1
|
Razzak A, Saha O, Sultana KF, Amin MR, Zahid AB, Sultana A, Bristi UP, Rajia S, Sarker N, Rahaman MM, Bahadur NM, Hossen F. Development of a Novel mRNA Vaccine Against Shigella Pathotypes Causing Widespread Shigellosis Endemic: An In-Silico Immunoinformatic Approach. Bioinform Biol Insights 2025; 19:11779322251328302. [PMID: 40160890 PMCID: PMC11951904 DOI: 10.1177/11779322251328302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Shigellosis remains a major global health concern, particularly in regions with poor sanitation and limited access to clean water. This study used immunoinformatics and reverse vaccinology to design a potential mRNA vaccine targeting Shigella pathotypes out of 4071 proteins from Shigella sonnei str. Ss046, 4 key antigenic candidates were identified: putative outer membrane protein (Q3YZL0), PapC-like porin protein (Q3YZM5), putative fimbrial-like protein (Q3Z3I2), and lipopolysaccharide (LPS)-assembly protein LptD (Q3Z5V5), ensuring broad pathotype coverage. A multitope vaccine was designed incorporating cytotoxic T lymphocyte, helper T lymphocyte, and B-cell epitopes, linked with suitable linkers and adjuvants to enhance immunogenicity. Computational analyses predicted vaccine's favorable antigenicity, solubility, and stability, while molecular docking and dynamic simulations demonstrated strong binding affinity and stability with Toll-like receptor 4 (TLR-4), indicating potential for robust immune activation. Immune simulations predicted strong humoral and cellular immune responses, characterized by significant cytokine production and long-term immune memory. Structural evaluations of the complex, including radius of gyration, root mean square deviation, root mean square fluctuation, and solvent accessibility, confirmed the vaccine's structural integrity, and stability under physiological conditions. This research contributes to the ongoing effort to alleviate the global burden of Shigella infections, providing a foundation for future wet laboratory investigations aimed at vaccine development.
Collapse
Affiliation(s)
- Abdur Razzak
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Mohammad Ruhul Amin
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abdullah bin Zahid
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Afroza Sultana
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Uditi Paul Bristi
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sultana Rajia
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nikkon Sarker
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Newaz Mohammed Bahadur
- Department of Chemistry, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
2
|
Manger I, Schmitt C, Berking C, French LE, Vera-Gonzalez J, Heinzerling L. Association of HLA-A*02:01 type with efficacy and toxicity of immune checkpoint inhibitor therapy in melanoma patients: a retrospective cohort study. BMC Cancer 2025; 25:565. [PMID: 40155873 PMCID: PMC11954185 DOI: 10.1186/s12885-025-13857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) are highly effective but may induce severe or even fatal and unpredictable immune-related adverse events (irAEs). It is unclear whether human leukocyte antigen (HLA) genes contribute to the susceptibility of developing irAEs during ICI therapy. METHODS This multicentre retrospective study investigated the association of irAE and outcome with HLA-A*02:01 status in a cohort of 97 patients with metastatic melanoma undergoing ICI therapy. Organ-specific irAEs and therapy outcome as assessed by response rate, progression-free survival (PFS) and overall survival (OS) were analysed depending on HLA type HLA-A*02:01. For the outcome only patients with cutaneous melanoma were analysed. Chi square test, exact fisher test, Kruskal Wallis test and log rank test were employed for statistical analysis (p ≤ 0.05). RESULTS The cohort included 38 HLA-A*02:01 positive (39.2%) and 59 HLA-A*02:01 negative (60.8%) patients. Data showed no evidence of an association of HLA-A*02:01 with organ-specific irAEs except for a numerical difference in immune-related colitis. Furthermore, response rates of the subgroup of patients with metastatic cutaneous melanoma did not differ between the two cohorts. The median PFS was 5 months and 8 months in HLA-A*02:01 positive and negative patients with cutaneous melanoma, respectively. CONCLUSION HLA-A*02:01 was not associated with specific checkpoint inhibitor-induced organ toxicity in this cohort of HLA-A-typed melanoma patients. Interestingly, in the relatively small subgroup of patients with cutaneous melanoma an earlier progression in HLA-A*02:01 positive patients was observed, however not in the long term. These findings are exploratory due to the limited sample size and require validation in larger, prospective cohorts.
Collapse
Affiliation(s)
- Isabel Manger
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Uniklinikum Erlangen, CCC Erlangen-EMN, CCC WERA, Erlangen, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Christina Schmitt
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Carola Berking
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Uniklinikum Erlangen, CCC Erlangen-EMN, CCC WERA, Erlangen, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
- Dr. Philip Frost, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julio Vera-Gonzalez
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Uniklinikum Erlangen, CCC Erlangen-EMN, CCC WERA, Erlangen, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany.
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany.
- Department of Dermatology, LMU University Hospital Munich, Frauenlobstr. 9-11, Munich, D-80337, Germany.
| |
Collapse
|
3
|
Lee YR, Liou CW, Liu IH, Chang JM. A nonadjuvanted HLA-restricted peptide vaccine induced both T and B cell immunity against SARS-CoV-2 spike protein. Sci Rep 2024; 14:20579. [PMID: 39242614 PMCID: PMC11379847 DOI: 10.1038/s41598-024-71663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
During COVID-19 pandemic, cases of postvaccination infections and restored SARS-CoV-2 virus have increased after full vaccination, which might be contributed to by immune surveillance escape or virus rebound. Here, artificial linear 9-mer human leucocyte antigen (HLA)-restricted UC peptides were designed based on the well-conserved S2 region of the SARS-CoV-2 spike protein regardless of rapid mutation and glycosylation hindrance. The UC peptides were characterized for its effect on immune molecules and cells by HLA-tetramer refolding assay for HLA-binding ability, by HLA-tetramer specific T cell assay for engaged cytotoxic T lymphocytes (CTLs) involvement, by HLA-dextramer T cell assay for B cell activation, by intracellular cytokine release assay for polarization of immune response, Th1 or Th2. The specific lysis activity assay of T cells was performed for direct activation of cytotoxic T lymphocytes by UC peptides. Mice were immunized for immunogenicity of UC peptides in vivo and immunized sera was assay for complement cytotoxicity assay. Results appeared that through the engagement of UC peptides and immune molecules, HLA-I and II, that CTLs elicited cytotoxic activity by recognizing SARS-CoV-2 spike-bearing cells and preferably secreting Th1 cytokines. The UC peptides also showed immunogenicity and generated a specific antibody in mice by both intramuscular injection and oral delivery without adjuvant formulation. In conclusion, a T-cell vaccine could provide long-lasting protection against SARS-CoV-2 either during reinfection or during SARS-CoV-2 rebound. Due to its ability to eradicate SARS-CoV-2 virus-infected cells, a COVID-19 T-cell vaccine might provide a solution to lower COVID-19 severity and long COVID-19.
Collapse
Affiliation(s)
- Yi-Ru Lee
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC
| | - Chiung-Wen Liou
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC
| | - I-Hua Liu
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC
| | - Jia-Ming Chang
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC.
| |
Collapse
|
4
|
McShan AC, Flores-Solis D, Sun Y, Garfinkle SE, Toor JS, Young MC, Sgourakis NG. Conformational plasticity of RAS Q61 family of neoepitopes results in distinct features for targeted recognition. Nat Commun 2023; 14:8204. [PMID: 38081856 PMCID: PMC10713829 DOI: 10.1038/s41467-023-43654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The conformational landscapes of peptide/human leucocyte antigen (pHLA) protein complexes encompassing tumor neoantigens provide a rationale for target selection towards autologous T cell, vaccine, and antibody-based therapeutic modalities. Here, using complementary biophysical and computational methods, we characterize recurrent RAS55-64 Q61 neoepitopes presented by the common HLA-A*01:01 allotype. We integrate sparse NMR restraints with Rosetta docking to determine the solution structure of NRASQ61K/HLA-A*01:01, which enables modeling of other common RAS55-64 neoepitopes. Hydrogen/deuterium exchange mass spectrometry experiments alongside molecular dynamics simulations reveal differences in solvent accessibility and conformational plasticity across a panel of common Q61 neoepitopes that are relevant for recognition by immunoreceptors. Finally, we predict binding and provide structural models of NRASQ61K antigens spanning the entire HLA allelic landscape, together with in vitro validation for HLA-A*01:191, HLA-B*15:01, and HLA-C*08:02. Our work provides a basis to delineate the solution surface features and immunogenicity of clinically relevant neoepitope/HLA targets for cancer therapy.
Collapse
Affiliation(s)
- Andrew C McShan
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA, 30318, USA
| | - David Flores-Solis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 37075, Göttingen, Germany
| | - Yi Sun
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel E Garfinkle
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jugmohit S Toor
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Michael C Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Mao Y, Xiao X, Zhang J, Mou X, Zhao W. Designing a multi-epitope vaccine against Peptostreptococcus anaerobius based on an immunoinformatics approach. Synth Syst Biotechnol 2023; 8:757-770. [PMID: 38099061 PMCID: PMC10720267 DOI: 10.1016/j.synbio.2023.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/15/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Peptostreptococcus anaerobius is an anaerobic bacterium, which has been found selectively en-riched in the fecal and mucosal microbiota of colorectal cancer (CRC) patients. Emerging evidence suggest P. anaerobius may contribute to the development of CRC in human. In this study, we designed a multi-epitope chimeric vaccine against P. anaerobius PCWBR2, a recently identified adhesin that interacts directly with colon cell lines by binding α2/β1 integrin frequently overexpressed in human CRC tumors and cell lines. Immunoinformatics tools predicted six cytotoxic T lymphocyte epitopes, five helper T lymphocyte epitopes, and six linear B lymphocyte epitopes. The predicted epitopes were joined with AAY or GPGPG linkers and a previously reported TLR4 agonist was added to the vaccine construct's N terminal as an adjuvant using EAAAK linkers and the order of epitopes was optimized. Further in silico analysis revealed that the vaccine construct possesses satisfactory antigenicity, allergenicity, solubility, physicochemical properties, adjuvant-TLR4 molecular docking, and immune profile characteristics. Our study provided a promising design for vaccines against P. anaerobius.
