12601. [PMID: 31467379 PMCID: PMC6715667 DOI: 10.1038/s41598-019-49035-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/19/2019] [Indexed: 11/14/2022] Open
Abstract
Epidermal keratinocyte (KC) differentiation, which involves the process from proliferation to cell death for shedding the outermost layer of skin, is crucial for the barrier function of skin. Therefore, in dermatology, it is important to elucidate the epidermal KC differentiation process to evaluate the symptom level of diseases and skin conditions. Previous dermatological studies used staining or labelling techniques for this purpose, but they have technological limitations for revealing the entire process of epidermal KC differentiation, especially when applied to humans. Here, we demonstrate label-free visualization of three-dimensional (3D) intracellular morphological changes of ex vivo human epidermis during epidermal KC differentiation using stimulated Raman scattering (SRS) microscopy. Specifically, we observed changes in nuclei during the initial enucleation process in which the nucleus is digested prior to flattening. Furthermore, we found holes left behind by improperly digested nuclei in the stratum corneum, suggesting abnormal differentiation. Our findings indicate the great potential of SRS microscopy for discrimination of the degree of epidermal KC differentiation.
Collapse
Affiliation(s)
- Mariko Egawa
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan.
| | - Shinya Iwanaga
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | - Junichi Hosoi
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | - Makiko Goto
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | | | - Masashi Miyai
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | - Chika Katagiri
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | - Kyoya Tokunaga
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Takuya Asai
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
30
|
Kishibe M. Physiological and pathological roles of kallikrein-related peptidases in the epidermis. J Dermatol Sci 2019; 95:50-55. [DOI: 10.1016/j.jdermsci.2019.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
|
31
|
Kim S, Back SK, Na HS, Kee SH. Capsaicin induces atopic dermatitis-like manifestations through dysregulation of proteolytic system and alteration of filaggrin processing in rats. Exp Dermatol 2019; 27:332-339. [PMID: 29509988 DOI: 10.1111/exd.13527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 01/08/2023]
Abstract
Atopic dermatitis (AD) is a complex disease featuring pruritic skin inflammation. Many animal models have been developed. In a rat model, subcutaneous capsaicin injection within 48 hours after birth induces AD-like skin manifestations of dermatitis and scratching behaviour 3 weeks after the injection. When 2- to 4-week-old rats were injected with capsaicin, the lag period was shortened, and the severity of skin manifestations was significantly reduced, suggesting influences of postnatal development. Lgr6 is an epidermal stem cell marker that is normally restricted to the isthmus area of hair follicles at postnatal 2 weeks. Lgr6 persisted in the interfollicular epidermis of capsaicin-injected rats beyond 3 weeks after birth, indicating that capsaicin-induced skin manifestations were influenced by postnatal epidermal development. Capsaicin injection induced alteration of proteolytic processing of filaggrin and corneodesmosin, suggesting epidermal barrier dysfunction. Inappropriate degradation of matriptase was observed. Degrees of proteolysis of these proteins were corelated with the severity of manifestations, suggesting that inappropriate proteolysis might be a possible cause of the skin manifestations. These results strongly suggest that capsaicin may dysregulate the protease system, resulting in alteration of profilaggrin and corneodesmosin proteolysis and skin manifestations. These events may be influenced by postnatal epidermal development.
Collapse
Affiliation(s)
- Sewon Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, Korea
| | - Seung Keun Back
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Chungnam, Korea
| | - Heung Sik Na
- Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Sun-Ho Kee
- Department of Microbiology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
32
|
Microbiome of the Skin and Gut in Atopic Dermatitis (AD): Understanding the Pathophysiology and Finding Novel Management Strategies. J Clin Med 2019; 8:jcm8040444. [PMID: 30987008 PMCID: PMC6518061 DOI: 10.3390/jcm8040444] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is a long-standing inflammatory skin disease that is highly prevalent worldwide. Multiple factors contribute to AD, with genetics as well as the environment affecting disease development. Although AD shows signs of skin barrier defect and immunological deviation, the mechanism underlying AD is not well understood, and AD treatment is often very difficult. There is substantial data that AD patients have a disturbed microbial composition and lack microbial diversity in their skin and gut compared to controls, which contributes to disease onset and atopic march. It is not clear whether microbial change in AD is an outcome of barrier defect or the cause of barrier dysfunction and inflammation. However, a cross-talk between commensals and the immune system is now noticed, and their alteration is believed to affect the maturation of innate and adaptive immunity during early life. The novel concept of modifying skin and gut microbiome by applying moisturizers that contain nonpathogenic biomass or probiotic supplementation during early years may be a preventive and therapeutic option in high risk groups, but currently lacks evidence. This review discusses the nature of the skin and gut flora in AD, possible mechanisms of skin-gut interaction, and the therapeutic implications of microbiome correction in AD.
Collapse
|
33
|
Tokura Y, Phadungsaksawasdi P, Ito T. Atopic dermatitis as Th2 disease revisited. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2018. [DOI: 10.1002/cia2.12033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoshiki Tokura
- Department of DermatologyHamamatsu University School of Medicine Hamamatsu Japan
| | | | - Taisuke Ito
- Department of DermatologyHamamatsu University School of Medicine Hamamatsu Japan
| |
Collapse
|
34
|
Cau L, Méchin MC, Simon M. Peptidylarginine deiminases and deiminated proteins at the epidermal barrier. Exp Dermatol 2018; 27:852-858. [PMID: 29756256 DOI: 10.1111/exd.13684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Deimination or citrullination is a post-translational modification catalysed by a family of calcium-dependent enzymes called peptidylarginine deiminases (PADs). It corresponds to the transformation of arginine residues within a peptide sequence into citrulline residues. Deimination induces a decreased net charge of targeted proteins; therefore, it alters their folding and changes intra- and intermolecular ionic interactions. Deimination is involved in several physiological processes (inflammation, gene regulation, etc.) and human diseases (rheumatoid arthritis, neurodegenerative diseases, cancer, etc.). Here, we describe the PADs expressed in the epidermis and their known substrates, focusing on their role in the epidermal barrier function.
Collapse
Affiliation(s)
- Laura Cau
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Michel Simon
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| |
Collapse
|
35
|
Limón D, Fábrega MJ, Calpena AC, Badia J, Baldomà L, Pérez-García L. Multifunctional Serine Protease Inhibitor-Coated Water-Soluble Gold Nanoparticles as a Novel Targeted Approach for the Treatment of Inflammatory Skin Diseases. Bioconjug Chem 2018; 29:1060-1072. [PMID: 29406699 DOI: 10.1021/acs.bioconjchem.7b00717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The overexpression and increased activity of the serine protease Kallikrein 5 (KLK5) is characteristic of inflammatory skin diseases such as Rosacea. The use of inhibitors of this enzyme-such as 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF·HCl) or the anti-human recombinant Kallikrein 5 (anti-KLK5) antibody-in the treatment of the disease has been limited due to their low bioavailability, for which their immobilization in drug delivery agents can contribute to making serine protease inhibitors clinically useful. In this work, we synthesized gold nanoparticles (GNP) coated with a mixture of hydroxyl- and carboxyl-terminated thiolates (GNP.OH/COOH), whose carboxyl groups were used to further functionalize the nanoparticles with the serine protease inhibitor AEBSF·HCl either electrostatically or covalently (GNP.COOH AEBSF and GNP.AEBSF, respectively), or with the anti-KLK5 antibody (GNP.antiKLK5). The synthesized and functionalized GNP were highly water-soluble, and they were extensively characterized using UV-vis absorption spectroscopy, Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and Thermogravimetric Analysis (TGA). GNP.OH/COOH and their subsequent functionalizations effectively inhibited KLK5 in vitro. Internalization of fluorophore-coated GNP.OH/COOH in human keratinocytes (HaCaT cells) was proven using confocal fluorescence microscopy. Cell viability assays revealed that the cytotoxicity of free AEBSF is importantly decreased when it is incorporated in the nanoparticles, either ionically (GNP.COOH AEBSF) or, most importantly, covalently (GNP.AEBSF). The functionalized nanoparticles GNP.AEBSF and GNP.antiKLK5 inhibited intracellular KLK5 activity in HaCaT cells and diminished secretion of IL-8 under inflammatory conditions triggered by TLR-2 ligands. This study points to the great potential of these GNP as a new intracellular delivery strategy for both small drugs and antibodies in the treatment of skin diseases such as Rosacea.
Collapse
|
36
|
Cau L, Pendaries V, Lhuillier E, Thompson PR, Serre G, Takahara H, Méchin MC, Simon M. Lowering relative humidity level increases epidermal protein deimination and drives human filaggrin breakdown. J Dermatol Sci 2017; 86:106-113. [PMID: 28242341 DOI: 10.1016/j.jdermsci.2017.02.280] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Deimination (also known as citrullination), the conversion of arginine in a protein to citrulline, is catalyzed by a family of enzymes called peptidylarginine deiminases (PADs). Three PADs are expressed in the epidermis, one of their targets being filaggrin. Filaggrin plays a central role in atopic dermatitis and is a key protein for the epidermal barrier. It aggregates keratins and is cross-linked to cornified envelopes. Following its deimination, it is totally degraded to release free amino acids, contributing to the natural moisturizing factor (NMF). The mechanisms controlling this multistep catabolism in human are unknown. OBJECTIVE To test whether external humidity plays a role, and investigate the molecular mechanisms involved. METHODS Specimens of reconstructed human epidermis (RHEs) produced in humid or dry conditions (>95% or 30-50% relative humidity) were compared. RESULTS RHEs produced in the dry condition presented structural changes, including a thicker stratum corneum and a larger amount of keratohyalin granules. The transepidermal water loss and the stratum corneum pH were decreased whereas the quantity of NMF was greater. This highly suggested that filaggrin proteolysis was up-regulated. The expression/activity of the proteases involved in filaggrin breakdown did not increase while PAD1 expression and the deimination rate of proteins, including filaggrin, were drastically enhanced. Partial inhibition of PADs with Cl-amidine reversed the effect of dryness on filaggrin breakdown. CONCLUSION These results demonstrate the importance of external humidity in the control of human filaggrin metabolism, and suggest that deimination plays a major role in this regulation.
Collapse
Affiliation(s)
- Laura Cau
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France
| | - Valérie Pendaries
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France
| | - Emeline Lhuillier
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France; Plateau de Génomique GeT-Purpan, Genotoul, Toulouse, France
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guy Serre
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France
| | - Hidenari Takahara
- Department of Applied Biological Resource Sciences, School of Agriculture, University of Ibaraki, Ibaraki, Japan
| | - Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France
| | - Michel Simon
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France.
| |
Collapse
|
37
|
Komatsu T, Sasaki S, Manabe Y, Hirata T, Sugawara T. Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice. PLoS One 2017; 12:e0171178. [PMID: 28170435 PMCID: PMC5295690 DOI: 10.1371/journal.pone.0171178] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
Abstract
Astaxanthin, a carotenoid found mainly in seafood, has potential clinical applications due to its antioxidant activity. In this study, we evaluated the effect of dietary astaxanthin derived from Haematococcus pluvialis on skin photoaging in UVA-irradiated hairless mice by assessing various parameters of photoaging. After chronic ultraviolet A (UVA) exposure, a significant increase in transepidermal water loss (TEWL) and wrinkle formation in the dorsal skin caused by UVA was observed, and dietary astaxanthin significantly suppressed these photoaging features. We found that the mRNA expression of lympho-epithelial Kazal-type-related inhibitor, steroid sulfatase, and aquaporin 3 in the epidermis was significantly increased by UVA irradiation for 70 days, and dietary astaxanthin significantly suppressed these increases in mRNA expression to be comparable to control levels. In the dermis, the mRNA expression of matrix metalloprotease 13 was increased by UVA irradiation and significantly suppressed by dietary astaxanthin. In addition, HPLC-PDA analysis confirmed that dietary astaxanthin reached not only the dermis but also the epidermis. Our results indicate that dietary astaxanthin accumulates in the skin and appears to prevent the effects of UVA irradiation on filaggrin metabolism and desquamation in the epidermis and the extracellular matrix in the dermis.
