1
|
Mix K, Sun T, Hall B, Newton J, Eng C, Guo Y, Reczek D. Rapid affinity-based purification of multi-specific antibodies using Kappa Select and Protein L. MAbs 2025; 17:2483272. [PMID: 40151946 PMCID: PMC11959895 DOI: 10.1080/19420862.2025.2483272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Multispecific antibodies (msAbs) are becoming more prevalent as formats of choice for therapeutic antibody development due to their ability to modulate multiple biological targets. However, msAbs present unique protein production challenges due to product-related impurities, which are difficult to remove without loss of the protein of interest. Here, we report a versatile approach to remove product-related impurities by altering the binding affinity of light chains to Kappa Select (KS) or Protein L (Pro-L) resins. Introduction of amino acid mutations in the constant light chain domain or Framework 1 of the light chain abolished binding to KS and Pro-L resins, respectively, while antigen binding affinity remained intact. These purification-enabling mutations (PEMs) did not affect the thermal stability or purity of the proteins tested. In conjunction with PEMs, we demonstrate the design and application of an entirely affinity-based purification scheme employing Protein A (Pro-A), followed by KS and Pro-L affinity resins, to remove light chain mispaired species in Y-shaped bispecific antibodies and crossover dual variable domain (CODV) tri-specific antibodies. In principle, this purification scheme could be applied to any IgG-like msAb since it is compatible with Fc knobs-into-holes mutations and Fab arm charge-pair mutations. Moreover, it should be adaptable across a range of production scales and medium to high-throughput purification workflows within early-stage research.
Collapse
Affiliation(s)
- Kalie Mix
- Sanofi US Large Molecule Research, Cambridge, MA, USA
| | - Tingwan Sun
- Sanofi US Large Molecule Research, Cambridge, MA, USA
| | - Brian Hall
- Sanofi US Large Molecule Research, Cambridge, MA, USA
| | | | - Christina Eng
- Sanofi US Large Molecule Research, Cambridge, MA, USA
| | - Yongjing Guo
- Sanofi US Large Molecule Research, Cambridge, MA, USA
| | - David Reczek
- Sanofi US Large Molecule Research, Cambridge, MA, USA
| |
Collapse
|
2
|
Brasino M, Wagnell E, Hamilton S, