1
|
Yahya SA, Al-Shawi NN. Hepatoprotective effect of Nobiletin against 5-fluorouracil induce hepatotoxicity. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100199. [PMID: 39411523 PMCID: PMC11474214 DOI: 10.1016/j.crphar.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
5-florouracil is a widely used anticancer/anti-metabolite drug used to treat solid tumor like colon cancer, head and neck, rectum, stomach, pancreas and breast cancer; but, it can cause hepatotoxicity by induction of apoptosis through activation of caspases enzymes and oxidative stress. Nobiletin is a citrus fruit-derived flavonoid that possess significant biological activity, including anticancer, and anti-inflammatory. This study was design to investigate the effects of nobiletin against 5-florouracil-indcued hepatotoxicity in male rats through the measurement of selected -inflammatory, -apoptosis, and -oxidative stress markers. By use male Albino rats weighing 150-250gm around 28 animals; giving them tap water ad libitum and fed commercial pellets; and randomized into four groups (7animals/group) as following arrangement: Group I oral administered only corn oil for rats 1 ml for each kilogram for day by using of oral gavage for rat for 14 days. Group II: oral administered Nobiletin at dose 10 mg for each kilogram for each day (dissolved in corn oil) via oral gavage for 14 days. Group III: oral administered corn oil via oral gavage for 14 days after that single IP injection of 5-FU (150 mg/kg) on the day fourteenth (14). Group VI: Rats oral administered nobiletin dissolved in corn oil daily by oral gavage at a dose 10 mg/kg for each day for 14 days and a single IP injection of (150 mg/kg) 5-florouracil was given on day 14. All groups, seven animals of each group were sacrificed at day fifteenth (15); and, serum was collected to measure inflammatory and anti-inflammatory markers (interlukin-6 and interlukin-10) and liver function tests(ALT, LDH and AST); furthermore, liver tissue samples were collected to measure level of caspase-3, malondialdehyde and reduced form of glutathione, assessment of Hemeoxygenase-1 and NADPH quinone dehydrogenase-1 enzymes. In addition, histopathological study of the liver tissue of rats was perform to detect difference between architecture of liver cells in all rats' groups. The protective effect of Nobiletin noted by decrease in apoptosis of hepatocytes by decreasing of caspase-3 and reduction on free radical through reduce in malondialdehyde level, also increase in Hemeoxygenase-1gene expression. Increase in NADPH quinone dehydrogenase-1 dehydrogenase enzyme. On histopath reduce in congestion and some inflammatory infiltration by using of nobiletin prior to give 5-florouracil.
Collapse
Affiliation(s)
- Safa A. Yahya
- University of Baghdad, College of Pharmacy, Department of Pharmacology and Toxicology, Baghdad, Iraq
| | - Nada N. Al-Shawi
- University of Baghdad, College of Pharmacy, Department of Pharmacology and Toxicology, Baghdad, Iraq
| |
Collapse
|
2
|
Son SH, Kim MY, Lim YS, Jin HC, Shin JH, Yi JK, Choi S, Park MA, Chae JH, Kang HC, Lee YJ, Uversky VN, Kim CG. SUMOylation-mediated PSME3-20 S proteasomal degradation of transcription factor CP2c is crucial for cell cycle progression. SCIENCE ADVANCES 2023; 9:eadd4969. [PMID: 36706181 PMCID: PMC9882985 DOI: 10.1126/sciadv.add4969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Transcription factor CP2c (also known as TFCP2, α-CP2, LSF, and LBP-1c) is involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies such as cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover an unprecedented mechanism of CP2c degradation via a previously unidentified SUMO1/PSME3/20S proteasome pathway and its biological meaning. CP2c is SUMOylated in a SUMO1-dependent way, and SUMOylated CP2c is degraded through the ubiquitin-independent PSME3 (also known as REGγ or PA28)/20S proteasome system. SUMOylated PSME3 could also interact with CP2c to degrade CP2c via the 20S proteasomal pathway. Moreover, precisely timed degradation of CP2c via the SUMO1/PSME3/20S proteasome axis is required for accurate progression of the cell cycle. Therefore, we reveal a unique SUMO1-mediated uncanonical 20S proteasome degradation mechanism via the SUMO1/PSME3 axis involving mutual SUMO-SIM interaction of CP2c and PSME3, providing previously unidentified mechanistic insights into the roles of dynamic degradation of CP2c in cell cycle progression.
Collapse
Affiliation(s)
- Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Su Lim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hyeon Cheol Jin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - June Ho Shin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae Kyu Yi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Jin Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- CGK Biopharma Co. Ltd., Seoul 04763, Korea
| |
Collapse
|
3
|
The paradigm of amyloid precursor protein in amyotrophic lateral sclerosis: The potential role of the 682YENPTY 687 motif. Comput Struct Biotechnol J 2023; 21:923-930. [PMID: 36698966 PMCID: PMC9860402 DOI: 10.1016/j.csbj.2023.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive decline of neuronal function in several brain areas, and are always associated with cognitive, psychiatric, or motor deficits due to the atrophy of certain neuronal populations. Most neurodegenerative diseases share common pathological mechanisms, such as neurotoxic protein misfolding, oxidative stress, and impairment of autophagy machinery. Amyotrophic lateral sclerosis (ALS) is one of the most common adult-onset motor neuron disorders worldwide. It is clinically characterized by the selective and progressive loss of motor neurons in the motor cortex, brain stem, and spinal cord, ultimately leading to muscle atrophy and rapidly progressive paralysis. Multiple recent studies have indicated that the amyloid precursor protein (APP) and its proteolytic fragments are not only drivers of Alzheimer's disease (AD) but also one of the earliest signatures in ALS, preceding or anticipating neuromuscular junction instability and denervation. Indeed, altered levels of APP peptides have been found in the brain, muscles, skin, and cerebrospinal fluid of ALS patients. In this short review, we discuss the nature and extent of research evidence on the role of APP peptides in ALS, focusing on the intracellular C-terminal peptide and its regulatory motif 682YENPTY687, with the overall aim of providing new frameworks and perspectives for intervention and identifying key questions for future investigations.
Collapse
|
4
|
Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer's disease. Mol Neurodegener 2022; 17:27. [PMID: 35346299 PMCID: PMC8962234 DOI: 10.1186/s13024-022-00521-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background Increased total tau (t-tau) in cerebrospinal fluid (CSF) is a key characteristic of Alzheimer’s disease (AD) and is considered to result from neurodegeneration. T-tau levels, however, can be increased in very early disease stages, when neurodegeneration is limited, and can be normal in advanced disease stages. This suggests that t-tau levels may be driven by other mechanisms as well. Because tau pathophysiology is emerging as treatment target for AD, we aimed to clarify molecular processes associated with CSF t-tau levels. Methods We performed a proteomic, genomic, and imaging study in 1380 individuals with AD, in the preclinical, prodromal, and mild dementia stage, and 380 controls from the Alzheimer’s Disease Neuroimaging Initiative and EMIF-AD Multimodality Biomarker Discovery study. Results We found that, relative to controls, AD individuals with increased t-tau had increased CSF concentrations of over 400 proteins enriched for neuronal plasticity processes. In contrast, AD individuals with normal t-tau had decreased levels of these plasticity proteins and showed increased concentrations of proteins indicative of blood–brain barrier and blood-CSF barrier dysfunction, relative to controls. The distinct proteomic profiles were already present in the preclinical AD stage and persisted in prodromal and dementia stages implying that they reflect disease traits rather than disease states. Dysregulated plasticity proteins were associated with SUZ12 and REST signaling, suggesting aberrant gene repression. GWAS analyses contrasting AD individuals with and without increased t-tau highlighted several genes involved in the regulation of gene expression. Targeted analyses of SNP rs9877502 in GMNC, associated with t-tau levels previously, correlated in individuals with AD with CSF concentrations of 591 plasticity associated proteins. The number of APOE-e4 alleles, however, was not associated with the concentration of plasticity related proteins. Conclusions CSF t-tau levels in AD are associated with altered levels of proteins involved in neuronal plasticity and blood–brain and blood-CSF barrier dysfunction. Future trials may need to stratify on CSF t-tau status, as AD individuals with increased t-tau and normal t-tau are likely to respond differently to treatment, given their opposite CSF proteomic profiles. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-022-00521-3.
Collapse
|
5
|
Hsa-miR-30a-3p attenuates gastric adenocarcinoma proliferation and metastasis via APBB2. Aging (Albany NY) 2021; 13:16763-16772. [PMID: 34182542 PMCID: PMC8266363 DOI: 10.18632/aging.203197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Background: There is a well-established relationship between cell cycle progression and the development of stomach adenocarcinoma. This study aimed to elucidate the molecular mechanism and biological function of APBB2 in gastric cancer. Methods: Gastric adenocarcinoma (GA) data were downloaded from the TCGA-GA and GEO databases and analyzed to explore differentially expressed miRNAs and mRNAs. Moreover, potential target mRNAs were also predicted. The relative level of gene and protein expression in GA cell lines and gastric mucosa cells was detected by q-PCR and Western blot, respectively. Moreover, the influence of APBB2 on proliferation, metastasis, and cell cycle changes in SGC-7901 and BGC-823 cells was evaluated. The binding relationship between the target miRNA and mRNA was confirmed with a dual-luciferase reporter assay. Results: High APBB2 expression was detected in GA patients, indicating that it may be represent a predictive biomarker for poor prognosis. Related experiments confirmed that APBB2 silencing inhibited GA cellular functions, including proliferation, cell cycle progression, migration, and invasion. In addition, to explore the molecular mechanism, our results indicated that the binding sites were located at hsa-mir-30a and the 3′-UTR of APBB2, suggesting that hsa-mir-30a can regulate the expression of APBB2. The biological functions of hsa-mir-30a were also evaluated. Hsa-mir-30a overexpression attenuated the proliferation and metastasis of cancer cells. In rescue experiments, hsa-mir-30a was confirmed to reverse the cell cycle promoting function associated with APBB2 overexpression. Conclusion: Our findings show that hsa-mir-30a can attenuate the development of GA by down-regulating APBB2 expression.