Collapse
Affiliation(s)
| | - Suguru Sasaki
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuki Manabe
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Hirata
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
38
|
Kasparek P, Ileninova Z, Zbodakova O, Kanchev I, Benada O, Chalupsky K, Brattsand M, Beck IM, Sedlacek R. KLK5 and KLK7 Ablation Fully Rescues Lethality of Netherton Syndrome-Like Phenotype. PLoS Genet 2017; 13:e1006566. [PMID: 28095415 PMCID: PMC5283769 DOI: 10.1371/journal.pgen.1006566] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 01/31/2017] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Netherton syndrome (NS) is a severe skin disease caused by the loss of protease inhibitor LEKTI, which leads to the dysregulation of epidermal proteases and severe skin-barrier defects. KLK5 was proposed as a major protease in NS pathology, however its inactivation is not sufficient to rescue the lethal phenotype of LEKTI-deficient mice. In this study, we further elucidated the in vivo roles of the epidermal proteases in NS using a set of mouse models individually or simultaneously deficient for KLK5 and KLK7 on the genetic background of a novel NS-mouse model. We show that although the ablation of KLK5 or KLK7 is not sufficient to rescue the lethal effect of LEKTI-deficiency simultaneous deficiency of both KLKs completely rescues the epidermal barrier and the postnatal lethality allowing mice to reach adulthood with fully functional skin and normal hair growth. We report that not only KLK5 but also KLK7 plays an important role in the inflammation and defective differentiation in NS and KLK7 activity is not solely dependent on activation by KLK5. Altogether, these findings show that unregulated activities of KLK5 and KLK7 are responsible for NS development and both proteases should become targets for NS therapy.
Collapse
Affiliation(s)
- Petr Kasparek
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Czech Republic
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Zuzana Ileninova
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Czech Republic
| | - Olga Zbodakova
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Czech Republic
| | - Ivan Kanchev
- Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Karel Chalupsky
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Czech Republic
- Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Czech Republic
| | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umea University, Umea, Sweden
| | - Inken M. Beck
- Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Czech Republic
- Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Czech Republic
- * E-mail:
| |
Collapse
|
39
|
de Veer SJ, Swedberg JE, Brattsand M, Clements JA, Harris JM. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors. Biol Chem 2016; 397:1237-1249. [DOI: 10.1515/hsz-2016-0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
Abstract
Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2′ led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.
Collapse
|
40
|
Williams MR, Nakatsuji T, Sanford JA, Vrbanac AF, Gallo RL. Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes. J Invest Dermatol 2016; 137:377-384. [PMID: 27765722 DOI: 10.1016/j.jid.2016.10.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/22/2016] [Accepted: 10/08/2016] [Indexed: 01/08/2023]
Abstract
Bacteria that reside on the skin can influence the behavior of the cutaneous immune system, but the mechanisms responsible for these effects are incompletely understood. Colonization of the skin by Staphylococcus aureus (S. aureus) is increased in atopic dermatitis and can result in increased severity of the disease. In this study, we show that S. aureus stimulates human keratinocytes to increase their endogenous protease activity, including specific increases in trypsin activity. This increased protease activity coincided with increased expression of mRNA for kallikreins (KLKs), with KLK6, 13, and 14 showing the greatest induction after exposure to S. aureus. Suppression of mRNA for these KLKs in keratinocytes by targeted small interfering RNA silencing before S. aureus exposure blocked the increase in protease activity. Keratinocytes exposed to S. aureus showed enhanced degradation of desmoglein-1 and filaggrin, whereas small interfering RNA for KLK6, KLK13, and KLK14 partially blocked this degradation. These data illustrate how S. aureus directly influences the skin barrier integrity by stimulating endogenous proteolytic activity and defines a previously unknown mechanism by which S. aureus may influence skin diseases.