Collapse
Affiliation(s)
- Yudan Mao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Xianzun Xiao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Jie Zhang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Wenjing Zhao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
6
|
Bruno PM, Timms RT, Abdelfattah NS, Leng Y, Lelis FJN, Wesemann DR, Yu XG, Elledge SJ. High-throughput, targeted MHC class I immunopeptidomics using a functional genetics screening platform. Nat Biotechnol 2023; 41:980-992. [PMID: 36593401 PMCID: PMC10314971 DOI: 10.1038/s41587-022-01566-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/13/2022] [Indexed: 01/03/2023]
Abstract
Identification of CD8+ T cell epitopes is critical for the development of immunotherapeutics. Existing methods for major histocompatibility complex class I (MHC class I) ligand discovery are time intensive, specialized and unable to interrogate specific proteins on a large scale. Here, we present EpiScan, which uses surface MHC class I levels as a readout for whether a genetically encoded peptide is an MHC class I ligand. Predetermined starting pools composed of >100,000 peptides can be designed using oligonucleotide synthesis, permitting large-scale MHC class I screening. We exploit this programmability of EpiScan to uncover an unappreciated role for cysteine that increases the number of predicted ligands by 9-21%, reveal affinity hierarchies by analysis of biased anchor peptide libraries and screen viral proteomes for MHC class I ligands. Using these data, we generate and iteratively refine peptide binding predictions to create EpiScan Predictor. EpiScan Predictor performs comparably to other state-of-the-art MHC class I peptide binding prediction algorithms without suffering from underrepresentation of cysteine-containing peptides. Thus, targeted immunopeptidomics using EpiScan will accelerate CD8+ T cell epitope discovery toward the goal of individual-specific immunotherapeutics.
Collapse
Affiliation(s)
- Peter M Bruno
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard T Timms
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Nouran S Abdelfattah
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felipe J N Lelis
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Contemplating immunopeptidomes to better predict them. Semin Immunol 2023; 66:101708. [PMID: 36621290 DOI: 10.1016/j.smim.2022.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
The identification of T-cell epitopes is key for a complete molecular understanding of immune recognition mechanisms in infectious diseases, autoimmunity and cancer. T-cell epitopes further provide targets for personalized vaccines and T-cell therapy, with several therapeutic applications in cancer immunotherapy and elsewhere. T-cell epitopes consist of short peptides displayed on Major Histocompatibility Complex (MHC) molecules. The recent advances in mass spectrometry (MS) based technologies to profile the ensemble of peptides displayed on MHC molecules - the so-called immunopeptidome - had a major impact on our understanding of antigen presentation and MHC ligands. On the one hand, these techniques enabled researchers to directly identify hundreds of thousands of peptides presented on MHC molecules, including some that elicited T-cell recognition. On the other hand, the data collected in these experiments revealed fundamental properties of antigen presentation pathways and significantly improved our ability to predict naturally presented MHC ligands and T-cell epitopes across the wide spectrum of MHC alleles found in human and other organisms. Here we review recent computational developments to analyze experimentally determined immunopeptidomes and harness these data to improve our understanding of antigen presentation and MHC binding specificities, as well as our ability to predict MHC ligands. We further discuss the strengths and limitations of the latest approaches to move beyond predictions of antigen presentation and tackle the challenges of predicting TCR recognition and immunogenicity.
Collapse
|
8
|
Kacen A, Javitt A, Kramer MP, Morgenstern D, Tsaban T, Shmueli MD, Teo GC, da Veiga Leprevost F, Barnea E, Yu F, Admon A, Eisenbach L, Samuels Y, Schueler-Furman O, Levin Y, Nesvizhskii AI, Merbl Y. Post-translational modifications reshape the antigenic landscape of the MHC I immunopeptidome in tumors. Nat Biotechnol 2023; 41:239-251. [PMID: 36203013 PMCID: PMC11197725 DOI: 10.1038/s41587-022-01464-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022]
Abstract
Post-translational modification (PTM) of antigens provides an additional source of specificities targeted by immune responses to tumors or pathogens, but identifying antigen PTMs and assessing their role in shaping the immunopeptidome is challenging. Here we describe the Protein Modification Integrated Search Engine (PROMISE), an antigen discovery pipeline that enables the analysis of 29 different PTM combinations from multiple clinical cohorts and cell lines. We expanded the antigen landscape, uncovering human leukocyte antigen class I binding motifs defined by specific PTMs with haplotype-specific binding preferences and revealing disease-specific modified targets, including thousands of new cancer-specific antigens that can be shared between patients and across cancer types. Furthermore, we uncovered a subset of modified peptides that are specific to cancer tissue and driven by post-translational changes that occurred in the tumor proteome. Our findings highlight principles of PTM-driven antigenicity, which may have broad implications for T cell-mediated therapies in cancer and beyond.
Collapse
Affiliation(s)
- Assaf Kacen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Aaron Javitt
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Tsaban
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Eilon Barnea
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Murata K, Ly D, Saijo H, Matsunaga Y, Sugata K, Ihara F, Oryoji D, Ohashi Y, Saso K, Wang CH, Zheng EY, Burt BD, Butler MO, Hirano N. Modification of the HLA-A*24:02 Peptide Binding Pocket Enhances Cognate Peptide-Binding Capacity and Antigen-Specific T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2022; 209:1481-1491. [DOI: 10.4049/jimmunol.2200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/10/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The immunogenicity of a T cell Ag is correlated with the ability of its antigenic epitope to bind HLA and be stably presented to T cells. This presents a challenge for the development of effective cancer immunotherapies, as many self-derived tumor-associated epitopes elicit weak T cell responses, in part due to weak binding affinity to HLA. Traditional methods to increase peptide–HLA binding affinity involve modifying the peptide to reflect HLA allele binding preferences. Using a different approach, we sought to analyze whether the immunogenicity of wild-type peptides could be altered through modification of the HLA binding pocket. After analyzing HLA class I peptide binding pocket alignments, we identified an alanine 81 to leucine (A81L) modification within the F binding pocket of HLA-A*24:02 that was found to heighten the ability of artificial APCs to retain and present HLA-A*24:02–restricted peptides, resulting in increased T cell responses while retaining Ag specificity. This modification led to increased peptide exchange efficiencies for enhanced detection of low-avidity T cells and, when expressed on artificial APCs, resulted in greater expansion of Ag-specific T cells from melanoma-derived tumor-infiltrating lymphocytes. Our study provides an example of how modifications to the HLA binding pocket can enhance wild-type cognate peptide presentation to heighten T cell activation.
Collapse
Affiliation(s)
- Kenji Murata
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dalam Ly
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hiroshi Saijo
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yukiko Matsunaga
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kenji Sugata
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fumie Ihara
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daisuke Oryoji
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yota Ohashi
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| | - Kayoko Saso
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chung-Hsi Wang
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| | - Evey Y.F. Zheng
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| | - Brian D. Burt
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcus O. Butler
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
- ‡Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Naoto Hirano
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
10
|
Min F, Fan C, Zeng Y, He N, Zeng T, Qin B, Shi Y. Carbamazepine-modified HLA-A*24:02-bound peptidome: Implication of CORO1A in skin rash. Int Immunopharmacol 2022; 109:108804. [DOI: 10.1016/j.intimp.2022.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
|
11
|
Hopkins JR, MacLachlan BJ, Harper S, Sewell AK, Cole DK. Unconventional modes of peptide-HLA-I presentation change the rules of TCR engagement. DISCOVERY IMMUNOLOGY 2022; 1:kyac001. [PMID: 38566908 PMCID: PMC10917088 DOI: 10.1093/discim/kyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 04/04/2024]
Abstract
The intracellular proteome of virtually every nucleated cell in the body is continuously presented at the cell surface via the human leukocyte antigen class I (HLA-I) antigen processing pathway. This pathway classically involves proteasomal degradation of intracellular proteins into short peptides that can be presented by HLA-I molecules for interrogation by T-cell receptors (TCRs) expressed on the surface of CD8+ T cells. During the initiation of a T-cell immune response, the TCR acts as the T cell's primary sensor, using flexible loops to mould around the surface of the pHLA-I molecule to identify foreign or dysregulated antigens. Recent findings demonstrate that pHLA-I molecules can also be highly flexible and dynamic, altering their shape according to minor polymorphisms between different HLA-I alleles, or interactions with different peptides. These flexible presentation modes have important biological consequences that can, for example, explain why some HLA-I alleles offer greater protection against HIV, or why some cancer vaccine approaches have been ineffective. This review explores how these recent findings redefine the rules for peptide presentation by HLA-I molecules and extend our understanding of the molecular mechanisms that govern TCR-mediated antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| |
Collapse
|
12
|
Meeuwsen MH, Wouters AK, Hagedoorn RS, Kester MGD, Remst DFG, van der Steen DM, de Ru A, van Veelen PA, Rossjohn J, Gras S, Falkenburg JHF, Heemskerk MHM. Cutting Edge: Unconventional CD8 + T Cell Recognition of a Naturally Occurring HLA-A*02:01-Restricted 20mer Epitope. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1851-1856. [PMID: 35379743 DOI: 10.4049/jimmunol.2101208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Unconventional HLA class I-restricted CD8+ T cell epitopes, longer than 10 aa, have been implicated to play a role in human immunity against viruses and cancer. T cell recognition of long peptides, centrally bulging from the HLA cleft, has been described previously. Alternatively, long peptides can contain a linear HLA-bound core peptide, with a N- or C-terminal peptide "tail" extending from the HLA peptide binding groove. The role of such a peptide "tail" in CD8+ T cell recognition remains unclear. In this study, we identified a 20mer peptide (FLPTPEELGLLGPPRPQVLA [FLP]) derived from the IL-27R subunit α gene restricted to HLA-A*02:01, for which we solved the crystal structure and demonstrated a long C-terminal "tail" extension. FLP-specific T cell clones demonstrated various recognition modes, some T cells recognized the FLP core peptide, while for other T cells the peptide tail was essential for recognition. These results demonstrate a crucial role for a C-terminal peptide tail in immunogenicity.
