1
|
Ho WS, Yogarajah T, Mohameed JBH, Fong DY, Cheong DHJ, Wong YH, Chu JJH, Chai CLL. Mutagenesis-Guided Target Identification Reveals the Protein-Binding Domain of Nsp14 in Coronaviruses as the Target of a Labdane-Oxindole Compound. ACS Infect Dis 2025; 11:1153-1166. [PMID: 40207883 DOI: 10.1021/acsinfecdis.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The non-structural protein (nsp) 14 of coronaviruses plays an important role in maintaining the genomic stability of the virus during viral replication. This had garnered significant interest towards the identification and development of inhibitors against nsp14, specifically its exoribonuclease (ExoN) domain. However, no inhibitors have been successfully developed to date. The bioactivity of the nsp14-ExoN is governed through a complex formation with its co-factor nsp10. This provides opportunities to target the protein assembly as an antiviral modality. In this study, a labdane-oxindole compound (OX18) was identified as a promising new antiviral agent against coronaviruses. Through a combination of FRET- and BRET-based approaches, OX18 was found to target the nsp10-binding domain of nsp14. A key escape mutation to OX18 in nsp14 was also identified in our study, albeit compromising its exoribonuclease activity. To our knowledge, OX18 is the first small molecule to target the nsp14/10 protein assembly. As such, our work paves the way for the development of future inhibitors of the nsp14-ExoN with increased potency and complexity.
Collapse
Affiliation(s)
- Wei Shen Ho
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Thinesshwary Yogarajah
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Jasmaadiyah Binte Habib Mohameed
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Deborah Yuhui Fong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Dorothy Hui Juan Cheong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Yi Hao Wong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore
| | - Christina Li Lin Chai
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
2
|
Lu X, Zhu H, Liu M, Xu Y, Yang Z, Bai J, Jiang P, Wang X. Serum amyloid P component suppresses porcine epidemic diarrhea virus replication through TLR4-mediated IFN-β signaling pathway. Vet Microbiol 2025; 304:110459. [PMID: 40080977 DOI: 10.1016/j.vetmic.2025.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a porcine enteropathogenic coronavirus that causes significant economic losses in many Asian and European countries. It is characterized by lethal watery diarrhea and high mortality rate in piglets. Serum amyloid P component (SAP), a member of acute response phase protein (APP) family, has been reported to play a crucial role in innate immune response against various microbial pathogens. However, its antiviral activities are little known. In this study, the antiviral activity of SAP during PEDV infection was investigated. In virus-infected IPEC cells, it was found that SAP expression was significantly upregulated. To study the role of SAP in PEDV replication, the expression of SAP was regulated in cells using eukaryotic expression plasmids expressing the SAP protein and sgRNA. PEDV replication was then assessed through real-time PCR, Western blotting, and TCID50 assays. The result showed that PEDV replication was inhibited in cells overexpressing SAP and promoted in cells with SAP knocking out. To further investigate the mechanism by which SAP inhibits PEDV replication, Interferon Beta (IFN-β) and its related signaling pathway proteins were detected. The results demonstrated that SAP activates the promoter of (IFN-β) and IFN regulatory factor 3 (IRF3) mediated by Toll-Like Receptor 4 (TLR4) signaling. During PEDV infection, SAP enhances TLR4-mediated IFN-β signaling, leading to increased IFN-β expression, which subsequently suppresses PEDV replication. By using TBK1/IKBKE inhibitor MRT67307 in PEDV-infected cells, the antiviral activity of SAP was inhibited. This suggests that the antiviral effect of SAP may rely on the activation of the TBK1/IKBKE signaling pathway, which is critical for the induction of type I interferons and other antiviral responses. Moreover, the interaction between SAP and PEDV N protein and the functional domain of SAP were investigated. From the results of this study, it can be concluded that the interaction between SAP and PEDV N protein activates the TLR4-mediated IFN signaling pathway, thereby inhibiting PEDV replication.
Collapse
Affiliation(s)
- Xinchang Lu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixin Zhu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyu Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufan Xu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Yang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co‑Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co‑Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co‑Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2025; 89:e0001623. [PMID: 39699237 PMCID: PMC11948496 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A. Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Dong H, Li X, Xu S, Wang Y, Xia T, Li P, Ruan W. Proteomic analysis identifies intracellular targets for avian coronavirus NSP10. Arch Virol 2025; 170:74. [PMID: 40080214 DOI: 10.1007/s00705-025-06255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/08/2024] [Indexed: 03/15/2025]
Abstract
Avian coronavirus, also known as infectious bronchitis virus (IBV), is the causative agent of infectious bronchitis (IB). The non-structural proteins (NSPs) of IBV are critical for viral replication and for evading the host's immune response. The innate immune response serves as the first line of defense against viral infections. The IBV genome codes for 15 NSPs (NSP2-16). In this study, we identified host proteins interacting with IBV NSP10 using co-immunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC/MS/MS). Proteomic analysis revealed that interactions of host proteins with NSP10 are involved in processes such as localization, transport, and metabolism, regulation of the cell cycle, and antiviral responses. We further explored the role of NSP10 in these immune and cellular regulation pathways and also confirmed the interaction between NSP10 and the host protein hnRNPA1. Further investigation showed that hnRNPA1 inhibited IBV replication. It is speculated that the binding of hnRNP A1 to NSP10 interferes with the function of the replication complex, thereby inhibiting virus replication. However, co-overexpression of NSP10 and hnRNP A1 partially restored viral replication, suggesting a complex relationship between these two proteins. These findings demonstrate that IBV NSP10 plays a significant role in viral infection and in modulating host cell processes, highlighting its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Hao Dong
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xueyan Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Changping Laboratory, Beijing, 102206, China
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuxin Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ting Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- China Rehabilitation Research Center, School of Rehabilitation, China Rehabilitation Science Institute, Capital Medical University, Beijing, 100069, China
| | - Peng Li
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50010, US
| | - Wenke Ruan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
5
|
de Oliveira Silva Pinto M, de Paula Pereira L, de Mendonça Angelo ALP, Xavier MAP, de Magalhães Vieira Machado A, Russo RC. Dissecting the COVID-19 Immune Response: Unraveling the Pathways of Innate Sensing and Response to SARS-CoV-2 Structural Proteins. J Mol Recognit 2025; 38:e70002. [PMID: 39905998 DOI: 10.1002/jmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), the virus responsible for COVID-19, interacts with the host immune system through complex mechanisms that significantly influence disease outcomes, affecting both innate and adaptive immunity. These interactions are crucial in determining the disease's severity and the host's ability to clear the virus. Given the virus's substantial socioeconomic impact, high morbidity and mortality rates, and public health importance, understanding these mechanisms is essential. This article examines the diverse innate immune responses triggered by SARS-CoV-2's structural proteins, including the spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins, along with nonstructural proteins (NSPs) and open reading frames. These proteins play pivotal roles in immune modulation, facilitating viral replication, evading immune detection, and contributing to severe inflammatory responses such as cytokine storms and acute respiratory distress syndrome (ARDS). The virus employs strategies like suppressing type I interferon production and disrupting key antiviral pathways, including MAVS, OAS-RNase-L, and PKR. This study also explores the immune pathways that govern the activation and suppression of immune responses throughout COVID-19. By analyzing immune sensing receptors and the responses initiated upon recognizing SARS-CoV-2 structural proteins, this review elucidates the complex pathways associated with the innate immune response in COVID-19. Understanding these mechanisms offers valuable insights for therapeutic interventions and informs public health strategies, contributing to a deeper understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Matheus de Oliveira Silva Pinto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo de Paula Pereira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Grimes SL, Heaton BE, Anderson ML, Burke K, Stevens L, Lu X, Heaton NS, Denison MR, Anderson-Daniels J. The coronavirus nsp14 exoribonuclease interface with the cofactor nsp10 is essential for efficient virus replication and enzymatic activity. J Virol 2025; 99:e0170824. [PMID: 39791922 PMCID: PMC11852845 DOI: 10.1128/jvi.01708-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The in vitro enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10. We introduced alanine substitutions in nsp14 of murine hepatitis virus (MHV) at the nsp14-nsp10 interface and recovered mutant viruses with a range of impairments in replication and in vitro biochemical exonuclease activity. Two of these substitutions, nsp14 K7A and D8A, had impairments intermediate between wild type-MHV nsp14 and the known ExoN(-) D89A/E91A nsp14 catalytic inactivation mutant. All introduced nsp14-nsp10 interface alanine substitutions impaired in vitro exonuclease activity. Passage of the K7A and D8A mutant viruses selected second-site non-synonymous mutations in nsp14 associated with improved mutant virus replication and exonuclease activity. These results confirm the essential role of the nsp14-nsp10 interaction for efficient enzymatic activity and virus replication, identify proximal and long-distance determinants of nsp14-nsp10 interaction, and support targeting the nsp14-nsp10 interface for viral inhibition and attenuation.IMPORTANCECoronavirus replication requires assembly of a replication transcription complex composed of nsp's, including polymerase, helicase, exonuclease, capping enzymes, and non-enzymatic cofactors. The coronavirus nsp14 exoribonuclease mediates several functions in the viral life cycle including genomic and subgenomic RNA synthesis, RNA recombination, RNA proofreading and high-fidelity replication, and native resistance to many nucleoside analogs. The nsp-14 exonuclease activity in vitro requires the non-enzymatic cofactor nsp10, but the determinants and importance of the nsp14-nsp10 interactions during viral replication have not been defined. Here we show that for the coronavirus murine hepatitis virus, nsp14 residues at the nsp14-nsp10 interface are essential for efficient viral replication and in vitro exonuclease activity. These results shed new light on the requirements for protein interactions within the coronavirus replication transcription complex, and they may reveal novel non-active-site targets for virus inhibition and attenuation.
