1
|
Brown-Burke F, Saadey R, Mao HYC, Marra P, Brooks E, Wandtke A, Hout I, Leon S, Sharma A, Yasin A, Cash T, Ahmed EH, Baiocchi E, Finoti S, Zhang X, Bhagwat N, Vaddi K, Scherle P, Mozhenkova A, El-Ayachi I, Schenk AD, Sloan SL, Whitman K, Helmig-Mason J, Steyn S, Klimaszewski HL, Weist J, Weigel C, Koirala S, Alinari L, Snyder K, Ranganathan P, Chen CJ, Jordan MB, Baiocchi RA, Shindiapina P. PRMT5 inhibition reduces hyperinflammation in a murine model of secondary hemophagocytic lymphohistiocytosis. Blood Adv 2025; 9:2379-2392. [PMID: 39825858 DOI: 10.1182/bloodadvances.2024013651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
ABSTRACT Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein arginine methyltransferase 5 (PRMT5) mediates T-cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH. Using CPG-1826 and anti-interleukin-10R (IL-10R) antibody, we induced murine secondary HLH in vivo with a marked expansion of splenic myeloid cell subsets and concurrent reduction of T- and natural killer (NK)-cell populations. PRMT5 expression was significantly upregulated in splenic T and NK lymphocytes, monocytes, and dendritic cells in mice with HLH (P < .05). Treatment with PRT382, a potent and selective PRMT5 inhibitor, significantly reduced physical signs of secondary HLH, including splenomegaly, hepatomegaly, and anemia (P < .0001 in each case), when compared with untreated mice. Inflammatory cytokines known to drive hyperinflammation in HLH, including interferon-γ and IL-6 were reduced to healthy levels with PRT382 treatment (P > .999 for both). PRT382 treatment also reduced the expansion of myeloid cell populations (P < .0001) in mice with HLH, compared with untreated mice, while restoring T- and NK-cell numbers (P < .001 for both). These results identify PRMT5 as a promising target for the management of secondary HLH and justify further exploration in this and other models of hyperinflammation.
Collapse
Affiliation(s)
- Fiona Brown-Burke
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Rachel Saadey
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Hsiao-Yin Charlene Mao
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Paola Marra
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Eric Brooks
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Alexa Wandtke
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ian Hout
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Sydney Leon
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Archisha Sharma
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Aneeq Yasin
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Taylor Cash
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Elshafa Hassan Ahmed
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Ethan Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Stephanie Finoti
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | | | | | | | - Anna Mozhenkova
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ikbale El-Ayachi
- Division of Transplantation Surgery, The Ohio State University Wexner Medical, Columbus, OH
| | - Austin D Schenk
- Division of Transplantation Surgery, The Ohio State University Wexner Medical, Columbus, OH
| | - Shelby L Sloan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Kaylee Whitman
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Sheldon Steyn
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Haley L Klimaszewski
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Jessica Weist
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Katiri Snyder
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Chia-Jo Chen
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Michael B Jordan
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
2
|
Miura M, Kitaura H, Ohori F, Narita K, Ren J, Noguchi T, Marahleh A, Ma J, Lin A, Fan Z, Mizoguchi I. Role of CXCL10 released from osteocytes in response to TNF-α stimulation on osteoclasts. Sci Rep 2025; 15:3040. [PMID: 39856227 PMCID: PMC11760356 DOI: 10.1038/s41598-025-87092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a significant cytokine that regulates bone resorption under inflammatory conditions. However, its mechanism of action in osteocytes remains unclear. In this study, highly purified osteocytes were isolated from dentin matrix protein 1 (DMP1)-Topaz mice using cell sorter. RNA sequencing (RNA-seq) revealed that TNF-α stimulation increased C-X-C motif chemokine ligand 10 (CXCL10) gene expression in osteocytes. Although CXCL10 did not affect osteoclast differentiation in vitro, it enhanced the migration of osteoclast precursors. Additionally, in the transwell co-culture system, TNF-α induced the migration of osteoclast precursors. However, this effect was attenuated by a CXCL10-neutralizing antibody. In vivo, mice were administered supracalvarial injections of TNF-α with or without the CXCL10-neutralizing antibody for 5 days. The percentage of CXCL10-positive osteocytes increased after TNF-α administration. Additionally, osteoclast formation and bone resorption were assessed. CXCL10-neutralizing antibody-treated calvariae exhibited a significantly lower number of osteoclasts and bone resorption than those treated with TNF-α alone. These results indicated that TNF-α-induced CXCL10, which affects the migration of osteocyte-derived osteoclast precursors, may enhance TNF-α-triggered osteoclast formation and bone resorption in vivo.
Collapse
Affiliation(s)
- Mariko Miura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Kohei Narita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Jiayi Ren
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Aseel Marahleh
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Jinghan Ma
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Angyi Lin
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Ziqiu Fan
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
3
|
Giaimo BD, Ferrante F, Borggrefe T. Lysine and arginine methylation of transcription factors. Cell Mol Life Sci 2024; 82:5. [PMID: 39680066 DOI: 10.1007/s00018-024-05531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Post-translational modifications (PTMs) are implicated in many biological processes including receptor activation, signal transduction, transcriptional regulation and protein turnover. Lysine's side chain is particularly notable, as it can undergo methylation, acetylation, SUMOylation and ubiquitination. Methylation affects not only lysine but also arginine residues, both of which are implicated in epigenetic regulation. Beyond histone-tails as substrates, dynamic methylation of transcription factors has been described. The focus of this review is on these non-histone substrates providing a detailed discussion of what is currently known about methylation of hypoxia-inducible factor (HIF), P53, nuclear receptors (NRs) and RELA. The role of methylation in regulating protein stability and function by acting as docking sites for methyl-reader proteins and via their crosstalk with other PTMs is explored.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
4
|
Jiang C, Zheng L, Yan YJ, Wang M, Liu XJ, Dai JY. A Supramolecular Antibiotic Targeting Drug-Resistant Pseudomonas aeruginosa through the Inhibition of Virulence Factors and Activation of Acquired Immunity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41828-41842. [PMID: 39088848 PMCID: PMC11331443 DOI: 10.1021/acsami.4c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The bacterium Pseudomonas aeruginosa is an exceptionally resilient opportunistic pathogen, presenting formidable challenges for treatment due to its proclivity for developing drug resistance. To address this predicament, we have devised a self-assembled supramolecular antibiotic known as dHTSN1@pHPplus, which can circumvent the drug resistance mechanism of Pseudomonas aeruginosa and effectively combat Pseudomonas aeruginosa infection by impeding the secretion of key virulence factors through the inhibition of the type III secretion system while simultaneously mobilizing immune cells to eradicate Pseudomonas aeruginosa. Furthermore, dHTSN1@pHPplus was ingeniously engineered with infection-targeting capabilities, enabling it to selectively concentrate precisely at the site of infection. As anticipated, the administration of dHTSN1@pHPplus exhibited a remarkable therapeutic efficacy in combating dual resistance to Meropenem and imipenem in a mouse model of P. aeruginosa lung infection. The results obtained from metagenomic detection further confirmed these findings, demonstrating a significant reduction in the proportion of Pseudomonas aeruginosa compared to untreated mice with Pseudomonas aeruginosa-infected lungs. Additionally, no notable acute toxicity was observed in the acute toxicity experiments. The present study concludes that the remarkable efficacy of dHTSN1@pHPplus in treating drug-resistant P. aeruginosa infection confirms its immense potential as a groundbreaking antibiotic agent for combating drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Cheng Jiang
- Department
of Hepatobiliary Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing 100142, PR China
- Graduate
School of China Medical University, Shenyang 110000, China
| | - Lei Zheng
- Department
of Hepatobiliary Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing 100142, PR China
- Graduate
School of China Medical University, Shenyang 110000, China
| | - Yu-jie Yan
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710072, China
| | - Miao Wang
- Key
Laboratory for Space Biosciences and Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Xiao-Jing Liu
- Department
of Infectious Disease, The First Affiliated
Hospital of Xi’an Jiaotong University, Xi’an 710061, PR China
| | - Jing-Yao Dai
- Department
of Hepatobiliary Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing 100142, PR China
- Fourth Military
Medical University, Xi’an, Shaanxi 710072, PR China
| |
Collapse
|
5
|
Sun X, Cao S, Mao C, Sun F, Zhang X, Song Y. Post-translational modifications of p65: state of the art. Front Cell Dev Biol 2024; 12:1417502. [PMID: 39050887 PMCID: PMC11266062 DOI: 10.3389/fcell.2024.1417502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
P65, a protein subunit of NF-κB, is a widely distributed transcription factor in eukaryotic cells and exerts diverse regulatory functions. Post-translational modifications such as phosphorylation, acetylation, methylation and ubiquitination modulate p65 transcriptional activity and function, impacting various physiological and pathological processes including inflammation, immune response, cell death, proliferation, differentiation and tumorigenesis. The intricate interplay between these modifications can be antagonistic or synergistic. Understanding p65 post-translational modifications not only elucidates NF-κB pathway regulation but also facilitates the identification of therapeutic targets and diagnostic markers for associated clinical conditions.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Cao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengqi Sun
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuanming Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Sauter C, Morin T, Guidez F, Simonet J, Fournier C, Row C, Masnikov D, Pernon B, Largeot A, Aznague A, Hérault Y, Sauvageau G, Maynadié M, Callanan M, Bastie JN, Aucagne R, Delva L. Protein arginine methyltransferase 2 controls inflammatory signaling in acute myeloid leukemia. Commun Biol 2024; 7:753. [PMID: 38902349 PMCID: PMC11190286 DOI: 10.1038/s42003-024-06453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and is involved in various cellular processes, including cancer development. PRMT2 expression is increased in several cancer types although its role in acute myeloid leukemia (AML) remains unknown. Here, we investigate the role of PRMT2 in a cohort of patients with AML, PRMT2 knockout AML cell lines as well as a Prmt2 knockout mouse model. In patients, low PRMT2 expressors are enriched for inflammatory signatures, including the NF-κB pathway, and show inferior survival. In keeping with a role for PRMT2 in control of inflammatory signaling, bone marrow-derived macrophages from Prmt2 KO mice display increased pro-inflammatory cytokine signaling upon LPS treatment. In PRMT2-depleted AML cell lines, aberrant inflammatory signaling has been linked to overproduction of IL6, resulting from a deregulation of the NF-κB signaling pathway, therefore leading to hyperactivation of STAT3. Together, these findings identify PRMT2 as a key regulator of inflammation in AML.
Collapse
Affiliation(s)
- Camille Sauter
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| | - Thomas Morin
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Fabien Guidez
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - John Simonet
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Cyril Fournier
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
| | - Céline Row
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Department of Hematology Biology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Denis Masnikov
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Baptiste Pernon
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Anne Largeot
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Aziza Aznague
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Yann Hérault
- Université de Strasbourg, CNRS UMR7104, Inserm U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Marc Maynadié
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Department of Hematology Biology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Mary Callanan
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Jean-Noël Bastie
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Department of Clinical Hematology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Romain Aucagne
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Laurent Delva
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| |
Collapse
|
7
|
Calvier L, Alexander A, Marckx AT, Kounnas MZ, Durakoglugil M, Herz J. Safety of Anti-Reelin Therapeutic Approaches for Chronic Inflammatory Diseases. Cells 2024; 13:583. [PMID: 38607022 PMCID: PMC11011630 DOI: 10.3390/cells13070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Reelin, a large extracellular glycoprotein, plays critical roles in neuronal development and synaptic plasticity in the central nervous system (CNS). Recent studies have revealed non-neuronal functions of plasma Reelin in inflammation by promoting endothelial-leukocyte adhesion through its canonical pathway in endothelial cells (via ApoER2 acting on NF-κB), as well as in vascular tone regulation and thrombosis. In this study, we have investigated the safety and efficacy of selectively depleting plasma Reelin as a potential therapeutic strategy for chronic inflammatory diseases. We found that Reelin expression remains stable throughout adulthood and that peripheral anti-Reelin antibody treatment with CR-50 efficiently depletes plasma Reelin without affecting its levels or functionality within the CNS. Notably, this approach preserves essential neuronal functions and synaptic plasticity. Furthermore, in mice induced with experimental autoimmune encephalomyelitis (EAE), selective modulation of endothelial responses by anti-Reelin antibodies reduces pathological leukocyte infiltration without completely abolishing diapedesis. Finally, long-term Reelin depletion under metabolic stress induced by a Western diet did not negatively impact the heart, kidney, or liver, suggesting a favorable safety profile. These findings underscore the promising role of peripheral anti-Reelin therapeutic strategies for autoimmune diseases and conditions where endothelial function is compromised, offering a novel approach that may avoid the immunosuppressive side effects associated with conventional anti-inflammatory therapies.
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna Alexander
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Austin T. Marckx
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Murat Durakoglugil
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Zhu Y, Xia T, Chen DQ, Xiong X, Shi L, Zuo Y, Xiao H, Liu L. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat 2024; 72:101016. [PMID: 37980859 DOI: 10.1016/j.drup.2023.101016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Drug resistance remains a major challenge in cancer treatment, necessitating the development of novel strategies to overcome it. Protein arginine methyltransferases (PRMTs) are enzymes responsible for epigenetic arginine methylation, which regulates various biological and pathological processes, as a result, they are attractive therapeutic targets for overcoming anti-cancer drug resistance. The ongoing development of small molecules targeting PRMTs has resulted in the generation of chemical probes for modulating most PRMTs and facilitated clinical treatment for the most advanced oncology targets, including PRMT1 and PRMT5. In this review, we summarize various mechanisms underlying protein arginine methylation and the roles of specific PRMTs in driving cancer drug resistance. Furthermore, we highlight the potential clinical implications of PRMT inhibitors in decreasing cancer drug resistance. PRMTs promote the formation and maintenance of drug-tolerant cells via several mechanisms, including altered drug efflux transporters, autophagy, DNA damage repair, cancer stem cell-related function, epithelial-mesenchymal transition, and disordered tumor microenvironment. Multiple preclinical and ongoing clinical trials have demonstrated that PRMT inhibitors, particularly PRMT5 inhibitors, can sensitize cancer cells to various anti-cancer drugs, including chemotherapeutic, targeted therapeutic, and immunotherapeutic agents. Combining PRMT inhibitors with existing anti-cancer strategies will be a promising approach for overcoming anti-cancer drug resistance. Furthermore, enhanced knowledge of the complex functions of arginine methylation and PRMTs in drug resistance will guide the future development of PRMT inhibitors and may help identify new clinical indications.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Da-Qian Chen
- Department of Medicine Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lihong Shi
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yueqi Zuo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
9
|
Allan-Blitz LT, Goodrich J, Hu H, Akbari O, Klausner JD. Altered Tumor Necrosis Factor Response in Neurologic Postacute SARS-CoV-2 Syndrome. J Interferon Cytokine Res 2023; 43:307-313. [PMID: 37384921 PMCID: PMC10354723 DOI: 10.1089/jir.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023] Open
Abstract
Neurologic manifestations of postacute sequelae after SARS-CoV-2 infection (neuro-PASC) are common; however, the underlying drivers of those symptoms remain poorly understood. Prior work has postulated that immune dysregulation leads to ongoing neuroinflammation. We aimed to identify the cytokines involved in that immune dysregulation by comparing 37 plasma cytokine profiles among 20 case patients with neuro-PASC to 20 age- and gender-matched controls. Neuro-PASC cases were defined as individuals with self-reported persistent headache, general malaise, and anosmia or ageusia at least 28 days post-SARS-CoV-2 infection. As a sensitivity analysis, we repeated the main analysis among only participants of Hispanic heritage. In total, 40 specimens were tested. Participants were an average of 43.5 years old (interquartile range 30-52), 20 (50.0%) of whom identified as women. Levels of tumor necrosis factor alpha (TNFα) were 0.76 times lower [95% confidence interval (CI) 0.62-0.94] among cases of neuro-PASC compared with controls, as were levels of C-C motif chemokine 19 (CCL19) (0.67; 95% CI 0.50-0.91), C-C motif chemokine 2 (CCL2) (0.72; 95% CI 0.55-0.95), chemokine interferon-gamma inducible protein 10 (CXCL10) (0.63; 95% CI 0.42-0.96), and chemokine interferon-gamma inducible protein 9 (CXCL9) (0.62; 95% CI 0.38-0.99). Restricting analysis of TNF and CCL19 to participants who identified as Hispanic did not alter results. We noted a reduction in TNFα and down-stream chemokines among patients with neuro-PASC, suggesting an overall immune attenuation.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Omid Akbari
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeffrey D. Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Rahmat-Zaie R, Amini J, Haddadi M, Beyer C, Sanadgol N, Zendedel A. TNF-α/STAT1/CXCL10 mutual inflammatory axis that contributes to the pathogenesis of experimental models of multiple sclerosis: A promising signaling pathway for targeted therapies. Cytokine 2023; 168:156235. [PMID: 37267677 DOI: 10.1016/j.cyto.2023.156235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Identifying mutual neuroinflammatory axis in different experimental models of multiple sclerosis (MS) is essential to evaluate the de- and re-myelination processes and improve therapeutic interventions' reproducibility. METHODS The expression profile data set of EAE (GSE47900) and cuprizone (GSE100663) models were downloaded from the Gene Expression Omnibus database. The R package and GEO2R software processed these raw chip data. Gene Ontology (GO) functional analysis, KEGG pathway analysis, and protein-protein interaction network analysis were performed to investigate interactions between common differentially expressed genes (DEGs) in all models. Finally, the ELISA method assessed the protein level of highlighted mutual cytokines in serum. RESULTS Our data introduced 59 upregulated [CXCL10, CCL12, and GBP6 as most important] and 17 downregulated [Serpinb1a, Prr18, and Ugt8a as most important] mutual genes. The signal transducer and activator of transcription 1 (STAT1) and CXCL10 were the most crucial hub proteins among mutual upregulated genes. These mutual genes were found to be mainly involved in the TNF-α, TLRs, and complement cascade signaling, and animal models shared 26 mutual genes with MS individuals. Finally, significant upregulation of serum level of TNF-α/IL-1β/CXCL10 cytokines was confirmed in all models in a relatively similar pattern. CONCLUSION For the first time, our study revealed the common neuroinflammatory pathway in animal models of MS and introduced candidate hub genes for better evaluating the preclinical efficacy of pharmacological interventions and designing prospective targeted therapies.
Collapse
Affiliation(s)
- Roya Rahmat-Zaie
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Adib Zendedel
- Institute of Anatomy, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
11
|
Gao J, Yang J, Xue S, Ding H, Lin H, Luo C. A patent review of PRMT5 inhibitors to treat cancer (2018 - present). Expert Opin Ther Pat 2023; 33:265-292. [PMID: 37072380 DOI: 10.1080/13543776.2023.2201436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
INTRODUCTION Protein arginine methyltransferases 5 (PRMT5) belongs to type II arginine methyltransferases. Since PRMT5 plays an essential role in mammalian cells, it can regulate various physiological functions, including cell growth and differentiation, DNA damage repair, and cell signal transduction. It is an epigenetic target with significant clinical potential and may become a powerful drug target for treating cancers and other diseases. AREAS COVERED This review provides an overview of small molecule inhibitors and their associated combined treatment strategies targeting PRMT5 in cancer treatment patents published since 2018, and also summarizes the progress made by several biopharmaceutical companies in the development, application, and clinical trials of small molecule PRMT5 inhibitors. The data in this review come from WIPO, UniProt, PubChem, RCSB PDB, National Cancer Institute, and so on. EXPERT OPINION Many PRMT5 inhibitors have been developed with good inhibitory activities, but most of them lack selectivities and are associated with adverse clinical responses. In addition, the progress was almost all based on the previously established skeleton, and more research and development of a new skeleton still needs to be done. The development of PRMT5 inhibitors with high activities and selectivities is still an essential aspect of research in recent years.
