1
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
2
|
Klid S, Algaba-Chueca F, Maymó-Masip E, Ballesteros M, Inglés M, Guarque A, Vilanova-Ricart N, Prats A, Kulovic-Sissawo A, Weiss E, Hiden U, Vendrell J, Fernández-Veledo S, Megía A. Impaired angiogenesis in gestational diabetes is linked to succinate/SUCNR1 axis dysregulation in late gestation. J Physiol 2025. [PMID: 40163642 DOI: 10.1113/jp288010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Recent research has highlighted the significance of succinate and its receptor in gestational diabetes (GDM) pathogenesis. However, a clear interconnection between placenta metabolism, succinate levels, SUCNR1 signalling and pregnancy pathologies remains elusive. Here, we set out to investigate the potential role of succinate on labour and placental mechanisms by combining clinical and functional experimental data at the same time as exploring the specific SUCNR1-mediated effects of succinate on placenta vascularization, addressing its specific agonist actions. According to our data, succinate levels vary throughout pregnancy and postpartum, with a natural increase during the peripartum period. We also show that SUCNR1 activation in the umbilical cord endothelium promotes angiogenesis under normal conditions. However, in GDM, excessive succinate and impaired SUCNR1 function may weaken this angiogenic response. In conclusion, the present study underlines succinate as an emerging signalling molecule in the placenta, regulating labour and placental processes. The reduced sensitivity of the succinate/SUCNR1 pathway in the GDM environment may serve as a protective physiological mechanism or could have a pathogenic effect. KEY POINTS: Succinate levels increase at delivery in maternal and fetal circulation. Gestational diabetes (GDM) induces succinate accumulation and SUCNR1 downregulation in umbilical cords. GDM compromises angiogenic gene profile modulation by SUCNR1 in umbilical cord endothelium. SUCNR1 activation stimulates sprouting and tube-forming capacity of human umbilical vein endothelial cells from healthy, but not GDM pregnancies.
Collapse
Affiliation(s)
- Sergiy Klid
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Algaba-Chueca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, University Hospital of Tarragona Joan XXIII-Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Elsa Maymó-Masip
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, University Hospital of Tarragona Joan XXIII-Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Mónica Ballesteros
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital of Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Montse Inglés
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital of Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Albert Guarque
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital of Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Nerea Vilanova-Ricart
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- Department of Endocrinology and Nutrition, Research Unit, University Hospital of Tarragona Joan XXIII-Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Ariadna Prats
- Department of Endocrinology and Nutrition, Research Unit, University Hospital of Tarragona Joan XXIII-Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Azra Kulovic-Sissawo
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Elisa Weiss
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Joan Vendrell
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, University Hospital of Tarragona Joan XXIII-Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, University Hospital of Tarragona Joan XXIII-Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Ana Megía
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, University Hospital of Tarragona Joan XXIII-Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| |
Collapse
|
3
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
4
|
Alvarado-Tapias E, Maya-Miles D, Albillos A, Aller R, Ampuero J, Andrade RJ, Arechederra M, Aspichueta P, Banales JM, Blas-García A, Caparros E, Cardoso Delgado T, Carrillo-Vico A, Claria J, Cubero FJ, Díaz-Ruiz A, Fernández-Barrena MG, Fernández-Iglesias A, Fernández-Veledo S, Francés R, Gallego-Durán R, Gracia-Sancho J, Irimia M, Lens S, Martínez-Chantar ML, Mínguez B, Muñoz-Hernández R, Nogueiras R, Ramos-Molina B, Riveiro-Barciela M, Rodríguez-Perálvarez ML, Romero-Gómez M, Sabio G, Sancho-Bru P, Ventura-Cots M, Vidal S, Gahete MD. Proceedings of the 5th Meeting of Translational Hepatology, organized by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502207. [PMID: 38723772 DOI: 10.1016/j.gastrohep.2024.502207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024]
Abstract
This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Santa Creu I Sant Pau, Institut de Recerca Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Douglas Maya-Miles
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain.
| | - Agustin Albillos
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal/Universidad de Alcalá/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rocio Aller
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Spain; Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Spain; Gastroenterology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Javier Ampuero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Raul J Andrade
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Maria Arechederra
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Patricia Aspichueta
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jesus M Banales
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), Ikerbasque, Donostia-San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Blas-García
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Esther Caparros
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Teresa Cardoso Delgado
- Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Joan Claria
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain; University of Barcelona, Spain
| | - Francisco Javier Cubero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Maite G Fernández-Barrena
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Spain
| | - Anabel Fernández-Iglesias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Francés
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rocío Gallego-Durán
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Jordi Gracia-Sancho
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra (UPF), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
| | - Sabela Lens
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Liver Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Mínguez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocío Muñoz-Hernández
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mar Riveiro-Barciela
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel L Rodríguez-Perálvarez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Cordoba, Spain
| | - Manuel Romero-Gómez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Spain; Centro Nacional de Investigaciones Oncologicas (CNIO), Organ Crosstalk in Metabolic Diseases, Madrid, Spain
| | - Pau Sancho-Bru
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Center for Liver Diseases, Pittsburgh Liver Research Center, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Manuel D Gahete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Molecular Hepatology Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Spain; Reina Sofia University Hospital, Cordoba, Spain.
| |
Collapse
|
5
|
Ning Y, Dou X, Wang Z, Shi K, Wang Z, Ding C, Sang X, Zhong X, Shao M, Han X, Cao G. SIRT3: A potential therapeutic target for liver fibrosis. Pharmacol Ther 2024; 257:108639. [PMID: 38561088 DOI: 10.1016/j.pharmthera.2024.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Sirtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase located in the mitochondria, which mainly regulates the acetylation of mitochondrial proteins. In addition, SIRT3 is involved in critical biological processes, including oxidative stress, inflammation, DNA damage, and apoptosis, all of which are closely related to the progression of liver disease. Liver fibrosis characterized by the deposition of extracellular matrix is a result of long termed or repeated liver damage, frequently accompanied by damaged hepatocytes, the recruitment of inflammatory cells, and the activation of hepatic stellate cells. Based on the functions and pharmacology of SIRT3, we will review its roles in liver fibrosis from three aspects: First, the main functions and pharmacological effects of SIRT3 were investigated based on its structure. Second, the roles of SIRT3 in major cells in the liver were summarized to reveal its mechanism in developing liver fibrosis. Last, drugs that regulate SIRT3 to prevent and treat liver fibrosis were discussed. In conclusion, exploring the pharmacological effects of SIRT3, especially in the liver, may be a potential strategy for treating liver fibrosis.
Collapse
Affiliation(s)
- Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhichao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kao Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Zhong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiyu Shao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China; The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Fernández-Veledo S, Marsal-Beltran A, Vendrell J. Type 2 diabetes and succinate: unmasking an age-old molecule. Diabetologia 2024; 67:430-442. [PMID: 38182909 PMCID: PMC10844351 DOI: 10.1007/s00125-023-06063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2023] [Indexed: 01/07/2024]
Abstract
Beyond their conventional roles in intracellular energy production, some traditional metabolites also function as extracellular messengers that activate cell-surface G-protein-coupled receptors (GPCRs) akin to hormones and neurotransmitters. These signalling metabolites, often derived from nutrients, the gut microbiota or the host's intermediary metabolism, are now acknowledged as key regulators of various metabolic and immune responses. This review delves into the multi-dimensional aspects of succinate, a dual metabolite with roots in both the mitochondria and microbiome. It also connects the dots between succinate's role in the Krebs cycle, mitochondrial respiration, and its double-edge function as a signalling transmitter within and outside the cell. We aim to provide an overview of the role of the succinate-succinate receptor 1 (SUCNR1) axis in diabetes, discussing the potential use of succinate as a biomarker and the novel prospect of targeting SUCNR1 to manage complications associated with diabetes. We further propose strategies to manipulate the succinate-SUCNR1 axis for better diabetes management; this includes pharmacological modulation of SUCNR1 and innovative approaches to manage succinate concentrations, such as succinate administration and indirect strategies, like microbiota modulation. The dual nature of succinate, both in terms of origins and roles, offers a rich landscape for understanding the intricate connections within metabolic diseases, like diabetes, and indicates promising pathways for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
- Universitat Rovira I Virgili (URV), Reus, Spain.
| | - Anna Marsal-Beltran
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira I Virgili (URV), Reus, Spain
| | - Joan Vendrell
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira I Virgili (URV), Reus, Spain
| |
Collapse
|
7
|
Chen H, Jin C, Xie L, Wu J. Succinate as a signaling molecule in the mediation of liver diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166935. [PMID: 37976628 DOI: 10.1016/j.bbadis.2023.166935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Succinate, one of the intermediates of the tricarboxylic acid (TCA) cycle, plays an essential role in the metabolism of mitochondria and the production of energy, and is considered as a signaling molecule in metabolism as well as in initiation and progression of hepatic diseases. Of note, succinate activates a downstream signaling pathway through GPR91, and elicits a variety of intracellular responses, such as succinylation, production of reactive oxygen species (ROS), stabilization of hypoxia-inducible factor-1α (HIF-1α), and significant impact in cellular metabolism because of the pivotal role in the TCA cycle. Therefore, it is intriguing to deeply elucidate signaling mechanisms of succinate in hepatic fibrosis, metabolic reprogramming in inflammatory or immune responses, as well as carcinogenesis. This manuscript intends to review current understanding of succinate in mediating metabolism, inflammatory and immunologic reactions in liver diseases in order to establish molecular basis for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; College of Clinical College, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
8
|
Córdoba-Jover B, Ribera J, Portolés I, Lecue E, Rodriguez-Vita J, Pérez-Sisqués L, Mannara F, Solsona-Vilarrasa E, García-Ruiz C, Fernández-Checa JC, Casals G, Rodríguez-Revenga L, Álvarez-Mora MI, Arteche-López A, Díaz de Bustamante A, Calvo R, Pujol A, Azkargorta M, Elortza F, Malagelada C, Pinyol R, Huguet-Pradell J, Melgar-Lesmes P, Jiménez W, Morales-Ruiz M. Tcf20 deficiency is associated with increased liver fibrogenesis and alterations in mitochondrial metabolism in mice and humans. Liver Int 2023; 43:1822-1836. [PMID: 37312667 DOI: 10.1111/liv.15640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND & AIMS Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.