Collapse
Affiliation(s)
- Michael R Williams
- Department of Dermatology, University of California, San Diego, California, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, California, USA
| | - James A Sanford
- Department of Dermatology, University of California, San Diego, California, USA
| | - Alison F Vrbanac
- Department of Dermatology, University of California, San Diego, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, California, USA.
| |
Collapse
|
41
|
Tokura Y. Filaggrin deficiency and T-helper 17 development. Br J Dermatol 2016; 175:669-70. [DOI: 10.1111/bjd.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Tokura
- Department of Dermatology; Hamamatsu University School of Medicine; 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| |
Collapse
|
42
|
de Veer SJ, Furio L, Swedberg JE, Munro CA, Brattsand M, Clements JA, Hovnanian A, Harris JM. Selective Substrates and Inhibitors for Kallikrein-Related Peptidase 7 (KLK7) Shed Light on KLK Proteolytic Activity in the Stratum Corneum. J Invest Dermatol 2016; 137:430-439. [PMID: 27697464 DOI: 10.1016/j.jid.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/01/2023]
Abstract
Proteases have pivotal roles in the skin's outermost layer, the epidermis. In the stratum corneum, serine proteases from the kallikrein-related peptidase (KLK) family have been implicated in several key homeostatic processes, including desquamation. However, the precise contribution of specific KLKs to each process remains unclear. To address this, we used a chemical biology approach and designed selective substrates and inhibitors for KLK7, the most abundant KLK protease in the stratum corneum. The resulting KLK7 inhibitor is the most potent inhibitor of this protease reported to date (Ki = 140 pM), and displays at least 1,000-fold selectivity over several proteases that are related by function (KLK5 and KLK14) or specificity (chymotrypsin). We then used substrates and inhibitors for KLK5, KLK7, and KLK14 to explore the activity of each protease in the stratum corneum using casein zymography and an ex vivo desquamation assay. These experiments provide the most detailed assessment of each KLK's contribution to corneocyte shedding in the plantar stratum corneum, revealing that inhibition of KLK7 alone is sufficient to block shedding, whereas KLK5 is also a major contributor. Collectively, these findings unveil chemical tools for studying KLK activity and demonstrate their potential for characterizing KLK biological functions in epidermal homeostasis.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Laboratory of Genetic Skin Diseases, INSERM UMR 1163 and Imagine Institute of Genetic Diseases, Paris, France; Université Paris V Descartes-Sorbonne Paris Cité, Paris, France
| | - Laetitia Furio
- Laboratory of Genetic Skin Diseases, INSERM UMR 1163 and Imagine Institute of Genetic Diseases, Paris, France; Université Paris V Descartes-Sorbonne Paris Cité, Paris, France
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher A Munro
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Judith A Clements
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australian Prostate Cancer Research Centre, Translational Research Institute, Brisbane, Queensland, Australia
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, INSERM UMR 1163 and Imagine Institute of Genetic Diseases, Paris, France; Université Paris V Descartes-Sorbonne Paris Cité, Paris, France; Department of Genetics, Necker Hospital for Sick Children, Paris, France
| | - Jonathan M Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
43
|