Collapse
Affiliation(s)
- Miranda H Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands;
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia; and
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia; and
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands;
| |
Collapse
|
13
|
A transformer-based model to predict peptide–HLA class I binding and optimize mutated peptides for vaccine design. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00459-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Gershteyn IM, Burov AA, Miao BY, Morais VH, Ferreira LMR. Immunodietica: interrogating the role of diet in autoimmune disease. Int Immunol 2021; 32:771-783. [PMID: 32808986 DOI: 10.1093/intimm/dxaa054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Diet is an environmental factor in autoimmune disorders, where the immune system erroneously destroys one's own tissues. Yet, interactions between diet and autoimmunity remain largely unexplored, particularly the impact of immunogenetics, one's human leukocyte antigen (HLA) allele make-up, in this interplay. Here, we interrogated animals and plants for the presence of epitopes implicated in human autoimmune diseases. We mapped autoimmune epitope distribution across organisms and determined their tissue expression pattern. Interestingly, diet-derived epitopes implicated in a disease were more likely to bind to HLA alleles associated with that disease than to protective alleles, with visible differences between organisms with similar autoimmune epitope content. We then analyzed an individual's HLA haplotype, generating a personalized heatmap of potential dietary autoimmune triggers. Our work uncovered differences in autoimmunogenic potential across food sources and revealed differential binding of diet-derived epitopes to autoimmune disease-associated HLA alleles, shedding light on the impact of diet on autoimmunity.
Collapse
Affiliation(s)
- Iosif M Gershteyn
- Ajax Biomedical Foundation, Newton, MA, USA
- ImmuVia LLC, Waltham, MA, USA
- SoundMedicine LLC, Waltham, MA, USA
| | | | - Brenda Y Miao
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vasco H Morais
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Leonardo M R Ferreira
- Ajax Biomedical Foundation, Newton, MA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Song S, Manook M, Kwun J, Jackson AM, Knechtle SJ, Kelsoe G. Allo-Specific Humoral Responses: New Methods for Screening Donor-Specific Antibody and Characterization of HLA-Specific Memory B Cells. Front Immunol 2021; 12:705140. [PMID: 34326847 PMCID: PMC8313870 DOI: 10.3389/fimmu.2021.705140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Antibody-mediated allograft rejection (AMR) causes more kidney transplant failure than any other single cause. AMR is mediated by antibodies recognizing antigens expressed by the graft, and antibodies generated against major histocompatibility complex (MHC) mismatches are especially problematic. Most research directed towards the management of clinical AMR has focused on identifying and characterizing circulating donor-specific HLA antibody (DSA) and optimizing therapies that reduce B-cell activation and/or block antibody secretion by inhibiting plasmacyte survival. Here we describe a novel set of reagents and techniques to allow more specific measurements of MHC sensitization across different animal transplant models. Additionally, we have used these approaches to isolate and clone individual HLA-specific B cells from patients sensitized by pregnancy or transplantation. We have identified and characterized the phenotypes of individual HLA-specific B cells, determined the V(D)J rearrangements of their paired H and L chains, and generated recombinant antibodies to determine affinity and specificity. Knowledge of the BCR genes of individual HLA-specific B cells will allow identification of clonally related B cells by high-throughput sequence analysis of peripheral blood mononuclear cells and permit us to re-construct the origins of HLA-specific B cells and follow their somatic evolution by mutation and selection.
Collapse
Affiliation(s)
- Shengli Song
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Miriam Manook
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Jean Kwun
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Annette M. Jackson
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Stuart J. Knechtle
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Garnett Kelsoe
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
16
|
McShan AC, Devlin CA, Morozov GI, Overall SA, Moschidi D, Akella N, Procko E, Sgourakis NG. TAPBPR promotes antigen loading on MHC-I molecules using a peptide trap. Nat Commun 2021; 12:3174. [PMID: 34039964 PMCID: PMC8154891 DOI: 10.1038/s41467-021-23225-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
Chaperones Tapasin and TAP-binding protein related (TAPBPR) perform the important functions of stabilizing nascent MHC-I molecules (chaperoning) and selecting high-affinity peptides in the MHC-I groove (editing). While X-ray and cryo-EM snapshots of MHC-I in complex with TAPBPR and Tapasin, respectively, have provided important insights into the peptide-deficient MHC-I groove structure, the molecular mechanism through which these chaperones influence the selection of specific amino acid sequences remains incompletely characterized. Based on structural and functional data, a loop sequence of variable lengths has been proposed to stabilize empty MHC-I molecules through direct interactions with the floor of the groove. Using deep mutagenesis on two complementary expression systems, we find that important residues for the Tapasin/TAPBPR chaperoning activity are located on a large scaffolding surface, excluding the loop. Conversely, loop mutations influence TAPBPR interactions with properly conformed MHC-I molecules, relevant for peptide editing. Detailed biophysical characterization by solution NMR, ITC and FP-based assays shows that the loop hovers above the MHC-I groove to promote the capture of incoming peptides. Our results suggest that the longer loop of TAPBPR lowers the affinity requirements for peptide selection to facilitate peptide loading under conditions and subcellular compartments of reduced ligand concentration, and to prevent disassembly of high-affinity peptide-MHC-I complexes that are transiently interrogated by TAPBPR during editing.
Collapse
Affiliation(s)
- Andrew C McShan
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christine A Devlin
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| | - Giora I Morozov
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah A Overall
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Danai Moschidi
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Neha Akella
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA.
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Tran JN, Günther OP, Sherwood KR, Fenninger F, Allan LL, Lan J, Sapir-Pichhadze R, Duquesnoy R, Claas F, Marsh SGE, McMaster WR, Keown PA. High-throughput sequencing defines donor and recipient HLA B-cell epitope frequencies for prospective matching in transplantation. Commun Biol 2021; 4:583. [PMID: 33990681 PMCID: PMC8121953 DOI: 10.1038/s42003-021-01989-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
Compatibility for human leukocyte antigen (HLA) genes between transplant donors and recipients improves graft survival but prospective matching is rarely performed due to the vast heterogeneity of this gene complex. To reduce complexity, we have combined next-generation sequencing and in silico mapping to determine transplant population frequencies and matching probabilities of 150 antibody-binding eplets across all 11 classical HLA genes in 2000 ethnically heterogeneous renal patients and donors. We show that eplets are more common and uniformly distributed between donors and recipients than the respective HLA isoforms. Simulations of targeted eplet matching shows that a high degree of overall compatibility, and perfect identity at the clinically important HLA class II loci, can be obtained within a patient waiting list of approximately 250 subjects. Internal epitope-based allocation is thus feasible for most major renal transplant programs, while regional or national sharing may be required for other solid organs. Tran et al. combine high throughput sequencing, structural biology and computational simulation to determine the HLA allele and antibody-defined epitope frequencies in renal transplant patients and donors. These results demonstrate the feasibility of HLA epitope matching using data from a national transplantation program.