Collapse
Affiliation(s)
- Samantha L. Grimes
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mackenzie L. Anderson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katie Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Laura Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark R. Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
7
|
Jumde RP, Jézéquel G, Saramago M, Frank N, Adam S, Cunha MV, Bader CD, Gunesch AP, Köhler NM, Johannsen S, Bousis S, Pietschmann T, Matos RG, Müller R, Arraiano CM, Hirsch AKH. Dynamic Combinatorial Chemistry Unveils Nsp10 Inhibitors with Antiviral Potential Against SARS-CoV-2. Chemistry 2025; 31:e202403390. [PMID: 39676060 PMCID: PMC11739841 DOI: 10.1002/chem.202403390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
The development of antiviral drugs against the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) responsible for the recent Covid-19 pandemic is crucial, as treatment options remain limited and vaccination does not prevent (re)infection. Two relatively underexplored targets of this virus are the 3'-5' exoribonuclease (ExoN) and the 2'-O-methyltransferase (2'-O-MTase), both essential for viral viability. The non-structural proteins Nsp14 and Nsp16 exhibit enzymatic activities for ExoN and 2'-O-MTase, respectively, especially when in complex with their co-factor protein Nsp10. The study focuses on the use of target-directed dynamic combinatorial chemistry (tdDCC) to identify binders of Nsp10, aiming to disturb the protein-protein interactions (PPI) involving Nsp10-Nsp14, as well as Nsp10-Nsp16. We synthesised the hits and evaluated them to assess Nsp10 affinity, ExoN and 2'-O-MTase activities inhibition, and antiviral activity in hCoV-229E and SARS-CoV-2-infected whole-cell settings. This study reports a novel class of ExoN and/or 2'-O-MTase inhibitors exhibiting antiviral activity against coronaviruses.
Collapse
Affiliation(s)
- Ravindra P. Jumde
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Current addressGlobal Antibiotic Research & Development Partnership (GARDP)Chemin Camille-Vidart 151202GenevaSwitzerland
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Nicolas Frank
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
| | - Sebastian Adam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
| | - Marta V. Cunha
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Chantal D. Bader
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
| | - Antonia P. Gunesch
- Institute for Experimental VirologyTwincore – Centre for Experimental and Clinical Infection ResearchFeodor-Lynen-Str. 730625HannoverGermany
| | - Natalie M. Köhler
- Institute for Experimental VirologyTwincore – Centre for Experimental and Clinical Infection ResearchFeodor-Lynen-Str. 730625HannoverGermany
| | - Sandra Johannsen
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
| | - Spyridon Bousis
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
| | - Thomas Pietschmann
- Institute for Experimental VirologyTwincore – Centre for Experimental and Clinical Infection ResearchFeodor-Lynen-Str. 730625HannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical School30625HannoverGermany
- Helmholtz International Lab for Anti-infectivesCampus E 8.166123SaarbrückenGermany
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical School30625HannoverGermany
- Helmholtz International Lab for Anti-infectivesCampus E 8.166123SaarbrückenGermany
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical School30625HannoverGermany
- Helmholtz International Lab for Anti-infectivesCampus E 8.166123SaarbrückenGermany
| |
Collapse
|
8
|
Ji R, Zha X, Zhou S. Marine Fungi: A Prosperous Source of Novel Bioactive Natural Products. Curr Med Chem 2025; 32:992-1006. [PMID: 37885109 DOI: 10.2174/0109298673266304231015070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
As the number of viruses, bacteria, and tumors that are resistant to drugs continues to rise, there is a growing need for novel lead compounds to treat them. Marine fungi, due to their unique secondary metabolic pathways and vast biodiversity, have become a crucial source for lead compounds in drug development. This review utilizes bibliometric methods to analyze the research status of natural products from marine fungi in the past decade, revealing the hotspots and trends in this field from Web of Science database. Furthermore, this review summarizes the biological activities and effects on molecular mechanisms of novel natural compounds isolated from marine fungi in the past five years. These novel compounds belong to six different structural classes, such as alkaloids, terpenoids, anthraquinones, polyketones, etc. They also exhibited highly potent biological properties, including antiviral, antitumor, antibacterial, antiinflammatory, and other properties. This review demonstrates the hotspots and trends of marine fungi research in recent years, as well as the variety of chemical structure and biological activities of their natural products, and it may provide guidance for those interested in discovering new drugs from marine fungi and specific targeting mechanisms.
Collapse
Affiliation(s)
- Rong Ji
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Xiangru Zha
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| |
Collapse
|
9
|
Anfossi S, Darbaniyan F, Quinlan J, Calin S, Shimizu M, Chen M, Rausseo P, Winters M, Bogatenkova E, Do KA, Martinez I, Li Z, Antal L, Olariu TR, Wistuba I, Calin GA. MicroRNAs are enriched at COVID-19 genomic risk regions, and their blood levels correlate with the COVID-19 prognosis of cancer patients infected by SARS-CoV-2. Mol Cancer 2024; 23:235. [PMID: 39434078 PMCID: PMC11492698 DOI: 10.1186/s12943-024-02094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/18/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Cancer patients are more susceptible to an aggressive course of COVID-19. Developing biomarkers identifying cancer patients at high risk of COVID-19-related death could help determine who needs early clinical intervention. The miRNAs hosted in the genomic regions associated with the risk of aggressive COVID-19 could represent potential biomarkers for clinical outcomes. PATIENTS AND METHODS Plasma samples were collected at The University of Texas MD Anderson Cancer Center from cancer patients (N = 128) affected by COVID-19. Serum samples were collected from vaccinated healthy individuals (n = 23) at the Municipal Clinical Emergency Teaching Hospital in Timisoara, Romania. An in silico positional cloning approach was used to identify the presence of miRNAs at COVID-19 risk-associated genomic regions: CORSAIRs (COvid-19 RiSk AssocIated genomic Regions). The miRNA levels were measured by RT-qPCR. RESULTS We found that miRNAs were enriched in CORSAIR. Low plasma levels of hsa-miR-150-5p and hsa-miR-93-5p were associated with higher COVID-19-related death. The levels of hsa-miR-92b-3p were associated with SARS-CoV-2 test positivity. Peripheral blood mononuclear cells (PBMC) increased secretion of hsa-miR-150-5p, hsa-miR-93-5p, and hsa-miR-92b-3p after in vitro TLR7/8- and T cell receptor (TCR)-mediated activation. Increased levels of these three miRNAs were measured in the serum samples of healthy individuals between one and nine months after the second dose of the Pfizer-BioNTech COVID-19 vaccine. SARS-CoV-2 infection of human airway epithelial cells influenced the miRNA levels inside their secreted extracellular vesicles. CONCLUSIONS MiRNAs are enriched at CORSAIR. Plasma miRNA levels can represent a potential blood biomarker for predicting COVID-19-related death in cancer patients.
Collapse
Affiliation(s)
- Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - Faezeh Darbaniyan
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Joseph Quinlan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Steliana Calin
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Paola Rausseo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Michael Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Cancer Institute, Morgantown, USA
| | - Elena Bogatenkova
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Cancer Institute, Morgantown, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Loredana Antal
- Clinical Laboratory, Municipal Clinical Emergency Hospital, Timisoara, Romania
| | - Tudor Rares Olariu
- Clinical Laboratory, Municipal Clinical Emergency Hospital, Timisoara, Romania
- Department of Infectious Diseases, Center for Diagnosis and Study of Parasitic Diseases, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.
- The Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
10
|
Grimes SL, Heaton BE, Anderson ML, Burke K, Stevens L, Lu X, Heaton NS, Denison MR, Anderson-Daniels J. The coronavirus nsp14 exoribonuclease interface with the cofactor nsp10 is essential for efficient virus replication and enzymatic activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615217. [PMID: 39386528 PMCID: PMC11463354 DOI: 10.1101/2024.09.26.615217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Coronaviruses (CoVs) encode nonstructural proteins (nsps) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease (ExoN) in nsp14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The in vitro enzymatic activity of nsp14 ExoN is enhanced in the presence of the cofactor nsp10. We introduced alanine substitutions in nsp14 of murine hepatitis virus (MHV) at the nsp14-10 interface and recovered mutant viruses with a range of impairments in replication and in vitro biochemical exonuclease activity. Two of these substitutions, nsp14 K7A and D8A, had impairments intermediate between WT-MHV nsp14 and the known ExoN(-) D89A/E91A nsp14 catalytic inactivation mutant. All introduced nsp14-10 interface alanine substitutions impaired in vitro exonuclease activity. Passage of the K7A and D8A mutant viruses selected second-site non-synonymous mutations in nsp14 associated with improved mutant virus replication and exonuclease activity. These results confirm the essential role of the nsp14-nsp10 interaction for efficient enzymatic activity and virus replication, identify proximal and long-distance determinants of nsp14-nsp10 interaction, and support targeting the nsp14-10 interface for viral inhibition and attenuation. IMPORTANCE Coronavirus replication requires assembly of a replication transcription complex composed of nonstructural proteins (nsp), including polymerase, helicase, exonuclease, capping enzymes, and non-enzymatic cofactors. The coronavirus nsp14 exoribonuclease mediates several functions in the viral life cycle including genomic and subgenomic RNA synthesis, RNA recombination, RNA proofreading and high-fidelity replication, and native resistance to many nucleoside analogs. The nsp-14 exonuclease activity in vitro requires the non-enzymatic co-factor nsp10, but the determinants and importance the nsp14-10 interactions during viral replication have not been defined. Here we show that for the coronavirus murine hepatitis virus, nsp14 residues at the nsp14-10 interface are essential for efficient viral replication and in vitro exonuclease activity. These results shed new light on the requirements for protein interactions within the coronavirus replication transcription complex, and they may reveal novel non active-site targets for virus inhibition and attenuation.