Collapse
|
6
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
7
|
Almeida Junior JCD, Helal-Neto E, Pinto SR, Dos Santos SN, Bernardes ES, Al-Qahtani M, Nigro F, Alencar LMR, Ricci-Junior E, Santos-Oliveira R. Colorectal Adenocarcinoma: Imaging using 5-Fluoracil Nanoparticles Labeled with Technetium 99 Metastable. Curr Pharm Des 2019; 25:3282-3288. [PMID: 31419931 DOI: 10.2174/1381612825666190816235147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adenocarcinoma of colon and rectum are one of the most common cancers worldwide, responsible for over 1,300,000 people diagnosed. Also, they are responsible for metastasis, which leads to death in less than 5 years. METHODS In this study, we developed, characterized, and pre-clinically tested a new nano-radiopharmaceutical for early and differential detection of adenocarcinoma of colon and rectum. RESULTS AND CONCLUSION Results demonstrated the specificity of the developed nanosystem and the ability to reach the tumor with very specific targeting. Also, the imaging data support the use of this nano-agent as a nanoimaging-guided-radiopharmaceutical.
Collapse
Affiliation(s)
- Julio Cezar de Almeida Junior
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil.,Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, Brazil
| | - Edward Helal-Neto
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil
| | - Suyene R Pinto
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil.,Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, Brazil
| | - Sofia Nascimento Dos Santos
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil.,Instituto de Pesquisas Energéticas e Nucleares, Centro de Radiofarmacia, São Paulo, Brazil
| | - Emerson S Bernardes
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil.,Instituto de Pesquisas Energéticas e Nucleares, Centro de Radiofarmacia, São Paulo, Brazil
| | - Mohammed Al-Qahtani
- Rio de Janeiro Federal University, Faculty of Pharmacy, Rio de Janeiro, Brazil
| | - Fiammetta Nigro
- King Faisal Specialist Hospital and Research Centre, Cyclotron and Radiopharmaceuticals Department, Riyadh, Saudi Arabia
| | - Luciana M R Alencar
- Federal University of Maranhao, Department of Physics, Sao Luis, Maranhao, Brazil
| | - Eduardo Ricci-Junior
- King Faisal Specialist Hospital and Research Centre, Cyclotron and Radiopharmaceuticals Department, Riyadh, Saudi Arabia
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil.,Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Myrum C, Nikolaienko O, Bramham CR, Haavik J, Zayats T. Implication of the APP Gene in Intellectual Abilities. J Alzheimers Dis 2018; 59:723-735. [PMID: 28671113 PMCID: PMC5523840 DOI: 10.3233/jad-170049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Cognitive functions are highly heritable and polygenic, though the source of this genetic influence is unclear. On the neurobiological level, these functions rely on effective neuroplasticity, in which the activity-regulated cytoskeleton associated protein (ARC) plays an essential role. Objectives: To examine whether the ARC gene complex may contribute to the genetic components of intellectual function given the crucial role of ARC in brain plasticity and memory formation. Methods: The ARC complex was tested for association with intelligence (IQ) in children from the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 5,165). As Alzheimer’s disease (AD) shares genetics with cognitive functioning, the association was followed up in an AD sample (17,008 cases, 37,154 controls). Results: The ARC complex revealed association with verbal and total IQ (empirical p = 0.027 and 0.041, respectively) in the ALSPAC. The strongest single variant signal (rs2830077; empirical p = 0.018), within the APP gene, was confirmed in the AD sample (p = 2.76E-03). Functional analyses of this variant showed its preferential binding to the transcription factor CP2. Discussion: This study implicates APP in childhood IQ. While follow-up studies are needed, this observation could help elucidate the etiology of disorders associated with cognitive dysfunction, such as AD.
Collapse
Affiliation(s)
- Craig Myrum
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Oleksii Nikolaienko
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R Bramham
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 2017; 156:189-213. [DOI: 10.1016/j.pneurobio.2017.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
|
10
|
Kim JS, Chae JH, Cheon YP, Kim CG. Reciprocal localization of transcription factors YY1 and CP2c in spermatogonial stem cells and their putative roles during spermatogenesis. Acta Histochem 2016; 118:685-692. [PMID: 27612612 DOI: 10.1016/j.acthis.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023]
Abstract
Maintaining stemness and permitting differentiation mediated by combinations of transcription factors (TFs) are key aspects of mammalian spermatogenesis. It has been established that yin yang 1 (YY1), a target factor of mammalian polycomb repressive complex 2 (PRC2) and a regulator of stemness, is involved in the stable maintenance of prophase stage spermatocytes. Recently, we have demonstrated that the TF CP2c partners with YY1 in some cells to antagonistically regulate the other protein's function. To date, the functional roles of YY1 and CP2c in spermatogonial stem cells and their derived germ cells remain unclear. Here, we investigated the expression of YY1 and CP2c in mouse gonocytes and germ cells using tissue immunohistochemical and immunofluorescence analyses. At E14.5, both YY1 and CP2c were stained in gonocytes and Sertoli cells in testicular cords, showing different proportion and density of immunoreactivity. However, in adult testes, YY1 was localized in the nuclei of spermatogonial stem cells and spermatocytes, but not in spermatozoa. It was also detected in spermatogonia and spermatids in a stage-specific manner during spermatogenic cycle. CP2c could be detected mostly in the cytoplasm of spermatocytes but not at all in spermatogonial stem cells, indicating mutually exclusive expression of CP2c and YY1. Interestingly, however, CP2c was stained in the cytoplasm and nucleus of spermatogonia at elongation and release stages, and co-localized with YY1 in the nucleus at grouping, maturation, and releasing stages. Neither YY1 nor CP2c was expressed in spermatozoa. Our data indicate that YY1 strongly localizes in the spermatogonial stem cells and co-localizes heterogeneously with CP2c to permit spermatogenesis, and also suggest that YY1 is essential for stemness of spermatogonial stem cells (SCs) whereas CP2c is critical for the commitment of spermatogonia and during the progression of spermatogonia to spermatids. This evaluation expands our understanding of the molecular mechanism of spermatogonia formation as well as spermatogenesis in general.
Collapse
Affiliation(s)
- Ji Sook Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Department of Biology, Institute for Basic Sciences, Sungshin University, Seoul 02844, Republic of Korea.
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
11
|
Extensive nuclear sphere generation in the human Alzheimer's brain. Neurobiol Aging 2016; 48:103-113. [PMID: 27644079 DOI: 10.1016/j.neurobiolaging.2016.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Nuclear spheres are protein aggregates consisting of FE65, TIP60, BLM, and other yet unknown proteins. Generation of these structures in the cellular nucleus is putatively modulated by the amyloid precursor protein (APP), either by its cleavage or its phosphorylation. Nuclear spheres were preferentially studied in cell culture models and their existence in the human brain had not been known. Existence of nuclear spheres in the human brain was studied using immunohistochemistry. Cell culture experiments were used to study regulative mechanisms of nuclear sphere generation. The comparison of human frontal cortex brain samples from Alzheimer's disease (AD) patients to age-matched controls revealed a dramatically and highly significant enrichment of nuclear spheres in the AD brain. Costaining demonstrated that neurons are distinctly affected by nuclear spheres, but astrocytes never are. Nuclear spheres were predominantly found in neurons that were negative for threonine 668 residue in APP phosphorylation. Cell culture experiments revealed that JNK3-mediated APP phosphorylation reduces the amount of sphere-positive cells. The study suggests that nuclear spheres are a new APP-derived central hallmark of AD, which might be of crucial relevance for the molecular mechanisms in neurodegeneration.
Collapse
|
12
|
Rajasekaran D, Siddiq A, Willoughby JLS, Biagi JM, Christadore LM, Yunes SA, Gredler R, Jariwala N, Robertson CL, Akiel MA, Shen XN, Subler MA, Windle JJ, Schaus SE, Fisher PB, Hansen U, Sarkar D. Small molecule inhibitors of Late SV40 Factor (LSF) abrogate hepatocellular carcinoma (HCC): Evaluation using an endogenous HCC model. Oncotarget 2016; 6:26266-77. [PMID: 26313006 PMCID: PMC4694900 DOI: 10.18632/oncotarget.4656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/06/2015] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.
Collapse
Affiliation(s)
- Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer L S Willoughby
- Department of Biology, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA.,Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Jessica M Biagi
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA
| | - Lisa M Christadore
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA
| | - Sarah A Yunes
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Rachel Gredler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Maaged A Akiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Scott E Schaus
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ulla Hansen
- Department of Biology, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
13
|
Loosse C, Pawlas M, Bukhari HS, Maghnouj A, Hahn S, Marcus K, Müller T. Nuclear spheres modulate the expression of BEST1 and GADD45G. Cell Signal 2016; 28:100-9. [DOI: 10.1016/j.cellsig.2015.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 11/28/2022]
|
14
|
Abstract
Neurodegenerative diseases have a variety of different genes contributing to their underlying pathology. Unfortunately, for many of these diseases it is not clear how changes in gene expression affect pathology. Transcriptome analysis of neurodegenerative diseases using ribonucleic acid sequencing (RNA Seq) and real time quantitative polymerase chain reaction (RT-qPCR) provides for a platform to allow investigators to determine the contribution of various genes to the disease phenotype. In Alzheimer's disease (AD) there are several candidate genes reported that may be associated with the underlying pathology and are, in addition, alternatively spliced. Thus, AD is an ideal disease to examine how alternative splicing may affect pathology. In this context, genes of particular interest to AD pathology include the amyloid precursor protein (APP), TAU, and apolipoprotein E (APOE). Here, we review the evidence of alternative splicing of these genes in normal and AD patients, and recent therapeutic approaches to control splicing.
Collapse
Affiliation(s)
- Julia E Love
- Department of Biological Sciences, Science Building, Boise State University, USA
| | - Eric J Hayden
- Department of Biological Sciences, Science Building, Boise State University, USA
| | - Troy T Rohn
- Department of Biological Sciences, Science Building, Boise State University, USA
| |
Collapse
|
15
|
Katayama S, Skoog T, Jouhilahti EM, Siitonen HA, Nuutila K, Tervaniemi MH, Vuola J, Johnsson A, Lönnerberg P, Linnarsson S, Elomaa O, Kankuri E, Kere J. Gene expression analysis of skin grafts and cultured keratinocytes using synthetic RNA normalization reveals insights into differentiation and growth control. BMC Genomics 2015; 16:476. [PMID: 26108968 PMCID: PMC4480911 DOI: 10.1186/s12864-015-1671-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022] Open
Abstract
Background Keratinocytes (KCs) are the most frequent cells in the epidermis, and they are often isolated and cultured in vitro to study the molecular biology of the skin. Cultured primary cells and various immortalized cells have been frequently used as skin models but their comparability to intact skin has been questioned. Moreover, when analyzing KC transcriptomes, fluctuation of polyA+ RNA content during the KCs’ lifecycle has been omitted. Results We performed STRT RNA sequencing on 10 ng samples of total RNA from three different sample types: i) epidermal tissue (split-thickness skin grafts), ii) cultured primary KCs, and iii) HaCaT cell line. We observed significant variation in cellular polyA+ RNA content between tissue and cell culture samples of KCs. The use of synthetic RNAs and SAMstrt in normalization enabled comparison of gene expression levels in the highly heterogenous samples and facilitated discovery of differences between the tissue samples and cultured cells. The transcriptome analysis sensitively revealed genes involved in KC differentiation in skin grafts and cell cycle regulation related genes in cultured KCs and emphasized the fluctuation of transcription factors and non-coding RNAs associated to sample types. Conclusions The epidermal keratinocytes derived from tissue and cell culture samples showed highly different polyA+ RNA contents. The use of SAMstrt and synthetic RNA based normalization allowed the comparison between tissue and cell culture samples and thus proved to be valuable tools for RNA-seq analysis with translational approach. Transciptomics revealed clear difference both between tissue and cell culture samples and between primary KCs and immortalized HaCaT cells. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1671-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institute and Center for Innovative Medicine, Huddinge, Sweden.
| | - Tiina Skoog
- Department of Biosciences and Nutrition, Karolinska Institute and Center for Innovative Medicine, Huddinge, Sweden.
| | - Eeva-Mari Jouhilahti
- Department of Biosciences and Nutrition, Karolinska Institute and Center for Innovative Medicine, Huddinge, Sweden.
| | - H Annika Siitonen
- Folkhälsan Institute of Genetics, Helsinki, Finland. .,Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Kristo Nuutila
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Mari H Tervaniemi
- Folkhälsan Institute of Genetics, Helsinki, Finland. .,Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Jyrki Vuola
- Helsinki Burn Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
| | - Anna Johnsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Peter Lönnerberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Outi Elomaa
- Folkhälsan Institute of Genetics, Helsinki, Finland. .,Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institute and Center for Innovative Medicine, Huddinge, Sweden. .,Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland. .,Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
16
|
Bae JH, Kim JG, Heo K, Yang K, Kim TO, Yi JM. Identification of radiation-induced aberrant hypomethylation in colon cancer. BMC Genomics 2015; 16:56. [PMID: 25887185 PMCID: PMC4342812 DOI: 10.1186/s12864-015-1229-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
Background Exposure to ionizing radiation (IR) results in the simultaneous activation or downregulation of multiple signaling pathways that play critical roles in cell type-specific control of survival or death. IR is a well-known genotoxic agent and human carcinogen that induces cellular damage through direct and indirect mechanisms. However, its impact on epigenetic mechanisms has not been elucidated, and more specifically, little information is available regarding genome-wide DNA methylation changes in cancer cells after IR exposure. Recently, genome-wide DNA methylation profiling technology using the Illumina HumanMethylation450K platform has emerged that allows us to query >450,000 loci within the genome. This improved technology is capable of identifying genome-wide DNA methylation changes in CpG islands and other CpG island-associated regions. Results In this study, we employed this technology to test the hypothesis that exposure to IR not only induces differential DNA methylation patterns at a genome-wide level, but also results in locus- and gene-specific DNA methylation changes. We screened for differential DNA methylation changes in colorectal cancer cells after IR exposure with 2 and 5 Gy. Twenty-nine genes showed radiation-induced hypomethylation in colon cancer cells, and of those, seven genes showed a corresponding increase in gene expression by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, we performed chromatin immunoprecipitation (ChIP) to confirm that the DNA-methyltransferase 1 (DNMT1) level associated with the promoter regions of these genes correlated with their methylation level and gene expression changes. Finally, we used a gene ontology (GO) database to show that a handful of hypomethylated genes induced by IR are associated with a variety of biological pathways related to cancer. Conclusion We identified alterations in global DNA methylation patterns and hypomethylation at specific cancer-related genes following IR exposure, which suggests that radiation exposure plays a critical role in conferring epigenetic alterations in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Han Bae
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Joong-Gook Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea. .,Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, 139-709, Korea.
| | - Tae-Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik hospital, Busan, 612-896, South Korea.
| | - Joo Mi Yi
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| |
Collapse
|
17
|
Penna I, Vassallo I, Nizzari M, Russo D, Costa D, Menichini P, Poggi A, Russo C, Dieci G, Florio T, Cancedda R, Pagano A. A novel snRNA-like transcript affects amyloidogenesis and cell cycle progression through perturbation of Fe65L1 (APBB2) alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:1511-1526. [PMID: 23485396 DOI: 10.1016/j.bbamcr.2013.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/17/2013] [Accepted: 02/18/2013] [Indexed: 11/24/2022]
Abstract
FE65 proteins constitute a family of adaptors which modulates the processing of amyloid precursor protein and the consequent amyloid β production. Thus, they have been involved in the complex and partially unknown cascade of reactions at the base of Alzheimer's disease etiology. However, FE65 and FE65-like proteins may be linked to neurodegeneration through the regulation of cell cycle in post-mitotic neurons. In this work we disclose novel molecular mechanisms by which APBB2 can modulate APP processing. We show that APBB2 mRNA splicing, driven by the over-expression of a novel non-coding RNA named 45A, allow the generation of alternative protein forms endowed with differential effects on Aβ production, cell cycle control, and DNA damage response. 45A overexpression also favors cell transformation and tumorigenesis leading to a marked increase of malignancy of neuroblastoma cells. Therefore, our results highlight a novel regulatory pathway of considerable interest linking APP processing with cell cycle regulation and DNA-surveillance systems, that may represent a molecular mechanism to induce neurodegeneration in post-mitotic neurons.
Collapse
Affiliation(s)
- Ilaria Penna
- Dept. of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Minopoli G, Gargiulo A, Parisi S, Russo T. Fe65 matters: new light on an old molecule. IUBMB Life 2012; 64:936-42. [PMID: 23129269 DOI: 10.1002/iub.1094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/10/2023]
Abstract
The discovery that the main constituents of amyloid deposits, characteristic of Alzheimer neuropathology, derive from the proteolytic processing of the membrane precursor amyloid precursor protein (APP) is one of the milestones of the research history of this disease. Despite years of intense studies, the functions of APP and of its amyloidogenic processing are still under debate. One focus of these studies was the complex network of protein-protein interactions centered at the cytosolic domain of APP, which suggests the involvement of APP in a lively signaling pathway. Fe65 was the first protein to be demonstrated to interact with the APP cytodomain. Starting from this observation, a large body of data has been gathered, indicating that Fe65 is an adaptor protein, which binds numerous proteins, further than APP. Among these proteins, the crosstalk with Mena, mDab, and Abl suggested the involvement of the Fe65-APP complex in the regulation of cell motility, with a relevant role in differentiation and development. Other partners, like the histone acetyltransferase Tip60, indicated the possibility that the nuclear fraction of Fe65 could be involved in gene regulation and/or DNA repair.
Collapse
Affiliation(s)
- Giuseppina Minopoli
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | | | | | | |
Collapse
|
19
|
Abstract
FE65 is reported to act as an adaptor protein with several protein-interaction domains, including one WW domain and two phosphotyrosine interaction/binding domains. Through these binding domains, FE65 was considered to recruit various binding partners together to form functional complexes in a certain cellular compartment. In this study, we demonstrated that Rac1, a member of the Rho family GTPases, bound with FE65. We also elucidated that Rac1 inhibitor significantly suppressed FE65 expression, and Rac1 small interfering RNA transduction significantly decreased FE65 expression. FE65 small interfering RNA, however, did not influence Rac1 expression and its activity. Taken together, our results reveal that Rac1 interacts with FE65, and Rac1 activity regulates FE65 expression.