Collapse
Affiliation(s)
- Jenny N Tran
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Karen R Sherwood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lenka L Allan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James Lan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Rene Duquesnoy
- Department of Pathology, University of Pittsburgh, Pennsylvania, PA, USA
| | - Frans Claas
- Department of Immunohematology and Blood Transfusion, University of Leiden, Leiden, Netherlands
| | - Steven G E Marsh
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, London, UK
| | - W Robert McMaster
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Infection and Immunity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. .,Department of Medicine, University of British Columbia, Vancouver, BC, Canada. .,Infection and Immunity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
18
|
Jantz-Naeem N, Springer S. Venus flytrap or pas de trois? The dynamics of MHC class I molecules. Curr Opin Immunol 2021; 70:82-89. [PMID: 33993034 DOI: 10.1016/j.coi.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
The peptide binding site of major histocompatibility complex (MHC) class I molecules is natively unfolded when devoid of peptides. Peptide binding stabilizes the structure and slows the dynamics, but peptide-specific and subtype-specific motions influence, and are influenced by, interaction with assembly chaperones, the T cell receptor, and other class I-binding proteins. The molecular mechanisms of cooperation between peptide, class I heavy chain, and beta-2 microglobulin are insufficiently known but are being elucidated by nuclear magnetic resonance and other modern methods. It appears that micropolymorphic clusters of charged amino acids, often hidden in the molecule interior, determine the dynamics and thus chaperone dependence, cellular fate, and disease association of class I.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany.
| |
Collapse
|
19
|
Finton KAK, Brusniak MY, Jones LA, Lin C, Fioré-Gartland AJ, Brock C, Gafken PR, Strong RK. ARTEMIS: A Novel Mass-Spec Platform for HLA-Restricted Self and Disease-Associated Peptide Discovery. Front Immunol 2021; 12:658372. [PMID: 33986749 PMCID: PMC8111693 DOI: 10.3389/fimmu.2021.658372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022] Open
Abstract
Conventional immunoprecipitation/mass spectroscopy identification of HLA-restricted peptides remains the purview of specializing laboratories, due to the complexity of the methodology, and requires computational post-analysis to assign peptides to individual alleles when using pan-HLA antibodies. We have addressed these limitations with ARTEMIS: a simple, robust, and flexible platform for peptide discovery across ligandomes, optionally including specific proteins-of-interest, that combines novel, secreted HLA-I discovery reagents spanning multiple alleles, optimized lentiviral transduction, and streamlined affinity-tag purification to improve upon conventional methods. This platform fills a middle ground between existing techniques: sensitive and adaptable, but easy and affordable enough to be widely employed by general laboratories. We used ARTEMIS to catalog allele-specific ligandomes from HEK293 cells for seven classical HLA alleles and compared results across replicates, against computational predictions, and against high-quality conventional datasets. We also applied ARTEMIS to identify potentially useful, novel HLA-restricted peptide targets from oncovirus oncoproteins and tumor-associated antigens.
Collapse
Affiliation(s)
- Kathryn A K Finton
- Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lisa A Jones
- Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Chenwei Lin
- Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Andrew J Fioré-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Chance Brock
- Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Philip R Gafken
- Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Roland K Strong
- Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
20
|
Adair K, Meng X, Naisbitt DJ. Drug hapten-specific T-cell activation: Current status and unanswered questions. Proteomics 2021; 21:e2000267. [PMID: 33651918 DOI: 10.1002/pmic.202000267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/07/2022]
Abstract
Drug haptens are formed from the irreversible, covalent binding of drugs to nucleophilic moieties on proteins, which can warrant adverse reactions in the body including severe delayed-type, T-cell mediated, drug hypersensitivity reactions (DHRs). While three main pathways exist for the activation of T-cells in DHRs, namely the hapten model, the pharmacological interaction model and the altered peptide repertoire model, the exact antigenic determinants responsible have not yet been defined. In recent years, progress has been made using advanced mass spectrometry-based proteomic methods to identify protein carriers and characterise the structure of drug-haptenated proteins. Since genome-wide association studies discovered a link between human leukocyte antigens (HLA) and an individual's susceptibility to DHRs, much effort has been made to define the drug-associated HLA ligands driving T-cell activation, including the elution of natural HLA peptides from HLA molecules and the generation of HLA-binding peptides. In this review, we discuss our current methodology used to design and synthesise drug-modified HLA ligands to investigate their immunogenicity using T-cell models, and thus their implication in drug hypersensitivity.
Collapse
Affiliation(s)
- Kareena Adair
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Xiaoli Meng
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Szeto C, Chatzileontiadou DS, Nguyen AT, Sloane H, Lobos CA, Jayasinghe D, Halim H, Smith C, Riboldi-Tunnicliffe A, Grant EJ, Gras S. The presentation of SARS-CoV-2 peptides by the common HLA-A ∗02:01 molecule. iScience 2021; 24:102096. [PMID: 33521593 PMCID: PMC7825995 DOI: 10.1016/j.isci.2021.102096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cells are crucial for anti-viral immunity; however, understanding T cell responses requires the identification of epitopes presented by human leukocyte antigens (HLA). To date, few SARS-CoV-2-specific CD8+ T cell epitopes have been described. Internal viral proteins are typically more conserved than surface proteins and are often the target of CD8+ T cells. Therefore, we have characterized eight peptides derived from the internal SARS-CoV-2 nucleocapsid protein predicted to bind HLA-A∗02:01, the most common HLA molecule in the global population. We determined not all peptides could form a complex with HLA-A∗02:01, and the six crystal structures determined revealed that some peptides adopted a mobile conformation. We therefore provide a molecular understanding of SARS-CoV-2 CD8+ T cell epitopes. Furthermore, we show that there is limited pre-existing CD8+ T cell response toward these epitopes in unexposed individuals. Together, these data show that SARS-CoV-2 nucleocapsid might not contain potent epitopes restricted to HLA-A∗02:01. HLA-A∗02:01 individuals have limited pre-existing immunity to SARS-CoV-2 nucleocapsid High-resolution crystal structures of HLA-A∗02:01 presenting SARS-CoV-2 peptides Structural analysis of pHLA shows stability influences peptide immunogenicity
Collapse
Affiliation(s)
- Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Demetra S.M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Christian A. Lobos
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hanim Halim
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Corey Smith
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Corresponding author
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Corresponding author
| |
Collapse
|
22
|
Mei S, Li F, Xiang D, Ayala R, Faridi P, Webb GI, Illing PT, Rossjohn J, Akutsu T, Croft NP, Purcell AW, Song J. Anthem: a user customised tool for fast and accurate prediction of binding between peptides and HLA class I molecules. Brief Bioinform 2021; 22:6102669. [PMID: 33454737 DOI: 10.1093/bib/bbaa415] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Neopeptide-based immunotherapy has been recognised as a promising approach for the treatment of cancers. For neopeptides to be recognised by CD8+ T cells and induce an immune response, their binding to human leukocyte antigen class I (HLA-I) molecules is a necessary first step. Most epitope prediction tools thus rely on the prediction of such binding. With the use of mass spectrometry, the scale of naturally presented HLA ligands that could be used to develop such predictors has been expanded. However, there are rarely efforts that focus on the integration of these experimental data with computational algorithms to efficiently develop up-to-date predictors. Here, we present Anthem for accurate HLA-I binding prediction. In particular, we have developed a user-friendly framework to support the development of customisable HLA-I binding prediction models to meet challenges associated with the rapidly increasing availability of large amounts of immunopeptidomic data. Our extensive evaluation, using both independent and experimental datasets shows that Anthem achieves an overall similar or higher area under curve value compared with other contemporary tools. It is anticipated that Anthem will provide a unique opportunity for the non-expert user to analyse and interpret their own in-house or publicly deposited datasets.
Collapse
Affiliation(s)
- Shutao Mei
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Fuyi Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Australia
| | - Dongxu Xiang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Rochelle Ayala
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Pouya Faridi
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | | | - Patricia T Illing
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Jamie Rossjohn
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
| | - Nathan P Croft
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Anthony W Purcell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Biochemistry and Molecular Biology, Monash University, Australia
| |
Collapse
|
23
|
Gomez-Perosanz M, Sanchez-Trincado JL, Fernandez-Arquero M, Sidney J, Sette A, Lafuente EM, Reche PA. Human rhinovirus-specific CD8 T cell responses target conserved and unusual epitopes. FASEB J 2020; 35:e21208. [PMID: 33230881 PMCID: PMC7753581 DOI: 10.1096/fj.202002165r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Human Rhinovirus (HRV) is a major cause of common cold, bronchiolitis, and exacerbations of chronic pulmonary diseases such as asthma. CD8 T cell responses likely play an important role in the control of HRV infection but, surprisingly, HRV‐specific CD8 T cell epitopes remain yet to be identified. Here, we approached the discovery and characterization of conserved HRV‐specific CD8 T cell epitopes from species A (HRV A) and C (HRV C), the most frequent subtypes in the clinics of various pulmonary diseases. We found IFNγ‐ELISPOT positive responses to 23 conserved HRV‐specific peptides on peripheral blood mononuclear cells (PBMCs) from 14 HLA I typed subjects. Peptide‐specific IFNγ production by CD8 T cells and binding to the relevant HLA I were confirmed for six HRV A‐specific and three HRV C‐specific CD8 T cell epitopes. In addition, we validated A*02:01‐restricted epitopes by DimerX staining and found out that these peptides mediated cytotoxicity. All these A*02:01‐restricted epitopes were 9‐mers but, interestingly, we also identified and validated an unusually long 16‐mer epitope peptide restricted by A*02:01, HRVC1791‐1806 (GLEPLDLNTSAGFPYV). HRV‐specific CD8 T cell epitopes describe here are expected to elicit CD8 T cell responses in up to 87% of the population and could be key for developing an HRV vaccine.