Collapse
|
11
|
Matsuda A, Plewka J, Rawski M, Mourão A, Zajko W, Siebenmorgen T, Kresik L, Lis K, Jones A, Pachota M, Karim A, Hartman K, Nirwal S, Sonani R, Chykunova Y, Minia I, Mak P, Landthaler M, Nowotny M, Dubin G, Sattler M, Suder P, Popowicz G, Pyrć K, Czarna A. Despite the odds: formation of the SARS-CoV-2 methylation complex. Nucleic Acids Res 2024; 52:6441-6458. [PMID: 38499483 PMCID: PMC11194070 DOI: 10.1093/nar/gkae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.
Collapse
Affiliation(s)
- Alex Matsuda
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Jacek Plewka
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Michał Rawski
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Kraków, Poland
| | - André Mourão
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | | | - Leanid Kresik
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Kinga Lis
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Faculty of Chemical Engineering and Technology, Kraków University of Technology, 31-155 Kraków, Poland
| | - Alisha N Jones
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Magdalena Pachota
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Abdulkarim Karim
- Department of Biology, College of Science, Salahaddin University-Erbil, 44002 Erbil, Kurdistan Region, Iraq
- Department of Community Health, College of Health Technology, Cihan University-Erbil, 44001 Erbil, Kurdistan Region, Iraq
| | - Kinga Hartman
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Shivlee Nirwal
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Ravi Sonani
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Yuliya Chykunova
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Igor Minia
- Laboratory for RNA Biology, Berlin Institute for Medical System Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Markus Landthaler
- Laboratory for RNA Biology, Berlin Institute for Medical System Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Grzegorz Dubin
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Michael Sattler
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Grzegorz M Popowicz
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Czarna
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
12
|
Kakee S, Kanai K, Tsuneki-Tokunaga A, Okuno K, Namba N, Tomita K, Chikumi H, Kageyama S. Difference in TMPRSS2 usage by Delta and Omicron variants of SARS-CoV-2: Implication for a sudden increase among children. PLoS One 2024; 19:e0299445. [PMID: 38870131 PMCID: PMC11175390 DOI: 10.1371/journal.pone.0299445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
It has been postulated from a combination of evidence that a sudden increase in COVID-19 cases among pediatric patients after onset of the Omicron wave was attributed to a reduced requirement for TMPRSS2-mediated entry in pediatric airways with lower expression levels of TMPRSS2. Epidemic strains were isolated from the indigenous population in an area, and the levels of TMPRSS2 required for Delta and Omicron variants were assessed. As a result, Delta variants proliferated fully in cultures of TMPRSS2-positive Vero cells but not in TMPRSS2-negative Vero cell culture (350-fold, Delta vs 9.6-fold, Omicron). There was no obvious age-dependent selection of Omicron strains affected by the TMPRSS2 (9.6-fold, Adults vs. 12-fold, Children). A phylogenetic tree was generated and Blast searches (up to 100 references) for the spread of strains in the study area showed that each strain had almost identical homology (>99.5%) with foreign isolates, although indigenous strains had obvious differences from each other. This suggested that the differences had been present abroad for a long period. Therefore, the lower requirement for TMPRSS2 by Omicron strains might be applicable to epidemic strains globally. In conclusion, the property of TMPRSS2-independent cleavage makes Omicron proliferate with ease and allows epidemics among children with fewer TMPRSS2 on epithelial surfaces of the respiratory organs.
Collapse
Affiliation(s)
- Sosuke Kakee
- Division of Virology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
- Division of Pediatrics and Perinatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kyosuke Kanai
- Division of Virology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akeno Tsuneki-Tokunaga
- Division of Virology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Keisuke Okuno
- Division of Pediatrics and Perinatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsuyuki Tomita
- Department of Respiratory Medicine, National Hospital Organization Yonago Medical Center, Yonago, Japan
| | | | - Seiji Kageyama
- Division of Virology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
13
|
Wu K, Guo Y, Xu T, Huang W, Guo D, Cao L, Lei J. Structure-Based Virtual Screening for Methyltransferase Inhibitors of SARS-CoV-2 nsp14 and nsp16. Molecules 2024; 29:2312. [PMID: 38792173 PMCID: PMC11124212 DOI: 10.3390/molecules29102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Kejue Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| | - Yinfeng Guo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| | - Tiefeng Xu
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China (D.G.); (L.C.)
| | - Weifeng Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| | - Deyin Guo
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China (D.G.); (L.C.)
- Guangzhou Laboratory, Bio-Island, Guangzhou 510320, China
| | - Liu Cao
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China (D.G.); (L.C.)
| | - Jinping Lei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| |
Collapse
|
14
|
Zhao Z, Bashiri S, Ziora ZM, Toth I, Skwarczynski M. COVID-19 Variants and Vaccine Development. Viruses 2024; 16:757. [PMID: 38793638 PMCID: PMC11125726 DOI: 10.3390/v16050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), the global pandemic caused by severe acute respiratory syndrome 2 virus (SARS-CoV-2) infection, has caused millions of infections and fatalities worldwide. Extensive SARS-CoV-2 research has been conducted to develop therapeutic drugs and prophylactic vaccines, and even though some drugs have been approved to treat SARS-CoV-2 infection, treatment efficacy remains limited. Therefore, preventive vaccination has been implemented on a global scale and represents the primary approach to combat the COVID-19 pandemic. Approved vaccines vary in composition, although vaccine design has been based on either the key viral structural (spike) protein or viral components carrying this protein. Therefore, mutations of the virus, particularly mutations in the S protein, severely compromise the effectiveness of current vaccines and the ability to control COVID-19 infection. This review begins by describing the SARS-CoV-2 viral composition, the mechanism of infection, the role of angiotensin-converting enzyme 2, the host defence responses against infection and the most common vaccine designs. Next, this review summarizes the common mutations of SARS-CoV-2 and how these mutations change viral properties, confer immune escape and influence vaccine efficacy. Finally, this review discusses global strategies that have been employed to mitigate the decreases in vaccine efficacy encountered against new variants.
Collapse
Affiliation(s)
- Ziyao Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| |
Collapse
|
15
|
Wang H, Rizvi SRA, Dong D, Lou J, Wang Q, Sopipong W, Su Y, Najar F, Agarwal PK, Kozielski F, Haider S. Emerging variants of SARS-CoV-2 NSP10 highlight strong functional conservation of its binding to two non-structural proteins, NSP14 and NSP16. eLife 2023; 12:RP87884. [PMID: 38127066 PMCID: PMC10735223 DOI: 10.7554/elife.87884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The coronavirus SARS-CoV-2 protects its RNA from being recognized by host immune responses by methylation of its 5' end, also known as capping. This process is carried out by two enzymes, non-structural protein 16 (NSP16) containing 2'-O-methyltransferase and NSP14 through its N7 methyltransferase activity, which are essential for the replication of the viral genome as well as evading the host's innate immunity. NSP10 acts as a crucial cofactor and stimulator of NSP14 and NSP16. To further understand the role of NSP10, we carried out a comprehensive analysis of >13 million globally collected whole-genome sequences (WGS) of SARS-CoV-2 obtained from the Global Initiative Sharing All Influenza Data (GISAID) and compared it with the reference genome Wuhan/WIV04/2019 to identify all currently known variants in NSP10. T12I, T102I, and A104V in NSP10 have been identified as the three most frequent variants and characterized using X-ray crystallography, biophysical assays, and enhanced sampling simulations. In contrast to other proteins such as spike and NSP6, NSP10 is significantly less prone to mutation due to its crucial role in replication. The functional effects of the variants were examined for their impact on the binding affinity and stability of both NSP14-NSP10 and NSP16-NSP10 complexes. These results highlight the limited changes induced by variant evolution in NSP10 and reflect on the critical roles NSP10 plays during the SARS-CoV-2 life cycle. These results also indicate that there is limited capacity for the virus to overcome inhibitors targeting NSP10 via the generation of variants in inhibitor binding pockets.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Syed RA Rizvi
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Danni Dong
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Jiaqi Lou
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Qian Wang
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Watanyoo Sopipong
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Yufeng Su
- College of Engineering, Design and Physical Sciences, Brunel University LondonUxbridgeUnited Kingdom
| | - Fares Najar
- High-Performance Computing Center, Oklahoma State UniversityStillwaterUnited States
| | - Pratul K Agarwal
- High-Performance Computing Center, Oklahoma State UniversityStillwaterUnited States
- Department of Physiological Sciences, Oklahoma State UniversityStillwaterUnited States
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
- UCL Centre for Advanced Research Computing, University College LondonLondonUnited Kingdom
| |
Collapse
|
16
|
Samrat SK, Bashir Q, Zhang R, Huang Y, Liu Y, Wu X, Brown T, Wang W, Zheng YG, Zhang QY, Chen Y, Li Z, Li H. A universal fluorescence polarization high throughput screening assay to target the SAM-binding sites of SARS-CoV-2 and other viral methyltransferases. Emerg Microbes Infect 2023; 12:2204164. [PMID: 37060263 PMCID: PMC10165934 DOI: 10.1080/22221751.2023.2204164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
SARS-CoV-2 has caused a global pandemic with significant humanity and economic loss since 2020. Currently, only limited options are available to treat SARS-CoV-2 infections for vulnerable populations. In this study, we report a universal fluorescence polarization (FP)-based high throughput screening (HTS) assay for SAM-dependent viral methyltransferases (MTases), using a fluorescent SAM-analogue, FL-NAH. We performed the assay against a reference MTase, NSP14, an essential enzyme for SARS-CoV-2 to methylate the N7 position of viral 5'-RNA guanine cap. The assay is universal and suitable for any SAM-dependent viral MTases such as the SARS-CoV-2 NSP16/NSP10 MTase complex and the NS5 MTase of Zika virus (ZIKV). Pilot screening demonstrated that the HTS assay was very robust and identified two candidate inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the NSP14 MTase with low micromolar IC50. We used three functional MTase assays to unambiguously verified the inhibitory potency of these molecules for the NSP14 N7-MTase function. Binding studies indicated that these molecules are bound directly to the NSP14 MTase with similar low micromolar affinity. Moreover, we further demonstrated that these molecules significantly inhibited the SARS-CoV-2 replication in cell-based assays at concentrations not causing cytotoxicity. Furthermore, NSC111552 significantly synergized with known SARS-CoV-2 drugs including nirmatrelvir and remdesivir. Finally, docking suggested that these molecules bind specifically to the SAM-binding site on the NSP14 MTase. Overall, these molecules represent novel and promising candidates to further develop broad-spectrum inhibitors for the management of viral infections.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Qamar Bashir
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Ran Zhang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Yiding Huang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Yuchen Liu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Y. George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Yin Chen
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Saksena NK, Reddy SB, Miranda-Saksena M, Cardoso THS, Silva EMA, Ferreira JC, Rabeh WM. SARS-CoV-2 variants, its recombinants and epigenomic exploitation of host defenses. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166836. [PMID: 37549720 DOI: 10.1016/j.bbadis.2023.166836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Since 2003, we have seen the emergence of novel viruses, such as SARS-CoV-1, MERS, ZIKA, swine flu virus H1N1, Marburg, Monkeypox, Ebola, and SARS-CoV-2, but none of them gained pandemic proportions similar to SARS-CoV-2. This could be attributed to unique viral traits, allowing its rapid global dissemination following its emergence in October 2019 in Wuhan, China, which appears to be primarily driven by the emergence of highly transmissible and virulent variants that also associate, in some cases, with severe disease and considerable mortality caused by fatal pneumonia, acute respiratory distress syndrome (ARDS) in infected individuals. Mechanistically, several factors are involved in viral pathogenesis, and epigenetic alterations take the front seat in host-virus interactions. The molecular basis of all viral infections, including SARS-CoV-2, tightly hinges on the transitory silencing of the host gene machinery via epigenetic modulation. SARS-CoV-2 also hijacks and subdues the host gene machinery, leading to epigenetic modulation of the critical host elements responsible for antiviral immunity. Epigenomics is a powerful, unexplored avenue that can provide a profound understanding of virus-host interactions and lead to the development of epigenome-based therapies and vaccines to counter viruses. This review discusses current developments in SARS-CoV-2 variation and its role in epigenetic modulation in infected hosts. This review provides an overview, especially in the context of emerging viral strains, their recombinants, and their possible roles in the epigenetic exploitation of host defense and viral pathogenesis. It provides insights into host-virus interactions at the molecular, genomic, and immunological levels and sheds light on the future of epigenomics-based therapies for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nitin K Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia.