Collapse
Affiliation(s)
- Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Lecue
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Rodriguez-Vita
- Tumour-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Leticia Pérez-Sisqués
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Carmen García-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - José C Fernández-Checa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Álvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Ana Arteche-López
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | | | - Rosa Calvo
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic of Barcelona. School of Medicine, University of Barcelona, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - Anna Pujol
- Unidad de Animales Transgénicos UAT-CBATEG, Universitat Autònoma de Barcelona, Cerdanyola del Valles, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Cristina Malagelada
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Roser Pinyol
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Júlia Huguet-Pradell
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Wu KK. Extracellular Succinate: A Physiological Messenger and a Pathological Trigger. Int J Mol Sci 2023; 24:11165. [PMID: 37446354 DOI: 10.3390/ijms241311165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
When tissues are under physiological stresses, such as vigorous exercise and cold exposure, skeletal muscle cells secrete succinate into the extracellular space for adaptation and survival. By contrast, environmental toxins and injurious agents induce cellular secretion of succinate to damage tissues, trigger inflammation, and induce tissue fibrosis. Extracellular succinate induces cellular changes and tissue adaptation or damage by ligating cell surface succinate receptor-1 (SUCNR-1) and activating downstream signaling pathways and transcriptional programs. Since SUCNR-1 mediates not only pathological processes but also physiological functions, targeting it for drug development is hampered by incomplete knowledge about the characteristics of its physiological vs. pathological actions. This review summarizes the current status of extracellular succinate in health and disease and discusses the underlying mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Institute of Biotechnology, College of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
10
|
Forteza MJ, Berg M, Edsfeldt A, Sun J, Baumgartner R, Kareinen I, Casagrande FB, Hedin U, Zhang S, Vuckovic I, Dzeja PP, Polyzos KA, Gisterå A, Trauelsen M, Schwartz TW, Dib L, Herrmann J, Monaco C, Matic L, Gonçalves I, Ketelhuth DFJ. Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk. Cardiovasc Res 2023; 119:1524-1536. [PMID: 36866436 PMCID: PMC10318388 DOI: 10.1093/cvr/cvad038] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
AIMS Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. METHODS AND RESULTS Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe-/- mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1β secretion by macrophages in the plaque. CONCLUSIONS We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe-/- mice. These results point toward a promising treatment to combat atherosclerosis.
Collapse
Affiliation(s)
- Maria J Forteza
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Martin Berg
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Andreas Edsfeldt
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
| | - Jangming Sun
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Roland Baumgartner
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ilona Kareinen
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Felipe Beccaria Casagrande
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Song Zhang
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Ivan Vuckovic
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Petras P Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Konstantinos A Polyzos
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Mette Trauelsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Lea Dib
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Isabel Gonçalves
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Daniel F J Ketelhuth
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws vej 21, 5000 Odense, Denmark
| |
Collapse
|
11
|
Marsal-Beltran A, Rodríguez-Castellano A, Astiarraga B, Calvo E, Rada P, Madeira A, Rodríguez-Peña MM, Llauradó G, Núñez-Roa C, Gómez-Santos B, Maymó-Masip E, Bosch R, Frutos MD, Moreno-Navarrete JM, Ramos-Molina B, Aspichueta P, Joven J, Fernández-Real JM, Quer JC, Valverde ÁM, Pardo A, Vendrell J, Ceperuelo-Mallafré V, Fernández-Veledo S. Protective effects of the succinate/SUCNR1 axis on damaged hepatocytes in NAFLD. Metabolism 2023:155630. [PMID: 37315889 DOI: 10.1016/j.metabol.2023.155630] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Succinate and succinate receptor 1 (SUCNR1) are linked to fibrotic remodeling in models of non-alcoholic fatty liver disease (NAFLD), but whether they have roles beyond the activation of hepatic stellate cells remains unexplored. We investigated the succinate/SUCNR1 axis in the context of NAFLD specifically in hepatocytes. METHODS We studied the phenotype of wild-type and Sucnr1-/- mice fed a choline-deficient high-fat diet to induce non-alcoholic steatohepatitis (NASH), and explored the function of SUCNR1 in murine primary hepatocytes and human HepG2 cells treated with palmitic acid. Lastly, plasma succinate and hepatic SUCNR1 expression were analyzed in four independent cohorts of patients in different NAFLD stages. RESULTS Sucnr1 was upregulated in murine liver and primary hepatocytes in response to diet-induced NASH. Sucnr1 deficiency provoked both beneficial (reduced fibrosis and endoplasmic reticulum stress) and detrimental (exacerbated steatosis and inflammation and reduced glycogen content) effects in the liver, and disrupted glucose homeostasis. Studies in vitro revealed that hepatocyte injury increased Sucnr1 expression, which when activated improved lipid and glycogen homeostasis in damaged hepatocytes. In humans, SUCNR1 expression was a good determinant of NAFLD progression to advanced stages. In a population at risk of NAFLD, circulating succinate was elevated in patients with a fatty liver index (FLI) ≥60. Indeed, succinate had good predictive value for steatosis diagnosed by FLI, and improved the prediction of moderate/severe steatosis through biopsy when added to an FLI algorithm. CONCLUSIONS We identify hepatocytes as target cells of extracellular succinate during NAFLD progression and uncover a hitherto unknown function for SUCNR1 as a regulator of hepatocyte glucose and lipid metabolism. Our clinical data highlight the potential of succinate and hepatic SUCNR1 expression as markers to diagnose fatty liver and NASH, respectively.
Collapse
Affiliation(s)
- Anna Marsal-Beltran
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Adrià Rodríguez-Castellano
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Brenno Astiarraga
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Enrique Calvo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Patricia Rada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain
| | - Ana Madeira
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - M-Mar Rodríguez-Peña
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Gemma Llauradó
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Department of Endocrinology and Nutrition, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Catalina Núñez-Roa
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Beatriz Gómez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Elsa Maymó-Masip
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Ramon Bosch
- Department of Pathology, Oncological Pathology and Bioinformatics Research Group, Hospital de Tortosa Verge de la Cinta - IISPV, 43500 Tortosa, Spain
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - José-María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition and Insititut d'Investigació Biomèdica de Girona (IDIBGI), Dr. Josep Trueta University Hospital, Department of Medicine, University of Girona, 17007 Girona, Spain; CIBER de Fisiopatología de la Obesidad (CIBEROBN) - Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD)- Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jorge Joven
- Universitat Rovira i Virgili (URV), 43201 Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition and Insititut d'Investigació Biomèdica de Girona (IDIBGI), Dr. Josep Trueta University Hospital, Department of Medicine, University of Girona, 17007 Girona, Spain; CIBER de Fisiopatología de la Obesidad (CIBEROBN) - Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan Carlos Quer
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Ángela M Valverde
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain
| | - Albert Pardo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Joan Vendrell
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Victòria Ceperuelo-Mallafré
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain.
| | - Sonia Fernández-Veledo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain.
| |
Collapse
|
12
|
Li Y, Li J, Wu G, Yang H, Yang X, Wang D, He Y. Role of SIRT3 in neurological diseases and rehabilitation training. Metab Brain Dis 2023; 38:69-89. [PMID: 36374406 PMCID: PMC9834132 DOI: 10.1007/s11011-022-01111-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Sirtuin3 (SIRT3) is a deacetylase that plays an important role in normal physiological activities by regulating a variety of substrates. Considerable evidence has shown that the content and activity of SIRT3 are altered in neurological diseases. Furthermore, SIRT3 affects the occurrence and development of neurological diseases. In most cases, SIRT3 can inhibit clinical manifestations of neurological diseases by promoting autophagy, energy production, and stabilization of mitochondrial dynamics, and by inhibiting neuroinflammation, apoptosis, and oxidative stress (OS). However, SIRT3 may sometimes have the opposite effect. SIRT3 can promote the transfer of microglia. Microglia in some cases promote ischemic brain injury, and in some cases inhibit ischemic brain injury. Moreover, SIRT3 can promote the accumulation of ceramide, which can worsen the damage caused by cerebral ischemia-reperfusion (I/R). This review comprehensively summarizes the different roles and related mechanisms of SIRT3 in neurological diseases. Moreover, to provide more ideas for the prognosis of neurological diseases, we summarize several SIRT3-mediated rehabilitation training methods.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Jing Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Guangbin Wu
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Hua Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Xiaosong Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Dongyu Wang
- Department of Neurology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Yanhui He
- Department of Radiology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China.
| |
Collapse
|
13
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
14
|
Hughey CC, Puchalska P, Crawford PA. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159209. [DOI: 10.1016/j.bbalip.2022.159209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
15
|
Pardella E, Ippolito L, Giannoni E, Chiarugi P. Nutritional and metabolic signalling through GPCRs. FEBS Lett 2022; 596:2364-2381. [PMID: 35776088 DOI: 10.1002/1873-3468.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Abstract
Deregulated metabolism is a well-known feature of several challenging diseases, including diabetes, obesity and cancer. Besides their important role as intracellular bioenergetic molecules, dietary nutrients and metabolic intermediates are released in the extracellular environment. As such, they may achieve unconventional roles as hormone-like molecules by activating cell-surface G-protein-coupled receptors (GPCRs) that regulate several pathophysiological processes. In this review, we provide an insight into the role of lactate, succinate, fatty acids, amino acids, ketogenesis-derived and β-oxidation-derived intermediates as extracellular signalling molecules. Moreover, the mechanisms by which their cognate metabolite-sensing GPCRs integrate nutritional and metabolic signals with specific intracellular pathways will be described. A better comprehension of these aspects is of fundamental importance to identify GPCRs as novel druggable targets.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
16
|
Fibrogenic Pathways in Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD). Int J Mol Sci 2022; 23:ijms23136996. [PMID: 35805998 PMCID: PMC9266719 DOI: 10.3390/ijms23136996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD), recently also re-defined as metabolic dysfunction associated fatty liver disease (MAFLD), is rapidly increasing, affecting ~25% of the world population. MALFD/NAFLD represents a spectrum of liver pathologies including the more benign hepatic steatosis and the more advanced non-alcoholic steatohepatitis (NASH). NASH is associated with enhanced risk for liver fibrosis and progression to cirrhosis and hepatocellular carcinoma. Hepatic stellate cells (HSC) activation underlies NASH-related fibrosis. Here, we discuss the profibrogenic pathways, which lead to HSC activation and fibrogenesis, with a particular focus on the intercellular hepatocyte–HSC and macrophage–HSC crosstalk.
Collapse
|
17
|
Lee GR, Lee HI, Kim N, Lee J, Kwon M, Kang YH, Song HJ, Yeo CY, Jeong W. Dynein light chain LC8 alleviates nonalcoholic steatohepatitis by inhibiting NF-κB signaling and reducing oxidative stress. J Cell Physiol 2022; 237:3554-3564. [PMID: 35696549 DOI: 10.1002/jcp.30811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a liver disease characterized by fat accumulation and chronic inflammation in the liver. Dynein light chain of 8 kDa (LC8) was identified previously as an inhibitor of nuclear factor kappa B (NF-κB), a key regulator of inflammation, however, its role in NASH remains unknown. In this study, we investigated whether LC8 can alleviate NASH using a mouse model of methionine and choline-deficient (MCD) diet-induced NASH and examined the underlying mechanism. LC8 transgenic (Tg) mice showed lower hepatic steatosis and less progression of NASH, including hepatic inflammation and fibrosis, compared to wild-type (WT) mice after consuming an MCD diet. The hepatic expression of lipogenic genes was lower, while that of lipolytic genes was greater in LC8 Tg mice than WT mice, which might be associated with resistance of LC8 Tg mice to hepatic steatosis. Consumption of an MCD diet caused oxidative stress, IκBα phosphorylation, and subsequent p65 liberation from IκBα and nuclear translocation, resulting in induction of proinflammatory cytokines and chemokines. However, these effects of MCD diet were reduced by LC8 overexpression. Collectively, these results suggest that LC8 alleviates MCD diet-induced NASH by inhibiting NF-κB through binding to IκBα to interfere with IκBα phosphorylation and by reducing oxidative stress via scavenging reactive oxygen species. Thus, boosting intracellular LC8 could be a potential therapeutic strategy for patients with NASH.
Collapse
Affiliation(s)
- Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Narae Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Minjeong Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Ye Hee Kang
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hyeong Ju Song
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Chang-Yeol Yeo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| |
Collapse
|
18
|
Aggarwal S, Trehanpati N, Nagarajan P, Ramakrishna G. The Clock-NAD + -Sirtuin connection in nonalcoholic fatty liver disease. J Cell Physiol 2022; 237:3164-3180. [PMID: 35616339 DOI: 10.1002/jcp.30772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat deposition in the hepatocytes. Identifying metabolic regulatory nodes in fatty liver pathology is essential for effective drug targeting. Fatty liver is often associated with circadian rhythm disturbances accompanied with alterations in physical and feeding activities. In this regard, both sirtuins and clock machinery genes have emerged as critical metabolic regulators in maintaining liver homeostasis. Knockouts of either sirtuins or clock genes result in obesity associated with the fatty liver phenotype. Sirtuins (SIRT1-SIRT7) are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, protecting cells from metabolic stress by deacetylating vital proteins associated with lipid metabolism. Circadian rhythm is orchestrated by oscillations in expression of master regulators (BMAL1 and CLOCK), which in turn regulate rhythmic expression of clock-controlled genes involved in lipid metabolism. The circadian metabolite, NAD+ , serves as a crucial link connecting clock genes to sirtuin activity. This is because, NAMPT which is a rate limiting enzyme in NAD+ biosynthesis is transcriptionally regulated by the clock genes and NAD+ in turn is a cofactor regulating the deacetylation activity of sirtuins. Intriguingly, on one hand the core circadian clock regulates the sirtuin activity and on the other hand the activated sirtuins regulate the acetylation status of clock proteins thereby affecting their transcriptional functions. Thus, the Clock-NAD+-Sirtuin connection represents a novel "feedback loop" circuit that regulates the metabolic machinery. The current review underpins the importance of NAD+ on the sirtuin and clock connection in preventing fatty liver disorder.
Collapse
Affiliation(s)
- Savera Aggarwal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Perumal Nagarajan
- Department of Experimental Animal Facility, National Institute of Immunology, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
19
|
Tedesco L, Rossi F, Ruocco C, Ragni M, Carruba MO, Valerio A, Nisoli E. An original amino acid formula favours in vitro corneal epithelial wound healing by promoting Fn1, ITGB1, and PGC-1α expression. Exp Eye Res 2022; 219:109060. [PMID: 35390334 DOI: 10.1016/j.exer.2022.109060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
Corneal disorders are frequent, involving most diabetic patients; among its manifestations, they include delayed wound healing. Since maintenance of mitochondrial homeostasis is fundamental for the cell, stimulation of mitochondrial biogenesis represents a unique therapeutic tool for preventing and treating disorders with a deficit in energy metabolism. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem) supported mitochondrial biogenesis in cardiac and skeletal muscle, reduced liver damage caused by alcohol, and prevented the doxorubicin-dependent mitochondrial damage in cardiomyocytes. The present study aimed to investigate a new amino acid mixture, named six amino acids (6AA), to promote corneal epithelial wound healing by regulating mitochondrial biogenesis. A murine epithelium cell line (TKE2) exposed to this mixture showed increased mitochondrial biogenesis markers, fibronectin 1 (Fn1) and integrin beta 1 (ITGB1) involved in extracellular matrix synthesis and cell migration. Most importantly, the 6AA mixture completely restored the wound in scratch assays, confirming the potential of this new formula in eye disorders like keratopathy. Moreover, our results demonstrate for the first time that peroxisome proliferator-receptor γ coactivator 1 α (PGC-1α) is expressed in TKE2 cells, which controls mitochondrial function and corneal repair process. These results could be relevant for the treatment mainly focused on corneal re-epithelialisation.
Collapse
Affiliation(s)
- Laura Tedesco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - 20129, Milan, Italy.
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - 20129, Milan, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - 20129, Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - 20129, Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - 20129, Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - 20129, Milan, Italy
| |
Collapse
|
20
|
Zhang S, Liang Y, Li L, Chen Y, Wu P, Wei D. Succinate: A Novel Mediator to Promote Atherosclerotic Lesion Progression. DNA Cell Biol 2022; 41:285-291. [PMID: 35138943 DOI: 10.1089/dna.2021.0345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Succinate is an important intermediate product of mitochondrial energy metabolism. Recent studies revealed that beyond its known traditional metabolic functions, succinate plays important roles in signal transduction, immunity, inflammation, and posttranslational modification. Recent studies showed that patients and mouse models with cardiovascular disease have high levels of serum succinate and succinate accumulation. Atherosclerosis (As) is the pathological basis of cardiovascular and peripheral vascular diseases, such as coronary heart disease, cerebral infarction, and peripheral vascular disease, and is a major factor affecting human health. This article reviews the progression of succinate in As diseases and its underlying mechanisms.