Collapse
Affiliation(s)
- Marta Gomez-Perosanz
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose L Sanchez-Trincado
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Esther M Lafuente
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Pedro A Reche
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
24
|
Lee CH, Pinho MP, Buckley PR, Woodhouse IB, Ogg G, Simmons A, Napolitani G, Koohy H. Potential CD8+ T Cell Cross-Reactivity Against SARS-CoV-2 Conferred by Other Coronavirus Strains. Front Immunol 2020; 11:579480. [PMID: 33250893 PMCID: PMC7676914 DOI: 10.3389/fimmu.2020.579480] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
While individuals infected with coronavirus disease 2019 (COVID-19) manifested a broad range in susceptibility and severity to the disease, the pre-existing immune memory to related pathogens cross-reactive against SARS-CoV-2 can influence the disease outcome in COVID-19. Here, we investigated the potential extent of T cell cross-reactivity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be conferred by other coronaviruses and influenza virus, and generated an in silico map of public and private CD8+ T cell epitopes between coronaviruses. We observed 794 predicted SARS-CoV-2 epitopes of which 52% were private and 48% were public. Ninety-nine percent of the public epitopes were shared with SARS-CoV and 5.4% were shared with either one of four common coronaviruses, 229E, HKU1, NL63, and OC43. Moreover, to assess the potential risk of self-reactivity and/or diminished T cell response for peptides identical or highly similar to the host, we identified predicted epitopes with high sequence similarity with human proteome. Lastly, we compared predicted epitopes from coronaviruses with epitopes from influenza virus deposited in IEDB, and found only a small number of peptides with limited potential for cross-reactivity between the two virus families. We believe our comprehensive in silico profile of private and public epitopes across coronaviruses would facilitate design of vaccines, and provide insights into the presence of pre-existing coronavirus-specific memory CD8+ T cells that may influence immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariana Pereira Pinho
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul R. Buckley
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Isaac B. Woodhouse
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Picarda E, Bézie S, Usero L, Ossart J, Besnard M, Halim H, Echasserieau K, Usal C, Rossjohn J, Bernardeau K, Gras S, Guillonneau C. Cross-Reactive Donor-Specific CD8 + Tregs Efficiently Prevent Transplant Rejection. Cell Rep 2020; 29:4245-4255.e6. [PMID: 31875536 DOI: 10.1016/j.celrep.2019.11.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
To reduce the use of non-specific immunosuppressive drugs detrimental to transplant patient health, therapies in development aim to achieve antigen-specific tolerance by promoting antigen-specific regulatory T cells (Tregs). However, identification of the natural antigens recognized by Tregs and the contribution of their dominance in transplantation has been challenging. We identify epitopes derived from distinct major histocompatibility complex (MHC) class II molecules, sharing a 7-amino acid consensus sequence positioned in a central mobile section in complex with MHC class I, recognized by cross-reactive CD8+ Tregs, enriched in the graft. Antigen-specific CD8+ Tregs can be induced in vivo with a 16-amino acid-long peptide to trigger transplant tolerance. Peptides derived from human HLA class II molecules, harboring the rat consensus sequence, also activate and expand human CD8+ Tregs, suggesting its potential in human transplantation. Altogether, this work should facilitate the development of therapies with peptide epitopes for transplantation and improve our understanding of CD8+ Treg recognition.
Collapse
Affiliation(s)
- Elodie Picarda
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Séverine Bézie
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Lorena Usero
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jason Ossart
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Marine Besnard
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Hanim Halim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Klara Echasserieau
- Plateforme de protéines recombinantes P2R IFR26, CRCNA-UMR892 INSERM, Nantes, France
| | - Claire Usal
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Karine Bernardeau
- Plateforme de protéines recombinantes P2R IFR26, CRCNA-UMR892 INSERM, Nantes, France
| | - Stéphanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Carole Guillonneau
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.
| |
Collapse
|
26
|
Destabilizing single chain major histocompatibility complex class I protein for repurposed enterokinase proteolysis. Sci Rep 2020; 10:14897. [PMID: 32913247 PMCID: PMC7483518 DOI: 10.1038/s41598-020-71785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/18/2020] [Indexed: 11/08/2022] Open
Abstract
The lack of a high throughput assay for screening stabilizing peptides prior to building a library of peptide-major histocompatibility complex class I (pMHC-I) molecules has motivated the continual use of in silico tools without biophysical characterization. Here, based on de novo protein fragmentation, the EASY MHC-I (EZ MHC-I) assay favors peptide antigen screening to an unheralded hands-on time of seconds per peptide due to the empty single chain MHC-I protein instability. Unlike tedious traditional labeling- and antibody-based MHC-I assays, repurposed enterokinase directly fragments the unstable single MHC-I chain protein unless rescued by a stabilizing peptide under luminal condition. Herein, the principle behind EZ MHC-I assay not only characterizes the overlooked stability as a known better indicator of immunogenicity than classical affinity but also the novel use of enterokinase from the duodenum to target destabilized MHC-I protein not bearing the standard Asp-Asp-Asp-Asp-Lys motif, which may protend to other protein instability-based assays.
Collapse
|
27
|
Assmus LM, Guan J, Wu T, Farenc C, Sng XYX, Zareie P, Nguyen A, Nguyen AT, Tscharke DC, Thomas PG, Rossjohn J, Gras S, Croft NP, Purcell AW, La Gruta NL. Overlapping Peptides Elicit Distinct CD8 + T Cell Responses following Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:1731-1742. [PMID: 32868409 DOI: 10.4049/jimmunol.2000689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
The presentation of pathogen-derived peptides on MHC class I molecules is essential for the initiation of adaptive CD8+ T cell immunity, which in turn is critical for effective control of many significant human infections. The identification of immunogenic pathogen-derived epitopes and a detailed understanding of how they are recognized by TCRs is essential for the design of effective T cell-based vaccines. In this study, we have characterized the T cell recognition and immune responses in mice to two naturally presented influenza A virus-derived peptides previously identified from virally infected cells via mass spectrometry. These neuraminidase-derived peptides, NA181-190 (SGPDNGAVAV) and NA181-191 (SGPDNGAVAVL), are completely overlapping with the exception of a 1 aa extension at the C terminus of the longer peptide. This minor peptidic difference results in the induction of two completely independent and non-cross-reactive T cell populations that show distinct functional characteristics after influenza A virus infection of B6 mice. We show that the unique TCR reactivity to the overlapping peptides is present in the naive repertoire prior to immune expansion in B6 mice. Moreover, we provide a structural explanation underlying the distinct CD8+ T cell reactivities, which reinforces the concept that peptide length is a key determinant of Ag specificity in CD8+ T cell responses.
Collapse
Affiliation(s)
- Lisa M Assmus
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Institute of Experimental Immunology, University Hospital Bonn, 53105 Bonn, Germany
| | - Jing Guan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ting Wu
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Carine Farenc
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Xavier Y X Sng
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pirooz Zareie
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Angela Nguyen
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| |
Collapse
|
28
|
Mavridis G, Arya R, Domnick A, Zoidakis J, Makridakis M, Vlahou A, Mpakali A, Lelis A, Georgiadis D, Tampé R, Papakyriakou A, Stern LJ, Stratikos E. A systematic re-examination of processing of MHCI-bound antigenic peptide precursors by endoplasmic reticulum aminopeptidase 1. J Biol Chem 2020; 295:7193-7210. [PMID: 32184355 PMCID: PMC7247305 DOI: 10.1074/jbc.ra120.012976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims antigenic peptide precursors to generate mature antigenic peptides for presentation by major histocompatibility complex class I (MHCI) molecules and regulates adaptive immune responses. ERAP1 has been proposed to trim peptide precursors both in solution and in preformed MHCI-peptide complexes, but which mode is more relevant to its biological function remains controversial. Here, we compared ERAP1-mediated trimming of antigenic peptide precursors in solution or when bound to three MHCI alleles, HLA-B*58, HLA-B*08, and HLA-A*02. For all MHCI-peptide combinations, peptide binding onto MHCI protected against ERAP1-mediated trimming. In only a single MHCI-peptide combination, trimming of an HLA-B*08-bound 12-mer progressed at a considerable rate, albeit still slower than in solution. Results from thermodynamic, kinetic, and computational analyses suggested that this 12-mer is highly labile and that apparent on-MHC trimming rates are always slower than that of MHCI-peptide dissociation. Both ERAP2 and leucine aminopeptidase, an enzyme unrelated to antigen processing, could trim this labile peptide from preformed MHCI complexes as efficiently as ERAP1. A pseudopeptide analogue with high affinity for both HLA-B*08 and the ERAP1 active site could not promote the formation of a ternary ERAP1/MHCI/peptide complex. Similarly, no interactions between ERAP1 and purified peptide-loading complex were detected in the absence or presence of a pseudopeptide trap. We conclude that MHCI binding protects peptides from ERAP1 degradation and that trimming in solution along with the dynamic nature of peptide binding to MHCI are sufficient to explain ERAP1 processing of antigenic peptide precursors.
Collapse
Affiliation(s)
- George Mavridis
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| | - Richa Arya
- University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alexander Domnick
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Jerome Zoidakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Manousos Makridakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Antonia Vlahou
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Chemistry Department, University of Athens, Athens 15772, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Chemistry Department, University of Athens, Athens 15772, Greece
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | | | - Lawrence J Stern
- University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece.
| |
Collapse
|
29
|
Circulation autoantibodies against C-terminus of NuMA in patients with Behçet's disease. Cent Eur J Immunol 2020; 45:86-92. [PMID: 32425685 PMCID: PMC7226561 DOI: 10.5114/ceji.2020.94710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/08/2017] [Indexed: 11/17/2022] Open
Abstract
Circulating autoantibodies have a close association with autoimmune diseases, which may be seen even in healthy individuals. These are also considered as promising source of new biomarkers in various autoimmune diseases. However, their profile is not completely understood till now. Here, we evaluated autoantibodies against nuclear mitotic apparatus protein located at the carboxy terminus (C-NuMA)in blood circulation of Han Chinese patients, using different technical approaches to discover pathological reaction leading to Behçet's disease (BD). In the first step, the recombinant human carboxy-terminal region of NuMA peptide (C-NuMA) was over-expressed and purified. In the second step, the indirect immunofluorescence method was used with patients' sera, and commercial anti-NuMA antibody was used to determine the NuMA as a potential autoantigen. Results were confirmed at cell level by western blots, indicating that two of ten patients with Behçet's disease could react with the recombinant C-NuMA,and the presence of antibodies were further verified by immunoprecipitation technique. Finally, the corresponding immunoassay (ELISA) was developed and optimized with specific recombinant C-NuMA as an in vitro method to test the confirmed patients with Behçet's disease. Our findings demonstrated that C-terminus of NuMA is an immune target of Behçet's disease in Han Chinese patients.