| | - Srinivasa Bonam Reddy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Thyago H S Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Mazdar City, Abu Dhabi, United Arab Emirates.
| | - Edson M A Silva
- Science Division, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana C Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
18
|
D'Anna L, Miclot T, Bignon E, Perricone U, Barone G, Monari A, Terenzi A. Resolving a guanine-quadruplex structure in the SARS-CoV-2 genome through circular dichroism and multiscale molecular modeling. Chem Sci 2023; 14:11332-11339. [PMID: 37886086 PMCID: PMC10599604 DOI: 10.1039/d3sc04004f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023] Open
Abstract
The genome of SARS-CoV-2 coronavirus is made up of a single-stranded RNA fragment that can assume a specific secondary structure, whose stability can influence the virus's ability to reproduce. Recent studies have identified putative guanine quadruplex sequences in SARS-CoV-2 genome fragments that are involved in coding for both structural and non-structural proteins. In this contribution, we focus on a specific G-rich sequence referred to as RG-2, which codes for the non-structural protein 10 (Nsp10) and assumes a guanine-quadruplex (G4) arrangement. We provide the secondary structure of RG-2 G4 at atomistic resolution by molecular modeling and simulation, validated by the superposition of experimental and calculated electronic circular dichroism spectra. Through both experimental and simulation approaches, we have demonstrated that pyridostatin (PDS), a widely recognized G4 binder, can bind to and stabilize RG-2 G4 more strongly than RG-1, another G4 forming sequence that was previously proposed as a potential target for antiviral drug candidates. Overall, this study highlights RG-2 as a valuable target to inhibit the translation and replication of SARS-CoV-2, paving the way towards original therapeutic approaches against emerging RNA viruses.
Collapse
Affiliation(s)
- Luisa D'Anna
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
- Université de Lorraine and CNRS UMR 7019 LPCT F-54000 Nancy France
| | | | - Ugo Perricone
- Fondazione Ri.MED Via Filippo Marini 14 90128 Palermo Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS F-75006 Paris France
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| |
Collapse
|
19
|
Mack AH, Menzies G, Southgate A, Jones DD, Connor TR. A Proofreading Mutation with an Allosteric Effect Allows a Cluster of SARS-CoV-2 Viruses to Rapidly Evolve. Mol Biol Evol 2023; 40:msad209. [PMID: 37738143 PMCID: PMC10553922 DOI: 10.1093/molbev/msad209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 virus is error prone, with errors being corrected by the exonuclease (NSP14) proofreading mechanism. However, the mutagenesis and subsequent evolutionary trajectory of the virus is mediated by the delicate interplay of replicase fidelity and environmental pressures. Here, we have shown that a single, distal mutation (F60S) in NSP14 can have a profound impact upon proofreading with an increased accumulation of mutations and elevated evolutionary rate being observed. Understanding the implications of these changes is crucial, as these underlying mutational processes may have important implications for understanding the population-wide evolution of the virus. This study underscores the urgent need for continued research into the replicative mechanisms of this virus to combat its continued impact on global health, through the re-emergence of immuno-evasive variants.
Collapse
Affiliation(s)
- Andrew H Mack
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
| | - Georgina Menzies
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
| | - Alex Southgate
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
| | - D Dafydd Jones
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
| | - Thomas R Connor
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
| |
Collapse
|
20
|
Slanina H, Madhugiri R, Wenk K, Reinke T, Schultheiß K, Schultheis J, Karl N, Linne U, Ziebuhr J. Conserved Characteristics of NMPylation Activities of Alpha- and Betacoronavirus NiRAN Domains. J Virol 2023; 97:e0046523. [PMID: 37199624 PMCID: PMC10308930 DOI: 10.1128/jvi.00465-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Coronavirus genome replication and expression are mediated by the viral replication-transcription complex (RTC) which is assembled from multiple nonstructural proteins (nsp). Among these, nsp12 represents the central functional subunit. It harbors the RNA-directed RNA polymerase (RdRp) domain and contains, at its N terminus, an additional domain called NiRAN which is widely conserved in coronaviruses and other nidoviruses. In this study, we produced bacterially expressed coronavirus nsp12s to investigate and compare NiRAN-mediated NMPylation activities from representative alpha- and betacoronaviruses. We found that the four coronavirus NiRAN domains characterized to date have a number of conserved properties, including (i) robust nsp9-specific NMPylation activities that appear to operate largely independently of the C-terminal RdRp domain, (ii) nucleotide substrate preference for UTP followed by ATP and other nucleotides, (iii) dependence on divalent metal ions, with Mn2+ being preferred over Mg2+, and (iv) a key role of N-terminal residues (particularly Asn2) of nsp9 for efficient formation of a covalent phosphoramidate bond between NMP and the N-terminal amino group of nsp9. In this context, a mutational analysis confirmed the conservation and critical role of Asn2 across different subfamilies of the family Coronaviridae, as shown by studies using chimeric coronavirus nsp9 variants in which six N-terminal residues were replaced with those from other corona-, pito- and letovirus nsp9 homologs. The combined data of this and previous studies reveal a remarkable degree of conservation among coronavirus NiRAN-mediated NMPylation activities, supporting a key role of this enzymatic activity in viral RNA synthesis and processing. IMPORTANCE There is strong evidence that coronaviruses and other large nidoviruses evolved a number of unique enzymatic activities, including an additional RdRp-associated NiRAN domain, that are conserved in nidoviruses but not in most other RNA viruses. Previous studies of the NiRAN domain mainly focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggested different functions for this domain, such as NMPylation/RNAylation of nsp9, RNA guanylyltransferase activities involved in canonical and/or unconventional RNA capping pathways, and other functions. To help resolve partly conflicting information on substrate specificities and metal ion requirements reported previously for the SARS-CoV-2 NiRAN NMPylation activity, we extended these earlier studies by characterizing representative alpha- and betacoronavirus NiRAN domains. The study revealed that key features of NiRAN-mediated NMPylation activities, such as protein and nucleotide specificity and metal ion requirements, are very well conserved among genetically divergent coronaviruses, suggesting potential avenues for future antiviral drug development targeting this essential viral enzyme.
Collapse
Affiliation(s)
- Heiko Slanina
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | | | - Kai Wenk
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Tess Reinke
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Karin Schultheiß
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Julia Schultheis
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Nadja Karl
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps University, Marburg, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
21
|
Fan S, Wang H, Wu D, Liu L. Pharmaceutical approaches for COVID-19: An update on current therapeutic opportunities. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:157-173. [PMID: 37307372 DOI: 10.2478/acph-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2, a newly discovered coronavirus, has been linked to the COVID-19 pandemic and is currently an important public health issue. Despite all the work done to date around the world, there is still no viable treatment for COVID-19. This study examined the most recent evidence on the efficacy and safety of several therapeutic options available including natural substances, synthetic drugs and vaccines in the treatment of COVID-19. Various natural compounds such as sarsapogenin, lycorine, biscoclaurine, vitamin B12, glycyrrhizic acid, riboflavin, resveratrol and kaempferol, various vaccines and drugs such as AZD1222, mRNA-1273, BNT162b2, Sputnik V, and remdesivir, lopinavir, favipiravir, darunavir, oseltamivir, and umifenovir, resp., have been discussed comprehensively. We attempted to provide exhaustive information regarding the various prospective therapeutic approaches available in order to assist researchers and physicians in treating COVID-19 patients.
Collapse
Affiliation(s)
- Sijia Fan
- 1Department of Intensive Care Unit, South China Hospital, Health Science Center Shenzhen University Guangdong, Shenzhen 518116, P. R. China
| | - Hongling Wang
- 2Department of Cardiothoracic Surgery 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, Gansu, 730050, P. R. China
| | - Dean Wu
- 3Department of Respiratory Medicine, The Third People's Hospital of Gansu Province Lanzhou University, Lanzhou, Gansu 730050, P. R. China
| | - Lu Liu
- 4The First Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang Liaoning, 110032, P. R. China
| |
Collapse
|
22
|
Hassan H, Chiavaralli J, Hassan A, Bedda L, Krischuns T, Chen KY, Li ASM, Delpal A, Decroly E, Vedadi M, Naffakh N, Agou F, Mallart S, Arafa RK, Arimondo PB. Design and synthesis of naturally-inspired SARS-CoV-2 inhibitors. RSC Med Chem 2023; 14:507-519. [PMID: 36970153 PMCID: PMC10034039 DOI: 10.1039/d2md00149g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
A naturally inspired chemical library of 25 molecules was synthesised guided by 3-D dimensionality and natural product likeness factors to explore a new chemical space. The synthesised chemical library, consisting of fused-bridged dodecahydro-2a,6-epoxyazepino[3,4,5-c,d]indole skeletons, followed lead likeness factors in terms of molecular weight, C-sp3 fraction and Clog P. Screening of the 25 compounds against lung cells infected with SARS-CoV-2 led to the identification of 2 hits. Although the chemical library showed cytotoxicity, the two hits (3b, 9e) showed the highest antiviral activity (EC50 values of 3.7 and 1.4 μM, respectively) with an acceptable cytotoxicity difference. Computational analysis based on docking and molecular dynamics simulations against main protein targets in SARS-CoV-2 (main protease Mpro, nucleocapsid phosphoprotein, non-structural protein nsp10-nsp16 complex and RBD/ACE2 complex) were performed. The computational analysis proposed the possible binding targets to be either Mpro or the nsp10-nsp16 complex. Biological assays were performed to confirm this proposition. A cell-based assay for Mpro protease activity using a reverse-nanoluciferase (Rev-Nluc) reporter confirmed that 3b targets Mpro. These results open the way towards further hit-to-lead optimisations.
Collapse
Affiliation(s)
- Haitham Hassan
- Institut Pasteur, Department of Structural Biology and Chemistry, CNRS UMR no 3523 Chem4Life, Epigenetic Chemical Biology, Université Paris Cité F-75015 Paris France
| | - Jeanne Chiavaralli
- Institut Pasteur, Center for Technological Resources and Research (C2RT), CNRS UMR no 3523 Chem4Life, Chemogenomic and Biological Screening platform, Université Paris Cité F-75015 Paris France
| | - Afnan Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology 12578 Cairo Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology 12578 Cairo Egypt
| | - Loay Bedda
- Drug Design and Discovery Lab, Zewail City of Science and Technology 12578 Cairo Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology 12578 Cairo Egypt
| | - Tim Krischuns
- Institut Pasteur, Unité Biologie des ARN et Virus Influenza, CNRS UMR3569, Université Paris Cité F-75015 Paris France
| | - Kuang-Yu Chen
- Institut Pasteur, Unité Biologie des ARN et Virus Influenza, CNRS UMR3569, Université Paris Cité F-75015 Paris France
| | - Alice Shi Ming Li
- Department of Pharmacology and Toxicology, University of Toronto Canada
| | - Adrien Delpal
- CNRS - UMR7257 - AFMB - Aix-Marseille Université Marseille France
| | - Etienne Decroly
- CNRS - UMR7257 - AFMB - Aix-Marseille Université Marseille France
| | - Masoud Vedadi
- Department of Pharmacology and Toxicology, University of Toronto Canada
- QBI COVID-19 Research Group (QCRG) San Francisco CA USA
| | - Nadia Naffakh
- Institut Pasteur, Unité Biologie des ARN et Virus Influenza, CNRS UMR3569, Université Paris Cité F-75015 Paris France
| | - Fabrice Agou
- Institut Pasteur, Center for Technological Resources and Research (C2RT), CNRS UMR no 3523 Chem4Life, Chemogenomic and Biological Screening platform, Université Paris Cité F-75015 Paris France
| | - Sergio Mallart
- Institut Pasteur, Department of Structural Biology and Chemistry, CNRS UMR no 3523 Chem4Life, Epigenetic Chemical Biology, Université Paris Cité F-75015 Paris France
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology 12578 Cairo Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology 12578 Cairo Egypt
| | - Paola B Arimondo
- Institut Pasteur, Department of Structural Biology and Chemistry, CNRS UMR no 3523 Chem4Life, Epigenetic Chemical Biology, Université Paris Cité F-75015 Paris France
| |
Collapse
|
23
|
Prasada Kabekkodu S, Chakrabarty S, Jayaram P, Mallya S, Thangaraj K, Singh KK, Satyamoorthy K. Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023; 69:43-56. [PMID: 36690315 PMCID: PMC9854144 DOI: 10.1016/j.mito.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Kumarasamy Thangaraj
- CSIR Centre for Cellular and Molecular Biology, Uppal Road, Telangana, 500 007, Hyderabad, India; Centre for DNA Fingerprinting and Diagnostics, Telangana, 500 039, Uppal, Hyderabad, India
| | - Keshav K Singh
- Department of Genetics, The University of Alabama at Birmingham, AL 35294, Birmingham, USA
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India.
| |
Collapse
|
24
|
Behura A, Naik L, Patel S, Das M, Kumar A, Mishra A, Nayak DK, Manna D, Mishra A, Dhiman R. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166634. [PMID: 36577469 PMCID: PMC9790847 DOI: 10.1016/j.bbadis.2022.166634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
25
|
Singh J, Anantharaj A, Panwar A, Rani C, Bhardwaj M, Kumar P, Chattopadhyay P, Devi P, Maurya R, Mishra P, Pandey AK, Pandey R, Medigeshi GR. BA.1, BA.2 and BA.2.75 variants show comparable replication kinetics, reduced impact on epithelial barrier and elicit cross-neutralizing antibodies. PLoS Pathog 2023; 19:e1011196. [PMID: 36827451 PMCID: PMC9994724 DOI: 10.1371/journal.ppat.1011196] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 is capable of infecting unvaccinated, vaccinated and previously-infected individuals due to its ability to evade neutralization by antibodies. With multiple sub-lineages of Omicron emerging in the last 12 months, there is inadequate information on the quantitative antibody response generated upon natural infection with Omicron variant and whether these antibodies offer cross-protection against other sub-lineages of Omicron variant. In this study, we characterized the growth kinetics of Kappa, Delta and Omicron variants of SARS-CoV-2 in Calu-3 cells. Relatively higher amounts infectious virus titers, cytopathic effect and disruption of epithelial barrier functions was observed with Delta variant whereas infection with Omicron sub-lineages led to a more robust induction of interferon pathway, lower level of virus replication and mild effect on epithelial barrier. The replication kinetics of BA.1, BA.2 and BA.2.75 sub-lineages of the Omicron variant were comparable in cell culture and natural infection in a subset of individuals led to a significant increase in binding and neutralizing antibodies to the Delta variant and all the three sub-lineages of Omicron but the level of neutralizing antibodies were lowest against the BA.2.75 variant. Finally, we show that Cu2+, Zn2+ and Fe2+ salts inhibited in vitro RdRp activity but only Cu2+ and Fe2+ inhibited both the Delta and Omicron variants in cell culture. Thus, our results suggest that high levels of interferons induced upon infection with Omicron variant may counter virus replication and spread. Waning neutralizing antibody titers rendered subjects susceptible to infection by Omicron variants and natural Omicron infection elicits neutralizing antibodies that can cross-react with other sub-lineages of Omicron and other variants of concern.
Collapse
Affiliation(s)
- Janmejay Singh
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anbalagan Anantharaj
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Aleksha Panwar
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chitra Rani
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Monika Bhardwaj
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Parveen Kumar
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pallavi Mishra
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anil Kumar Pandey
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Guruprasad R. Medigeshi
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
26
|
Chinthapatla R, Sotoudegan M, Srivastava P, Anderson TK, Moustafa I, Passow K, Kennelly S, Moorthy R, Dulin D, Feng J, Harki D, Kirchdoerfer R, Cameron C, Arnold J. Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease. Nucleic Acids Res 2023; 51:315-336. [PMID: 36546762 PMCID: PMC9841423 DOI: 10.1093/nar/gkac1177] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Collapse
Affiliation(s)
- Rukesh Chinthapatla
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Mohamad Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Pankaj Srivastava
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Thomas K Anderson
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha A Kennelly
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ramkumar Moorthy
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert N Kirchdoerfer
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jamie J Arnold
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Arabi-Jeshvaghani F, Javadi‐Zarnaghi F, Ganjalikhany MR. Analysis of critical protein-protein interactions of SARS-CoV-2 capping and proofreading molecular machineries towards designing dual target inhibitory peptides. Sci Rep 2023; 13:350. [PMID: 36611052 PMCID: PMC9825083 DOI: 10.1038/s41598-022-26778-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
In recent years, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the cause of the coronavirus disease (COVID-19) global pandemic, and its variants, especially those with higher transmissibility and substantial immune evasion, have highlighted the imperative for developing novel therapeutics as sustainable solutions other than vaccination to combat coronaviruses (CoVs). Beside receptor recognition and virus entry, members of the SARS-CoV-2 replication/transcription complex are promising targets for designing antivirals. Here, the interacting residues that mediate protein-protein interactions (PPIs) of nsp10 with nsp16 and nsp14 were comprehensively analyzed, and the key residues' interaction maps, interaction energies, structural networks, and dynamics were investigated. Nsp10 stimulates both nsp14's exoribonuclease (ExoN) and nsp16's 2'O-methyltransferase (2'O-MTase). Nsp14 ExoN is an RNA proofreading enzyme that supports replication fidelity. Nsp16 2'O-MTase is responsible for the completion of RNA capping to ensure efficient replication and translation and escape from the host cell's innate immune system. The results of the PPIs analysis proposed crucial information with implications for designing SARS-CoV-2 antiviral drugs. Based on the predicted shared protein-protein interfaces of the nsp16-nsp10 and nsp14-nsp10 interactions, a set of dual-target peptide inhibitors was designed. The designed peptides were evaluated by molecular docking, peptide-protein interaction analysis, and free energy calculations, and then further optimized by in silico saturation mutagenesis. Based on the predicted evolutionary conservation of the interacted target residues among CoVs, the designed peptides have the potential to be developed as dual target pan-coronavirus inhibitors.