Collapse
Affiliation(s)
- Jing Gao
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jie Yang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shengyu Xue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
12
|
Zhang Y, Verwilligen RAF, Van Eck M, Hoekstra M. PRMT5 inhibition induces pro-inflammatory macrophage polarization and increased hepatic triglyceride levels without affecting atherosclerosis in mice. J Cell Mol Med 2023; 27:1056-1068. [PMID: 36946061 PMCID: PMC10098290 DOI: 10.1111/jcmm.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 03/23/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) controls inflammation and metabolism through modulation of histone methylation and gene transcription. Given the important role of inflammation and metabolism in atherosclerotic cardiovascular disease, here we examined the role of PRMT5 in atherosclerosis using the specific PRMT5 inhibitor GSK3326595. Cultured thioglycollate-elicited peritoneal macrophages were exposed to GSK3326595 or DMSO control and stimulated with either 1 ng/mL LPS or 100 ng/mL interferon-gamma for 24 h. Furthermore, male low-density lipoprotein (LDL) receptor knockout mice were fed an atherogenic Western-type diet and injected intraperitoneally 3×/week with a low dose of 5 mg/kg GSK3326595 or solvent control for 9 weeks. In vitro, GSK3326595 primed peritoneal macrophages to interferon-gamma-induced M1 polarization, as evidenced by an increased M1/M2 gene marker ratio. In contrast, no difference was found in the protein expression of iNOS (M1 marker) and ARG1 (M2 marker) in peritoneal macrophages of GSK3326595-treated mice. Also no change in the T cell activation state or the susceptibility to atherosclerosis was detected. However, chronic GSK3326595 treatment did activate genes involved in hepatic fatty acid acquisition, i.e. SREBF1, FASN, and CD36 (+59%, +124%, and +67%, respectively; p < 0.05) and significantly increased hepatic triglyceride levels (+50%; p < 0.05). PRMT5 inhibition by low-dose GSK3326595 treatment does not affect the inflammatory state or atherosclerosis susceptibility of Western-type diet-fed LDL receptor knockout mice, while it induces hepatic triglyceride accumulation. Severe side effects in liver, i.e. development of non-alcoholic fatty liver disease, should thus be taken into account upon chronic treatment with this PRMT5 inhibitor.
Collapse
Affiliation(s)
- Yiheng Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Robin A F Verwilligen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| |
Collapse
|
13
|
Chiok K, Hutchison K, Miller LG, Bose S, Miura TA. Proinflammatory Responses in SARS-CoV-2 and Soluble Spike Glycoprotein S1 Subunit Activated Human Macrophages. Viruses 2023; 15:754. [PMID: 36992463 PMCID: PMC10052676 DOI: 10.3390/v15030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Critically ill COVID-19 patients display signs of generalized hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood. We inoculated and treated human macrophage cell line THP-1 with SARS-CoV-2 and purified, glycosylated, soluble SARS-CoV-2 spike protein S1 subunit (S1) to clarify the role of macrophages in pro-inflammatory responses. Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1 macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication or viral entry, virus exposure resulted in upregulation of both TNF-α and CXCL10 genes. Our study shows that extracellular soluble S1 protein is a key viral component inducing pro-inflammatory responses in macrophages, independent of virus replication. Thus, virus- or soluble S1-activated macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Kim Chiok
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA (S.B.)
| | - Kevin Hutchison
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Lindsay Grace Miller
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA (S.B.)
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA (S.B.)
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
14
|
Abe Y, Sano T, Tanaka N. The Role of PRMT5 in Immuno-Oncology. Genes (Basel) 2023; 14:678. [PMID: 36980950 PMCID: PMC10048035 DOI: 10.3390/genes14030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has caused a paradigm shift in cancer therapeutic strategy. However, this therapy only benefits a subset of patients. The difference in responses to ICIs is believed to be dependent on cancer type and its tumor microenvironment (TME). The TME is favorable for cancer progression and metastasis and can also help cancer cells to evade immune attacks. To improve the response to ICIs, it is crucial to understand the mechanism of how the TME is maintained. Protein arginine methyltransferase 5 (PRMT5) di-methylates arginine residues in its substrates and has essential roles in the epigenetic regulation of gene expression, signal transduction, and the fidelity of mRNA splicing. Through these functions, PRMT5 can support cancer cell immune evasion. PRMT5 is necessary for regulatory T cell (Treg) functions and promotes cancer stemness and the epithelial-mesenchymal transition. Specific factors in the TME can help recruit Tregs, tumor-associated macrophages, and myeloid-derived suppressor cells into tumors. In addition, PRMT5 suppresses antigen presentation and the production of interferon and chemokines, which are necessary to recruit T cells into tumors. Overall, PRMT5 supports an immunosuppressive TME. Therefore, PRMT5 inhibition would help recover the immune cycle and enable the immune system-mediated elimination of cancer cells.
Collapse
Affiliation(s)
| | | | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| |
Collapse
|
15
|
Ding M, Cho E, Chen Z, Park SW, Lee TH. ( S)-2-(Cyclobutylamino)- N-(3-(3,4-dihydroisoquinolin-2(1 H)-yl)-2-hydroxypropyl)isonicotinamide Attenuates RANKL-Induced Osteoclast Differentiation by Inhibiting NF-κB Nuclear Translocation. Int J Mol Sci 2023; 24:ijms24054327. [PMID: 36901758 PMCID: PMC10002170 DOI: 10.3390/ijms24054327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Osteoporosis is a common skeletal disease; however, effective pharmacological treatments still need to be discovered. This study aimed to identify new drug candidates for the treatment of osteoporosis. Here, we investigated the effect of EPZ compounds, protein arginine methyltransferase 5 (PRMT5) inhibitors, on RANKL-induced osteoclast differentiation via molecular mechanisms by in vitro experiments. EPZ015866 attenuated RANKL-induced osteoclast differentiation, and its inhibitory effect was more significant than EPZ015666. EPZ015866 suppressed the F-actin ring formation and bone resorption during osteoclastogenesis. In addition, EPZ015866 significantly decreased the protein expression of Cathepsin K, NFATc1, and PU.1 compared with the EPZ015666 group. Both EPZ compounds inhibited the nuclear translocation of NF-κB by inhibiting the dimethylation of the p65 subunit, which eventually prevented osteoclast differentiation and bone resorption. Hence, EPZ015866 may be a potential drug candidate for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Mina Ding
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Zhihao Chen
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Wook Park
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence:
| |
Collapse
|
16
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
17
|
Mukai M, Uchida K, Inoue G, Satoh M, Miyagi M, Yokozeki Y, Hirosawa N, Matsuura Y, Ohtori S, Takaso M. Nerve decompression surgery suppresses TNF-ɑ expression and T cell infiltration in a rat sciatic nerve chronic constriction injury model. J Orthop Res 2022; 40:2537-2545. [PMID: 35072295 DOI: 10.1002/jor.25280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/16/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Decompression surgery (DS) is a standard treatment for chronic nerve compression injuries; however, the mechanisms underlying its effects remain unclear. Here, we investigated the effects of DS on messenger RNA (mRNA) expression of tumor necrosis factor-α (TNF-α) and T cell recruitment in a rat sciatic nerve (SN) chronic constriction injury (CCI) model. Male Wistar rats were subjected to CCI to establish a model of SN injury (CCI group). DS, in which all ligatures were removed, was performed 3 days after CCI surgery (CCI + dec group). Mechanical sensitivity was assessed using the von Frey test 3, 7, and 14 days after the CCI surgery. Gene expression of Tnfa, Cd3, Cxcl10, and immunolocalization of TNF-α and the pan T cell marker, CD3, was evaluated using quantitative polymerase chain reaction (qPCR) and immunohistochemistry, respectively. In addition, the effects of TNF-α on Cxcl10 expression and CXCL10 protein production were evaluated using qPCR and enzyme-linked immunosorbent assay in SN cell culture. Rats that received DS had significantly higher withdrawal threshold levels than those in the CCI group. In addition, Tnfa, Cd3, and Cxcl10 mRNA expression increased following CCI. DS suppressed this elevated expression, with the CCI + dec group showing significantly reduced expression levels compared to the CCI group. Furthermore, TNF-α induced Cxcl10 expression and CXCL10 protein production in SN cell culture. Therefore, DS reduced TNF-α expression and T cell recruitment in the rat SN CCI model. These observations may partly explain the mechanism underlying the therapeutic effects of DS.
Collapse
Affiliation(s)
- Michiaki Mukai
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan.,Shonan University of Medical Sciences Research Institute, Chigasaki City, Kanagawa, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Yuji Yokozeki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Naoya Hirosawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| |
Collapse
|
18
|
Papoutsopoulou S, Pollock L, Williams JM, Abdul-Mahdi MMLF, Dobbash R, Duckworth CA, Campbell BJ. Interleukin-10 Deficiency Impacts on TNF-Induced NFκB Regulated Responses In Vivo. BIOLOGY 2022; 11:1377. [PMID: 36290283 PMCID: PMC9598475 DOI: 10.3390/biology11101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022]
Abstract
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that has a major protective role against intestinal inflammation. We recently revealed that intestinal epithelial cells in vitro regulate NFκB-driven transcriptional responses to TNF via an autocrine mechanism dependent on IL-10 secretion. Here in this study, we investigated the impact of IL-10 deficiency on the NFκB pathway and its downstream targets in the small intestinal mucosa in vivo. We observed dysregulation of TNF, IκBα, and A20 gene and protein expression in the small intestine of steady-state or TNF-injected Il10-/- mice, compared to wild-type C57BL6/J counterparts. Upon TNF injection, tissue from the small intestine showed upregulation of NFκB p65[RelA] activity, which was totally diminished in Il10-/- mice and correlated with reduced levels of TNF, IκBα, and A20 expression. In serum, whilst IgA levels were noted to be markedly downregulated in IL-10-deficient- mice, normal levels of mucosal IgA were seen in intestine mucosa. Importantly, dysregulated cytokine/chemokine levels were observed in both serum and intestinal tissue lysates from naïve, as well as TNF-injected Il10-/- mice. These data further support the importance of the IL-10-canonical NFκB signaling pathway axis in regulating intestinal mucosa homeostasis and response to inflammatory triggers in vivo.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Liam Pollock
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Jonathan M. Williams
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Maya M. L. F. Abdul-Mahdi
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- School of Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Reyhaneh Dobbash
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- School of Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Carrie A. Duckworth
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
19
|
Sowers ML, Tang H, Singh VK, Khan A, Mishra A, Restrepo BI, Jagannath C, Zhang K. Multi-OMICs analysis reveals metabolic and epigenetic changes associated with macrophage polarization. J Biol Chem 2022; 298:102418. [PMID: 36030823 PMCID: PMC9525912 DOI: 10.1016/j.jbc.2022.102418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Macrophages (MФ) are an essential immune cell for defense and repair that travel to different tissues and adapt based on local stimuli. A critical factor that may govern their polarization is the crosstalk between metabolism and epigenetics. However, simultaneous measurements of metabolites, epigenetics, and proteins (phenotype) have been a major technical challenge. To address this, we have developed a novel triomics approach using mass spectrometry to comprehensively analyze metabolites, proteins, and histone modifications in a single sample. To demonstrate this technique, we investigated the metabolic-epigenetic-phenotype axis following polarization of human blood–derived monocytes into either ‘proinflammatory M1-’ or ‘anti-inflammatory M2-’ MФs. We report here a complex relationship between arginine, tryptophan, glucose, and the citric acid cycle metabolism, protein and histone post-translational modifications, and human macrophage polarization that was previously not described. Surprisingly, M1-MФs had globally reduced histone acetylation levels but high levels of acetylated amino acids. This suggests acetyl-CoA was diverted, in part, toward acetylated amino acids. Consistent with this, stable isotope tracing of glucose revealed reduced usage of acetyl-CoA for histone acetylation in M1-MФs. Furthermore, isotope tracing also revealed MФs uncoupled glycolysis from the tricarboxylic acid cycle, as evidenced by poor isotope enrichment of succinate. M2-MФs had high levels of kynurenine and serotonin, which are reported to have immune-suppressive effects. Kynurenine is upstream of de novo NAD+ metabolism that is a necessary cofactor for Sirtuin-type histone deacetylases. Taken together, we demonstrate a complex interplay between metabolism and epigenetics that may ultimately influence cell phenotype.
Collapse
Affiliation(s)
- Mark L Sowers
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
| | - Hui Tang
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
| | - Vipul K Singh
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | - Arshad Khan
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | - Abhishek Mishra
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | | | - Chinnaswamy Jagannath
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX.
| | - Kangling Zhang
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
20
|
Ye Q, Zhang J, Zhang C, Yi B, Kazama K, Liu W, Sun X, Liu Y, Sun J. Endothelial PRMT5 plays a crucial role in angiogenesis after acute ischemic injury. JCI Insight 2022; 7:e152481. [PMID: 35531958 PMCID: PMC9090242 DOI: 10.1172/jci.insight.152481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Arginine methylation mediated by protein arginine methyltransferases (PRMTs) has been shown to be an important posttranslational mechanism involved in various biological processes. Herein, we sought to investigate whether PRMT5, a major type II enzyme, is involved in pathological angiogenesis and, if so, to elucidate the molecular mechanism involved. Our results show that PRMT5 expression is significantly upregulated in ischemic tissues and hypoxic endothelial cells (ECs). Endothelial-specific Prmt5-KO mice were generated to define the role of PRMT5 in hindlimb ischemia-induced angiogenesis. We found that these mice exhibited impaired recovery of blood perfusion and motor function of the lower limbs, an impairment that was accompanied by decreased vascular density and increased necrosis as compared with their WT littermates. Furthermore, both pharmacological and genetic inhibition of PRMT5 significantly attenuated EC proliferation, migration, tube formation, and aortic ring sprouting. Mechanistically, we showed that inhibition of PRMT5 markedly attenuated hypoxia-induced factor 1-α (HIF-1α) protein stability and vascular endothelial growth factor-induced (VEGF-induced) signaling pathways in ECs. Our results provide compelling evidence demonstrating a crucial role of PRMT5 in hypoxia-induced angiogenesis and suggest that inhibition of PRMT5 may provide novel therapeutic strategies for the treatment of abnormal angiogenesis-related diseases, such as cancer and diabetic retinopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bing Yi
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kyosuke Kazama
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wennan Liu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xiaobo Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Baradaran Rahimi V, Momeni-Moghaddam MA, Chini MG, Saviano A, Maione F, Bifulco G, Rahmanian-Devin P, Jebalbarezy A, Askari VR. Carnosol Attenuates LPS-Induced Inflammation of Cardiomyoblasts by Inhibiting NF- κB: A Mechanistic in Vitro and in Silico Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7969422. [PMID: 35571740 PMCID: PMC9095375 DOI: 10.1155/2022/7969422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 01/03/2023]
Abstract
Carnosol possesses several beneficial pharmacological properties. However, its role in lipopolysaccharide (LPS) induced inflammation and cardiomyocyte cell line (H9C2) has never been investigated. Therefore, the effect of carnosol and an NF-κB inhibitor BAY 11-7082 was examined, and the underlying role of the NF-κB-dependent inflammatory pathway was analyzed as the target enzyme. Cell viability, inflammatory cytokines levels (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and prostaglandin E 2 (PGE2)), and related gene expression (TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (COX-2)) were analyzed by ELISA and real-time PCR. In addition, docking studies analyzed carnosol's molecular interactions and binding modes to NF-κB and IKK. We report that LPS caused the reduction of cell viability while enhancing both cytokines protein and mRNA levels (P < 0.001, for all cases). However, the BAY 11-7082 pretreatment of the cells and carnosol increased cell viability and reduced cytokine protein and mRNA levels (P < 0.001 vs. LPS, for all cases). Furthermore, our in silico analyses also supported the modulation of NF-κB and IKK by carnosol. This evidence highlights the defensive effects of carnosol against sepsis-induced myocardial dysfunction and, contextually, paved the rationale for the next in vitro and in vivo studies aimed to precisely describe its mechanism(s) of action.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia I-86090, Italy
| | - Anella Saviano
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Salerno 84084, Italy
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jebalbarezy
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Srour N, Khan S, Richard S. The Influence of Arginine Methylation in Immunity and Inflammation. J Inflamm Res 2022; 15:2939-2958. [PMID: 35602664 PMCID: PMC9114649 DOI: 10.2147/jir.s364190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Exploration in the field of epigenetics has revealed that protein arginine methyltransferases (PRMTs) contribute to disease, and this has given way to the development of specific small molecule compounds that inhibit arginine methylation. Protein arginine methylation is known to regulate fundamental cellular processes, such as transcription; pre-mRNA splicing and other RNA processing mechanisms; signal transduction, including the anti-viral response; and cellular metabolism. PRMTs are also implicated in the regulation of physiological processes, including embryonic development, myogenesis, and the immune system. Finally, the dysregulation of PRMTs is apparent in cancer, neurodegeneration, muscular disorders, and during inflammation. Herein, we review the functions of PRMTs in immunity and inflammation. We also discuss recent progress with PRMTs regarding the modulation of gene expression related to T and B lymphocyte differentiation, germinal center dynamics, and anti-viral signaling responses, as well as the clinical relevance of using PRMT inhibitors alone or in combination with other drugs to treat cancer, immune, and inflammatory-related diseases.
Collapse
Affiliation(s)
- Nivine Srour
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Sarah Khan
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Stephane Richard
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
- Correspondence: Stephane Richard, Email
| |
Collapse
|
23
|
Dai W, Zhang J, Li S, He F, Liu Q, Gong J, Yang Z, Gong Y, Tang F, Wang Z, Xie C. Protein Arginine Methylation: An Emerging Modification in Cancer Immunity and Immunotherapy. Front Immunol 2022; 13:865964. [PMID: 35493527 PMCID: PMC9046588 DOI: 10.3389/fimmu.2022.865964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, protein arginine methyltransferases (PRMTs) have emerged as new members of a gene expression regulator family in eukaryotes, and are associated with cancer pathogenesis and progression. Cancer immunotherapy has significantly improved cancer treatment in terms of overall survival and quality of life. Protein arginine methylation is an epigenetic modification function not only in transcription, RNA processing, and signal transduction cascades, but also in many cancer-immunity cycle processes. Arginine methylation is involved in the activation of anti-cancer immunity and the regulation of immunotherapy efficacy. In this review, we summarize the most up-to-date information on regulatory molecular mechanisms and different underlying arginine methylation signaling pathways in innate and adaptive immune responses during cancer. We also outline the potential of PRMT-inhibitors as effective combinatorial treatments with immunotherapy.
Collapse
Affiliation(s)
- Weijing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fajian He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiao Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zetian Yang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| |
Collapse
|
24
|
Liu H, Jia K, Ren Z, Sun J, Pan LL. PRMT5 critically mediates TMAO-induced inflammatory response in vascular smooth muscle cells. Cell Death Dis 2022; 13:299. [PMID: 35379776 PMCID: PMC8980010 DOI: 10.1038/s41419-022-04719-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
Abstract
A high plasma level of the choline-derived metabolite trimethylamine N-oxide (TMAO) is closely related to the development of cardiovascular disease. However, the underlying mechanism remains unclear. In the present study, we demonstrated that a positive correlation of protein arginine methyltransferase 5 (PRMT5) expression and TMAO-induced vascular inflammation, with upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in primary rat and human vascular smooth muscle cells (VSMC) in vitro. Knockdown of PRMT5 suppressed VCAM-1 expression and the adhesion of primary bone marrow-derived macrophages to TMAO-stimulated VSMC. VSMC-specific PRMT5 knockout inhibited vascular inflammation with decreased expression of VCAM-1 in mice. We further identified that PRMT5 promoted VCAM-1 expression via symmetrical demethylation of Nuclear factor-κB p65 on arginine 30 (R30). Finally, we found that TMAO markedly induced the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) and production of reactive oxygen species, which contributed to PRMT5 expression and subsequent VCAM-1 expression. Collectively, our data provide novel evidence to establish a Nox4-PRMT5-VCAM-1 in mediating TMAO-induced VSMC inflammation. PRMT5 may be a potential target for the treatment of TMAO-induced vascular diseases.
Collapse
Affiliation(s)
- He Liu
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Kunpeng Jia
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Zhengnan Ren
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jia Sun
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.
| | - Li-Long Pan
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.
| |
Collapse
|
25
|
Liang Z, He P, Han Y, Yun CC. Survival of Stem Cells and Progenitors in the Intestine Is Regulated by LPA 5-Dependent Signaling. Cell Mol Gastroenterol Hepatol 2022; 14:129-150. [PMID: 35390517 PMCID: PMC9120264 DOI: 10.1016/j.jcmgh.2022.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Regeneration of the epithelium by stem cells in the intestine is supported by intrinsic and extrinsic factors. Lysophosphatidic acid (LPA), a bioactive lipid mediator, regulates many cellular functions, including cell proliferation, survival, and cytokine secretion. Here, we identify LPA5 receptor as a potent regulator of the survival of stem cells and transit-amplifying cells in the intestine. METHODS We have used genetic mouse models of conditional deletion of Lpar5, Lpar5f/f;Rosa-CreERT (Lpar5KO), and intestinal epithelial cell-specific Lpar5f/f;AhCre (Lpar5IECKO) mice. Mice were treated with tamoxifen or β-naphthoflavone to delete Lpar5 expression. Enteroids derived from these mice were used to determine the effect of Lpar5 loss on the apoptosis and proliferation of crypt epithelial cells. RESULTS Conditional loss of Lpar5 induced ablation of the intestinal mucosa, which increased morbidity of Lpar5KO mice. Epithelial regeneration was compromised with increased apoptosis and decreased proliferation of crypt epithelial cells by Lpar5 loss. Interestingly, intestinal epithelial cell-specific Lpar5 loss did not cause similar phenotypic defects in vivo. Lpar5 loss reduced intestinal stem cell marker gene expression and reduced lineage tracing from Lgr5+ ISCs. Lpar5 loss induced CXCL10 expression which exerts cytotoxic effects on intestinal stem cells and progenitors in the intestinal crypts. By co-culturing Lpar5KO enteroids with wild-type or Lpar5KO splenocytes, we demonstrated that lymphocytes protect the intestinal crypts via a LPA5-dependent suppression of CXCL10. CONCLUSIONS LPA5 is essential for the regeneration of intestinal epithelium. Our findings reveal a new finding that LPA5 regulates survival of stem cells and transit-amplifying cells in the intestine.
Collapse
Affiliation(s)
- Zhongxing Liang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yiran Han
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - C. Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia,Correspondence Address correspondence to: Chris Yun, PhD, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30324. fax: (404) 727-5767.
| |
Collapse
|
26
|
Rg1 exerts protective effect in CPZ-induced demyelination mouse model via inhibiting CXCL10-mediated glial response. Acta Pharmacol Sin 2022; 43:563-576. [PMID: 34103690 PMCID: PMC8888649 DOI: 10.1038/s41401-021-00696-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Myelin damage and abnormal remyelination processes lead to central nervous system dysfunction. Glial activation-induced microenvironment changes are characteristic features of the diseases with myelin abnormalities. We previously showed that ginsenoside Rg1, a main component of ginseng, ameliorated MPTP-mediated myelin damage in mice, but the underlying mechanisms are unclear. In this study we investigated the effects of Rg1 and mechanisms in cuprizone (CPZ)-induced demyelination mouse model. Mice were treated with CPZ solution (300 mg· kg-1· d-1, ig) for 5 weeks; from week 2, the mice received Rg1 (5, 10, and 20 mg· kg-1· d-1, ig) for 4 weeks. We showed that Rg1 administration dose-dependently alleviated bradykinesia and improved CPZ-disrupted motor coordination ability in CPZ-treated mice. Furthermore, Rg1 administration significantly decreased demyelination and axonal injury in pathological assays. We further revealed that the neuroprotective effects of Rg1 were associated with inhibiting CXCL10-mediated modulation of glial response, which was mediated by NF-κB nuclear translocation and CXCL10 promoter activation. In microglial cell line BV-2, we demonstrated that the effects of Rg1 on pro-inflammatory and migratory phenotypes of microglia were related to CXCL10, while Rg1-induced phagocytosis of microglia was not directly related to CXCL10. In CPZ-induced demyelination mouse model, injection of AAV-CXCL10 shRNA into mouse lateral ventricles 3 weeks prior CPZ treatment occluded the beneficial effects of Rg1 administration in behavioral and pathological assays. In conclusion, CXCL10 mediates the protective role of Rg1 in CPZ-induced demyelination mouse model. This study provides new insight into potential disease-modifying therapies for myelin abnormalities.
Collapse
|
27
|
Astrocyte Control of Zika Infection Is Independent of Interferon Type I and Type III Expression. BIOLOGY 2022; 11:biology11010143. [PMID: 35053142 PMCID: PMC8772967 DOI: 10.3390/biology11010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Zika virus (ZIKV) is a mosquito-borne virus first isolated from the Zika forest, Uganda, in 1947, which has been spreading across continents since then. We now know ZIKV causes both microencephaly in newborns and neurological complications in adults; however, no effective treatment options have yet been found. A more complete understanding of Zika-infection-mediated pathogenesis and host responses is required to enable the development of novel treatment strategies. In this study, efforts were made to elucidate the host responses following Zika virus infection using several astrocyte cell models, as astrocytes are a major cell type within the central nervous system (CNS) with significant antiviral ability. Our data suggest that astrocytes can resist ZIKV both in an interferon type I- and III-independent manner and suggest that an early and more diverse antiviral response may be more effective in controlling Zika infection. This study also identifies astrocyte cellular models that appear to display differential abilities in the control of viral infection, which may assist in the study of alternate neurotropic virus infections. Overall, this work adds to the growing body of knowledge surrounding ZIKV-mediated cellular host interactions and will contribute to a better understanding of ZIKV-mediated pathogenesis. Abstract Zika virus (ZIKV) is a pathogenic neurotropic virus that infects the central nervous system (CNS) and results in various neurological complications. Astrocytes are the dominant CNS cell producer of the antiviral cytokine IFN-β, however little is known about the factors involved in their ability to mediate viral infection control. Recent studies have displayed differential responses in astrocytes to ZIKV infection, and this study sought to elucidate astrocyte cell-specific responses to ZIKV using a variety of cell models infected with either the African (MR766) or Asian (PRVABC59) ZIKV strains. Expression levels of pro-inflammatory (TNF-α and IL-1β) and inflammatory (IL-8) cytokines following viral infection were low and mostly comparable within the ZIKV-resistant and ZIKV-susceptible astrocyte models, with better control of proinflammatory cytokines displayed in resistant astrocyte cells, synchronising with the viral infection level at specific timepoints. Astrocyte cell lines displaying ZIKV-resistance also demonstrated early upregulation of multiple antiviral genes compared with susceptible astrocytes. Interestingly, pre-stimulation of ZIKV-susceptible astrocytes with either poly(I:C) or poly(dA:dT) showed efficient protection against ZIKV compared with pre-stimulation with either recombinant IFN-β or IFN-λ, perhaps indicating that a more diverse antiviral gene expression is necessary for astrocyte control of ZIKV, and this is driven in part through interferon-independent mechanisms.
Collapse
|
28
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
29
|
Albarnaz JD, Ren H, Torres AA, Shmeleva EV, Melo CA, Bannister AJ, Brember MP, Chung BYW, Smith GL. Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses. Nat Microbiol 2022; 7:154-168. [PMID: 34949827 PMCID: PMC7614822 DOI: 10.1038/s41564-021-01004-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Evgeniya V Shmeleva
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Carlos A Melo
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | - Betty Y-W Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Motolani A, Martin M, Sun M, Lu T. The Structure and Functions of PRMT5 in Human Diseases. Life (Basel) 2021; 11:life11101074. [PMID: 34685445 PMCID: PMC8539453 DOI: 10.3390/life11101074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of protein arginine methyltransferase 5 (PRMT5) and the resolution of its structure, an increasing number of papers have investigated and delineated the structural and functional role of PRMT5 in diseased conditions. PRMT5 is a type II arginine methyltransferase that catalyzes symmetric dimethylation marks on histones and non-histone proteins. From gene regulation to human development, PRMT5 is involved in many vital biological functions in humans. The role of PRMT5 in various cancers is particularly well-documented, and investigations into the development of better PRMT5 inhibitors to promote tumor regression are ongoing. Notably, emerging studies have demonstrated the pathological contribution of PRMT5 in the progression of inflammatory diseases, such as diabetes, cardiovascular diseases, and neurodegenerative disorders. However, more research in this direction is needed. Herein, we critically review the position of PRMT5 in current literature, including its structure, mechanism of action, regulation, physiological and pathological relevance, and therapeutic strategies.
Collapse
Affiliation(s)
- Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-278-0520
| |
Collapse
|
31
|
Xia T, Liu M, Zhao Q, Ouyang J, Xu P, Chen B. PRMT5 regulates cell pyroptosis by silencing CASP1 in multiple myeloma. Cell Death Dis 2021; 12:851. [PMID: 34531375 PMCID: PMC8445991 DOI: 10.1038/s41419-021-04125-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5), a histone methyltransferase responsible for the symmetric dimethylation of histone H4 on Arg 3 (H4R3me2s), is an enzyme that participates in tumor cell progression in a variety of hematological malignancies. However, the biological functions of PRMT5 in multiple myeloma (MM) and the underlying molecular mechanisms remain unclear. In this study, we conducted a bioinformatics analysis and found that PRMT5 expression was significantly upregulated in MM. In vitro and in vivo phenotypic experiments revealed that knockdown of PRMT5 expression enhanced cell pyroptosis in MM. Moreover, we found that CASP1 expression was negatively correlated with PRMT5 expression, and repressing PRMT5 expression rescued both the phenotype and expression markers (N-GSDMD, IL-1b, and IL-18). Inhibition of PRMT5 activity increased CASP1 expression and promoted MM cell pyroptosis. Finally, high expression of PRMT5 or low expression of CASP1 was correlated with poor overall survival in MM. Collectively, our results provide a mechanism by which PRMT5 regulates cell pyroptosis by silencing CASP1 in MM.
Collapse
Affiliation(s)
- Tian Xia
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China.
- Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Kochumon S, Al-Sayyar A, Jacob T, Hasan A, Al-Mulla F, Sindhu S, Ahmad R. TNF-α Increases IP-10 Expression in MCF-7 Breast Cancer Cells via Activation of the JNK/c-Jun Pathways. Biomolecules 2021; 11:biom11091355. [PMID: 34572567 PMCID: PMC8464892 DOI: 10.3390/biom11091355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
IP-10 (also called CXCL10) plays a significant role in leukocyte homing to inflamed tissues, and increased IP-10 levels are associated with the pathologies of various inflammatory disorders, including type 2 diabetes, atherosclerosis, and cancer. TNF-α is a potent activator of immune cells and induces inflammatory cytokine expression in these cells. However, it is unclear whether TNF-α is able to induce IP-10 expression in MCF-7 breast cancer cells. We therefore determined IP-10 expression in TNF-α-treated MCF-7 cells and investigated the mechanism involved. Our data show that TNF-α induced/upregulated the IP-10 expression at both mRNA and protein levels in MCF-7 cells. Inhibition of JNK (SP600125) significantly suppressed the TNF-α-induced IP-10 in MCF-7 cells, while the inhibition of p38 MAPK (SB203580), MEK1/2 (U0126), and ERK1/2 (PD98059) had no significant effect. Furthermore, TNF-α-induced IP-10 expression was abolished in MCF-7 cells deficient in JNK. Similar results were obtained using MCF-7 cells deficient in c-Jun. Moreover, the JNK kinase inhibitor markedly reduced the TNF-α-induced JNK and c-Jun phosphorylation. The kinase activity of JNK induced by TNF-α stimulation of MCF-7 cells was significantly inhibited by SP600125. Altogether, our novel findings provide the evidence that TNF-α induces IP-10 expression in MCF-7 breast cancer cells via activation of the JNK/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Amnah Al-Sayyar
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Amal Hasan
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Fahd Al-Mulla
- Genetics & Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
- Correspondence:
| |
Collapse
|
33
|
So HK, Kim S, Kang JS, Lee SJ. Role of Protein Arginine Methyltransferases and Inflammation in Muscle Pathophysiology. Front Physiol 2021; 12:712389. [PMID: 34489731 PMCID: PMC8416770 DOI: 10.3389/fphys.2021.712389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Arginine methylation mediated by protein arginine methyltransferases (PRMTs) is a post-translational modification of both histone and non-histone substrates related to diverse biological processes. PRMTs appear to be critical regulators in skeletal muscle physiology, including regeneration, metabolic homeostasis, and plasticity. Chronic inflammation is commonly associated with the decline of skeletal muscle mass and strength related to aging or chronic diseases, defined as sarcopenia. In turn, declined skeletal muscle mass and strength can exacerbate chronic inflammation. Thus, understanding the molecular regulatory pathway underlying the crosstalk between skeletal muscle function and inflammation might be essential for the intervention of muscle pathophysiology. In this review, we will address the current knowledge on the role of PRMTs in skeletal muscle physiology and pathophysiology with a specific emphasis on its relationship with inflammation.
Collapse
Affiliation(s)
- Hyun-Kyung So
- Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Research Institute of Aging-Related Disease, AniMusCure Inc., Suwon, South Korea
| | - Sunghee Kim
- Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jong-Sun Kang
- Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Sang-Jin Lee
- Research Institute of Aging-Related Disease, AniMusCure Inc., Suwon, South Korea
| |
Collapse
|
34
|
Chai X, Wu X, He L, Ding H. Protein arginine methyltransferase 5 mediates THP-1-derived macrophage activation dependent on NF-κB in endometriosis. Exp Ther Med 2021; 22:1003. [PMID: 34345285 PMCID: PMC8311241 DOI: 10.3892/etm.2021.10436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophage-induced inflammation is a major factor in the pathogenesis of endometriosis. The underlying mechanisms, however, remain largely unknown. TNF-α, IL-6, IL-10 and C-C motif chemokine 20 (CCL20) levels in endometrial extracts were determined using Luminex cytokine kits. Additionally, protein arginine methyltransferase 5 (PRMT5) levels were measured using reverse transcription-quantitative PCR and western blotting. IL-6 and IP-10 levels in cells were measured using ELISA kits. In the present study, it was revealed that PRMT5 expression at both the mRNA and protein levels in THP-1-derived macrophages was significantly decreased following treatment with serum or extracts of endometrium from patients with endometriosis in the presence of lipopolysaccharide, compared with that in control cells, suggesting a possible role for macrophage-derived PRMT5 in mediating the interaction between macrophages and endometrium in endometriosis. Mechanistically, macrophage PRMT5 expression was regulated in an NF-κB-dependent and Smad2/3-independent manner, indicating that PRMT5 is a downstream target of NF-κB. Importantly, macrophage-derived PRMT5 was required for macrophage activation in endometriosis, as evidenced by the PRMT5-dependent secretion of IL-6 and IFN-γ-induced protein 10 from THP-1-derived macrophages. The present study identified NF-κB-dependent PRMT5 as a novel regulator of macrophage activation in endometriosis. Targeting PRMT5 in macrophages may be a potential therapeutic strategy against endometriosis.
Collapse
Affiliation(s)
- Xiaoshan Chai
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xianqing Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling He
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hui Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
35
|
Grant AH, Estrada A, Ayala-Marin YM, Alvidrez-Camacho AY, Rodriguez G, Robles-Escajeda E, Cadena-Medina DA, Rodriguez AC, Kirken RA. The Many Faces of JAKs and STATs Within the COVID-19 Storm. Front Immunol 2021; 12:690477. [PMID: 34326843 PMCID: PMC8313986 DOI: 10.3389/fimmu.2021.690477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
The positive-sense single stranded RNA virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), resulted in a global pandemic with horrendous health and economic consequences not seen in a century. At a finer scale, immunologically, many of these devastating effects by SARS-CoV-2 can be traced to a "cytokine storm" resulting in the simultaneous activation of Janus Kinases (JAKs) and Signal Transducers and Activators of Transcription (STAT) proteins downstream of the many cytokine receptor families triggered by elevated cytokines found in Coronavirus Disease 2019 (COVID-19). In this report, cytokines found in the storm are discussed in relation to the JAK-STAT pathway in response to SARS-CoV-2 and the lessons learned from RNA viruses and previous Coronaviruses (CoVs). Therapeutic strategies to counteract the SARS-CoV-2 mediated storm are discussed with an emphasis on cell signaling and JAK inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert A. Kirken
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
36
|
Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021; 20:509-530. [PMID: 33742187 DOI: 10.1038/s41573-021-00159-8] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are emerging as attractive therapeutic targets. PRMTs regulate transcription, splicing, RNA biology, the DNA damage response and cell metabolism; these fundamental processes are altered in many diseases. Mechanistically understanding how these enzymes fuel and sustain cancer cells, especially in specific metabolic contexts or in the presence of certain mutations, has provided the rationale for targeting them in oncology. Ongoing inhibitor development, facilitated by structural biology, has generated tool compounds for the majority of PRMTs and enabled clinical programmes for the most advanced oncology targets, PRMT1 and PRMT5. In-depth mechanistic investigations using genetic and chemical tools continue to delineate the roles of PRMTs in regulating immune cells and cancer cells, and cardiovascular and neuronal function, and determine which pathways involving PRMTs could be synergistically targeted in combination therapies for cancer. This research is enhancing our knowledge of the complex functions of arginine methylation, will guide future clinical development and could identify new clinical indications.
Collapse
|
37
|
Yan S, Hu J, Li J, Wang P, Wang Y, Wang Z. PRMT4 drives post-ischemic angiogenesis via YB1/VEGF signaling. J Mol Med (Berl) 2021; 99:993-1008. [PMID: 33822264 DOI: 10.1007/s00109-021-02067-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Angiogenesis is an integral process in many ischemic disorders, and vascular endothelial growth factor (VEGF) plays an important role in it. Protein arginine methyltransferase 4 (PRMT4), a member of the type I PRMT family, is involved in various biological activities, but its role in endothelial cell (EC) remains elusive. Here, we aimed to investigate the role of PRMT4 in ischemic angiogenesis and explore the possible underlying mechanism. We found that PRMT4 was upregulated in ischemic muscles, and VEGF treatment potentiated its expression in ECs. In vitro, adenovirus-mediated PRMT4 overexpression promoted, while its gene disruption inhibited, EC proliferation, migration, and tube formation. In an in vivo hindlimb ischemia model, forced expression of PRMT4 in ECs showed accelerated blood flow recovery and increased capillary density, whereas its knockdown exhibited the opposite effect. Mechanistically, PRMT4 activated the transcription of VEGF via the interaction with Y-box binding protein-1 (YB1), leading to accelerated angiogenesis. Interestingly, the loss of YB1 partially abolished PRMT4-mediated angiogenesis in vitro. Collectively, our data revealed that PRMT4 promoted angiogenesis through interacting with YB1 and the consequential VEGF upregulation, suggesting that PRMT4 may present as a potential therapeutic target in ischemic angiogenesis. KEY MESSAGES: •PRMT4 is induced by VEGF and upregulated in a hindlimb ischemia model. •PRMT4 promotes angiogenesis both in vitro and in vivo. •PRMT4 regulates VEGF expression through interacting with YB1. •YB1 knockdown retards PRMT4-mediated angiogenic effects in vitro.
Collapse
Affiliation(s)
- Shu Yan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengchao Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
38
|
Chiok K, Hutchison K, Miller LG, Bose S, Miura TA. Proinflammatory responses in SARS-CoV-2 infected and soluble spike glycoprotein S1 subunit activated human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34159334 PMCID: PMC8219098 DOI: 10.1101/2021.06.14.448426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Critically ill COVID-19 patients infected with SARS-CoV-2 display signs of generalized hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood. We used SARS-CoV-2 infected and glycosylated soluble SARS-CoV-2 Spike S1 subunit (S1) treated THP-1 human-derived macrophage-like cell line to clarify the role of macrophages in pro-inflammatory responses. Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1 macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication, virus infection resulted in upregulation of both TNF-α and CXCL10 genes. Our study shows that S1 is a key viral component inducing inflammatory response in macrophages, independently of virus replication. Thus, virus-infected or soluble S1-activated macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.