Collapse
|
30
|
Lio WM, Cercek B, Yano J, Yang W, Ghermezi J, Zhao X, Zhou J, Zhou B, Freeman MR, Chyu KY, Shah PK, Dimayuga PC. Sex as a Determinant of Responses to a Coronary Artery Disease Self-Antigen Identified by Immune-Peptidomics. Front Immunol 2020; 11:694. [PMID: 32373127 PMCID: PMC7187896 DOI: 10.3389/fimmu.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
A significant body of work implicates the adaptive immune response in atherosclerosis, the main underlying cause of coronary artery disease (CAD), yet specific antigens involved remain to be fully identified. The pathobiology of CAD is influenced by sex with many factors that may be involved in the underlying mechanisms. Given the reported sexual dimorphic nature of immune-inflammatory responses, we investigated the influence of sex on potential CAD self-antigens from acute coronary syndrome (ACS) patients using immune-precipitation of soluble HLA Class-I/peptide complexes and mass spectrometry. Relevance of identified self-antigens to atherosclerosis, the major underlying cause of CAD, was tested in the apoE–/– atherosclerotic mouse model. Soluble HLA Class-I complexes from ACS patients and self-reported controls were immune-precipitated and subjected to elution, denaturation and size-exclusion to obtain HLA-bound peptides. Peptides were then subjected to mass spectrometry and patient-unique self-peptides were grouped as common to both female and male, or unique to either sex. Three peptides common to both female and male patients (COL6A1, CDSN, and SAA2), and 2 peptides each unique to female (COL1A1 and COL5A2) or male (SAA1 and KRT 9) patients were selected and mouse homologs of the peptides were screened for self-reactive immune responses in apoE–/– mice. The screening step revealed potential sex-influenced immune responses which was associated with differential immune profiles. Based on the frequency in patient plasma, COL6A1, COL5A2, and KRT 9 peptides were then tested in immunization studies. Neither COL5A2 nor KRT 9 peptide immunization resulted in significant effects on atherosclerosis compared to controls. On the other hand, female mice immunized with COL6A1 peptide had significantly reduced atherosclerosis whereas male mice had significantly increased atherosclerosis, associated with differential immune profiles. Our study identified potential self-antigens involved in atherosclerosis using the immune peptidome of CAD patients. Altering self-reactive immune responses to COL6A1 in apoE–/– mice resulted in differential effects on atherosclerosis burden with sex as a determinant of outcome.
Collapse
Affiliation(s)
- Wai Man Lio
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bojan Cercek
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Juliana Yano
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jonathan Ghermezi
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xiaoning Zhao
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jianchang Zhou
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bo Zhou
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Prediman K Shah
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Paul C Dimayuga
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
31
|
Augmenting Peptide Flexibility by Inserting Gamma-Aminobutyric Acid (GABA) in Their Sequence. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10054-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Perez MAS, Bassani-Sternberg M, Coukos G, Gfeller D, Zoete V. Analysis of Secondary Structure Biases in Naturally Presented HLA-I Ligands. Front Immunol 2019; 10:2731. [PMID: 31824508 PMCID: PMC6883762 DOI: 10.3389/fimmu.2019.02731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Recent clinical developments in antitumor immunotherapy involving T-cell related therapeutics have led to a renewed interest for human leukocyte antigen class I (HLA-I) binding peptides, given their potential use as peptide vaccines. Databases of HLA-I binding peptides hold therefore information on therapeutic targets essential for understanding immunity. In this work, we use in depth and accurate HLA-I peptidomics datasets determined by mass-spectrometry (MS) and analyze properties of the HLA-I binding peptides with structure-based computational approaches. HLA-I binding peptides are studied grouping all alleles together or in allotype-specific contexts. We capitalize on the increasing number of structurally determined proteins to (1) map the 3D structure of HLA-I binding peptides into the source proteins for analyzing their secondary structure and solvent accessibility in the protein context, and (2) search for potential differences between these properties in HLA-I binding peptides and in a reference dataset of HLA-I motif-like peptides. This is performed by an in-house developed heuristic search that considers peptides across all the human proteome and converges to a collection of peptides that exhibit exactly the same motif as the HLA-I peptides. Our results, based on 9-mers matched to protein 3D structures, clearly show enriched sampling for HLA-I presentation of helical fragments in the source proteins. This enrichment is significant, as compared to 9-mer HLA-I motif-like peptides, and is not entirely explained by the helical propensity of the preferred residues in the HLA-I motifs. We give possible hypothesis for the secondary structure biases observed in HLA-I peptides. This contribution is of potential interest for researchers working in the field of antigen presentation and proteolysis. This knowledge refines the understanding of the rules governing antigen presentation and could be added to the parameters of the current peptide-MHC class I binding predictors to increase their antigen predictive ability.
Collapse
Affiliation(s)
- Marta A S Perez
- Computer-Aided Molecular Engineering, Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Human Integrated Tumor Immunology Discovery Engine, Department of Oncology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Human Integrated Tumor Immunology Discovery Engine, Department of Oncology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Computational Cancer Biology, Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Computer-Aided Molecular Engineering, Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
33
|
Li L, Batliwala M, Bouvier M. ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation. J Biol Chem 2019; 294:18534-18544. [PMID: 31601650 PMCID: PMC6901306 DOI: 10.1074/jbc.ra119.010102] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 critically shape the major histocompatibility complex I (MHC I) immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides (i.e. 8-10-mers) to fit into the MHC class I groove. It is therefore intriguing that MHC class I molecules can present N-terminally extended peptides on the cell surface that can elicit CD8+ T-cell responses. This observation likely reflects gaps in our understanding of how antigens are processed by the ERAP enzymes. To better understand ERAPs' function in antigen processing, here we generated a nested set of N-terminally extended 10-20-mer peptides (RA) n AAKKKYCL covalently bound to the human leukocyte antigen (HLA)-B*0801. We used X-ray crystallography, thermostability assessments, and an ERAP1-trimming assay to characterize these complexes. The X-ray structures determined at 1.40-1.65 Å resolutions revealed that the residue extensions (RA) n unexpectedly protrude out of the A pocket of HLA-B*0801, whereas the AAKKKYCL core of all peptides adopts similar, bound conformations. HLA-B*0801 residue 62 was critical to open the A pocket. We also show that HLA-B*0801 and antigenic precursor peptides form stable complexes. Finally, ERAP1-mediated trimming of the MHC I-bound peptides required a minimal length of 14 amino acids. We propose a mechanistic model explaining how ERAP1-mediated trimming of MHC I-bound peptides in cells can generate peptides of canonical as well as noncanonical lengths that still serve as stable MHC I ligands. Our results provide a framework to better understand how the ERAP enzymes influence the MHC I immunopeptidome.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612
| | - Mansoor Batliwala
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612, To whom correspondence should be addressed:
Dept. of Microbiology and Immunology, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612. Tel.:
312-355-0664; E-mail:
| |
Collapse
|
34
|
Huan X, Zhuo Z, Xiao Z, Ren EC. Crystal structure of suboptimal viral fragments of Epstein Barr Virus Rta peptide-HLA complex that stimulate CD8 T cell response. Sci Rep 2019; 9:16660. [PMID: 31723204 PMCID: PMC6853878 DOI: 10.1038/s41598-019-53201-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
Peptides presented by Human leukocyte antigen (HLA) class-I molecules are generally 8-10 amino acids in length. However, the predominant pool of peptide fragments generated by proteasomes is less than 8 amino acids in length. Using the Epstein - Barr virus (EBV) Rta-epitope (ATIGTAMYK, residues 134-142) restricted by HLA-A*11:01 which generates a strong immunodominant response, we investigated the minimum length of a viral peptide that can constitute a viral epitope recognition by CD8 T cells. The results showed that Peripheral blood mononuclear cells (PBMCs) from healthy donors can be stimulated by a viral peptide fragment as short as 4-mer (AMYK), together with a 5-mer (ATIGT) to recapitulate the full length EBV Rta epitope. This was confirmed by generating crystals of the tetra-complex (2 peptides, HLA and β2-microglobulin). The solved crystal structure of HLA-A*11:01 in complex with these two short peptides revealed that they can bind in the same orientation similar to parental peptide (9-mer) and the free ends of two short peptides acquires a bulged conformation that is directed towards the T cell receptor. Our data shows that suboptimal length of 4-mer and 5-mer peptides can complement each other to form a stable peptide-MHC (pMHC) complex.