Collapse
Affiliation(s)
- Fatemeh Arabi-Jeshvaghani
- grid.411750.60000 0001 0454 365XDepartment of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Javadi‐Zarnaghi
- grid.411750.60000 0001 0454 365XDepartment of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
28
|
Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology 2023; 228:152302. [PMID: 36434912 PMCID: PMC9663145 DOI: 10.1016/j.imbio.2022.152302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmuda Kabir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, Kennesaw, GA 30144, USA
| |
Collapse
|
29
|
Bibi N, Farid A, Gul S, Ali J, Amin F, Kalthiya U, Hupp T. Drug repositioning against COVID-19: a first line treatment. J Biomol Struct Dyn 2022; 40:12812-12826. [PMID: 34519259 PMCID: PMC8442756 DOI: 10.1080/07391102.2021.1977698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 disease caused by the SARS-CoV-2 virus has shaken our health and wealth foundations. Although COVID-19 vaccines will become available allowing for attenuation of disease progression rates, distribution of vaccines can create other challenges and delays. Hence repurposed drugs against SARS-CoV-2 can be an attractive parallel strategy that can be integrated into routine clinical practice even in poorly-resourced countries. The present study was designed using knowledge of viral pathogenesis and pharmacodynamics of broad-spectrum antiviral agents (BSAAs). We carried out the virtual screening of BSAAs against the SARS-CoV-2 spike glycoprotein, RNA dependent RNA polymerase (RdRp), the main protease (Mpro) and the helicase enzyme of SARS-CoV-2. Imatinib (a tyrosine kinase inhibitor), Suramin (an anti-parasitic), Glycyrrhizin (an anti-inflammatory) and Bromocriptine (a dopamine agonist) showed higher binding affinity to multiple targets. Further through molecular dynamics simulation, critical conformational changes in the target protein molecules were revealed upon drug binding which illustrates the favorable binding conformations of antiviral drugs against SARS-CoV-2 target proteins. The resulting drugs from the present study in combination and in cocktails from the arsenal of existing drugs could reduce the translational distance and could offer substantial clinical benefit to decrease the burden of COVID-19 illness. This also creates a roadmap for subsequent viral diseases that emerge.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan,CONTACT Nousheen Bibi ; Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Ayesha Farid
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Sana Gul
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Johar Ali
- Center for Genomics Sciences RMI, Peshawar, Pakistan
| | - Farhat Amin
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Umesh Kalthiya
- International Center for Cancer Vaccine Science, Gdańsk, Poland
| | - Ted Hupp
- International Center for Cancer Vaccine Science, Gdańsk, Poland,Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Hsiao K, Zegzouti H, Goueli S. High throughput bioluminescent assay to characterize and monitor the activity of SARS-CoV-2 methyltransferases. PLoS One 2022; 17:e0274343. [PMID: 36445904 PMCID: PMC9707771 DOI: 10.1371/journal.pone.0274343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/12/2022] [Indexed: 12/02/2022] Open
Abstract
The fast rate of viral mutations of SARS CoV-2 result in decrease in the efficacy of the vaccines that have been developed before the emergence of these mutations. Thus, it is believed that using additional measures to combat the virus is not only advisable but also beneficial. Two antiviral drugs were authorized for emergency use by the FDA, namely Pfizer's two-drug regimen sold under the brand name Paxlovid, and Merck's drug Lagevrio. Pfizer's two-drug combination consists of nirmatrelvir, a protease inhibitor that blocks coronavirus ability to multiply and another antiviral, ritonavir, that lowers the rate of drug clearance to boost the longevity and activity of the protease inhibitor. Merck's drug Lagevrio (molnupiravir) is a nucleoside analogue with a mechanism of action that aims to introduce errors into the genetic code of the virus. We believe the armament against the virus can be augmented by the addition of another class of enzyme inhibitors that are required for viral survival and its ability to replicate. Enzymes like nsp14 and nsp10/16 methyltransferases (MTases) represent another class of drug targets since they are required for viral RNA translation and evading the host immune system. In this communication, we have successfully verified that the MTase-Glo, which is universal and homogeneous MTase assay can be used to screen for inhibitors of the two pivotal enzymes nsp14 and nsp16 of SARS CoV-2. Furthermore, we have carried out extensive studies on those enzymes using different RNA substrates and tested their activity using various inhibitors and verified the utility of this assay for use in drug screening programs. We anticipate our work will be pursued further to screen for large libraries to discover new and selective inhibitors for the viral enzymes particularly that these enzymes are structurally different from their mammalian counterparts.
Collapse
Affiliation(s)
- Kevin Hsiao
- Research and Development, Promega Corp. Kornberg Center, Madison, WI, United States of America
| | - Hicham Zegzouti
- Research and Development, Promega Corp. Kornberg Center, Madison, WI, United States of America
| | - Said Goueli
- Research and Development, Promega Corp. Kornberg Center, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
31
|
Khan MZI, Nazli A, Al-furas H, Asad MI, Ajmal I, Khan D, Shah J, Farooq MA, Jiang W. An overview of viral mutagenesis and the impact on pathogenesis of SARS-CoV-2 variants. Front Immunol 2022; 13:1034444. [PMID: 36518757 PMCID: PMC9742215 DOI: 10.3389/fimmu.2022.1034444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Viruses are submicroscopic, obligate intracellular parasites that carry either DNA or RNA as their genome, protected by a capsid. Viruses are genetic entities that propagate by using the metabolic and biosynthetic machinery of their hosts and many of them cause sickness in the host. The ability of viruses to adapt to different hosts and settings mainly relies on their ability to create de novo variety in a short interval of time. The size and chemical composition of the viral genome have been recognized as important factors affecting the rate of mutations. Coronavirus disease 2019 (Covid-19) is a novel viral disease that has quickly become one of the world's leading causes of mortality, making it one of the most serious public health problems in recent decades. The discovery of new medications to cope with Covid-19 is a difficult and time-consuming procedure, as new mutations represent a serious threat to the efficacy of recently developed vaccines. The current article discusses viral mutations and their impact on the pathogenicity of newly developed variants with a special emphasis on Covid-19. The biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its mutations, pathogenesis, and treatment strategies are discussed in detail along with the statistical data.
Collapse
Affiliation(s)
| | - Adila Nazli
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hawaa Al-furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Muhammad Imran Asad
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Dildar Khan
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jaffer Shah
- Department of Health, New York, NY, United States,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| |
Collapse
|
32
|
Lee SJ, Kim YJ, Ahn DG. Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2. J Microbiol Biotechnol 2022; 32:1073-1085. [PMID: 36039385 PMCID: PMC9628960 DOI: 10.4014/jmb.2206.06064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARSCoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
33
|
A Temperature-Sensitive Recombinant of Avian Coronavirus Infectious Bronchitis Virus Provides Complete Protection against Homologous Challenge. J Virol 2022; 96:e0110022. [PMID: 35972294 PMCID: PMC9472628 DOI: 10.1128/jvi.01100-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically relevant respiratory disease of poultry. Vaccination is used to control IBV infections, with live-attenuated vaccines generated via serial passage of a virulent field isolate through embryonated hens' eggs. A fine balance must be achieved between attenuation and the retention of immunogenicity. The exact molecular mechanism of attenuation is unknown, and vaccines produced in this manner present a risk of reversion to virulence as few consensus level changes are acquired. Our previous research resulted in the generation of a recombinant IBV (rIBV) known as M41-R, based on a pathogenic strain M41-CK. M41-R was attenuated in vivo by two amino acid changes, Nsp10-Pro85Leu and Nsp14-Val393Leu; however, the mechanism of attenuation was not determined. Pro85 and Val393 were found to be conserved among not only IBV strains but members of the wider coronavirus family. This study demonstrates that the same changes are associated with a temperature-sensitive (ts) replication phenotype at 41°C in vitro, suggesting that the two phenotypes may be linked. Vaccination of specific-pathogen-free chickens with M41-R induced 100% protection against clinical disease, tracheal ciliary damage, and challenge virus replication following homologous challenge with virulent M41-CK. Temperature sensitivity has been used to rationally attenuate other viral pathogens, including influenza, and the identification of amino acid changes that impart both a ts and an attenuated phenotype may therefore offer an avenue for future coronavirus vaccine development. IMPORTANCE Infectious bronchitis virus is a pathogen of economic and welfare concern for the global poultry industry. Live-attenuated vaccines against are generated by serial passage of a virulent isolate in embryonated eggs until attenuation is achieved. The exact mechanisms of attenuation are unknown, and vaccines produced have a risk of reversion to virulence. Reverse genetics provides a method to generate vaccines that are rationally attenuated and are more stable with respect to back selection due to their clonal origin. Genetic populations resulting from molecular clones are more homogeneous and lack the presence of parental pathogenic viruses, which generation by multiple passage does not. In this study, we identified two amino acids that impart a temperature-sensitive replication phenotype. Immunogenicity is retained and vaccination results in 100% protection against homologous challenge. Temperature sensitivity, used for the development of vaccines against other viruses, presents a method for the development of coronavirus vaccines.