Collapse
Affiliation(s)
- Shulei Zhang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Yamin Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Lu Li
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Yanmei Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Peng Wu
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Dangheng Wei
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| |
Collapse
|
21
|
Therapeutic Effects of Resveratrol on Nonalcoholic Fatty Liver Disease Through Inflammatory, Oxidative Stress, Metabolic, and Epigenetic Modifications. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2343:19-35. [PMID: 34473313 DOI: 10.1007/978-1-0716-1558-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing around the world, in association with the progressive elevation in overweight and obesity. The accumulation of lipids in NAFLD patients contributes to the development of insulin resistance, inflammation and oxidative stress in hepatocytes, and alteration of blood lipids and glycaemia. There are currently no effective pharmacological therapies for NAFLD, although lifestyle and dietary modifications targeting weight reduction are among the prevailing alternative approaches. For this reason, new approaches should be investigated. The natural polyphenol resveratrol represents a potential new treatment for management of NAFLD due to anti-inflammatory and antioxidant properties. Although preclinical trials have demonstrated promising results of resveratrol against NALFD, the lack of conclusive results creates the need for more trials with larger numbers of patients, longer time courses, and standardized protocols.
Collapse
|
22
|
Zhang IW, López-Vicario C, Duran-Güell M, Clària J. Mitochondrial Dysfunction in Advanced Liver Disease: Emerging Concepts. Front Mol Biosci 2021; 8:772174. [PMID: 34888354 PMCID: PMC8650317 DOI: 10.3389/fmolb.2021.772174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are entrusted with the challenging task of providing energy through the generation of ATP, the universal cellular currency, thereby being highly flexible to different acute and chronic nutrient demands of the cell. The fact that mitochondrial diseases (genetic disorders caused by mutations in the nuclear or mitochondrial genome) manifest through a remarkable clinical variation of symptoms in affected individuals underlines the far-reaching implications of mitochondrial dysfunction. The study of mitochondrial function in genetic or non-genetic diseases therefore requires a multi-angled approach. Taking into account that the liver is among the organs richest in mitochondria, it stands to reason that in the process of unravelling the pathogenesis of liver-related diseases, researchers give special focus to characterizing mitochondrial function. However, mitochondrial dysfunction is not a uniformly defined term. It can refer to a decline in energy production, increase in reactive oxygen species and so forth. Therefore, any study on mitochondrial dysfunction first needs to define the dysfunction to be investigated. Here, we review the alterations of mitochondrial function in liver cirrhosis with emphasis on acutely decompensated liver cirrhosis and acute-on-chronic liver failure (ACLF), the latter being a form of acute decompensation characterized by a generalized state of systemic hyperinflammation/immunosuppression and high mortality rate. The studies that we discuss were either carried out in liver tissue itself of these patients, or in circulating leukocytes, whose mitochondrial alterations might reflect tissue and organ mitochondrial dysfunction. In addition, we present different methodological approaches that can be of utility to address the diverse aspects of hepatocyte and leukocyte mitochondrial function in liver disease. They include assays to measure metabolic fluxes using the comparatively novel Biolog’s MitoPlates in a 96-well format as well as assessment of mitochondrial respiration by high-resolution respirometry using Oroboros’ O2k-technology and Agilent Seahorse XF technology.
Collapse
Affiliation(s)
- Ingrid W Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain.,CIBERehd, Barcelona, Spain.,Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Wu KK. Control of Tissue Fibrosis by 5-Methoxytryptophan, an Innate Anti-Inflammatory Metabolite. Front Pharmacol 2021; 12:759199. [PMID: 34858185 PMCID: PMC8632247 DOI: 10.3389/fphar.2021.759199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue fibrosis causes debilitating human diseases such as liver cirrhosis, heart failure, chronic kidney disease and pulmonary insufficiency. It is a dynamic process orchestrated by specific subsets of monocyte-macrophages, fibroblasts, pericytes and hepatic stellate cells. Fibrosis is linked to tissue inflammation. Pro-inflammatory macrophages promote fibrosis by driving myofibroblast differentiation and macrophage myofibroblast transition. Myofibroblasts express α-smooth muscle cell actin (α-SMA) and secrete extracellular matrix (ECM) proteins notably collagen I and III. Deposition of ECM proteins at injury sites and interstitial tissues distorts normal structure and impairs vital functions. Despite advances in the mechanisms of fibrosis at cellular, molecular and genetic levels, prevention and treatment of fibrotic diseases remain poorly developed. Recent reports suggest that 5-methoxytryptophan (5-MTP) is effective in attenuating injury-induced liver, kidney, cardiac and pulmonary fibrosis. It inhibits macrophage activation and blocks fibroblast differentiation to myofibroblasts. Furthermore, it inhibits hepatic stellate cell differentiation into myofibroblasts. As 5-MTP is an endogenous molecule derived from tryptophan catabolism via tryptophan hydroxylase pathway, it is well-suited as a lead compound for developing new anti-fibrotic drugs. This article provides an overview of 5-MTP synthesis, and a critical review of its anti-fibrotic activities. Its mechanisms of actions and potential therapeutic value will be discussed.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.,Institute of Biotechnology, College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
24
|
Foresight regarding drug candidates acting on the succinate-GPR91 signalling pathway for non-alcoholic steatohepatitis (NASH) treatment. Biomed Pharmacother 2021; 144:112298. [PMID: 34649219 DOI: 10.1016/j.biopha.2021.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and it is a liver manifestation of metabolic syndrome, with a histological spectrum from simple steatosis to non-alcoholic steatohepatitis (NASH). NASH can evolve into progressive liver fibrosis and eventually lead to liver cirrhosis. The pathological mechanism of NASH is multifactorial, involving a series of metabolic disorders and changes that trigger low-level inflammation in the liver and other organs. In the pathogenesis of NASH, the signal transduction pathway involving succinate and the succinate receptor (G-protein-coupled receptor 91, GPR91) regulates inflammatory cell activation and liver fibrosis. This review describes the mechanism of the succinate-GPR91 signalling pathway in NASH and summarizes the drugs that act on this pathway, with the aim of providing a new approach to NASH treatment.
Collapse
|
25
|
Fernández-Veledo S, Ceperuelo-Mallafré V, Vendrell J. Rethinking succinate: an unexpected hormone-like metabolite in energy homeostasis. Trends Endocrinol Metab 2021; 32:680-692. [PMID: 34301438 DOI: 10.1016/j.tem.2021.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
There has been an explosion of interest in the signaling capacity of energy metabolites. A prime example is the Krebs cycle substrate succinate, an archetypal respiratory substrate with functions beyond energy production as an intracellular and extracellular signaling molecule. Long associated with inflammation, emerging evidence supports a key role for succinate in metabolic processes relating to energy management. As the natural ligand for SUCNR1, a G protein-coupled receptor, succinate is akin to hormones and likely functions as a reporter of metabolism and stress. In this review, we reconcile new and old observations to outline a regulatory role for succinate in metabolic homeostasis. We highlight the importance of the succinate-SUCNR1 axis in metabolic diseases as an integrator of macrophage immune response, and we discuss new metabolic functions recently ascribed to succinate in specific tissues. Because circulating succinate has emerged as a promising biomarker in chronic metabolic diseases, a better understanding of the physiopathological role of the succinate-SUCNR1 axis in metabolism might open new avenues for clinical use in patients with obesity or diabetes.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Victòria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine and Surgery, University Rovira I Virgili, Tarragona, Spain
| | - Joan Vendrell
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine and Surgery, University Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
26
|
Staňková P, Kučera O, Peterová E, Elkalaf M, Rychtrmoc D, Melek J, Podhola M, Zubáňová V, Červinková Z. Western Diet Decreases the Liver Mitochondrial Oxidative Flux of Succinate: Insight from a Murine NAFLD Model. Int J Mol Sci 2021; 22:6908. [PMID: 34199098 PMCID: PMC8268937 DOI: 10.3390/ijms22136908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play an essential role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Previously, we found that succinate-activated respiration was the most affected mitochondrial parameter in mice with mild NAFLD. In this study, we focused on the role of succinate dehydrogenase (SDH) in NAFLD pathogenesis. To induce the progression of NAFLD to nonalcoholic steatohepatitis (NASH), C57BL/6J mice were fed a Western-style diet (WD) or control diet for 30 weeks. NAFLD severity was evaluated histologically and the expression of selected proteins and genes was assessed. Mitochondrial respiration was measured by high-resolution respirometry. Liver redox status was assessed using glutathione, malondialdehyde, and mitochondrial production of reactive oxygen species (ROS). Metabolomic analysis was performed by GC/MS. WD consumption for 30 weeks led to reduced succinate-activated respiration. We also observed decreased SDH activity, decreased expression of the SDH activator sirtuin 3, decreased gene expression of SDH subunits, and increased levels of hepatic succinate, an important signaling molecule. Succinate receptor 1 (SUCNR1) gene and protein expression were reduced in the livers of WD-fed mice. We did not observe signs of oxidative damage compared to the control group. The changes observed in WD-fed mice appear to be adaptive to prevent mitochondrial respiratory chain overload and massive ROS production.
Collapse
Affiliation(s)
- Pavla Staňková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Eva Peterová
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | - Moustafa Elkalaf
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
- Department of Pathophysiology, Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00 Prague, Czech Republic
| | - David Rychtrmoc
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Jan Melek
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Miroslav Podhola
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic;
| | - Veronika Zubáňová
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| |
Collapse
|
27
|
Ho CH, Huang JH, Sun MS, Tzeng IS, Hsu YC, Kuo CY. Wild Bitter Melon Extract Regulates LPS-Induced Hepatic Stellate Cell Activation, Inflammation, Endoplasmic Reticulum Stress, and Ferroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6671129. [PMID: 34239589 PMCID: PMC8241502 DOI: 10.1155/2021/6671129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a key component of liver fibrosis. Two antifibrosis pathways have been identified, the reversion to quiescent-type HSCs and the clearance of HSCs through apoptosis. Lipopolysaccharide- (LPS-) induced HSCs activation and proliferation have been associated with the development of liver fibrosis. We determined the pharmacological effects of wild bitter melon (WM) on HSC activation following LPS treatment and investigated whether WM treatment affected cell death pathways under LPS-treated conditions, including ferroptosis. WM treatment caused cell death, both with and without LPS treatment. WM treatment caused reactive oxygen species (ROS) accumulation without LPS treatment and reversed the decrease in lipid ROS production in HSCs after LPS treatment. We examined the effects of WM treatment on fibrosis, endoplasmic reticulum (ER) stress, inflammation, and ferroptosis in LPS-activated HSCs. The western blotting analysis revealed that the WM treatment of LPS-activated HSCs induced the downregulation of the connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), integrin-β1, phospho-JNK (p-JNK), glutathione peroxidase 4 (GPX4), and cystine/glutamate transporter (SLC7A11) and the upregulation of CCAAT enhancer-binding protein homologous protein (CHOP). These results support WM as an antifibrotic agent that may represent a potential therapeutic solution for the management of liver fibrosis.
Collapse
Affiliation(s)
- Chang-Hsun Ho
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Jen-Hsuan Huang
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Maw-Sheng Sun
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
28
|
Gilgenkrantz H, Mallat A, Moreau R, Lotersztajn S. Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol 2021; 74:1442-1454. [PMID: 33631228 DOI: 10.1016/j.jhep.2021.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
In recent years, there have been major advances in our understanding of the mechanisms underlying fibrosis progression and regression, and how coordinated interactions between parenchymal and non-parenchymal cells impact on the fibrogenic process. Recent studies have highlighted that metabolic reprogramming of parenchymal cells, immune cells (immunometabolism) and hepatic stellate cells is required to support the energetic and anabolic demands of phenotypic changes and effector functions. In this review, we summarise how targeting cell-intrinsic metabolic modifications of the main fibrogenic cell actors may impact on fibrosis progression and we discuss the antifibrogenic potential of metabolically targeted interventions.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Ariane Mallat
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Richard Moreau
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Sophie Lotersztajn
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France.
| |
Collapse
|
29
|
Mills EL, Harmon C, Jedrychowski MP, Xiao H, Garrity R, Tran NV, Bradshaw GA, Fu A, Szpyt J, Reddy A, Prendeville H, Danial NN, Gygi SP, Lynch L, Chouchani ET. UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nat Metab 2021; 3:604-617. [PMID: 34002097 PMCID: PMC8207988 DOI: 10.1038/s42255-021-00389-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most prevalent liver pathology worldwide, is intimately linked with obesity and type 2 diabetes. Liver inflammation is a hallmark of NAFLD and is thought to contribute to tissue fibrosis and disease pathogenesis. Uncoupling protein 1 (UCP1) is exclusively expressed in brown and beige adipocytes, and has been extensively studied for its capacity to elevate thermogenesis and reverse obesity. Here we identify an endocrine pathway regulated by UCP1 that antagonizes liver inflammation and pathology, independent of effects on obesity. We show that, without UCP1, brown and beige fat exhibit a diminished capacity to clear succinate from the circulation. Moreover, UCP1KO mice exhibit elevated extracellular succinate in liver tissue that drives inflammation through ligation of its cognate receptor succinate receptor 1 (SUCNR1) in liver-resident stellate cell and macrophage populations. Conversely, increasing brown and beige adipocyte content in mice antagonizes SUCNR1-dependent inflammatory signalling in the liver. We show that this UCP1-succinate-SUCNR1 axis is necessary to regulate liver immune cell infiltration and pathology, and systemic glucose intolerance in an obesogenic environment. As such, the therapeutic use of brown and beige adipocytes and UCP1 extends beyond thermogenesis and may be leveraged to antagonize NAFLD and SUCNR1-dependent liver inflammation.
Collapse
Affiliation(s)
- Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Cathal Harmon
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nhien V Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gary A Bradshaw
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hannah Prendeville
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Xiao L, Zhang H, Yang X, Mahati S, Wu G, Xiaheding Y, Bao YX, Xiao H. Role of phosphatidylinositol 3-kinase signaling pathway in radiation-induced liver injury. Kaohsiung J Med Sci 2020; 36:990-997. [PMID: 32729224 DOI: 10.1002/kjm2.12279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is one of critical cytokines in radiation-induced liver injury. Hepatic stellate cells (HSC) are activated in the early stage of radiation-induced liver injury. However, it is currently unclear whether phosphatidylinositol 3-kinase (PI3K/Akt) signal pathway is activated in radiation-induced liver injury. Herein, male Sprague-Dawley rats were irradiated with 6 MV X-rays (30 Gy) on the right liver. Next, Hematoxylin and eosin staining, Masson staining, and electron microscopy were performed to examine pathological changes. Immunohistochemistry was performed to assess the expression of TGF-β1, α-SMA, and p-Akt (S473) in liver tissues. In vitro, rat HSC cell line HSC-T6 cells were given different doses of 6 MV X-ray irradiation (10 and 20 Gy) and treated with LY294002. The expression of α-SMA and p-Akt in mRNA and protein levels were measured by reverse transcription-polymerase chain reactioin (RT-PCR) and Western blot. TGF-β1 expression was detected by enzyme-linked immuno sorbent assay (ELISA). After irradiation, the liver tissues showed obvious pathological changes, indicating the establishment of the radiation-induced liver injury. Expression levels of TGF-β1, α-SMA, and p-Akt (S473) protein in liver tissues were significantly increased after irradiation, and this increase was in a time-dependent manner, suggesting the activation of HSC and PI3K/Akt signal pathway. in vitro experiments showed that the TGF-β1 secreted by HSCs, and the expression of Akt and α-SMA at mRNA and protein levels were significantly increased in irradiation groups. However, the expression of TGF-β1, Akt, and α-SMA were significantly decreased in PI3K/Akt signal pathway inhibitor LY294002-treated group. Our results suggest that during radiation-induced liver injury, HSCs are activated by TGF-β1-mediated PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Lei Xiao
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- School of Public Health of Xinjiang Medical University, Urumqi, China
| | - Hua Zhang
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xin Yang
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaya Mahati
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ge Wu
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yiliyaer Xiaheding
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yong-Xing Bao
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Xiao
- School of Public Health of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
31
|
Kuchay MS, Choudhary NS, Mishra SK. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab Syndr 2020; 14:1875-1887. [PMID: 32998095 DOI: 10.1016/j.dsx.2020.09.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The pathophysiology underlying metabolic associated fatty liver disease (MAFLD) involves a multitude of interlinked processes, including insulin resistance (IR) underlying the metabolic syndrome, lipotoxicity attributable to the accumulation of toxic lipid species, infiltration of proinflammatory cells causing hepatic injury and ultimately leading to hepatic stellate cell (HSC) activation and fibrogenesis. The proximal processes, such as IR, lipid overload and lipotoxicity are relatively well established, but the downstream molecular mechanisms, such as inflammatory processes, hepatocyte lipoapoptosis, and fibrogenesis are incompletely understood. METHODS A literature search was performed with Medline (PubMed), Scopus and Google Scholar electronic databases till June 2020, using relevant keywords (nonalcoholic fatty liver disease; metabolic associated fatty liver disease; nonalcoholic steatohepatitis; NASH pathogenesis) to extract relevant studies describing pathogenesis of MAFLD/MASH. RESULTS Several studies have reported new concepts underlying pathophysiology of MAFLD. Activation of HSCs is the common final pathway for diverse signals from damaged hepatocytes and proinflammatory cells. Activated HSCs then secrete excess extracellular matrix (ECM) which accumulates and impairs structure and function of the liver. TAZ (a transcriptional regulator), hedgehog (HH) ligands, transforming growth factor-β (TGF-β), bone morphogenetic protein 8B (BMP8B) and osteopontin play important roles in activating these HSCs. Dysfunctional gut microbiome, dysregulated bile acid metabolism, endogenous alcohol production, and intestinal fructose handling, modify individual susceptibility to MASH. CONCLUSIONS Newer concepts of pathophysiology underlying MASH, such as TAZ/Ihh pathway, extracellular vesicles, microRNA, dysfunctional gut microbiome and intestinal fructose handling present promising targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Mohammad Shafi Kuchay
- Division of Endocrinology and Metabolism, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India.
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, 122001, Haryana, India
| | - Sunil Kumar Mishra
- Division of Endocrinology and Metabolism, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India
| |
Collapse
|
32
|
Wang S, Zhang J, Deng X, Zhao Y, Xu K. Advances in characterization of SIRT3 deacetylation targets in mitochondrial function. Biochimie 2020; 179:1-13. [PMID: 32898647 DOI: 10.1016/j.biochi.2020.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
The homeostasis of mitochondrial functional state is intimately in relation with SIRT3 (sirtuin3). SIRT3, the deacetylase mainly anchored in mitochondria, acts as a modulator of metabolic regulation via manipulating the activity and function of downstream targets at post-translational modification levels. The features of energy sensing and ADP-ribose transference of SIRT3 have also been reported. Recently, accumulating SIRT3-focusing evidences have suggested its complicated role in a series of adverse events such as metabolic disorders, aging-related diseases, coupled with tumors, in which SIRT3 regulates the progress of corresponding biochemical reactions by targeting key mediators. By systematically summarizing the downstream deacetylated proteins of the SIRT3 axis, this review aims to give a comprehensive introduction to the main metabolic pathways and diseases of the molecules involved in acetylation modification, which is expected to provide a direction for further exploration of the pathogenesis and therapeutic targets of the above diseases.
Collapse
Affiliation(s)
- Shuhan Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junli Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoling Deng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajuan Zhao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keshu Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
33
|
Li X, Xie L, Qu X, Zhao B, Fu W, Wu B, Wu J. GPR91, a critical signaling mechanism in modulating pathophysiologic processes in chronic illnesses. FASEB J 2020; 34:13091-13105. [PMID: 32812686 DOI: 10.1096/fj.202001037r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Succinate receptor GPR91 is one of G protein-coupled receptors (GPCRs), and is expressed in a variety of cell types and tissues. Succinate is its natural ligand, and its activation represents that an intrinsic metabolic intermediate exerts a regulatory role on many critical life processes involving pathophysiologic mechanisms, such as innate immunity, inflammation, tissue repair, and oncogenesis. With the illustration of 3-dimensional crystal structure of the receptor and discovery of its antagonists, it is possible to dissect the succinate-GPR91-G protein signaling pathways in different cell types under pathophysiological conditions. Deep understanding of the GPR91-ligand binding mode with various agonists and antagonists would aid in elucidating the molecular basis of a spectrum of chronic illnesses, such as hypertension, diabetes, and their renal and retina complications, metabolic-associated fatty liver diseases, such as nonalcoholic steatohepatitis and its fibrotic progression, inflammatory bowel diseases (Crohn's disease and ulcerative colitis), age-related macular degeneration, rheumatoid arthritis, and progressive behaviors of malignancies. With better delineation of critical regulatory role of the succinate-GPR91 axis in these illnesses, therapeutic intervention may be developed by specifically targeting this signaling pathway with small molecular antagonists or other strategies.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Xie
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiangli Qu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bangyi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Wu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
34
|
Gomes P, Viana SD, Nunes S, Rolo AP, Palmeira CM, Reis F. The yin and yang faces of the mitochondrial deacetylase sirtuin 3 in age-related disorders. Ageing Res Rev 2020; 57:100983. [PMID: 31740222 DOI: 10.1016/j.arr.2019.100983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
Aging, the most important risk factor for many of the chronic diseases affecting Western society, is associated with a decline in mitochondrial function and dynamics. Sirtuin 3 (SIRT3) is a mitochondrial deacetylase that has emerged as a key regulator of fundamental processes which are frequently dysregulated in aging and related disorders. This review highlights recent advances and controversies regarding the yin and yang functions of SIRT3 in metabolic, cardiovascular and neurodegenerative diseases, as well as the use of SIRT3 modulators as a therapeutic strategy against those disorders. Although most studies point to a protective role upon SIRT3 activation, there are conflicting findings that need a better elucidation. The discovery of novel SIRT3 modulators with higher selectivity together with the assessment of the relative importance of different SIRT3 enzymatic activities and the relevance of crosstalk between distinct sirtuin isoforms will be pivotal to validate SIRT3 as a useful drug target for the prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Pedro Gomes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal; CINTESIS - Center for Health Technology and Services Research, University of Porto, Portugal
| | - Sofia D Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Anabela P Rolo
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | - Carlos M Palmeira
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
35
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
36
|
Zhu H, Qu X, Zhang C, Yu Y. Interleukin-10 promotes proliferation of vascular smooth muscle cells by inhibiting inflammation in rabbit abdominal aortic aneurysm. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1260-1271. [PMID: 31933940 PMCID: PMC6947044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The formation and rupture of aneurysms is a reversible process involving the destruction and repair of smooth muscle cells, and the proliferation of vascular smooth muscle cells (VSMC) and inflammation play an important role. In our study, we investigated whether Interleukin-10 (IL-10) treatment delays and prevents the development of aneurysms, and the molecular mechanism whereby IL-10 could inhibit proliferation of VSMC by inhibiting inflammatory responses in abdominal aortic aneurysms. METHODS Models of rabbit abdominal aortic aneurysm (AAA) were established by elastin pressurization and perfusion, and recombinant IL-10 was used as a drug to intervene in treatment of the AAA model by rabbit ear vein injection. 1 week, 2 weeks and 4 weeks after establishing the AAA model, color Doppler ultrasound and H&E staining was used to observe the development of AAA. Western blotting and RT-qPCR were used to detect the gene expression of PCNA, OPN and α-SMA, Th1/Th2 cytokines were detected by RT-qPCR, Nf-kB and MCP-1 protein was analyzed by immunochemistry. Activation of Macrophage was analyzed by immunofluorescence. RESULTS Compared with the model group without any intervention, after treatment with IL-10, a decreased cell number was recorded and number of layers of smooth muscle cells in rabbit abdominal aortic aneurysms were significantly reduced, as was elastin breakage and smooth muscle cell degradation. The gene expression of PCNA and OPN, the mRNA expression of IFN-γ and TNF-α, and the protein expression of NF-kB and MCP-1 were elevated (P < 0.05), but α-SMA, IFN-γ, TNF-α, IL-4 and IL-13 were decreased (P < 0.05) in abdominal aortic aneurysm. The M2/M1 macrophage ratio increased significantly. CONCLUSION With treatment by IL-10, the development of rabbit abdominal aortic aneurysm was delayed. The molecular mechanism may have been that IL-10 treatment inhibits inflammation in aneurysm tissue by promoting the activation of M2 macrophages and altering Th1/Th2 cytokine production.Tthe inhibited inflammatory response promoted the proliferation and phenotypic transformation of VSMC.
Collapse
Affiliation(s)
- Huanlei Zhu
- Eastern Operation Room, Yantai Yuhuangding HospitalYantai, Shandong, China
| | - Xueqin Qu
- Department of Cardiac Surgery Intensive Care Unit, Yantai Yuhuangding HospitalYantai, Shandong, China
| | - Cuisheng Zhang
- Department of Hepatobiliary Surgery, Yantai Yuhuangding HospitalYantai, Shandong, China
| | - Ying Yu
- Department of Vascular Surgery, Yantai Yuhuangding HospitalYantai, Shandong, China
| |
Collapse
|
37
|
Wang A, Zhou F, Li D, Lu JJ, Wang Y, Lin L. γ-Mangostin alleviates liver fibrosis through Sirtuin 3-superoxide-high mobility group box 1 signaling axis. Toxicol Appl Pharmacol 2018; 363:142-153. [PMID: 30502394 DOI: 10.1016/j.taap.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
The activation of hepatic stellate cells (HSCs) plays a critical role in liver fibrosis. In the current study, γ-mangostin (γ-man), one of the major xanthones from mangosteen (Garcinia mangostana), was found to alleviate fibrogenesis in human immortalized HSCs (LX-2 cells) and in liver from chronic carbon tetrachloride (CCl4) injured mice. γ-Man suppressed the expression levels of collagen I and α-smooth muscle actin (α-SMA) in LX-2 cells in both dose and time dependent manners. Furthermore, γ-man inhibited NAD(P)H oxidase activity through induction of sirtuin 3 (SIRT3), resulting in reduced intracellular oxidative stress in LX-2 cells. Moreover, γ-man stimulated the expression of histone deacetylase 1, which in turn decreased the acetylation and cytoplasmic shuttling of high mobility group box 1 (HMGB1), to impair autocrine HMGB1-induced HSC activation. In CCl4-injured mice, γ-man enhanced the expression of SIRT3 and decreased the expression of HMGB1, resulting in decreased accumulation of collagen I and α-SMA in liver. Consequently, γ-man might be a potent candidate to treat oxidative stress induced liver fibrosis.