Collapse
|
20
|
Antiproliferative small-molecule inhibitors of transcription factor LSF reveal oncogene addiction to LSF in hepatocellular carcinoma. Proc Natl Acad Sci U S A 2012; 109:4503-8. [PMID: 22396589 DOI: 10.1073/pnas.1121601109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Despite the prevalence of HCC, there is no effective, systemic treatment. The transcription factor LSF is a promising protein target for chemotherapy; it is highly expressed in HCC patient samples and cell lines, and promotes oncogenesis in rodent xenograft models of HCC. Here, we identify small molecules that effectively inhibit LSF cellular activity. The lead compound, factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity both in vitro, as determined by electrophoretic mobility shift assays, and in cells, as determined by ChIP. Consistent with such inhibition, FQI1 eliminates transcriptional stimulation of LSF-dependent reporter constructs. FQI1 also exhibits antiproliferative activity in multiple cell lines. In LSF-overexpressing cells, including HCC cells, cell death is rapidly induced; however, primary or immortalized hepatocytes are unaffected by treatment with FQI1. The highly concordant structure-activity relationship of a panel of 23 quinolinones strongly suggests that the growth inhibitory activity is due to a single biological target or family. Coupled with the striking agreement between the concentrations required for antiproliferative activity (GI(50)s) and for inhibition of LSF transactivation (IC(50)s), we conclude that LSF is the specific biological target of FQIs. Based on these in vitro results, we tested the efficacy of FQI1 in inhibiting HCC tumor growth in a mouse xenograft model. As a single agent, tumor growth was dramatically inhibited with no observable general tissue cytotoxicity. These findings support the further development of LSF inhibitors for cancer chemotherapy.
Collapse
|
21
|
Domingues SC, Henriques AG, Fardilha M, da Cruz E Silva EF, da Cruz E Silva OAB. Identification and characterization of a neuronal enriched novel transcript encoding the previously described p60Fe65 isoform. J Neurochem 2011; 119:1086-98. [PMID: 21824145 DOI: 10.1111/j.1471-4159.2011.07420.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fe65 is a multimodular adaptor protein that interacts with the cytosolic domain of the β-amyloid precursor protein (APP), the major component of Alzheimer's disease (AD) senile plaques. In the work here presented, we describe the existence of a new Fe65 transcript variant (GenBank Accession EF103274). A unique 5' sequence of 69 nucleotides, spanning a region between exons 2 and 3 of the FE65 gene, was present in a yeast two-hybrid (YTH) clone from a human brain cDNA library. In silico analysis and RT-PCR revealed the presence of a novel exon of 133 bp, and we redefined the structure of the human FE65 gene. The novel exon 3a-inclusive transcript generates a shorter isoform, p60Fe65. The migration pattern of the p60Fe65 isoform was observed previously and attributed to an alternative translation initiation site within the p97Fe65 transcript. Here, we provide evidence for the origin of the previously unexplained p60Fe65 isoform. Moreover, Fe65E3a is expressed preferentially in the brain and the p60Fe65 protein levels increased during PC12 cell differentiation. This novel Fe65 isoform and the regulation of the splicing events leading to its production, may contribute to elucidating neuronal specific roles of Fe65 and its contribution to AD pathology.
Collapse
|
22
|
Forni PE, Fornaro M, Guénette S, Wray S. A role for FE65 in controlling GnRH-1 neurogenesis. J Neurosci 2011; 31:480-91. [PMID: 21228158 PMCID: PMC3586531 DOI: 10.1523/jneurosci.4698-10.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/25/2010] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin-releasing hormone-1 (GnRH-1) neurons migrate from the nasal placode to the forebrain where they control gonadal function via the hypothalamic-pituitary-gonadal axis. The birth of GnRH-1-expressing neurons is one of the first neurogenic events in the developing nasal placode. By gene expression screening on single GnRH-1 neurons, amyloid precursor binding protein-1 (FE65) was identified in migratory GnRH-1 neurons. FE65 has been shown to modulate β1-integrin dynamics, actin cytoskeleton, cell motility, and FE65/amyloid precursor protein signaling has been described in neuro/glial cell fate determination as well as in modulating neurogenesis. Analysis of two mouse lines, one deficient for the 97 kDa FE65 isoform and a second deficient for the 97 and 60 kDa forms of FE65, showed overlapping phenotypes. In both lines, no migratory defects of the GnRH-1 neurons were observed, but a 25% increase in GnRH-1 neuronal number during embryonic development was found. Bromodeoxyuridine birth tracing and spatiotemporal tracking of GnRH-1 cell precursors demonstrated that the lack of the N-terminal portion of FE65, which includes part of the functional nuclear translocation/gene transcription domain of FE65 (WW domain), extends the timing of GnRH-1 neurogenesis in the developing nasal placode without affecting proliferation of GnRH-1 neuronal progenitors or cell death. The observed changes in the dynamics of GnRH-1 neurogenesis highlight a unique role for the 97 kDa isoform of FE65 and suggest that GnRH-1 cells, which have a short neurogenic window, originate from multipotent progenitors able to generate distinct cell types as GnRH-1 neurogenesis declines in response to environmental changes.
Collapse
Affiliation(s)
- Paolo E. Forni
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Michele Fornaro
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Department of Clinical and Biological Sciences, University of Turin, 10129 Turin, Italy, and
| | - Suzanne Guénette
- Genetics and Aging Research Unit, Massachusetts General Institute for Neurodegenerative Disease, Charlestown, Massachusetts 02129
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
Joo Y, Ha S, Hong BH, Kim J, Chang KA, Liew H, Kim S, Sun W, Kim JH, Chong YH, Suh YH, Kim HS. Amyloid precursor protein binding protein-1 modulates cell cycle progression in fetal neural stem cells. PLoS One 2010; 5:e14203. [PMID: 21151996 PMCID: PMC2996309 DOI: 10.1371/journal.pone.0014203] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022] Open
Abstract
Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of the amyloid precursor protein (APP) and serves as the bipartite activation enzyme for the ubiquitin-like protein, NEDD8. In the present study, we explored the physiological role of APP-BP1 in the cell cycle progression of fetal neural stem cells. Our results show that cell cycle progression of the cells is arrested at the G1 phase by depletion of APP-BP1, which results in a marked decrease in the proliferation of the cells. This action of APP-BP1 is antagonistically regulated by the interaction with APP. Consistent with the evidence that APP-BP1 function is critical for cell cycle progression, the amount of APP-BP1 varies depending upon cell cycle phase, with culminating expression at S-phase. Furthermore, our FRET experiment revealed that phosphorylation of APP at threonine 668, known to occur during the G2/M phase, is required for the interaction between APP and APP-BP1. We also found a moderate ubiquitous level of APP-BP1 mRNA in developing embryonic and early postnatal brains; however, APP-BP1 expression is reduced by P12, and only low levels of APP-BP1 were found in the adult brain. In the cerebral cortex of E16 rats, substantial expression of both APP-BP1 and APP mRNAs was observed in the ventricular zone. Collectively, these results indicate that APP-BP1 plays an important role in the cell cycle progression of fetal neural stem cells, through the interaction with APP, which is fostered by phosphorylation of threonine 668.
Collapse
Affiliation(s)
- Yuyoung Joo
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sungji Ha
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bo-Hyun Hong
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong a Kim
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyunjeong Liew
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seonghan Kim
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woong Sun
- Department of Anatomy, School of Medicine, Korea University, Seoul, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Young Hae Chong
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoo-Hun Suh
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Bundang Hospital, Seoul National University College of Medicine, Sungnam, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Xu H, Yan Y, Williams MS, Carey GB, Yang J, Li H, Zhang GX, Rostami A. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle. PLoS One 2010; 5:e13780. [PMID: 21072172 PMCID: PMC2967469 DOI: 10.1371/journal.pone.0013780] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/06/2010] [Indexed: 11/20/2022] Open
Abstract
MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells
Collapse
Affiliation(s)
- Hui Xu
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang HJ, Joo Y, Hong BH, Ha SJ, Woo RS, Lee SH, Suh YH, Kim HS. Amyloid Precursor Protein Binding Protein-1 Is Up-regulated in Brains of Tg2576 Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:229-33. [PMID: 20827337 DOI: 10.4196/kjpp.2010.14.4.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 07/27/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP. These results suggest that APP-BP1 overexpression contributes to neurodegeneration. In the present study, we explored whether APP-BP1 expression was altered in the brains of Tg2576 mice, which is an animal model of Alzheimer's disease. APP-BP1 was found to be up-regulated in the hippocampus and cortex of 12 month-old Tg2576 mice compared to age-matched wild-type mice. In addition, APP-BP1 knockdown by siRNA treatment reduced cullin-1 neddylation in fetal neural stem cells, suggesting that APP-BP1 plays a role in cell cycle progression in the cells. Collectively, these results suggest that increased expression of APP-BP1, which has a role in cell cycle progression in neuronal cells, contributes to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hyun Jung Yang
- Department of Food and Nutrition, Kookmin University College of Natural Sciences, Seoul 136-702, Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Saxena UH, Owens L, Graham JR, Cooper GM, Hansen U. Prolyl isomerase Pin1 regulates transcription factor LSF (TFCP2) by facilitating dephosphorylation at two serine-proline motifs. J Biol Chem 2010; 285:31139-47. [PMID: 20682773 DOI: 10.1074/jbc.m109.078808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transcription factor LSF is essential for cell cycle progression, being required for activating expression of the thymidylate synthase (Tyms) gene at the G1/S transition. We previously established that phosphorylation of LSF in early G1 at Ser-291 and Ser-309 inhibits its transcriptional activity and that dephosphorylation later in G1 is required for its reactivation. Here we reveal the role of prolyl cis-trans isomerase Pin1 in activating LSF, by facilitating dephosphorylation at both Ser-291 and Ser-309. We demonstrate that Pin1 binds LSF both in vitro and in vivo. Using coimmunoprecipitation assays, we identify three SP/TP motifs in LSF (at residues Ser-291, Ser-309, and Thr-329) that are required and sufficient for association with Pin1. Co-expression of Pin1 enhances LSF transactivation potential in reporter assays. The Pin1-dependent enhancement of LSF activity requires residue Thr-329 in LSF, requires both the WW and PPiase domains of Pin1, and correlates with hypophosphorylation of LSF at Ser-291 and Ser-309. These findings support a model in which the binding of Pin1 at the Thr-329-Pro-330 motif in LSF permits isomerization by Pin1 of the peptide bonds at the nearby phosphorylated SP motifs (Ser-291 and Ser-309) to the trans configuration, thereby facilitating their dephosphorylation.