Cartner T, Brand N, Tian K, Saud A, Carr T, Stapleton P, Lane ME, Rawlings AV. Effect of different alcohols on stratum corneum kallikrein 5 and phospholipase A 2 together with epidermal keratinocytes and skin irritation. Int J Cosmet Sci 2016; 39:188-196. [PMID: 27578266 DOI: 10.1111/ics.12364] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVES The aim of this exploratory study was to investigate the effect of ethanol, isopropanol and n-propanol on stratum corneum (SC) enzymes and keratinocytes in vitro together with their effects on skin condition and function. METHODS Activities of kallikrein 5 (KLK5) and phospholipase A2 (PLA2) as well as keratinocyte metabolic activity, interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α) were measured in vitro in the presence and absence of the different alcohols. We also measured transepidermal water loss (TEWL), skin capacitance, visual dryness and visual redness on the volar forearms of 25 Caucasian women following application of the alcohols 20 and 100 times per day over a period of 14 days in a clinical study. RESULTS Reduced activities of KLK5 and PLA2 were observed in the presence of the alcohols. The greatest denaturing effect was always observed for n-propanol (P < 0.001), and in the case of PLA2, the effect of isopropanol was greater than ethanol (P < 0.001). Equally, ethanol had the mildest effects on keratinocyte metabolic activity and cytokine secretion (P < 0.001) and n-propanol always produced the most severe changes in normal and differentiated keratinocytes. These in vitro findings supported the clinical results where the major effects were on the induction of skin irritation (increased dropout rates) and ranked the intolerance of the different alcohols as follows: n-propanol > isopropanol > ethanol. At the high application frequencies, the effect of the different alcohols on transepidermal water loss (TEWL) and skin capacitance was similar, but at the low application frequencies, n-propanol had a significant effect on TEWL and capacitance values (P < 0.05). Equally, n-propanol and isopropanol produced significantly more skin redness at the low application frequencies. CONCLUSIONS Clearly, isopropanol and n-propanol caused significant SC and keratinocyte perturbation in vitro together with damage to skin condition and function in vivo whereas ethanol did not. As a result, we show that ethanol-based sanitizers are better tolerated by skin, particularly in high-use settings, than other alcohols and should be the active ingredient of choice.
Collapse
Affiliation(s)
- T Cartner
- GOJO Industries, Inc, PO Box 991, Akron, OH, 44309-0991, USA
| | - N Brand
- School of Pharmacy, UCL, London, UK
| | - K Tian
- GOJO Industries, Inc, PO Box 991, Akron, OH, 44309-0991, USA
| | - A Saud
- GOJO Industries, Inc, PO Box 991, Akron, OH, 44309-0991, USA
| | - T Carr
- Carr Consulting, Wilmette, IL, USA
| | | | - M E Lane
- School of Pharmacy, UCL, London, UK
| | - A V Rawlings
- School of Pharmacy, UCL, London, UK.,AVR Consulting Ltd., 26 Shavington way, Northwich, UK
| |
Collapse
|
44
|
Abstract
Atopic dermatitis (AD) is a common skin disease that affects a large proportion of the population worldwide. The incidence of AD has increased over the last several decades along with AD's burden on the physical and psychological health of the patient and family. However, current advances in understanding the mechanisms behind the pathophysiology of AD are leading to a hopeful outlook for the future. Staphylococcus aureus (S. aureus) colonization on AD skin has been directly correlated to disease severity but the functions of other members of the skin bacterial community may be equally important. Applying knowledge gained from understanding the role of the skin microbiome in maintaining normal skin immune function, and addressing the detrimental consequences of microbial dysbiosis in driving inflammation, is a promising direction for development of new treatments. This review discusses current preclinical and clinical research focused on determining how the skin microbiome may influence the development of AD.