Collapse
|
34
|
Manan A, Pirzada RH, Haseeb M, Choi S. Toll-like Receptor Mediation in SARS-CoV-2: A Therapeutic Approach. Int J Mol Sci 2022; 23:10716. [PMID: 36142620 PMCID: PMC9502216 DOI: 10.3390/ijms231810716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023] Open
Abstract
The innate immune system facilitates defense mechanisms against pathogen invasion and cell damage. Toll-like receptors (TLRs) assist in the activation of the innate immune system by binding to pathogenic ligands. This leads to the generation of intracellular signaling cascades including the biosynthesis of molecular mediators. TLRs on cell membranes are adept at recognizing viral components. Viruses can modulate the innate immune response with the help of proteins and RNAs that downregulate or upregulate the expression of various TLRs. In the case of COVID-19, molecular modulators such as type 1 interferons interfere with signaling pathways in the host cells, leading to an inflammatory response. Coronaviruses are responsible for an enhanced immune signature of inflammatory chemokines and cytokines. TLRs have been employed as therapeutic agents in viral infections as numerous antiviral Food and Drug Administration-approved drugs are TLR agonists. This review highlights the therapeutic approaches associated with SARS-CoV-2 and the TLRs involved in COVID-19 infection.
Collapse
Affiliation(s)
- Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | | | - Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
35
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
36
|
Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022; 14:v14091991. [PMID: 36146796 PMCID: PMC9506350 DOI: 10.3390/v14091991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117545, Singapore
- Correspondence: (V.T.K.C.); (S.K.L.)
| | - Sunil K. Lal
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Malaysia
- Correspondence: (V.T.K.C.); (S.K.L.)
| |
Collapse
|
37
|
Yuyukina SK, Zharkov DO. Mechanisms of Coronavirus Genome Stability As Potential Targets for Antiviral Drugs. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:470-478. [PMID: 36091852 PMCID: PMC9447942 DOI: 10.1134/s1019331622040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has made it necessary to create antivirals active against the SARS-CoV-2 coronavirus. One of the widely used strategies to fight off viral infections is the use of modified nucleoside analogues that inhibit viral replication by incorporating DNA or RNA into the growing chain, thus stopping its synthesis. The difficulty of using this method of treatment in the case of SARS-CoV-2 is that coronaviruses have an effective mechanism for maintaining genome stability. Its central element is the nsp14 protein, which is characterized by exonuclease activity, due to which incorrectly included and noncanonical nucleotides are removed from the 3' end of the growing RNA chain. Inhibitors of nsp14 exonuclease and nucleoside analogues resistant to its action are viewed as potential targets for anticoronavirus therapy.
Collapse
Affiliation(s)
- S. K. Yuyukina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - D. O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
38
|
Mazmanian K, Chen T, Sargsyan K, Lim C. From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1607. [PMID: 35600063 PMCID: PMC9111396 DOI: 10.1002/wcms.1607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic poses a challenge in coming up with quick and effective means to counter its cause, the SARS-CoV-2. Here, we show how the key factors governing cysteine reactivity in proteins derived from combined quantum mechanical/continuum calculations led to a novel multi-targeting strategy against SARS-CoV-2, in contrast to developing potent drugs/vaccines against a single viral target such as the spike protein. Specifically, they led to the discovery of reactive cysteines in evolutionary conserved Zn2+-sites in several SARS-CoV-2 proteins that are crucial for viral polypeptide proteolysis as well as viral RNA synthesis, proofreading, and modification. These conserved, reactive cysteines, both free and Zn2+-bound, can be targeted using the same Zn-ejector drug (disulfiram/ebselen), which enables the use of broad-spectrum anti-virals that would otherwise be removed by the virus's proofreading mechanism. Our strategy of targeting multiple, conserved viral proteins that operate at different stages of the virus life cycle using a Zn-ejector drug combined with other broad-spectrum anti-viral drug(s) could enhance the barrier to drug resistance and antiviral effects, as compared to each drug alone. Since these functionally important nonstructural proteins containing reactive cysteines are highly conserved among coronaviruses, our proposed strategy has the potential to tackle future coronaviruses. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisStructure and Mechanism > Computational Biochemistry and BiophysicsElectronic Structure Theory > Density Functional Theory.
Collapse
Affiliation(s)
| | - Ting Chen
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
39
|
Zhao H, Liu J, He L, Zhang L, Yu R, Kang C. Virtual screening and molecular dynamics simulation for identification of natural antiviral agents targeting SARS-CoV-2 NSP10. Biochem Biophys Res Commun 2022; 626:114-120. [PMID: 35988295 PMCID: PMC9376029 DOI: 10.1016/j.bbrc.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
New variations of SARS-CoV-2 continue to emerge in the global pandemic, which may be resistant to at least some vaccines in COVID-19, indicating that drug and vaccine development must be continuously strengthened. NSP10 plays an essential role in SARS-CoV-2 viral life cycle. It stimulates the enzymatic activities of NSP14-ExoN and NSP16-O-MTase by the formation of NSP10/NSP14 and NSP10/NSP16 complexes. Inhibiting NSP10 can block the binding of NSP10 to NSP14 and NSP16. This study has identified potential natural NSP10 inhibitors from ZINC database. The protein druggable pocket was identified for screening candidates. Molecular docking of the selected compounds was performed and MM-GBSA binding energy was calculated. After ADMET assessment, 4 hits were obtained for favorable druggability. The analysis of site interactions suggested that the hits all had excellent binding. Molecular dynamics studies revealed that selected natural compounds stably bind to NSP10. These compounds were identified as potential leads against NSP10 for the development of strategies to combat SARS-CoV-2 replication and could serve as the basis for further studies.
Collapse
Affiliation(s)
- Huilin Zhao
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin Liu
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lei He
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lichuan Zhang
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Congmin Kang
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
40
|
Chinthapatla R, Sotoudegan M, Anderson T, Moustafa IM, Passow KT, Kennelly SA, Moorthy R, Dulin D, Feng JY, Harki DA, Kirchdoerfer R, Cameron CE, Arnold JJ. Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.11.503614. [PMID: 35982684 PMCID: PMC9387131 DOI: 10.1101/2022.08.11.503614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Collapse
Affiliation(s)
- Rukesh Chinthapatla
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Mohamad Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Thomas Anderson
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kellan T. Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha A. Kennelly
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ramkumar Moorthy
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert Kirchdoerfer
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
41
|
Proteolytic Processing of the Coronavirus Replicase Nonstructural Protein 14 Exonuclease Is Not Required for Virus Replication but Alters RNA Synthesis and Viral Fitness. J Virol 2022; 96:e0084122. [PMID: 35924922 PMCID: PMC9400476 DOI: 10.1128/jvi.00841-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses (CoVs) initiate replication by translation of the positive-sense RNA genome into the replicase polyproteins connecting 16 nonstructural protein domains (nsp1-16), which are subsequently processed by viral proteases to yield mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of translation or proteolytic processing of replicase polyproteins results in rapid cessation of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble into functional replication-transcription complexes (RTCs), including the enzymatic nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and replication. To date, the solved partial RTC structures, biochemistry, and models use or assume completely processed, mature nsp. Here, we demonstrate that in MHV, engineered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recovery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14 and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics, impaired genome production, altered abundance and patterns of recombination, and impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses demonstrated mutation frequencies that were significantly higher than with the WT. The results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV viability and that functions of the RTC/nsp14-ExoN are impaired when assembled with noncleaved intermediates. These data will inform future genetic, structural, biochemical, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal new approaches for inhibition or attenuation of CoV infection. IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstructural replicase proteins to form the replication-transcription complex. Coronavirus replication-transcription complex models assume mature subunits; however, mechanisms of coronavirus maturation and replicase complex formation have yet to be defined. Here, we show that for the coronavirus murine hepatitis virus, cleavage between the nonstructural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does alter RNA synthesis and recombination. These results shed new light on the requirements for coronavirus maturation and replication-transcription complex assembly, and they may reveal novel therapeutic targets and strategies for attenuation.
Collapse
|
42
|
Bergant V, Yamada S, Grass V, Tsukamoto Y, Lavacca T, Krey K, Mühlhofer MT, Wittmann S, Ensser A, Herrmann A, Vom Hemdt A, Tomita Y, Matsuyama S, Hirokawa T, Huang Y, Piras A, Jakwerth CA, Oelsner M, Thieme S, Graf A, Krebs S, Blum H, Kümmerer BM, Stukalov A, Schmidt-Weber CB, Igarashi M, Gramberg T, Pichlmair A, Kato H. Attenuation of SARS-CoV-2 replication and associated inflammation by concomitant targeting of viral and host cap 2'-O-ribose methyltransferases. EMBO J 2022; 41:e111608. [PMID: 35833542 PMCID: PMC9350232 DOI: 10.15252/embj.2022111608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2'‐O‐ribose cap needed for viral immune escape. We find that the host cap 2'‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.