Collapse
Affiliation(s)
- Utsav H Saxena
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
27
|
Kang HC, Chae JH, Jeon J, Kim W, Ha DH, Shin JH, Kim CG, Kim CG. PIAS1 regulates CP2c localization and active promoter complex formation in erythroid cell-specific alpha-globin expression. Nucleic Acids Res 2010; 38:5456-71. [PMID: 20421208 PMCID: PMC2938217 DOI: 10.1093/nar/gkq286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Data presented here extends our previous observations on α-globin transcriptional regulation by the CP2 and PIAS1 proteins. Using RNAi knockdown, we have now shown that CP2b, CP2c and PIAS1 are each necessary for synergistic activation of endogenous α-globin gene expression in differentiating MEL cells. In this system, truncated PIAS1 mutants lacking the ring finger domain recruited CP2c to the nucleus, as did wild-type PIAS1, demonstrating that this is a sumoylation-independent process. In vitro, recombinant CP2c, CP2b and PIAS1 bound DNA as a stable CBP (CP2c/CP2b/PIAS1) complex. Following PIAS1 knockdown in MEL cells, however, the association of endogenous CP2c and CP2b with the α-globin promoter simultaneously decreased. By mapping the CP2b- and CP2c-binding domains on PIAS1, and the PIAS1-binding domains on CP2b and CP2c, we found that two regions of PIAS1 that interact with CP2c/CP2b are required for its co-activator function. We propose that CP2c, CP2b, and PIAS1 form a hexametric complex with two units each of CP2c, CP2b, and PIAS1, in which PIAS1 serves as a clamp between two CP2 proteins, while CP2c binds directly to the target DNA and CP2b mediates strong transactivation.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Traylor-Knowles N, Hansen U, Dubuc TQ, Martindale MQ, Kaufman L, Finnerty JR. The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages. BMC Evol Biol 2010; 10:101. [PMID: 20398424 PMCID: PMC2873413 DOI: 10.1186/1471-2148-10-101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 04/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of the p53 core domain. In triploblastic animals, the LSF and GRH subfamilies have diverged extensively with respect to their biological roles, general expression patterns, and mechanism of DNA binding. For example, Grainyhead (GRH) homologs are expressed primarily in the epidermis, and they appear to play an ancient role in maintaining the epidermal barrier. By contrast, LSF homologs are more widely expressed, and they regulate general cellular functions such as cell cycle progression and survival in addition to cell-lineage specific gene expression. Results To illuminate the early evolution of this family and reconstruct the functional divergence of LSF and GRH, we compared homologs from 18 phylogenetically diverse taxa, including four basal animals (Nematostella vectensis, Vallicula multiformis, Trichoplax adhaerens, and Amphimedon queenslandica), a choanoflagellate (Monosiga brevicollis) and several fungi. Phylogenetic and bioinformatic analyses of these sequences indicate that (1) the LSF/GRH gene family originated prior to the animal-fungal divergence, and (2) the functional diversification of the LSF and GRH subfamilies occurred prior to the divergence between sponges and eumetazoans. Aspects of the domain architecture of LSF/GRH proteins are well conserved between fungi, choanoflagellates, and metazoans, though within the Metazoa, the LSF and GRH families are clearly distinct. We failed to identify a convincing LSF/GRH homolog in the sequenced genomes of the algae Volvox carteri and Chlamydomonas reinhardtii or the amoebozoan Dictyostelium purpureum. Interestingly, the ancestral GRH locus has become split into two separate loci in the sea anemone Nematostella, with one locus encoding a DNA binding domain and the other locus encoding the dimerization domain. Conclusions In metazoans, LSF and GRH proteins play a number of roles that are essential to achieving and maintaining multicellularity. It is now clear that this protein family already existed in the unicellular ancestor of animals, choanoflagellates, and fungi. However, the diversification of distinct LSF and GRH subfamilies appears to be a metazoan invention. Given the conserved role of GRH in maintaining epithelial integrity in vertebrates, insects, and nematodes, it is noteworthy that the evolutionary origin of Grh appears roughly coincident with the evolutionary origin of the epithelium.
Collapse
|
29
|
Frigerio CS, Fadeeva JV, Minogue AM, Citron M, Leuven FV, Stufenbiel M, Paganetti P, Selkoe DJ, Walsh DM. beta-Secretase cleavage is not required for generation of the intracellular C-terminal domain of the amyloid precursor family of proteins. FEBS J 2010; 277:1503-18. [PMID: 20163459 PMCID: PMC2847843 DOI: 10.1111/j.1742-4658.2010.07579.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amyloid precursor family of proteins are of considerable interest, both because of their role in Alzheimer's disease pathogenesis and because of their normal physiological functions. In mammals, the amyloid precursor protein (APP) has two homologs, amyloid precursor-like protein (APLP) 1 and APLP2. All three proteins undergo ectodomain shedding and regulated intramembrane proteolysis, and important functions have been attributed to the full-length proteins, shed ectodomains, C-terminal fragments and intracellular domains (ICDs). One of the proteases that is known to cleave APP and that is essential for generation of the amyloid beta-protein is the beta-site APP-cleaving enzyme 1 (BACE1). Here, we investigated the effects of genetic manipulation of BACE1 on the processing of the APP family of proteins. BACE1 expression regulated the levels and species of full-length APLP1, APP and APLP2, of their shed ectodomains, and of their membrane-bound C-terminal fragments. In particular, APP processing appears to be tightly regulated, with changes in beta-cleaved APPs (APPsbeta) being compensated for by changes in alpha-cleaved APPs (APPsalpha). In contrast, the total levels of soluble cleaved APLP1 and APLP2 species were less tightly regulated, and fluctuated with BACE1 expression. Importantly, the production of ICDs for all three proteins was not decreased by loss of BACE1 activity. These results indicate that BACE1 is involved in regulating ectodomain shedding, maturation and trafficking of the APP family of proteins. Consequently, whereas inhibition of BACE1 is unlikely to adversely affect potential ICD-mediated signaling, it may alter other important facets of amyloid precursor-like protein/APP biology.
Collapse
Affiliation(s)
- Carlo Sala Frigerio
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Julia V. Fadeeva
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115
| | - Aedín M. Minogue
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Martin Citron
- Amgen Inc., Thousand Oaks, CA 91320-1799, Current affiliation: Eli Lilly and Company, Indianapolis, IN 46285
| | - Fred Van Leuven
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthias Stufenbiel
- Nervous System Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Paolo Paganetti
- Nervous System Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dennis J. Selkoe
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
30
|
Abstract
Cell cycle progression in mammalian cells from G(1) into S phase requires sensing and integration of multiple inputs, in order to determine whether to continue to cellular DNA replication and subsequently, to cell division. Passage to S requires transition through the restriction point, which at a molecular level consists of a bistable switch involving E2Fs and pRb family members. At the G(1)/S boundary, a number of genes essential for DNA replication and cell cycle progression are upregulated, promoting entry into S phase. Although the activating E2Fs are the most extensively characterized transcription factors driving G(1)/S expression, LSF is also a transcription factor essential for stimulating G(1)/S gene expression. A critical LSF target gene at this stage, Tyms, encodes thymidylate synthetase. In investigating how LSF is activated in a cell cycle-dependent manner, we recently identified a novel time delay mechanism for regulating its activity during G(1) progression, which is apparently independent of the E2F/pRb axis. This involves inhibition of LSF in early G(1) by two major proliferative signaling pathways: ERK and cyclin C/CDK, followed by gradual dephosphorylation during mid- to late-G(1). Whether LSF and E2F act independently or in concert to promote G(1)/S progression remains to be determined.