Collapse
|
45
|
KLK5 Inactivation Reverses Cutaneous Hallmarks of Netherton Syndrome. PLoS Genet 2015; 11:e1005389. [PMID: 26390218 PMCID: PMC4577096 DOI: 10.1371/journal.pgen.1005389] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023] Open
Abstract
Netherton Syndrome (NS) is a rare and severe autosomal recessive skin disease which can be life-threatening in infants. The disease is characterized by extensive skin desquamation, inflammation, allergic manifestations and hair shaft defects. NS is caused by loss-of-function mutations in SPINK5 encoding the LEKTI serine protease inhibitor. LEKTI deficiency results in unopposed activities of kallikrein-related peptidases (KLKs) and aberrantly increased proteolysis in the epidermis. Spink5⁻/⁻ mice recapitulate the NS phenotype, display enhanced epidermal Klk5 and Klk7 protease activities and die within a few hours after birth because of a severe skin barrier defect. However the contribution of these various proteases in the physiopathology remains to be determined. In this study, we developed a new murine model in which Klk5 and Spink5 were both knocked out to assess whether Klk5 deletion is sufficient to reverse the NS phenotype in Spink5⁻/⁻ mice. By repeated intercrossing between Klk5⁻/⁻ mice with Spink5⁻/⁻ mice, we generated Spink5⁻/⁻Klk5⁻/⁻ animals. We showed that Klk5 knock-out in Lekti-deficient newborn mice rescues neonatal lethality, reverses the severe skin barrier defect, restores epidermal structure and prevents skin inflammation. Specifically, using in situ zymography and specific protease substrates, we showed that Klk5 knockout reduced epidermal proteolytic activity, particularly its downstream targets proteases KLK7, KLK14 and ELA2. By immunostaining, western blot, histology and electron microscopy analyses, we provide evidence that desmosomes and corneodesmosomes remain intact and that epidermal differentiation is restored in Spink5⁻/⁻Klk5⁻/⁻. Quantitative RT-PCR analyses and immunostainings revealed absence of inflammation and allergy in Spink5⁻/⁻Klk5⁻/⁻ skin. Notably, Il-1β, Il17A and Tslp levels were normalized. Our results provide in vivo evidence that KLK5 knockout is sufficient to reverse NS-like symptoms manifested in Spink5⁻/⁻ skin. These findings illustrate the crucial role of protease regulation in skin homeostasis and inflammation, and establish KLK5 inhibition as a major therapeutic target for NS.
Collapse
|
46
|
Matsui T, Amagai M. Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol 2015; 27:269-80. [PMID: 25813515 DOI: 10.1093/intimm/dxv013] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023] Open
Abstract
The skin is the largest organ of the mammalian body. The outermost layer of mammalian skin, the stratum corneum (SC) of the epidermis, consists of piles of dead corneocytes that are the end-products of terminal differentiation of epidermal keratinocytes. The SC performs a crucial barrier function of epidermis. Langerhans cells, when activated, extend their dendrites through tight junctions just beneath the SC to capture external antigens. Recently, knowledge of the biology of corneocytes ('corneobiology') has progressed rapidly and many key factors that modulate its barrier function have been identified and characterized. In this review article on the SC, we summarize its evolution, formation, structure and function. Cornification is an important step of SC formation at the conversion of living epithelial cells to dead corneocytes, and consists of three major steps: formation of the intracellular keratin network, cornified envelopes and intercellular lipids. After cornification, the SC undergoes chemical reactions to form the mature SC with different functional layers. Finally, the SC is shed off at the surface ('desquamation'), mediated by a cascade of several proteases. This review will be helpful to understand our expanding knowledge of the biology of the SC, where immunity meets external antigens.
Collapse
Affiliation(s)
- Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
47
|
van Drongelen V, Danso MO, Out JJ, Mulder A, Lavrijsen APM, Bouwstra JA, El Ghalbzouri A. Explant cultures of atopic dermatitis biopsies maintain their epidermal characteristics in vitro. Cell Tissue Res 2015; 361:789-97. [PMID: 25776938 DOI: 10.1007/s00441-015-2162-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/23/2015] [Indexed: 02/05/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder characterised by various epidermal alterations. Filaggrin (FLG) mutations are a major predisposing factor for AD and much research has been focused on the FLG protein. Human skin equivalents (HSEs) might be useful tools for increasing our understanding of FLG in AD and to provide a tool for the screening of new therapies aimed at FLG replacement. Our aim is to establish an explant HSE (Ex-HSE) for AD by using non-lesional skin from AD patients wildtype for FLG or harbouring homozygous FLG mutations. These Ex-HSEs were evaluated as to whether they maintained their in vivo characteristics in vitro and whether FLG mutations affected the expression of various differentiation markers. FLG mutations did not affect the outgrowth from the biopsy for the establishment of Ex-HSEs. FLG expression was present in healthy skin and that of AD patients without FLG mutations and in their Ex-HSEs but was barely present in biopsies from patients with FLG mutations and their corresponding Ex-HSEs. AD Ex-HSEs and AD biopsies shared many similarities, i.e., proliferation and the expression of keratin 10 and loricrin, irrespective of FLG mutations. Neither KLK5 nor Lekti expression was affected by FLG mutations but was altered in the respective Ex-HSEs. Thus, Ex-HSEs established from biopsies taken from AD patients maintain their FLG genotype-phenotype in vitro and the expression of most proteins in vivo and in vitro remains similar. Our method is therefore promising as an alternative to genetic engineering approaches in the study of the role of FLG in AD.
Collapse
Affiliation(s)
- Vincent van Drongelen
- Gorlaeus Laboratories, Department of Drug Delivery Technology, Leiden Academy Centre for Drug Research, Leiden University, Leiden, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
48
|
Sakabe JI, Kamiya K, Yamaguchi H, Ikeya S, Suzuki T, Aoshima M, Tatsuno K, Fujiyama T, Suzuki M, Yatagai T, Ito T, Ojima T, Tokura Y. Proteome analysis of stratum corneum from atopic dermatitis patients by hybrid quadrupole-orbitrap mass spectrometer. J Allergy Clin Immunol 2015; 134:957-60.e8. [PMID: 25282569 DOI: 10.1016/j.jaci.2014.07.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Jun-Ichi Sakabe
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Koji Kamiya
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hayato Yamaguchi
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeki Ikeya
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro Suzuki
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masahiro Aoshima
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Tatsuno
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiharu Fujiyama
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masako Suzuki
- Equipment Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsuyoshi Yatagai
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiyuki Ojima
- Department of Community Health and Preventive Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
49
|
Abstract
BACKGROUND Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. RESULTS Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (p<3.0x10(-7)). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. CONCLUSIONS The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, New York, United States of America
| |
Collapse
|
50
|
Biagini Myers JM, Martin LJ, Kovacic MB, Mersha TB, He H, Pilipenko V, Lindsey MA, Ericksen MB, Bernstein DI, LeMasters GK, Lockey JE, Khurana Hershey GK. Epistasis between serine protease inhibitor Kazal-type 5 (SPINK5) and thymic stromal lymphopoietin (TSLP) genes contributes to childhood asthma. J Allergy Clin Immunol 2014; 134:891-899.e3. [PMID: 24831437 DOI: 10.1016/j.jaci.2014.03.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Epithelial genes have previously been associated with asthma but only explain a small fraction of heritability. In part, this might be due to epistasis, which is often not considered. OBJECTIVE We sought to determine independent and epistatic associations between filaggrin (FLG), serine protease inhibitor Kazal-type 5 (SPINK5), and thymic stromal lymphopoietin (TSLP) gene variants and childhood asthma. METHODS Using a candidate gene approach, we genotyped 29 variants in FLG, SPINK5, and TSLP in asthmatic, allergic, and nonallergic nonasthmatic white and black children participating in the well-phenotyped Greater Cincinnati Pediatric Clinic Repository. Associations with asthma were also assessed in 6 replication populations. RESULTS We observed independent associations of variants in SPINK5 (P = .003) and TSLP (P = .006) with childhood asthma; a SPINK5 single nucleotide polymorphism was replicated. In subjects with 1 or more SPINK5 risk alleles, the absence of the TSLP protective minor alleles was associated with a significant increase in asthma (67% vs 53%, P = .0017). In contrast, the presence or absence of TSLP minor alleles did not affect asthma risk in subjects without the SPINK5 risk alleles. The SPINK5 and TSLP epistasis was replicated in a black population (P = .036) who did not display independent association with variants in these genes. CONCLUSIONS Our results support epistasis between SPINK5 and TSLP, which contributes to childhood asthma. These findings emphasize the importance of using biology to inform analyses to identify genetic susceptibility to complex diseases. The results from our study have clinical relevance and support that the therapeutic effects of anti-TSLP therapy in asthmatic patients might be dependent on SPINK5 genotype.
Collapse
Affiliation(s)
- Jocelyn M Biagini Myers
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Lisa J Martin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Melinda Butsch Kovacic
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Tesfaye B Mersha
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Hua He
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Valentina Pilipenko
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Mark A Lindsey
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Mark B Ericksen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - David I Bernstein
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Grace K LeMasters
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - James E Lockey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|