Collapse
Affiliation(s)
- Valter Bergant
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Shintaro Yamada
- Institute of Cardiovascular Immunology, University Hospital Bonn (UKB), Bonn, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Yuta Tsukamoto
- Institute of Cardiovascular Immunology, University Hospital Bonn (UKB), Bonn, Germany
| | - Teresa Lavacca
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Karsten Krey
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Maria-Teresa Mühlhofer
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Sabine Wittmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Herrmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yuriko Tomita
- Department of Virology III, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Shutoku Matsuyama
- Department of Virology III, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.,Division of Biomedical Science, University of Tsukuba, Tsukuba, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Yiqi Huang
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Antonio Piras
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Constanze A Jakwerth
- Center for Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Madlen Oelsner
- Center for Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Susanne Thieme
- Laboratory for functional genome analysis (LAFUGA), Gene Centre, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Alexander Graf
- Laboratory for functional genome analysis (LAFUGA), Gene Centre, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Stefan Krebs
- Laboratory for functional genome analysis (LAFUGA), Gene Centre, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Helmut Blum
- Laboratory for functional genome analysis (LAFUGA), Gene Centre, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Beate M Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexey Stukalov
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Carsten B Schmidt-Weber
- Center for Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Manabu Igarashi
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.,Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,German Center for Infection Research (DZIF), Munich partner site, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
43
|
Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiol Mol Biol Rev 2022; 86:e0005721. [PMID: 35862724 PMCID: PMC9491204 DOI: 10.1128/mmbr.00057-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SARS-CoV-2, the etiological agent responsible for the COVID-19 pandemic, is a member of the virus family Coronaviridae, known for relatively extensive (~30-kb) RNA genomes that not only encode for numerous proteins but are also capable of forming elaborate structures. As highlighted in this review, these structures perform critical functions in various steps of the viral life cycle, ultimately impacting pathogenesis and transmissibility. We examine these elements in the context of coronavirus evolutionary history and future directions for curbing the spread of SARS-CoV-2 and other potential human coronaviruses. While we focus on structures supported by a variety of biochemical, biophysical, and/or computational methods, we also touch here on recent evidence for novel structures in both protein-coding and noncoding regions of the genome, including an assessment of the potential role for RNA structure in the controversial finding of SARS-CoV-2 integration in “long COVID” patients. This review aims to serve as a consolidation of previous works on coronavirus and more recent investigation of SARS-CoV-2, emphasizing the need for improved understanding of the role of RNA structure in the evolution and adaptation of these human viruses.
Collapse
|
44
|
Gonzalez BL, de Oliveira NC, Ritter MR, Tonin FS, Melo EB, Sanches ACC, Fernandez‐Llimos F, Petruco MV, de Mello JCP, Chierrito D, de Medeiros Araújo DC. The naturally-derived alkaloids as a potential treatment for COVID-19: A scoping review. Phytother Res 2022; 36:2686-2709. [PMID: 35355337 PMCID: PMC9111026 DOI: 10.1002/ptr.7442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has a high mortality rate and transmissibility. In this context, medicinal plants have attracted attention due to the wide availability and variety of therapeutic compounds, such as alkaloids, a vast class with several proven pharmacological effects, like the antiviral and anti-inflammatory activities. Therefore, this scoping review aimed to summarize the current knowledge of the potential applicability of alkaloids for treating COVID-19. A systematic search was performed on PubMed and Scopus, from database inception to August 2021. Among the 63 eligible studies, 65.07% were in silico model, 20.63% in vitro and 14.28% clinical trials and observational studies. According to the in silico assessments, the alkaloids 10-hydroxyusambarensine, cryptospirolepine, crambescidin 826, deoxynortryptoquivaline, ergotamine, michellamine B, nigellidine, norboldine and quinadoline B showed higher binding energy with more than two target proteins. The remaining studies showed potential use of berberine, cephaeline, emetine, homoharringtonine, lycorine, narciclasine, quinine, papaverine and colchicine. The possible ability of alkaloids to inhibit protein targets and to reduce inflammatory markers show the potential for development of new treatment strategies against COVID-19. However, more high quality analyses/reviews in this field are necessary to firmly establish the effectiveness/safety of the alkaloids here described.
Collapse
Affiliation(s)
| | | | | | - Fernanda Stumpf Tonin
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade Federal do Paraná—UFPRCuritibaParanáBrazil
| | - Eduardo Borges Melo
- Centro de Ciências Médicas e FarmacêuticasUniversidade Estadual do Oeste do Paraná—UNIOESTECascavelParanáBrazil
| | | | | | | | | | - Danielly Chierrito
- Departamento de FarmáciaUniversidade Estadual de Maringá—UEMMaringáParanáBrazil
| | | |
Collapse
|
45
|
Wang X, Tao C, Morozova I, Kalachikov S, Li X, Kumar S, Russo JJ, Ju J. Identifying Structural Features of Nucleotide Analogues to Overcome SARS-CoV-2 Exonuclease Activity. Viruses 2022; 14:1413. [PMID: 35891393 PMCID: PMC9324094 DOI: 10.3390/v14071413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 01/27/2023] Open
Abstract
With the recent global spread of new SARS-CoV-2 variants, there remains an urgent need to develop effective and variant-resistant oral drugs. Recently, we reported in vitro results validating the use of combination drugs targeting both the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and proofreading exonuclease (ExoN) as potential COVID-19 therapeutics. For the nucleotide analogues to be efficient SARS-CoV-2 inhibitors, two properties are required: efficient incorporation by RdRp and substantial resistance to excision by ExoN. Here, we have selected and evaluated nucleotide analogues with a variety of structural features for resistance to ExoN removal when they are attached at the 3' RNA terminus. We found that dideoxynucleotides and other nucleotides lacking both 2'- and 3'-OH groups were most resistant to ExoN excision, whereas those possessing both 2'- and 3'-OH groups were efficiently removed. We also found that the 3'-OH group in the nucleotide analogues was more critical than the 2'-OH for excision by ExoN. Since the functionally important sequences in Nsp14/10 are highly conserved among all SARS-CoV-2 variants, these identified structural features of nucleotide analogues offer invaluable insights for designing effective RdRp inhibitors that can be simultaneously efficiently incorporated by the RdRp and substantially resist ExoN excision. Such newly developed RdRp terminators would be good candidates to evaluate their ability to inhibit SARS-CoV-2 in cell culture and animal models, perhaps combined with additional exonuclease inhibitors to increase their overall effectiveness.
Collapse
Affiliation(s)
- Xuanting Wang
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - James J. Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
46
|
Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. Int J Mol Sci 2022; 23:6394. [PMID: 35742840 PMCID: PMC9223475 DOI: 10.3390/ijms23126394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Monitoring SARS-CoV-2’s genetic diversity and emerging mutations in this ongoing pandemic is crucial to understanding its evolution and ensuring the performance of COVID-19 diagnostic tests, vaccines, and therapies. Spain has been one of the main epicenters of COVID-19, reaching the highest number of cases and deaths per 100,000 population in Europe at the beginning of the pandemic. This study aims to investigate the epidemiology of SARS-CoV-2 in Spain and its 18 Autonomous Communities across the six epidemic waves established from February 2020 to January 2022. We report on the circulating SARS-CoV-2 variants in each epidemic wave and Spanish region and analyze the mutation frequency, amino acid (aa) conservation, and most frequent aa changes across each structural/non-structural/accessory viral protein among the Spanish sequences deposited in the GISAID database during the study period. The overall SARS-CoV-2 mutation frequency was 1.24 × 10−5. The aa conservation was >99% in the three types of protein, being non-structural the most conserved. Accessory proteins had more variable positions, while structural proteins presented more aa changes per sequence. Six main lineages spread successfully in Spain from 2020 to 2022. The presented data provide an insight into the SARS-CoV-2 circulation and genetic variability in Spain during the first two years of the pandemic.
Collapse
Affiliation(s)
| | | | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) in Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), 28034 Madrid, Spain; (P.T.-H.); (R.R.)
| |
Collapse
|
47
|
Dang S, Ren L, Wang J. Functional mutations of SARS-CoV-2: implications to viral transmission, pathogenicity and immune escape. Chin Med J (Engl) 2022; 135:1213-1222. [PMID: 35788093 PMCID: PMC9337262 DOI: 10.1097/cm9.0000000000002158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT The pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to major public health challenges globally. The increasing viral lineages identified indicate that the SARS-CoV-2 genome is evolving at a rapid rate. Viral genomic mutations may cause antigenic drift or shift, which are important ways by which SARS-CoV-2 escapes the human immune system and changes its transmissibility and virulence. Herein, we summarize the functional mutations in SARS-CoV-2 genomes to characterize its adaptive evolution to inform the development of vaccination, treatment as well as control and intervention measures.
Collapse
Affiliation(s)
- Shengyuan Dang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lili Ren
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
48
|
Zhu L, Liu S, Zhuo Z, Lin Y, Zhang Y, Wang X, Kong L, Wang T. Expression and immunogenicity of nsp10 protein of porcine epidemic diarrhea virus. Res Vet Sci 2022; 144:34-43. [PMID: 35038674 PMCID: PMC8721950 DOI: 10.1016/j.rvsc.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes lethal watery diarrhea to the piglets, which poses significant economic losses and public health concerns. The nsp10 protein of PEDV is essential regulatory subunits that are critical for virus replication. Since PEDV nsp10 is a crucial regulator of viral RNA synthesis, it is promising that nsp10 might become anti-virus drugs target or candidate for rapid diagnosis of PEDV infection. In this study, the PEDV nsp10 was inserted into pMAL-c2x-MBP / pET-28a vector, efficiently and stably expressed in E.coli system. Then the purified nsp10 protein was found to mediate potent antibody responses in immunized mice. The antibodies of immunized mice and PEDV infection swine strongly recognized purified nsp10 protein from cell lysates. Furthermore, cytokines test revealed that the expression of IL-2, IL-4, IL-10, TNF-α, IFN-γ were significantly higher than those in control group, indicated that purified nsp10 protein induce the cellular immune response mechanism in mice. Using modified seroneutralization test, we also demonstrated that sera from nsp10-immunized mice inhibited PEDV replication to some extent. These findings suggest that nsp10 has a high immunogenicity. This study may have implications for future development of PEDV detection or anti-virus drugs for swine.
Collapse
Affiliation(s)
- Liting Zhu
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shiguo Liu
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zewen Zhuo
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanxi Lin
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
49
|
Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Res 2022; 50:4216-4245. [PMID: 35412633 PMCID: PMC9071492 DOI: 10.1093/nar/gkac224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.
Collapse
Affiliation(s)
- Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| |
Collapse
|
50
|
Esposito S, D’Abrosca G, Antolak A, Pedone PV, Isernia C, Malgieri G. Host and Viral Zinc-Finger Proteins in COVID-19. Int J Mol Sci 2022; 23:ijms23073711. [PMID: 35409070 PMCID: PMC8998646 DOI: 10.3390/ijms23073711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023] Open
Abstract
An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments.
Collapse
|