Collapse
|
39
|
Protein Arginine Methyltransferase 5 in T Lymphocyte Biology. Trends Immunol 2020; 41:918-931. [PMID: 32888819 DOI: 10.1016/j.it.2020.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/20/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the major methyltransferase (MT) catalyzing symmetric dimethylation (SDM). PRMT5 regulates developmental, homeostatic and disease processes in vertebrates and invertebrates, and a carcinogenic role has been observed in mammals. Recently, tools generated for PRMT5 loss of function have allowed researchers to demonstrate essential roles for PRMT5 in mouse and human lymphocyte biology. PRMT5 modulates CD4+ and CD8+ T cell development in the thymus, peripheral homeostasis, and differentiation into CD4+ helper T lymphocyte (Th)17 cell phenotypes. Here, we provide a timely review of the milestones leading to our current understanding of PRMT5 in T cell biology, discuss current tools to modify PRMT5 expression/activity, and highlight mechanistic pathways.
Collapse
|
40
|
Fazia T, Nova A, Gentilini D, Beecham A, Piras M, Saddi V, Ticca A, Bitti P, McCauley JL, Berzuini C, Bernardinelli L. Investigating the Causal Effect of Brain Expression of CCL2, NFKB1, MAPK14, TNFRSF1A, CXCL10 Genes on Multiple Sclerosis: A Two-Sample Mendelian Randomization Approach. Front Bioeng Biotechnol 2020; 8:397. [PMID: 32432099 PMCID: PMC7216783 DOI: 10.3389/fbioe.2020.00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple Sclerosis (MS) exhibits considerable heterogeneity in phenotypic expression, course, prognosis and response to therapy. This suggests this disease involves multiple, as yet poorly understood, causal mechanisms. In this work we assessed the possible causal link between gene expression level of five selected genes related to the pro-inflammatory NF-κB signaling pathway (i.e., CCL2, NFKB1, MAPK14, TNFRSF1A, CXCL10) in ten different brain tissues (i.e., cerebellum, frontal cortex, hippocampus, medulla, occipital cortex, putamen, substantia nigra, thalamus, temporal cortex and intralobular white matter) and MS. We adopted a two-stage Mendelian Randomization (MR) approach for the estimation of the causal effects of interest, based on summary-level data from 20 multiplex Sardinian families and data provided by the United Kingdom Brain Expression Consortium (UKBEC). Through Radial-MR and Cochrane's Q statistics we identified and removed genetic variants which are most likely to be invalid instruments. To estimate the total causal effect, univariable MR was carried out separately for each gene and brain region. We used Inverse-Variance Weighted estimator (IVW) as main analysis and MR-Egger Regression estimator (MR-ER) and Weighted Median Estimator (WME) as sensitivity analysis. As these genes belong to the same pathway and thus they can be closely related, we also estimated their direct causal effects by applying IVW and MR-ER within a multivariable MR (MVMR) approach using set of genetic instruments specific and common (composite) to each multiple exposures represented by the expression of the candidate genes. Univariate MR analysis showed a significant positive total causal effect for CCL2 and NFKB1 respectively in medulla and cerebellum. MVMR showed a direct positive causal effect for NFKB1 and TNFRSF1A, and a direct negative causal effect for CCL2 in cerebellum; while in medulla we observed a direct positive causal effect for CCL2. Since in general we observed a different magnitude for the gene specific causal effect we hypothesize that in cerebellum and medulla the effect of each gene expression is direct but also mediated by the others. These results confirm the importance of the involvement of NF-κB signaling pathway in brain tissue for the development of the disease and improve our understanding in the pathogenesis of MS.
Collapse
Affiliation(s)
- Teresa Fazia
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Andrea Nova
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Davide Gentilini
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL, United States
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Anna Ticca
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Pierpaolo Bitti
- Centro di Tipizzazione Tissutale, S.I.T., Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL, United States
| | - Carlo Berzuini
- Centre for Biostatistics, University of Manchester, Manchester, United Kingdom
| | - Luisa Bernardinelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
41
|
Albakri MM, Veliz FA, Fiering SN, Steinmetz NF, Sieg SF. Endosomal toll-like receptors play a key role in activation of primary human monocytes by cowpea mosaic virus. Immunology 2020; 159:183-192. [PMID: 31630392 PMCID: PMC6954739 DOI: 10.1111/imm.13135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/20/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
The plant virus, cowpea mosaic virus (CPMV), has demonstrated a remarkable capacity to induce anti-tumour immune responses following direct administration into solid tumours. The molecular pathways that account for these effects and the capacity of CPMV to activate human cells are not well defined. Here, we examine the ability of CPMV particles to activate human monocytes, dendritic cells (DCs) and macrophages. Monocytes in peripheral blood mononuclear cell cultures and purified CD14+ monocytes were readily activated by CPMV in vitro, leading to induction of HLA-DR, CD86, PD-L1, IL-15R and CXCL10 expression. Monocytes released chemokines, CXCL10, MIP-1α and MIP-1β into cell culture supernatants after incubation with CPMV. DC subsets (pDC and mDC) and monocyte-derived macrophages also demonstrated evidence of activation after incubation with CPMV. Inhibitors of spleen tyrosine kinase (SYK), endocytosis or endocytic acidification impaired the capacity of CPMV to activate monocytes. Furthermore, CPMV activation of monocytes was partially blocked by a TLR7/8 antagonist. These data demonstrate that CPMV activates human monocytes in a manner dependent on SYK signalling, endosomal acidification and with an important contribution from TLR7/8 recognition.
Collapse
Affiliation(s)
- Marwah M. Albakri
- Department of PathologySchool of MedicineCase Western Reserve UniversityClevelandOHUSA
- Department of Medical Laboratory TechnologyCollege of Applied Medical SciencesTaibah UniversityMedinaSaudi Arabia
| | - Frank A. Veliz
- Department of Biomedical EngineeringSchool of MedicineCase Western Reserve UniversityClevelandOHUSA
| | - Steven N. Fiering
- Department of Microbiology and ImmunologyGeisel School of Medicine at DartmouthNorris Cotton Cancer CenterLebanonNHUSA
| | - Nicole F. Steinmetz
- Department of NanoEngineeringUniversity of California San DiegoLa JollaCAUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCAUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCAUSA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Scott F. Sieg
- Division of Infectious Diseases and HIV MedicineSchool of MedicineCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
42
|
Inhibition of Endothelial Dysfunction by Dietary Flavonoids and Preventive Effects Against Cardiovascular Disease. J Cardiovasc Pharmacol 2020; 75:1-9. [DOI: 10.1097/fjc.0000000000000757] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Darling TK, Mimche PN, Bray C, Umaru B, Brady LM, Stone C, Eboumbou Moukoko CE, Lane TE, Ayong LS, Lamb TJ. EphA2 contributes to disruption of the blood-brain barrier in cerebral malaria. PLoS Pathog 2020; 16:e1008261. [PMID: 31999807 PMCID: PMC6991964 DOI: 10.1371/journal.ppat.1008261] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/07/2019] [Indexed: 01/01/2023] Open
Abstract
Disruption of blood-brain barrier (BBB) function is a key feature of cerebral malaria. Increased barrier permeability occurs due to disassembly of tight and adherens junctions between endothelial cells, yet the mechanisms governing junction disassembly and vascular permeability during cerebral malaria remain poorly characterized. We found that EphA2 is a principal receptor tyrosine kinase mediating BBB breakdown during Plasmodium infection. Upregulated on brain microvascular endothelial cells in response to inflammatory cytokines, EphA2 is required for the loss of junction proteins on mouse and human brain microvascular endothelial cells. Furthermore, EphA2 is necessary for CD8+ T cell brain infiltration and subsequent BBB breakdown in a mouse model of cerebral malaria. Blocking EphA2 protects against BBB breakdown highlighting EphA2 as a potential therapeutic target for cerebral malaria.
Collapse
Affiliation(s)
- Thayer K. Darling
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Patrice N. Mimche
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christian Bray
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Banlanjo Umaru
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Lauren M. Brady
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Colleen Stone
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, University of Douala, Douala, Cameroon
| | - Thomas E. Lane
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lawrence S. Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Tracey J. Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
44
|
Tsai CF, Chen JH, Yeh WL. Pulmonary fibroblasts-secreted CXCL10 polarizes alveolar macrophages under pro-inflammatory stimuli. Toxicol Appl Pharmacol 2019; 380:114698. [PMID: 31394157 DOI: 10.1016/j.taap.2019.114698] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND During acute lung injury, lung fibroblasts produce chemokines that assist the activation and migration of resident macrophages. The interactions between pulmonary fibroblasts and alveolar macrophages demonstrate the early event in the recruitment of immune cells, and the production of chemokines appear to be central mediators of the initiation and progression of inflammatory responses. In this study, the aim was to investigate the signaling pathway leading to CXCL10 secretion and the effects of CXCL10 released by activated fibroblasts on regulating macrophage polarization in a pro-inflammatory microenvironment. METHODS The expression of chemokines CCL2, CCL5, CXCL10, and CXCL12, and the phosphorylation of signaling molecules STAT3, FAK, GSK3αβ and PKCδ were investigated by real time-PCR, ELISA, or Western blot on TNFα- or IL-1β-activated MRC-5 pulmonary fibroblasts. By collecting conditioned medium from TNFα-activated fibroblasts, the expression of iNOS and arginase I on MH-S alveolar macrophages were examined by real-time PCR. Surface markers CD86 and CD206 expressions on alveolar macrophages were also evaluated by flow cytometry. RESULTS We found that CXCL10 production was significantly elevated on MRC-5 fibroblasts under TNFα- or IL-1β treatment. In addition, we revealed that TNFα and IL-1β initiated phosphorylation of STAT3, FAK, GSK3αβ and PKCδ signaling cascade, leading to the elevation of CXCL10 expression. Moreover, conditioned medium collected from TNFα-activated MRC-5 fibroblasts increased iNOS and CD86 expressions and decreased arginase I and CD206 expressions on MH-S alveolar macrophages, and neutralization of CXCL10 abolished these observed phenomena. CONCLUSION These results suggest that CXCL10 is crucial in activated fibroblasts-promoted M1 phenotype polarization of alveolar macrophages. In this regard, targeting fibroblasts-released CXCL10 may be promising as anti-inflammatory therapy against acute lung injury.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
45
|
Shailesh H, Zakaria ZZ, Baiocchi R, Sif S. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget 2018; 9:36705-36718. [PMID: 30613353 PMCID: PMC6291173 DOI: 10.18632/oncotarget.26404] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/16/2018] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are known for their ability to catalyze methylation of specific arginine residues in a wide variety of cellular proteins, which are involved in a plethora of processes including signal transduction, transcription, and more recently DNA recombination. All members of the PRMT family can be grouped into three main classes depending on the type of methylation they catalyze. Type I PRMTs induce monomethylation and asymmetric dimethylation, while type II PRMTs catalyze monomethylation and symmetric dimethylation of specific arginine residues. In contrast, type III PRMTs carry out only monomethylation of arginine residues. In this review, we will focus on PRMT5, a type II PRMT essential for viability and normal development, which has been shown to be overexpressed in a wide variety of cancer cell types, owing it to the crucial role it plays in controlling key growth regulatory pathways. Furthermore, the role of PRMT5 in regulating expression and stability of key transcription factors that control normal stem cell function as well as cancer stem cell renewal will be discussed. We will review recent work that shows that through its ability to methylate various cellular proteins, PRMT5 functions as a master epigenetic regulator essential for growth and development, and we will highlight studies that have examined its dysregulation and the effects of its inhibition on cancer cell growth.