Collapse
Affiliation(s)
- Ulla Hansen
- Department of Biology and Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
31
|
Hughes AL, Friedman R. A phylogenetic approach to gene expression data: evidence for the evolutionary origin of mammalian leukocyte phenotypes. Evol Dev 2009; 11:382-90. [PMID: 19601972 PMCID: PMC2810715 DOI: 10.1111/j.1525-142x.2009.00345.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The evolution of multicellular organisms involved the evolution of specialized cell types performing distinct functions; and specialized cell types presumably arose from more generalized ancestral cell types as a result of mutational event, such as gene duplication and changes in gene expression. We used characters based on gene expression data to reconstruct evolutionary relationships among 11 types of lymphocytes by the maximum parsimony method. The resulting phylogenetic tree showed expected patterns including separation of the lymphoid and myeloid lineages; clustering together of granulocyte types; and pairing of phenotypically similar cell types such as T-helper cells type 1 and T-helper cells type 2 (Th1 and Th2). We used phylogenetic analyses of sequence data to determine the time of origin of genes showing significant expression difference between Th1 and Th2 cells. Many such genes, particularly those involved in the regulation of gene expression or activation of proteins, were of ancient origin, having arisen by gene duplication before the most recent common ancestor (MRCA) of tetrapods and teleosts. However, certain other genes with significant expression difference between Th1 and Th2 arose after the tetrapod-teleost MRCA, and some of the latter were specific to eutherian (placental) mammals. This evolutionary pattern is consistent with previous evidence that, while bony fishes possess Th1 and Th2 cells, the latter differ phenotypically in important respects from the corresponding cells of mammals. Our results support a gradualistic model of the evolution of distinctive cellular phenotypes whereby the unique characteristics of a given cell type arise as a result of numerous independent mutational changes over hundreds of millions of years.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
32
|
Kajiwara Y, Akram A, Katsel P, Haroutunian V, Schmeidler J, Beecham G, Haines JL, Pericak-Vance MA, Buxbaum JD. FE65 binds Teashirt, inhibiting expression of the primate-specific caspase-4. PLoS One 2009; 4:e5071. [PMID: 19343227 PMCID: PMC2660419 DOI: 10.1371/journal.pone.0005071] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 02/27/2009] [Indexed: 12/26/2022] Open
Abstract
The Alzheimer disease (AD) amyloid protein precursor (APP) can bind the FE65 adaptor protein and this complex can regulate gene expression. We carried out yeast two-hybrid studies with a PTB domain of FE65, focusing on those genes that might be involved in nuclear signaling, and identified and validated Teashirt proteins as FE65 interacting proteins in neurons. Using reporter systems, we observed that FE65 could simultaneously recruit SET, a component of the inhibitor of acetyl transferase, and Teashirt, which in turn recruited histone deacetylases, to produce a powerful gene-silencing complex. We screened stable cell lines with a macroarray focusing on AD-related genes and identified CASP4, encoding caspase-4, as a target of this silencing complex. Chromatin immunoprecipitation showed a direct interaction of FE65 and Teashirt3 with the promoter region of CASP4. Expression studies in postmortem samples demonstrated decreasing expression of Teashirt and increasing expression of caspase-4 with progressive cognitive decline. Importantly, there were significant increases in caspase-4 expression associated with even the earliest neuritic plaque changes in AD. We evaluated a case-control cohort and observed evidence for a genetic association between the Teashirt genes TSHZ1 and TSHZ3 and AD, with the TSHZ3 SNP genotype correlating with expression of Teashirt3. The results were consistent with a model in which reduced expression of Teashirt3, mediated by genetic or other causes, increases caspase-4 expression, leading to progression of AD. Thus the cell biological, gene expression and genetic data support a role for Teashirt/caspase-4 in AD biology. As caspase-4 shows evidence of being a primate-specific gene, current models of AD and other neurodegenerative conditions may be incomplete because of the absence of this gene in the murine genome.
Collapse
Affiliation(s)
- Yuji Kajiwara
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Afia Akram
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Pavel Katsel
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - James Schmeidler
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Gary Beecham
- Miami Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Jonathan L. Haines
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Margaret A. Pericak-Vance
- Miami Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Joseph D. Buxbaum
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
33
|
Phosphorylation by cyclin C/cyclin-dependent kinase 2 following mitogenic stimulation of murine fibroblasts inhibits transcriptional activity of LSF during G1 progression. Mol Cell Biol 2009; 29:2335-45. [PMID: 19237534 DOI: 10.1128/mcb.00687-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transcription factor LSF is required for progression from quiescence through the cell cycle, regulating thymidylate synthase (Tyms) expression at the G(1)/S boundary. Given the constant level of LSF protein from G(0) through S, we investigated whether LSF is regulated by phosphorylation in G(1). In vitro, LSF is phosphorylated by cyclin E/cyclin-dependent kinase 2 (CDK2), cyclin C/CDK2, and cyclin C/CDK3, predominantly on S309. Phosphorylation of LSF on S309 is maximal 1 to 2 h after mitogenic stimulation of quiescent mouse fibroblasts. This phosphorylation is mediated by cyclin C-dependent kinases, as shown by coimmunoprecipitation of LSF and cyclin C in early G(1) and by abrogation of LSF S309 phosphorylation upon suppression of cyclin C with short interfering RNA. Although mouse fibroblasts lack functional CDK3 (the partner of cyclin C in early G(1) in human cells), CDK2 compensates for this absence. By transient transfection assays, phosphorylation at S309, mediated by cyclin C overexpression, inhibits LSF transactivation. Moreover, overexpression of cyclin C and CDK3 inhibits induction of endogenous Tyms expression at the G(1)/S transition. These results identify LSF as only the second known target (in addition to pRb) of cyclin C/CDK activity during progression from quiescence to early G(1). Unexpectedly, this phosphorylation prevents induction of LSF target genes until late G(1).
Collapse
|
34
|
Carlson ES, Magid R, Petryk A, Georgieff MK. Iron deficiency alters expression of genes implicated in Alzheimer disease pathogenesis. Brain Res 2008; 1237:75-83. [PMID: 18723004 PMCID: PMC2605272 DOI: 10.1016/j.brainres.2008.07.109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 07/20/2008] [Accepted: 07/22/2008] [Indexed: 11/28/2022]
Abstract
Neonatal brain iron deficiency occurs after insufficient maternal dietary iron intake, maternal hypertension, and maternal diabetes mellitus and results in short and long-term neurologic and behavioral deficits. Early iron deficiency affects the genomic profile of the developing hippocampus that persists despite iron repletion. The purpose of the present study was threefold: 1) quantitative PCR confirmation of our previous microarray results, demonstrating upregulation of a network of genes leading to beta-amyloid production and implicated in Alzheimer disease etiology in iron-deficient anemic rat pups at the time of hippocampal differentiation; 2) investigation of the potential contributions of iron deficiency anemia and iron treatment to this differential gene expression in the hippocampus; and 3) investigation of these genes over a developmental time course in a mouse model where iron deficiency is limited to hippocampus, is not accompanied by anemia and is not repletable. Quantitative PCR confirmed altered regulation in 6 of 7 Alzheimer-related genes (Apbb1, C1qa, Clu, App, Cst3, Fn1, Htatip) in iron-deficient rats relative to iron-sufficient controls at P15. Comparison of untreated to treated iron-deficient animals at this age suggested the strong role of iron deficiency, not treatment, in the upregulation of this gene network. The non-anemic hippocampal iron-deficient mouse demonstrated upregulation of all 7 genes in this pathway from P5 to P25. Our results suggest a role for neonatal iron deficiency in dysregulation of genes that may set the stage for long-term neurodegenerative disease and that this may occur through a histone modification mechanism.
Collapse
Affiliation(s)
- Erik S. Carlson
- Department of Pediatrics, University of Minnesota School of Medicine
- Division of Neonatology, Center for Neurobehavioral Development, University of Minnesota School of Medicine
- Medical Scientist Training Program, University of Minnesota School of Medicine
- Graduate Program in Neuroscience, University of Minnesota School of Medicine
| | - Rhamy Magid
- Department of Pediatrics, University of Minnesota School of Medicine
- Division of Neonatology, Center for Neurobehavioral Development, University of Minnesota School of Medicine
| | - Anna Petryk
- Department of Pediatrics, University of Minnesota School of Medicine
- Genetics, Cell Biology, and Development, University of Minnesota School of Medicine
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota School of Medicine
- Division of Neonatology, Center for Neurobehavioral Development, University of Minnesota School of Medicine
| |
Collapse
|
35
|
Zhang N, Yin Y, Xu SJ, Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 2008; 13:1551-69. [PMID: 18794772 PMCID: PMC6244944 DOI: 10.3390/molecules13081551] [Citation(s) in RCA: 505] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/01/2008] [Accepted: 07/15/2008] [Indexed: 11/24/2022] Open
Abstract
The purpose of this work is to review the published studies on the mechanisms of action and resistance of 5-fluorouracil. The review is divided into three main sections: mechanisms of anti-tumor action, studies of the resistance to the drug, and procedures for the identification of new genes involved in resistance with microarray techniques. The details of the induction and reversal of the drug resistance are also described.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, P.R. China; E-mail:
| | - Ying Yin
- Institute of Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou, 310016, P.R. China; E-mails: ;
| | - Sheng-Jie Xu
- Institute of Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou, 310016, P.R. China; E-mails: ;
| | - Wei-Shan Chen
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, P.R. China; E-mail:
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
36
|
Müller T, Meyer HE, Egensperger R, Marcus K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog Neurobiol 2008; 85:393-406. [PMID: 18603345 DOI: 10.1016/j.pneurobio.2008.05.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/31/2008] [Accepted: 05/15/2008] [Indexed: 11/30/2022]
Abstract
Since the discovery of the amyloid precursor protein (APP) in 1987, extensive research has been conducted analyzing the APP-derived beta-amyloid (Abeta) which is found in massive quantities in senile plaques of Alzheimer disease (AD) patients. Numerous studies over the last two decades have demonstrated the neurotoxic properties of Abeta. However, it is still unclear whether Abeta neurotoxicity is an initial cause or rather a late event in the pathophysiology of AD. The understanding of preclinical AD-related pathophysiological mechanisms is of significant interest in the identification of potential pharmacological targets. In this context another APP-derived cleavage product, the amyloid precursor protein intracellular domain (AICD), has sparked considerable research interest over the last 7 years. Different AICD levels as a result of gamma-secretase activity may contribute to early pathophysiological mechanisms in AD. However, the relevance of AICD is being discussed highly controversially amongst AD researchers. This review summarizes recent findings in terms of the origin of AICD by regulated intramembrane proteolysis; its structure, binding factors, and post-translational modifications; and its putative role in gene transcription, apoptosis, and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Thorsten Müller
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.