Collapse
Affiliation(s)
- Anqi Wang
- Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, Guangdong 519031, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Fayang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Dan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
38
|
She L, Xu D, Wang Z, Zhang Y, Wei Q, Aa J, Wang G, Liu B, Xie Y. Curcumin inhibits hepatic stellate cell activation via suppression of succinate-associated HIF-1α induction. Mol Cell Endocrinol 2018; 476:129-138. [PMID: 29746885 DOI: 10.1016/j.mce.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Aberrant succinate accumulation emerges as a unifying mechanism for inflammation and oxidative stress. This study aims to investigate whether curcumin ameliorates hepatic fibrosis via blocking succinate signaling. METHODS We investigated the effects of curcumin on hepatic succinate accumulation and liver fibrosis in mice fed a high-fat diet (HFD). Meanwhile, we stimulated mouse primary hepatic stellate cells (HSCs) with succinate and observed the inhibitory effects of curcumin on succinate signaling. RESULTS Oral administration of curcumin and metformin combated mitochondrial fatty acid oxidation and reduced hepatic succinate accumulation due to the inhibition of succinate dehydrogenase (SDH) activity and demonstrated inhibitory effect on hepatic fibrosis. In mouse primary HSCs, curcumin prevented succinate- and CoCl2-induced hypoxia-inducible transcription factor-1α (HIF-1α) induction via suppression of ROS production and effectively reduced gene expressions of Col1α, Col3α, fibronectin and TGF-β1 with inflammation inhibition. Knockdown of HIF-1α with small interfering RNA blocked the action of succinate to induce HSCs activation, indicative of the essential role of HIF-1α in succinate signaling. CONCLUSIONS Hepatic succinate accumulation served as a metabolic signal to promote liver fibrosis through HIF-1α induction. Curcumin reduced succinate accumulation by combating fatty acid oxidation and prevented HSCs activation by blocking succinate/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Linlin She
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Dan Xu
- Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210038, China
| | - Zixia Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yirui Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qingli Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Baolin Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
39
|
Hou W, Syn WK. Role of Metabolism in Hepatic Stellate Cell Activation and Fibrogenesis. Front Cell Dev Biol 2018; 6:150. [PMID: 30483502 PMCID: PMC6240744 DOI: 10.3389/fcell.2018.00150] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of hepatic stellate cell (HSC) involves the transition from a quiescent to a proliferative, migratory, and fibrogenic phenotype (i.e., myofibroblast), which is characteristic of liver fibrogenesis. Multiple cellular and molecular signals which contribute to HSC activation have been identified. This review specially focuses on the metabolic changes which impact on HSC activation and fibrogenesis.
Collapse
Affiliation(s)
- Wei Hou
- Tianjin Second People's Hospital and Tianjin Institute of Hepatology, Tianjin, China.,Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States
| |
Collapse
|
40
|
Mossa A, Velasquez Flores M, Nguyen H, Cammisotto PG, Campeau L. Beta-3 Adrenoceptor Signaling Pathways in Urothelial and Smooth Muscle Cells in the Presence of Succinate. J Pharmacol Exp Ther 2018; 367:252-259. [PMID: 30104323 DOI: 10.1124/jpet.118.249979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022] Open
Abstract
Succinate, an intermediate metabolite of the Krebs cycle, can alter the metabolomics response to certain drugs and controls an array of molecular responses in the urothelium through activation of its receptor, G-protein coupled receptor 91 (GPR91). Mirabegron, a β3-adrenergic receptor (β3-AR) agonist used to treat overactive bladder syndrome (OAB), increases intracellular cAMP in the detrusor smooth muscle cells (SMC), leading to relaxation. We have previously shown that succinate inhibits forskolin-stimulated cAMP production in urothelium. To determine whether succinate interferes with mirabegron-mediated bladder relaxation, we examined their individual and synergistic effect in urothelial-cell and SMC signaling. We first confirmed β3-AR involvement in the mirabegron response by quantifying receptor abundance by immunoblotting in cultured urothelial cells and SMC and cellular localization by immunohistochemistry in rat bladder tissue. Mirabegron increased cAMP levels in SMC but not in urothelial cells, an increase that was inhibited by succinate, suggesting that it impairs cAMP-mediated bladder relaxation by mirabegron. Succinate and mirabegron increased inducible nitric oxide synthesis and nitric oxide secretion only in urothelial cells, suggesting that its release can indirectly induces SMC relaxation. Succinate exposure decreased the expression of β3-AR protein in whole bladder in vivo and in SMC in vitro, indicating that this metabolite may lead to impaired pharmacodynamics of the bladder. Together, our results demonstrate that increased levels of succinate in settings of metabolic stress (e.g., the metabolic syndrome) may lead to impaired mirabegron and β3-AR interaction, inhibition of cAMP production, and ultimately requiring mirabegron dose adjustment for its treatment of OAB related to these conditions.
Collapse
Affiliation(s)
- Abubakr Mossa
- Lady Davis Research Institute, McGill University, Montreal, Quebec, Canada
| | | | - Hieu Nguyen
- Lady Davis Research Institute, McGill University, Montreal, Quebec, Canada
| | | | - Lysanne Campeau
- Lady Davis Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Li X, Song S, Xu M, Hua Y, Ding Y, Shan X, Meng G, Wang Y. Sirtuin3 deficiency exacerbates carbon tetrachloride-induced hepatic injury in mice. J Biochem Mol Toxicol 2018; 33:e22249. [PMID: 30368983 DOI: 10.1002/jbt.22249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Sirtuin3 (SIRT3) plays an important role in maintaining normal mitochondrial function and alleviating oxidative stress. After carbon tetrachloride (CCl4 ) administration, the expression of SIRT3 decreased in the liver of mice, which indicated that the SIRT3 might play a crucial role during chemical-induced acute hepatic injury. To verify the hypothesis, CCl 4 was given to induce acute hepatic injury in SIRT3 knockout (KO) mice and wild-type (WT) mice. CCl 4 -induced liver injury was more severe in SIRT3 KO mice compared with the WT mice. In addition, the oxidative stress induced by CCl 4 was enhanced in the SIRT3 KO mice. Furthermore, the increased expression of dynamin-related protein 1 was also aggravated in SIRT3 KO mice after CCl 4 administration. In conclusion, our study demonstrated that SIRT3 deficiency exacerbated CCl 4 -induced impairment of the liver in mice, and the mechanism might be related to enhanced oxidative stress.
Collapse
Affiliation(s)
- Xinshuai Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Shu Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Mengting Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Yun Ding
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Xiaoyu Shan
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| |
Collapse
|
42
|
Ashraf NU, Altaf M. Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:1-12. [PMID: 30454678 DOI: 10.1016/j.mrrev.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern associated with increased mortality due to cardiovascular disease, type II diabetes, insulin resistance, liver disease, and malignancy. The molecular mechanism underlying these processes is not fully understood but involves hepatic fat accumulation and alteration of energy metabolism and inflammatory signals derived from various cell types including immune cells. During the last two decades, epigenetic mechanisms have emerged as important regulators of chromatin alteration and the reprogramming of gene expression. Recently, epigenetic mechanisms have been implicated in the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) genesis. Epigenetic mechanisms could be used as potential therapeutic targets and as noninvasive diagnostic biomarkers for NAFLD. These mechanisms can determine disease progression and prognosis in NAFLD. In this review, we discuss the role of epigenetic mechanisms in the progression of NAFLD and potential therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Nissar U Ashraf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
43
|
Recio C, Lucy D, Iveson P, Iqbal AJ, Valaris S, Wynne G, Russell AJ, Choudhury RP, O'Callaghan C, Monaco C, Greaves DR. The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxid Redox Signal 2018; 29:237-256. [PMID: 29117706 DOI: 10.1089/ars.2017.7168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Great attention has been placed on the link between metabolism and immune function giving rise to the term "immunometabolism." It is widely accepted that inflammation and oxidative stress are key processes that underlie metabolic complications during obesity, diabetes, and atherosclerosis. Therefore, identifying the mechanisms and mediators that are involved in the regulation of both inflammation and metabolic homeostasis is of high scientific and therapeutic interest. Recent Advances: G protein-coupled receptors (GPCRs) that signal in response to metabolites have emerged as attractive therapeutic targets in inflammatory disease. Critical Issues and Future Directions: In this review, we discuss recent findings about the physiological role of the main metabolite-sensing GPCRs, their implication in immunometabolic disorders, their principal endogenous and synthetic ligands, and their potential as drug targets in inflammation and metabolic disease. Antioxid. Redox Signal. 29, 237-256.