Collapse
Affiliation(s)
- Xuelu Huan
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ziyi Zhuo
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ziwei Xiao
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 119260, Singapore.
| |
Collapse
|
35
|
Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses. Nat Commun 2019; 10:2846. [PMID: 31253788 PMCID: PMC6599079 DOI: 10.1038/s41467-019-10661-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/24/2019] [Indexed: 11/08/2022] Open
Abstract
The magnitude of T cell responses to infection is a function of the naïve T cell repertoire combined with the context and duration of antigen presentation. Using mass spectrometry, we identify and quantify 21 class 1 MHC-restricted influenza A virus (IAV)-peptides following either direct or cross-presentation. All these peptides, including seven novel epitopes, elicit T cell responses in infected C57BL/6 mice. Directly presented IAV epitopes maintain their relative abundance across distinct cell types and reveal a broad range of epitope abundances. In contrast, cross-presented epitopes are more uniform in abundance. We observe a clear disparity in the abundance of the two key immunodominant IAV antigens, wherein direct infection drives optimal nucleoprotein (NP)366–374 presentation, while cross-presentation is optimal for acid polymerase (PA)224–233 presentation. The study demonstrates how assessment of epitope abundance in both modes of antigen presentation is necessary to fully understand the immunogenicity and response magnitude to T cell epitopes. CTL responses are critical in protection against pathogens. Here, using mass spectrometry and flow cytometry, the authors characterize the kinetics of influenza A virus class I MHC epitopes cross-presented in professional antigen presenting cells and identify new epitopes that elicit T cell responses in infected mice.
Collapse
|
36
|
Pump WC, Schulz R, Huyton T, Kunze-Schumacher H, Martens J, Hò GGT, Blasczyk R, Bade-Doeding C. Releasing the concept of HLA-allele specific peptide anchors in viral infections: A non-canonical naturally presented human cytomegalovirus-derived HLA-A*24:02 restricted peptide drives exquisite immunogenicity. HLA 2019; 94:25-38. [PMID: 30912293 PMCID: PMC6593758 DOI: 10.1111/tan.13537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 11/30/2022]
Abstract
T‐cell receptors possess the unique ability to survey and respond to their permanently modified ligands, self HLA‐I molecules bound to non‐self peptides of various origin. This highly specific immune function is impaired following hematopoietic stem cell transplantation (HSCT) for a timespan of several months needed for the maturation of T‐cells. Especially, the progression of HCMV disease in immunocompromised patients induces life‐threatening situations. Therefore, the need for a new immune system that delivers vital and potent CD8+ T‐cells carrying TCRs that recognize even one human cytomegalovirus (HCMV) peptide/HLA molecule and clear the viral infection long term becomes obvious. The transcription and translation of HCMV proteins in the lytic cycle is a precisely regulated cascade of processes, therefore, it is a highly sensitive challenge to adjust the exact time point of HCMV‐peptide recruitment over self‐peptides. We utilized soluble HLA technology in HCMV‐infected fibroblasts and sequenced naturally sHLA‐A*24:02 presented HCMV‐derived peptides. One peptide of 14 AAs length derived from the IE2 antigen induced the strongest T‐cell responses; this peptide can be detected with a low ranking score in general peptide prediction databanks. These results highlight the need for elaborate and HLA‐allele specific peptide selection.
Collapse
Affiliation(s)
- Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rebecca Schulz
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Jörg Martens
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
37
|
HLA-F*01:01 presents peptides with N-terminal flexibility and a preferred length of 16 residues. Immunogenetics 2019; 71:353-360. [PMID: 30941482 PMCID: PMC6525141 DOI: 10.1007/s00251-019-01112-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022]
Abstract
HLA-F belongs to the non-classical HLA-Ib molecules with a marginal polymorphic nature and tissue-restricted distribution. HLA-F is a ligand of the NK cell receptor KIR3DS1, whose activation initiates an antiviral downstream immune response and lead to delayed disease progression of HIV-1. During the time course of HIV infection, the expression of HLA-F is upregulated while its interaction with KIR3DS1 is diminished. Understanding HLA-F peptide selection and presentation is essential to a comprehensive understanding of this dynamic immune response and the molecules function. In this study, we were able to recover stable pHLA-F*01:01 complexes and analyze the characteristics of peptides naturally presented by HLA-F. These HLA-F-restricted peptides exhibit a non-canonical length without a defined N-terminal anchor. The peptide characteristics lead to a unique presentation profile and influence the stability of the protein. Furthermore, we demonstrate that almost all source proteins of HLA-F-restricted peptides are described to interact with HIV proteins. Understanding the balance switch between HLA-Ia and HLA-F expression and peptide selection will support to understand the role of HLA-F in viral pathogenesis.
Collapse
|
38
|
Abella JR, Antunes DA, Clementi C, Kavraki LE. APE-Gen: A Fast Method for Generating Ensembles of Bound Peptide-MHC Conformations. Molecules 2019; 24:E881. [PMID: 30832312 PMCID: PMC6429480 DOI: 10.3390/molecules24050881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
The Class I Major Histocompatibility Complex (MHC) is a central protein in immunology as it binds to intracellular peptides and displays them at the cell surface for recognition by T-cells. The structural analysis of bound peptide-MHC complexes (pMHCs) holds the promise of interpretable and general binding prediction (i.e., testing whether a given peptide binds to a given MHC). However, structural analysis is limited in part by the difficulty in modelling pMHCs given the size and flexibility of the peptides that can be presented by MHCs. This article describes APE-Gen (Anchored Peptide-MHC Ensemble Generator), a fast method for generating ensembles of bound pMHC conformations. APE-Gen generates an ensemble of bound conformations by iterated rounds of (i) anchoring the ends of a given peptide near known pockets in the binding site of the MHC, (ii) sampling peptide backbone conformations with loop modelling, and then (iii) performing energy minimization to fix steric clashes, accumulating conformations at each round. APE-Gen takes only minutes on a standard desktop to generate tens of bound conformations, and we show the ability of APE-Gen to sample conformations found in X-ray crystallography even when only sequence information is used as input. APE-Gen has the potential to be useful for its scalability (i.e., modelling thousands of pMHCs or even non-canonical longer peptides) and for its use as a flexible search tool. We demonstrate an example for studying cross-reactivity.
Collapse
Affiliation(s)
- Jayvee R Abella
- Department of Computer Science, Rice University, Houston, TX 77005, USA.
| | - Dinler A Antunes
- Department of Computer Science, Rice University, Houston, TX 77005, USA.
| | - Cecilia Clementi
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
39
|
Computational characterization of the peptidome in transporter associated with antigen processing (TAP)-deficient cells. PLoS One 2019; 14:e0210583. [PMID: 30645615 PMCID: PMC6333353 DOI: 10.1371/journal.pone.0210583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is a key element of the major histocompatibility complex (MHC) class I antigen processing and presentation pathway. Nonfunctional TAP complexes impair the translocation of cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen. This drastic reduction in the available peptide repertoire leads to a significant decrease in MHC class I cell surface expression. Using mass spectrometry, different studies have analyzed the cellular MHC class I ligandome from TAP-deficient cells, but the analysis of the parental proteins, the source of these ligands, still deserves an in-depth analysis. In the present report, several bioinformatics protocols were applied to investigate the nature of parental proteins for the previously identified TAP-independent MHC class I ligands. Antigen processing in TAP-deficient cells mainly focused on small, abundant or highly integral transmembrane proteins of the cellular proteome. This process involved abundant proteins of the central RNA metabolism. In addition, TAP-independent ligands were preferentially cleaved from the N- and C-terminal ends with respect to the central regions of the parental proteins. The abundance of glycine, proline and aromatic residues in the C-terminal sequences from TAP-independently processed proteins allows the accessibility and specificity required for the proteolytic activities that generates the TAP-independent ligandome. This limited proteolytic activity towards a set of preferred proteins in a TAP-negative environment would therefore suffice to promote the survival of TAP-deficient individuals.
Collapse
|
40
|
Riley TP, Baker BM. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Semin Cell Dev Biol 2018; 84:30-41. [DOI: 10.1016/j.semcdb.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
|
41
|
Xiao J, Xiang W, Zhang Y, Peng W, Zhao M, Niu L, Chai Y, Qi J, Wang F, Qi P, Pan C, Han L, Wang M, Kaufman J, Gao GF, Liu WJ. An Invariant Arginine in Common with MHC Class II Allows Extension at the C-Terminal End of Peptides Bound to Chicken MHC Class I. THE JOURNAL OF IMMUNOLOGY 2018; 201:3084-3095. [PMID: 30341185 DOI: 10.4049/jimmunol.1800611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022]
Abstract
MHC molecules are found in all jawed vertebrates and are known to present peptides to T lymphocytes. In mammals, peptides can hang out either end of the peptide-binding groove of classical class II molecules, whereas the N and C termini of peptides are typically tightly bound to specific pockets in classical class I molecules. The chicken MHC, like many nonmammalian vertebrates, has a single dominantly expressed classical class I molecule encoded by the BF2 locus. We determined the structures of BF2*1201 bound to two peptides and found that the C terminus of one peptide hangs outside of the groove with a conformation much like the peptides bound to class II molecules. We found that BF2*1201 binds many peptides that hang out of the groove at the C terminus, and the sequences and structures of this MHC class I allele were determined to investigate the basis for this phenomenon. The classical class I molecules of mammals have a nearly invariant Tyr (Tyr84 in humans) that coordinates the peptide C terminus, but all classical class I molecules outside of mammals have an Arg in that position in common with mammalian class II molecules. We find that this invariant Arg residue switches conformation to allow peptides to hang out of the groove of BF2*1201, suggesting that this phenomenon is common in chickens and other nonmammalian vertebrates, perhaps allowing the single dominantly expressed class I molecule to bind a larger repertoire of peptides.