| | | | | | | |
Collapse
|
37
|
Calò S, Tondi D, Ferrari S, Venturelli A, Ghelli S, Costi MP. Constrained Dansyl Derivatives Reveal Bacterial Specificity of Highly Conserved Thymidylate Synthases. Chembiochem 2008; 9:779-90. [DOI: 10.1002/cbic.200700524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Abstract
The FE65s (FE65, FE65L1, and FE65L2) are a family of multidomain adaptor proteins that form multiprotein complexes with a range of functions. FE65 is brain-enriched, whereas FE65L1 and FE65L2 are more widely expressed. All three members contain a WW domain and two PTB domains. Through the PTB2 domain, they all interact with the Alzheimer's disease amyloid precursor protein (APP) intracellular domain (AICD) and can alter APP processing. After sequential proteolytic processing of membrane-bound APP and release of AICD to the cytoplasm, FE65 can translocate to the nucleus to participate in gene transcription events. This role is further mediated by interactions of FE65 PTB1 with the transcription factors CP2/LSF/LBP1 and Tip60 and the WW domain with the nucleosome assembly factor SET. However, FE65 target genes have not yet been confirmed. The FE65 PTB1 domain also interacts with two cell surface lipoproteins receptors, the low-density lipoprotein receptor-related protein (LRP) and ApoEr2, forming trimeric complexes with APP. The FE55 WW domain also binds to mena, through which it functions in regulation of the actin cytoskeleton, cell motility, and neuronal growth cone formation. While single knockout mice appear normal, double FE65(-/-)/FE65L1(-/-) mice have substantial neurodevelopmental defects. These include heterotopic neurons and axonal pathfinding defects, findings similar to findings in both Mena and triple APP:APLP1:APLP2 knockout mice and also lissencephalopathies in humans. Thus APPs, FE65s, and mena may act together in a developmental signalling pathway. This article reviews the known functions of the FE65 family and their role in APP function and Alzheimer's disease.
Collapse
Affiliation(s)
- Declan M McLoughlin
- Section of Old Age Psychiatry, Institute of Psychiatry, King's College London, MRC Centre for Neurodegeneration Research, London, United Kingdom.
| | | |
Collapse
|
39
|
Zhu X, Siedlak SL, Wang Y, Perry G, Castellani RJ, Cohen ML, Smith MA. Neuronal binucleation in Alzheimer disease hippocampus. Neuropathol Appl Neurobiol 2007; 34:457-65. [PMID: 17995921 DOI: 10.1111/j.1365-2990.2007.00908.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The literature and teachings instruct that neurones in the adult brain are fully differentiated, quiescent cells that never divide. Somewhat surprisingly, and counter to such dogma, susceptible neurones in Alzheimer disease display an activated cell cycle phenotype. However, whether this leads to a coordinated procession through the cell cycle is unclear, particularly whether neurones enter anaphase and beyond. To begin to address this issue, in this study we sought to determine whether nuclear division occurs in these neurones. METHODS We examined a series of 101 archived, routinely stained hippocampal sections collected at post mortem for neuropathological evaluation for evidence of neuronal binucleation. RESULTS We report for the first time, binucleated neurones within the hippocampus in cases of Alzheimer disease but not in control cases (P < 0.05). CONCLUSIONS While a relatively rare event, occurring once every 20,000 neurones, this morphological evidence that neuronal cells within the cortical regions of the adult human brain in Alzheimer disease contain two nuclei supports the hypothesis that neuronal cells can re-enter into a coordinated cell cycle that culminates in nuclear division.
Collapse
Affiliation(s)
- X Zhu
- Department of Pathology, Case Western Reserve University, Cleveland 44106, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Minopoli G, Stante M, Napolitano F, Telese F, Aloia L, De Felice M, Di Lauro R, Pacelli R, Brunetti A, Zambrano N, Russo T. Essential Roles for Fe65, Alzheimer Amyloid Precursor-binding Protein, in the Cellular Response to DNA Damage. J Biol Chem 2007; 282:831-5. [PMID: 17121854 DOI: 10.1074/jbc.c600276200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fe65 interacts with the cytosolic domain of the Alzheimer amyloid precursor protein (APP). The functions of the Fe65 are still unknown. To address this point we generated Fe65 knockout (KO) mice. These mice do not show any obvious phenotype; however, when fibroblasts (mouse embryonic fibroblasts), isolated from Fe65 KO embryos, were exposed to low doses of DNA damaging agents, such as etoposide or H2O2, an increased sensitivity to genotoxic stress, compared with wild type animals, clearly emerged. Accordingly, brain extracts from Fe65 KO mice, exposed to non-lethal doses of ionizing radiations, showed high levels of gamma-H2AX and p53, thus demonstrating a higher sensitivity to X-rays than wild type mice. Nuclear Fe65 is necessary to rescue the observed phenotype, and few minutes after the exposure of MEFs to DNA damaging agents, Fe65 undergoes phosphorylation in the nucleus. With a similar timing, the proteolytic processing of APP is rapidly affected by the genotoxic stress: in fact, the cleavage of the APP COOH-terminal fragments by gamma-secretase is induced soon after the exposure of cells to etoposide, in a Fe65-dependent manner. These results demonstrate that Fe65 plays an essential role in the response of the cells to DNA damage.
Collapse
|
41
|
Carter CJ. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 2006; 50:12-38. [PMID: 16973241 DOI: 10.1016/j.neuint.2006.07.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Polymorphic genes associated with Alzheimer's disease (see ) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. GSK3B is known to phosphorylate the microtubule protein tau (MAPT). Dysfunction of this cascade, carved out by genes implicated in Alzheimer's disease, may play a major role in its pathology. Many other genes associated with Alzheimer's disease affect cholesterol or lipoprotein function and/or have also been implicated in atherosclerosis, a feature of Alzheimer's disease, and this duality may well explain the close links between vascular and cerebral pathology in Alzheimer's disease. The definition of many of these genes as risk factors is highly contested. However, when polymorphic susceptibility genes belong to the same signaling pathway, the risk associated with multigenic disease is better related to the integrated effects of multiple polymorphisms of genes within the same pathway than to variants in any single gene [Wu, X., Gu, J., Grossman, H.B., Amos, C.I., Etzel, C., Huang, M., Zhang, Q., Millikan, R.E., Lerner, S., Dinney, C.P., Spitz, M.R., 2006. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am. J. Hum. Genet. 78, 464-479.]. Thus, the fact that Alzheimer's disease susceptibility genes converge on a clearly defined signaling network has important implications for genetic association studies.
Collapse
|
42
|
Costi MP, Gelain A, Barlocco D, Ghelli S, Soragni F, Reniero F, Rossi T, Ruberto A, Guillou C, Cavazzuti A, Casolari C, Ferrari S. Antibacterial Agent Discovery Using Thymidylate Synthase Biolibrary Screening. J Med Chem 2006; 49:5958-68. [PMID: 17004711 DOI: 10.1021/jm051187d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thymidylate synthase (TS, ThyA) catalyzes the reductive methylation of 2'-deoxyuridine 5'-monophosphate to 2'-deoxythymidine 5'-monophosphate, an essential precursor for DNA synthesis. A specific inhibition of this enzyme induces bacterial cell death. As a second round lead optimization design, new 1,2-naphthalein derivatives have been synthesized and tested against a TS-based biolibrary, including human thymidylate synthase (hTS). Docking studies have been performed to rationalize the experimentally observed affinity profiles of 1,2-naphthalein compounds toward Lactobacillus casei TS and hTS. The best TS inhibitors have been tested against a number of clinical isolates of Gram-positive-resistant bacterial strains. Compound 3,3-bis(3,5-dibromo-4-hydroxyphenyl)-1H,3H-naphtho[1,2-c]furan-1-one (5) showed significant antibacterial activity, no in vitro toxicity, and dose-response effects against Staphylococcus epidermidis (MIC=0.5-2.5 microg/mL) clinical isolate strains, which are resistant to at least 17 of the best known antibacterial agents, including vancomycin. So far this compound can be regarded as a leading antibacterial agent.
Collapse
Affiliation(s)
- M Paola Costi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena e Reggio Emilia (UNIMORE), Via Campi 183, 41100 Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guénette S, Chang Y, Hiesberger T, Richardson JA, Eckman CB, Eckman EA, Hammer RE, Herz J. Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO J 2006; 25:420-31. [PMID: 16407979 PMCID: PMC1383510 DOI: 10.1038/sj.emboj.7600926] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/28/2005] [Indexed: 01/09/2023] Open
Abstract
Targeted deletion of two members of the FE65 family of adaptor proteins, FE65 and FE65L1, results in cortical dysplasia. Heterotopias resembling those found in cobblestone lissencephalies in which neuroepithelial cells migrate into superficial layers of the developing cortex, aberrant cortical projections and loss of infrapyramidal mossy fibers arise in FE65/FE65L1 compound null animals, but not in single gene knockouts. The disruption of pial basal membranes underlying the heterotopias and poor organization of fibrillar laminin by isolated meningeal fibroblasts from double knockouts suggests that FE65 proteins are involved in basement membrane assembly. A similar phenotype is observed in triple mutant mice lacking the APP family members APP, APLP1 and APLP2, all of which interact with FE65 proteins, suggesting that this phenotype may be caused by decreased transmission of an APP-dependent signal through the FE65 proteins. The defects observed in the double knockout may also involve the family of Ena/Vasp proteins, which participate in actin cytoskeleton remodeling and interact with the WW domains of FE65 proteins.
Collapse
Affiliation(s)
- Suzanne Guénette
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129-4404, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dillen K, Annaert W. A Two Decade Contribution of Molecular Cell Biology to the Centennial of Alzheimer's Disease: Are We Progressing Toward Therapy? INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:215-300. [PMID: 17148000 DOI: 10.1016/s0074-7696(06)54005-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD), described for the first time 100 years ago, is a neurodegenerative disease characterized by two neuropathological hallmarks: neurofibrillary tangles containing hyperphosphorylated tau and senile plaques. These lesions are likely initiated by an imbalance between production and clearance of amyloid beta, leading to increased oligomerization of these peptides, formation of amyloid plaques in the brain of the patient, and final dementia. Amyloid beta is generated from amyloid precursor protein (APP) by subsequent beta- and gamma-secretase cleavage, the latter being a multiprotein complex consisting of presenilin-1 or -2, nicastrin, APH-1, and PEN-2. Alternatively, APP can be cleaved by alpha- and gamma-secretase, precluding the production of Abeta. In this review, we discuss the major breakthroughs during the past two decades of molecular cell biology and the current genetic and cell biological state of the art on APP proteolysis, including structure-function relationships and subcellular localization. Finally, potential directions for cell biological research toward the development of AD therapies are briefly discussed.