Collapse
Affiliation(s)
- Harshita Shailesh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Zain Z Zakaria
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Robert Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
46
|
Hu G, Wang X, Han Y, Wang P. Protein arginine methyltransferase 5 promotes bladder cancer growth through inhibiting NF-kB dependent apoptosis. EXCLI JOURNAL 2018; 17:1157-1166. [PMID: 30713476 PMCID: PMC6341427 DOI: 10.17179/excli2018-1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) has emerged as a key regulator of tumorigenesis. However, how PRMT5 functions in bladder cancer, the most common malignancy of the urological system, is unknown. We described here that PRMT5 is highly expressed in bladder cancer cell lines and primary human bladder cancer tissues. PRMT5 enhances the proliferation and colony formation of bladder cancer cells. PRMT5 knockdown induces bladder cancer cell apoptosis. Mechanistically, PRMT5 enhances NF-kB activation by targeting crucial anti-apoptotic genes such as BCLXL and c-IAP1, thereby inhibiting tumor cell apoptosis and sustaining proliferation. Importantly, PRMT5 inhibitor opposed tumor growth and BCLXL and c-IAP1 transcription in the bladder cancer xenograft model. Collectively, the current suggests the crucial role of PRMT5 as a promising therapeutic target in bladder cancers.
Collapse
Affiliation(s)
- Guodong Hu
- Department of Urology, the Affiliated Fourth Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Urology, Shenyang Red Cross Hospital, Shenyang, Liaoning, China
| | - Xiu Wang
- Department of Anesthesia, the Affiliated Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi Han
- Department of Urology, Shenyang Red Cross Hospital, Shenyang, Liaoning, China
| | - Ping Wang
- Department of Urology, the Affiliated Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
47
|
Wenzl K, Manske MK, Sarangi V, Asmann YW, Greipp PT, Schoon HR, Braggio E, Maurer MJ, Feldman AL, Witzig TE, Slager SL, Ansell SM, Cerhan JR, Novak AJ. Loss of TNFAIP3 enhances MYD88 L265P-driven signaling in non-Hodgkin lymphoma. Blood Cancer J 2018; 8:97. [PMID: 30301877 PMCID: PMC6177394 DOI: 10.1038/s41408-018-0130-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/04/2018] [Accepted: 08/09/2018] [Indexed: 01/04/2023] Open
Abstract
MYD88 mutations are one of the most recurrent mutations in hematologic malignancies. However, recent mouse models suggest that MYD88L265P alone may not be sufficient to induce tumor formation. Interplay between MYD88L265P and other genetic events is further supported by the fact that TNFAIP3 (A20) inactivation often accompanies MYD88L265P. However, we are still lacking information about the consequence of MYD88L265P in combination with TNFAIP3 loss in human B cell lymphoma. Review of our genetic data on diffuse large B cell lymphoma (DLBCL) and Waldenstrom macroglobulinemia (WM), found that a large percentage of DLBCL and WM cases that have a MYD88 mutation also harbor a TNFAIP3 loss, 55% DLBCL and 28% of WM, respectively. To mimic this combination of genetic events, we used genomic editing technology to knock out TNFAIP3 in MYD88L265P non-Hodgkin's lymphoma (NHL) cell lines. Loss of A20 expression resulted in increased NF-κB and p38 activity leading to upregulation of the NF-κB target genes BCL2 and MYC. Furthermore, we detected the increased production of IL-6 and CXCL10 which led to an upregulation of the JAK/STAT pathway. Overall, these results suggest that MYD88L265P signaling can be enhanced by a second genetic alteration in TNFAIP3 and highlights a potential opportunity for therapeutic targeting.
Collapse
Affiliation(s)
- Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Patricia T Greipp
- Genomics Laboratory, Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew J Maurer
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
48
|
Wang Y, Liu Y, Zhang M, Lv L, Zhang X, Zhang P, Zhou Y. LRRC15 promotes osteogenic differentiation of mesenchymal stem cells by modulating p65 cytoplasmic/nuclear translocation. Stem Cell Res Ther 2018. [PMID: 29523191 PMCID: PMC5845373 DOI: 10.1186/s13287-018-0809-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are a reliable resource for bone regeneration and tissue engineering, but the molecular mechanisms of differentiation remain unclear. The tumor antigen 15-leucine-rich repeat containing membrane protein (LRRC15) is a transmembrane protein demonstrated to play important roles in cancer. However, little is known about its role in osteogenesis. This study was to evaluate the functions of LRRC15 in osteogenic differentiation of MSCs. Methods Osteogenic-induction treatment and the ovariectomized (OVX) model were performed to investigate the potential relationship between LRRC15 and MSC osteogenesis. A loss-of-function study was used to explore the functions of LRRC15 in osteogenic differentiation of MSCs in vitro and in vivo. NF-κB pathway inhibitor BAY117082, siRNA, nucleocytoplasmic separation, and ChIP assays were performed to clarify the molecular mechanism of LRRC15 in bone regulation. Results Our results first demonstrated that LRRC15 expression was upregulated upon osteogenic induction, and the level of LRRC15 was significantly decreased in OVX mice. Both in-vitro and in-vivo experiments detected that LRRC15 was required for osteogenesis of MSCs. Mechanistically, LRRC15 inhibited transcription factor NF-κB signaling by affecting the subcellular localization of p65. Further studies indicated that LRRC15 regulated osteogenic differentiation in a p65-dependent manner. Conclusions Taken together, our findings reveal that LRRC15 is an essential regulator for osteogenesis of MSCs through modulating p65 cytoplasmic/nuclear translocation, and give a novel hint for MSC-mediated bone regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-018-0809-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
49
|
Zakrzewicz D, Didiasova M, Krüger M, Giaimo BD, Borggrefe T, Mieth M, Hocke AC, Zakrzewicz A, Schaefer L, Preissner KT, Wygrecka M. Protein arginine methyltransferase 5 mediates enolase-1 cell surface trafficking in human lung adenocarcinoma cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1816-1827. [PMID: 29501774 DOI: 10.1016/j.bbadis.2018.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/12/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Enolase-1-dependent cell surface proteolysis plays an important role in cell invasion. Although enolase-1 (Eno-1), a glycolytic enzyme, has been found on the surface of various cells, the mechanism responsible for its exteriorization remains elusive. Here, we investigated the involvement of post-translational modifications (PTMs) of Eno-1 in its lipopolysaccharide (LPS)-triggered trafficking to the cell surface. RESULTS We found that stimulation of human lung adenocarcinoma cells with LPS triggered the monomethylation of arginine 50 (R50me) within Eno-1. The Eno-1R50me was confirmed by its interaction with the tudor domain (TD) from TD-containing 3 (TDRD3) protein recognizing methylarginines. Substitution of R50 with lysine (R50K) reduced Eno-1 association with epithelial caveolar domains, thereby diminishing its exteriorization. Similar effects were observed when pharmacological inhibitors of arginine methyltransferases were applied. Protein arginine methyltransferase 5 (PRMT5) was identified to be responsible for Eno-1 methylation. Overexpression of PRMT5 and caveolin-1 enhanced levels of membrane-bound extracellular Eno-1 and, conversely, pharmacological inhibition of PRMT5 attenuated Eno-1 cell-surface localization. Importantly, Eno-1R50me was essential for cancer cell motility since the replacement of Eno-1 R50 by lysine or the suppression of PRMT 5 activity diminished Eno-1-triggered cell invasion. CONCLUSIONS LPS-triggered Eno-1R50me enhances Eno-1 cell surface levels and thus potentiates the invasive properties of cancer cells. Strategies to target Eno-1R50me may offer novel therapeutic approaches to attenuate tumor metastasis in cancer patients.
Collapse
Affiliation(s)
- Dariusz Zakrzewicz
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Miroslava Didiasova
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Marcus Krüger
- Center for Molecular Medicine, University of Cologne, Germany
| | - Benedetto Daniele Giaimo
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Maren Mieth
- Department of Internal Medicine, Infectious Diseases and Pulmonary Medicine, Charité-University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine, Infectious Diseases and Pulmonary Medicine, Charité-University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, Feulgenstrasse 10-12, 35385 Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany; Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
50
|
Maione F, Piccolo M, De Vita S, Chini MG, Cristiano C, De Caro C, Lippiello P, Miniaci MC, Santamaria R, Irace C, De Feo V, Calignano A, Mascolo N, Bifulco G. Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease. Pharmacol Res 2018; 129:482-490. [DOI: 10.1016/j.phrs.2017.11.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/26/2017] [Accepted: 11/16/2017] [Indexed: 01/02/2023]
|