Collapse
Affiliation(s)
- Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wangzhen Xiang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongli Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiyu Peng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Min Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Niu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Wang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China
| | - Peng Qi
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China
| | - Chungang Pan
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China
| | - Lingxia Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ming Wang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing 100095, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; .,Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - George F Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; .,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,China Research Network of Immunity and Health, Beijing Institutes of Life Science Chinese Academy of Sciences, Beijing 100101, China
| | - William J Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; .,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
42
|
Gfeller D, Bassani-Sternberg M. Predicting Antigen Presentation-What Could We Learn From a Million Peptides? Front Immunol 2018; 9:1716. [PMID: 30090105 PMCID: PMC6068240 DOI: 10.3389/fimmu.2018.01716] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antigen presentation lies at the heart of immune recognition of infected or malignant cells. For this reason, important efforts have been made to predict which peptides are more likely to bind and be presented by the human leukocyte antigen (HLA) complex at the surface of cells. These predictions have become even more important with the advent of next-generation sequencing technologies that enable researchers and clinicians to rapidly determine the sequences of pathogens (and their multiple variants) or identify non-synonymous genetic alterations in cancer cells. Here, we review recent advances in predicting HLA binding and antigen presentation in human cells. We argue that the very large amount of high-quality mass spectrometry data of eluted (mainly self) HLA ligands generated in the last few years provides unprecedented opportunities to improve our ability to predict antigen presentation and learn new properties of HLA molecules, as demonstrated in many recent studies of naturally presented HLA-I ligands. Although major challenges still lie on the road toward the ultimate goal of predicting immunogenicity, these experimental and computational developments will facilitate screening of putative epitopes, which may eventually help decipher the rules governing T cell recognition.
Collapse
Affiliation(s)
- David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Freudenmann LK, Marcu A, Stevanović S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. Immunology 2018; 154:331-345. [PMID: 29658117 DOI: 10.1111/imm.12936] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Abstract
The entirety of human leukocyte antigen (HLA)-presented peptides is referred to as the HLA ligandome of a cell or tissue, in tumours often termed immunopeptidome. Mapping the tumour immunopeptidome by mass spectrometry (MS) comprehensively views the pathophysiologically relevant antigenic signature of human malignancies. MS is an unbiased approach stringently filtering the candidates to be tested as opposed to epitope prediction algorithms. In the setting of peptide-specific immunotherapies, MS-based strategies significantly diminish the risk of lacking clinical benefit, as they yield highly enriched amounts of truly presented peptides. Early immunopeptidomic efforts were severely limited by technical sensitivity and manual spectra interpretation. The technological progress with development of orbitrap mass analysers and enhanced chromatographic performance led to vast improvements in mass accuracy, sensitivity, resolution, and speed. Concomitantly, bioinformatic tools were developed to process MS data, integrate sequencing results, and deconvolute multi-allelic datasets. This enabled the immense advancement of tumour immunopeptidomics. Studying the HLA-presented peptide repertoire bears high potential for both answering basic scientific questions and translational application. Mapping the tumour HLA ligandome has started to significantly contribute to target identification for the design of peptide-specific cancer immunotherapies in clinical trials and compassionate need treatments. In contrast to prediction algorithms, rare HLA allotypes and HLA class II can be adequately addressed when choosing MS-guided target identification platforms. Herein, we review the identification of tumour HLA ligands focusing on sources, methods, bioinformatic data analysis, translational application, and provide an outlook on future developments.
Collapse
Affiliation(s)
- Lena Katharina Freudenmann
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Ana Marcu
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| |
Collapse
|
44
|
Abstract
Human leukocyte antigen (HLA)-I molecules generally bind short peptides (8–10 amino acids), although extended HLA-I restricted peptides (>10 amino acids) can be presented to T cells. However, the function of such extended HLA-I epitopes in tumour immunity, and how they would be recognised by T-cell receptors (TCR) remains unclear. Here we show that the structures of two distinct TCRs (TRAV4+TRAJ21+-TRBV28+TRBJ2-3+ and TRAV4+TRAJ8+-TRBV9+TRBJ2-1+), originating from a polyclonal T-cell repertoire, bind to HLA-B*07:02, presenting a 13-amino-acid-long tumour-associated peptide, NY-ESO-160–72. Comparison of the structures reveals that the two TCRs differentially binds NY-ESO-160–72–HLA-B*07:02 complex, and induces differing extent of conformational change of the NY-ESO-160–72 epitope. Accordingly, polyclonal TCR usage towards an extended HLA-I restricted tumour epitope translates to differing TCR recognition modes, whereby extensive flexibility at the TCR–pHLA-I interface engenders recognition. Human leukocyte antigen (HLA) presents peptides to activate T cells, but many aspects in the T cell receptor (TCR)/HLA interaction remain unclear. Here the authors show, via structural data, that two TCRs differentially recognize the same tumour peptide/HLA complex and induce contrasting conformation changes of the peptide.
Collapse
|
45
|
Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL, Birnbaum ME, Bethune MT, Fischer S, Yang X, Gomez-Eerland R, Bingham DB, Sibener LV, Fernandes RA, Velasco A, Baltimore D, Schumacher TN, Khatri P, Quake SR, Davis MM, Garcia KC. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell 2018; 172:549-563.e16. [PMID: 29275860 PMCID: PMC5786495 DOI: 10.1016/j.cell.2017.11.043] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/30/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022]
Abstract
The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.
Collapse
Affiliation(s)
- Marvin H Gee
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arnold Han
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shane M Lofgren
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John F Beausang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan L Mendoza
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael E Birnbaum
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Bethune
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Suzanne Fischer
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinbo Yang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Raquel Gomez-Eerland
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David B Bingham
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leah V Sibener
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ricardo A Fernandes
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Velasco
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM. Emerging Concepts in TCR Specificity: Rationalizing and (Maybe) Predicting Outcomes. THE JOURNAL OF IMMUNOLOGY 2017; 199:2203-2213. [PMID: 28923982 DOI: 10.4049/jimmunol.1700744] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
T cell specificity emerges from a myriad of processes, ranging from the biological pathways that control T cell signaling to the structural and physical mechanisms that influence how TCRs bind peptides and MHC proteins. Of these processes, the binding specificity of the TCR is a key component. However, TCR specificity is enigmatic: TCRs are at once specific but also cross-reactive. Although long appreciated, this duality continues to puzzle immunologists and has implications for the development of TCR-based therapeutics. In this review, we discuss TCR specificity, emphasizing results that have emerged from structural and physical studies of TCR binding. We show how the TCR specificity/cross-reactivity duality can be rationalized from structural and biophysical principles. There is excellent agreement between predictions from these principles and classic predictions about the scope of TCR cross-reactivity. We demonstrate how these same principles can also explain amino acid preferences in immunogenic epitopes and highlight opportunities for structural considerations in predictive immunology.
Collapse
Affiliation(s)
- Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Sarah Catherine B Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Tyler Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556; .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| |
Collapse
|
47
|
Josephs TM, Grant EJ, Gras S. Molecular challenges imposed by MHC-I restricted long epitopes on T cell immunity. Biol Chem 2017; 398:1027-1036. [PMID: 28141543 DOI: 10.1515/hsz-2016-0305] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
It has widely been accepted that major histocompatibility complex class I molecules (MHC-I) are limited to binding small peptides of 8-10 residues in length. However, this consensus has recently been challenged with the identification of longer peptides (≥11 residues) that can also elicit cytotoxic CD8+ T cell responses. Indeed, a growing number of studies demonstrate that these non-canonical epitopes are important targets for the immune system. As long epitopes represent up to 10% of the peptide repertoire bound to MHC-I molecules, here we review their impact on antigen presentation by MHC-I, TCR recognition, and T cell immunity.
Collapse
|
48
|
Ayres CM, Corcelli SA, Baker BM. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings. Front Immunol 2017; 8:935. [PMID: 28824655 PMCID: PMC5545744 DOI: 10.3389/fimmu.2017.00935] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/21/2017] [Indexed: 01/28/2023] Open
Abstract
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
49
|
Xiao Z, Ye Z, Tadwal VS, Shen M, Ren EC. Dual non-contiguous peptide occupancy of HLA class I evoke antiviral human CD8 T cell response and form neo-epitopes with self-antigens. Sci Rep 2017; 7:5072. [PMID: 28698575 PMCID: PMC5505988 DOI: 10.1038/s41598-017-05171-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2017] [Indexed: 01/27/2023] Open
Abstract
Host CD8 T cell response to viral infections involves recognition of 8-10-mer peptides presented by MHC-I molecules. However, proteasomes generate predominantly 2-7-mer peptides, but the role of these peptides is largely unknown. Here, we show that single short peptides of <8-mer from Latent Membrane Protein 2 (LMP2) of Epstein Barr Virus (EBV) can bind HLA-A*11:01 and stimulate CD8+ cells. Surprisingly, two peptide fragments between 4-7-mer derived from LMP2(340-349) were able to complement each other, forming combination epitopes that can stimulate specific CD8+ T cell responses. Moreover, peptides from self-antigens can complement non-self peptides within the HLA binding cleft, forming neoepitopes. Solved structures of a tetra-complex comprising two peptides, HLA and β2-microglobulin revealed the free terminals of the two peptides to adopt an upward conformation directed towards the T cell receptor. Our results demonstrate a previously unknown mix-and-match combination of dual peptide occupancy in HLA that can generate vast combinatorial complexity.
Collapse
Affiliation(s)
- Ziwei Xiao
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Zhiyong Ye
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Vikeramjeet Singh Tadwal
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Meixin Shen
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore.
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 119260, Singapore.
| |
Collapse
|
50
|
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol 2017. [PMID: 28367149 DOI: 10.3389/fimmu.2017.00292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.
Collapse
Affiliation(s)
- Marek Wieczorek
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | | | - Frank Noé
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|