Collapse
Affiliation(s)
- Katleen Dillen
- Laboratory for Membrane Trafficking, Center for Human Genetics/VIB1104 & KULeuven, Gasthuisberg O&N1, B-3000 Leuven, Belgium
| | | |
Collapse
|
45
|
Breous E, Wenzel A, Loos U. Promoter cloning and characterisation of the transcriptional regulation of the human thyrostimulin A2 subunit. Mol Cell Endocrinol 2005; 245:169-80. [PMID: 16376481 DOI: 10.1016/j.mce.2005.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 11/23/2022]
Abstract
The novel heterodimeric glycoprotein hormone thyrostimulin consists of two unique subunits, A2 and B5. To understand its yet unknown transcriptional regulation, we characterised the 3.1-kb immediate 5'-flanking region of the human A2 gene localised on chromosome 11q13. In transient transfection assays this sequence exhibited promoter activity, which could be confined to nucleotides -506 to -347 relative to the ATG start codon. Interestingly, this minimal promoter appeared to be non-tissue-specific. Deletional, mutational and gel shift analyses revealed regulatory elements that are essential for the regulation of the A2 gene expression. Another noteworthy feature of this gene is the presence of silencer elements upstream and downstream of the promoter. To surmise, our results provide an initial step toward a detailed analysis of the underlying molecular mechanisms of the human thyrostimulin gene expression.
Collapse
Affiliation(s)
- Ekaterina Breous
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strasse 8, D-89081 Ulm, Germany
| | | | | |
Collapse
|
46
|
Reinhard C, Hébert SS, De Strooper B. The amyloid-beta precursor protein: integrating structure with biological function. EMBO J 2005; 24:3996-4006. [PMID: 16252002 PMCID: PMC1356301 DOI: 10.1038/sj.emboj.7600860] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 10/10/2005] [Indexed: 12/28/2022] Open
Abstract
Proteolytic processing of the amyloid-beta precursor protein (APP) generates the Abeta amyloid peptide of Alzheimer's disease. The biological function of APP itself remains, however, unclear. In the current review, we study in detail the different subdomains of APP and try to assign functional significance to particular structures identified in the protein.
Collapse
Affiliation(s)
- Constanze Reinhard
- Laboratory for Neuronal Cell Biology and Gene Transfer, Department of Human Genetics, Center for Human Genetics, KU Leuven and VIB, Leuven, Belgium
| | - Sébastien S Hébert
- Laboratory for Neuronal Cell Biology and Gene Transfer, Department of Human Genetics, Center for Human Genetics, KU Leuven and VIB, Leuven, Belgium
| | - Bart De Strooper
- Laboratory for Neuronal Cell Biology and Gene Transfer, Department of Human Genetics, Center for Human Genetics, KU Leuven and VIB, Leuven, Belgium
- Laboratory for Neuronal Cell Biology and Gene Transfer, Department of Human Genetics, Center for Human Genetics, KU Leuven and VIB, Herestraat 49, Leuven 3000, Belgium. Tel.: +32 16 346227; Fax: +32 16 347181; E-mail:
| |
Collapse
|
47
|
Lange A, Thon L, Mathieu S, Adam D. The apoptosis inhibitory domain of FE65-like protein 1 regulates both apoptotic and caspase-independent programmed cell death mediated by tumor necrosis factor. Biochem Biophys Res Commun 2005; 335:575-83. [PMID: 16083851 DOI: 10.1016/j.bbrc.2005.07.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 07/25/2005] [Indexed: 02/09/2023]
Abstract
Tumor necrosis factor (TNF) can induce caspase-dependent (apoptotic) and caspase-independent pathways to programmed cell death (PCD). Here, we demonstrate that stable transfection of a cDNA encompassing the C-terminal apoptosis inhibitory domain (AID) of FE65-like protein 1 into mouse L929 fibrosarcoma cells protects from caspase-independent as well as from apoptotic PCD induced by TNF. We show that the AID does not protect from caspase-independent PCD elicited by 1-methyl-3-nitro-1-nitrosoguanidine, suggesting that the AID might prevent cell death by affecting assembly of the death inducing signaling complex of the 55 kDa TNF receptor or clustering of the receptor itself. Interference with caspase-independent PCD mediated by the sphingolipid ceramide further increases protection conferred by the AID, as does the antioxidant butylated hydroxyanisole, implicating ceramide and reactive oxygen species as potential factors interacting with caspase-independent PCD regulated by the AID.
Collapse
Affiliation(s)
- Arne Lange
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | | | | |
Collapse
|
48
|
Kang HC, Chae JH, Lee YH, Park MA, Shin JH, Kim SH, Ye SK, Cho YS, Fiering S, Kim CG. Erythroid cell-specific alpha-globin gene regulation by the CP2 transcription factor family. Mol Cell Biol 2005; 25:6005-20. [PMID: 15988015 PMCID: PMC1168829 DOI: 10.1128/mcb.25.14.6005-6020.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that ubiquitously expressed CP2c exerts potent erythroid-specific transactivation of alpha-globin through an unknown mechanism. This mechanism is reported here to involve specific CP2 splice variants and protein inhibitor of activated STAT1 (PIAS1). We identify a novel murine splice isoform of CP2, CP2b, which is identical to CP2a except that it has an additional 36 amino acids encoded by an extra exon. CP2b has an erythroid cell-specific transcriptional activation domain, which requires the extra exon and can form heteromeric complexes with other CP2 isoforms, but lacks the DNA binding activity found in CP2a and CP2c. Transcriptional activation of alpha-globin occurred following dimerization between CP2b and CP2c in erythroid K562 and MEL cells, but this dimerization did not activate the alpha-globin promoter in nonerythroid 293T cells, indicating that an additional erythroid factor is missing in 293T cells. PIAS1 was confirmed as a CP2 binding protein by the yeast two-hybrid screen, and expression of CP2b, CP2c, and PIAS1 in 293T cell induced alpha-globin promoter activation. These results show that ubiquitously expressed CP2b exerts potent erythroid cell-specific alpha-globin gene expression by complexing with CP2c and PIAS1.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Haengdang 17, Sungdong-gu, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Link D, Schmidlin L, Schirmer A, Klein E, Erhardt M, Geldreich A, Lemaire O, Gilmer D. Functional characterization of the Beet necrotic yellow vein virus RNA-5-encoded p26 protein: evidence for structural pathogenicity determinants. J Gen Virol 2005; 86:2115-2125. [PMID: 15958690 DOI: 10.1099/vir.0.80937-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Beet necrotic yellow vein virus isolate containing a fifth RNA is present in the Pithiviers area of France. A full-length cDNA clone of RNA-5 was obtained and placed under the control of a T7-RNA-pol promoter that allowed the production of infectious transcripts. ‘Pithiviers' isolate-specific necrotic symptoms were obtained on Chenopodium quinoa when RNA-5-encoded p26 was expressed either from RNA-5 or from an RNA-3-derived replicon. By using haemagglutinin- and green fluorescent protein-tagged constructs, virally expressed p26-fusion proteins induced the same necrotic local lesions on host plants and were localized mainly in the nucleus of infected cells. Deletion mutagenesis permitted identification of two domains, responsible respectively for nuclear export and cytoplasmic retention of the p26 mutated proteins. By using a yeast two-hybrid system, Gal4DB–p26 protein self-activated transcription of the His3 reporter gene. The p26 transcription-activation domain was located within its first 55 aa and has been studied by alanine scanning. Resulting p26 mutants were tested for their capability to induce necrotic symptoms and to localize in the nuclear compartment.
Collapse
Affiliation(s)
- Didier Link
- Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France
| | - Laure Schmidlin
- Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France
| | | | - Elodie Klein
- Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France
| | | | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France
| |
Collapse
|
50
|
Santiard-Baron D, Langui D, Delehedde M, Delatour B, Schombert B, Touchet N, Tremp G, Paul MF, Blanchard V, Sergeant N, Delacourte A, Duyckaerts C, Pradier L, Mercken L. Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in beta-amyloid load. J Neurochem 2005; 93:330-8. [PMID: 15816856 DOI: 10.1111/j.1471-4159.2005.03026.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FE65 is an adaptor protein that interacts with the cytoplasmic tail of the amyloid precursor protein (APP). In cultured non-neuronal cells, the formation of the FE65-APP complex is a key element for the modulation of APP processing, signalling and beta-amyloid (Abeta) production. The functions of FE65 in vivo, including its role in the metabolism of neuronal APP, remain to be investigated. In this study, transgenic mice expressing human FE65 were generated and crossbred with APP transgenic mice, known to develop Abeta deposits at 6 months of age. Compared with APP mice, APP/FE65 double transgenic mice exhibited a lower Abeta accumulation in the cerebral cortex as demonstrated by immunohistochemistry and immunoassay, and a lower level of APP-CTFs. The reduced accumulation of Abeta in APP/FE65 double transgenics, compared with APP mice, could be linked to the low Abeta42 level observed at 4 months of age and to the lower APP-CTFs levels. The present work provides evidence that FE65 plays a role in the regulation of APP processing in an in vivo model.
Collapse
|