Collapse
Affiliation(s)
- Carlota Recio
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Daniel Lucy
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Poppy Iveson
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Asif J Iqbal
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Sophia Valaris
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Graham Wynne
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Angela J Russell
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Robin P Choudhury
- 3 Radcliffe Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Chris O'Callaghan
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Claudia Monaco
- 5 Kennedy Institute for Rheumatology, University of Oxford , Oxford, Great Britain
| | - David R Greaves
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| |
Collapse
|
44
|
Pillai VB, Kanwal A, Fang YH, Sharp WW, Samant S, Arbiser J, Gupta MP. Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget 2018; 8:34082-34098. [PMID: 28423723 PMCID: PMC5470953 DOI: 10.18632/oncotarget.16133] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin is the chemotherapeutic drug of choice for a wide variety of cancers, and cardiotoxicity is one of the major side effects of doxorubicin treatment. One of the main cellular targets of doxorubicin in the heart is mitochondria. Mitochondrial sirtuin, SIRT3 has been shown to protect against doxorubicin-induced cardiotoxicity. We have recently identified honokiol (HKL) as an activator of SIRT3, which protects the heart from developing pressure overload hypertrophy. Here, we show that HKL-mediated activation of SIRT3 also protects the heart from doxorubicin-induced cardiac damage without compromising the tumor killing potential of doxorubicin. Doxorubicin-induced cardiotoxicity is associated with increased ROS production and consequent fragmentation of mitochondria and cell death. HKL-mediated activation of SIRT3 prevented Doxorubicin induced ROS production, mitochondrial damage and cell death in rat neonatal cardiomyocytes. HKL also promoted mitochondrial fusion. We also show that treatment with HKL blocked doxorubicin-induced cardiac toxicity in mice. This was associated with reduced mitochondrial DNA damage and improved mitochondrial function. Furthermore, treatments of mice, bearing prostrate tumor-xenografts, with HKL and doxorubicin showed inhibition of tumor growth with significantly reduced cardiac toxicity. Our results suggest that HKL-mediated activation of SIRT3 protects the heart from doxorubicin-induced cardiotoxicity and represents a potentially novel adjunct for chemotherapy treatments.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Abhinav Kanwal
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Yong Hu Fang
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Willard W Sharp
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Sadhana Samant
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Jack Arbiser
- Department of Dermatology, Atlanta Veterans Administration Health Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mahesh P Gupta
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Le CT, Nguyen G, Park SY, Choi DH, Cho EH. LY2405319, an analog of fibroblast growth factor 21 ameliorates α-smooth muscle actin production through inhibition of the succinate-G-protein couple receptor 91 (GPR91) pathway in mice. PLoS One 2018; 13:e0192146. [PMID: 29444136 PMCID: PMC5812602 DOI: 10.1371/journal.pone.0192146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/17/2018] [Indexed: 01/28/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is an important metabolic regulator expressed predominantly in the liver. In this study, we evaluated the role of LY2405319, an analogue of FGF21, in hepatic stellate cell (HSC) activation and in a methionine and choline-deficient (MCD)-diet induced mouse model of liver fibrosis. During liver injury, HSCs trans-differentiate into activated myofibroblasts which produce alpha-smooth muscle actin (α-SMA) and become a major cell type in hepatic fibrogenesis. Succinate and succinate receptor (GPR91) signaling has emerged as a regulator to promote α-SMA production in MCD diet- induced mice. Treatment with palmitate or MCD medium on LX-2 cells (HSCs) increased succinate concentration in the conditioned medium and cell lysate of LX-2 cells and increased production of GPR91 and α-SMA. However, LY2405319 administration ameliorates palmitate or MCD media-induced succinate production and decreases over-expression of GPR91 and α-SMA in LX2-cells. In an in vivo study, the MCD diet treatment caused increased steatohepatitis and liver fibrosis compared with the control diet in mice. Administration of LY2405319 improved steatohepatitis ameliorated GPR91 and α -SMA production in the liver, decreased succinate concentration in both liver and serum of MCD diet -induced mice. These results suggest that FGF21 reduces production of α-SMA by inhibiting the succinate-GPR91 pathway. We conclude that FGF21 acts as an inhibitor of the succinate-GPR91 pathway to control liver fibrosis. This suggests that FGF21 has therapeutic potential for treating liver fibrogenesis.
Collapse
Affiliation(s)
- Cong Thuc Le
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Giang Nguyen
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - So Young Park
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Dae Hee Choi
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
46
|
Park SY, Le CT, Sung KY, Choi DH, Cho EH. Succinate induces hepatic fibrogenesis by promoting activation, proliferation, and migration, and inhibiting apoptosis of hepatic stellate cells. Biochem Biophys Res Commun 2018; 496:673-678. [DOI: 10.1016/j.bbrc.2018.01.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
|
47
|
Metformin ameliorates activation of hepatic stellate cells and hepatic fibrosis by succinate and GPR91 inhibition. Biochem Biophys Res Commun 2018; 495:2649-2656. [DOI: 10.1016/j.bbrc.2017.12.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 12/28/2022]
|
48
|
Cho EH. Succinate as a Regulator of Hepatic Stellate Cells in Liver Fibrosis. Front Endocrinol (Lausanne) 2018; 9:455. [PMID: 30186230 PMCID: PMC6110815 DOI: 10.3389/fendo.2018.00455] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
The rapid increase of obesity rates worldwide is associated with chronic liver injury due to non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Chronic liver inflammation drives hepatic fibrosis, which is a highly conserved and coordinated protective response to tissue injury, and is a reversible process. Hepatocytes, immune cells, and hepatic stellate cells (HSCs) have been identified as key players in the mechanisms of hepatic fibrosis and inflammation. During the last decade, succinate, an intermediate of the tricarboxylic acid cycle in mitochondrial ATP production, has emerged as an important signaling molecule in various diseases. Succinate acts as an extracellular ligand for G-protein coupled receptor 91, also known as succinate receptor 1, which is mainly expressed in the kidney, heart, liver, immune cells, and retinal cells, suggesting a widespread function in cellular metabolism. Furthermore, succinate stabilizes hypoxia-inducible factor-1α in immune cells and tumors as a signaling molecule, and has been shown to post-translationally modify proteins. This review summarizes the recent evidence pointing to an additional role of succinate in profibrotic signaling, along with its downstream signaling pathways, and updates the current state of knowledge on the role of succinate in liver fibrosis through its action on HSCs. Further focus on this link can help identify succinate, its receptor, and its downstream signaling molecules as new targets for the treatment of liver fibrosis.
Collapse
|
49
|
Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121:27-42. [PMID: 28506744 DOI: 10.1016/j.addr.2017.05.007] [Citation(s) in RCA: 1026] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Progressive liver fibrosis, induced by chronic viral and metabolic disorders, leads to more than one million deaths annually via development of cirrhosis, although no antifibrotic therapy has been approved to date. Transdifferentiation (or "activation") of hepatic stellate cells is the major cellular source of matrix protein-secreting myofibroblasts, the major driver of liver fibrogenesis. Paracrine signals from injured epithelial cells, fibrotic tissue microenvironment, immune and systemic metabolic dysregulation, enteric dysbiosis, and hepatitis viral products can directly or indirectly induce stellate cell activation. Dysregulated intracellular signaling, epigenetic changes, and cellular stress response represent candidate targets to deactivate stellate cells by inducing reversion to inactivated state, cellular senescence, apoptosis, and/or clearance by immune cells. Cell type- and target-specific pharmacological intervention to therapeutically induce the deactivation will enable more effective and less toxic precision antifibrotic therapies.
Collapse
|
50
|
Ristic B, Bhutia YD, Ganapathy V. Cell-surface G-protein-coupled receptors for tumor-associated metabolites: A direct link to mitochondrial dysfunction in cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:246-257. [PMID: 28512002 PMCID: PMC5997391 DOI: 10.1016/j.bbcan.2017.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
Abstract
Mitochondria are the sites of pyruvate oxidation, citric acid cycle, oxidative phosphorylation, ketogenesis, and fatty acid oxidation. Attenuation of mitochondrial function is one of the most significant changes that occurs in tumor cells, directly linked to oncogenesis, angiogenesis, Warburg effect, and epigenetics. In particular, three mitochondrial enzymes are inactivated in cancer: pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and 3-hydroxy-3-methylglutaryl CoA synthase-2 (HMGCS2). These enzymes are subject to regulation via acetylation/deacetylation. SIRT3, the predominant mitochondrial deacetylase, directly targets these enzymes for deacetylation and maintains their optimal catalytic activity. SIRT3 is a tumor suppressor, and deacetylation of these enzymes contributes to its biological function. PDH catalyzes the oxidative decarboxylation of pyruvate into acetyl CoA, SDH oxidizes succinate into fumarate, and HMGCS2 controls the synthesis of the ketone body β-hydroxybutyrate. As the activities of these enzymes are decreased in cancer, tumor cells accumulate lactate and succinate but produce less amounts of β-hydroxybutyrate. Apart from their role in cellular energetics, these metabolites function as signaling molecules via specific cell-surface G-protein-coupled receptors. Lactate signals via GPR81, succinate via GPR91, and β-hydroxybutyrate via GPR109A. In addition, lactate activates hypoxia-inducible factor HIF1α and succinate promotes DNA methylation. GPR81 and GPR91 are tumor promoters, and increased production of lactate and succinate as their agonists drives tumorigenesis by enhancing signaling via these two receptors. In contrast, GPR109A is a tumor suppressor, and decreased synthesis of β-hydroxybutyrate as its agonist suppresses signaling via this receptor, thus attenuating the tumor-suppressing function of GPR109A. In parallel with the opposing changes in lactate/succinate and β-hydroxybutyrate levels, tumor cells upregulate GPR81 and GPR91 but downregulate GPR109A. As such, these three metabolite receptors play a critical role in cancer and represent a new class of drug targets with selective antagonists of GPR81 and GPR91 for cancer treatment and agonists of GPR109A for cancer prevention.
Collapse
Affiliation(s)
- Bojana Ristic
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|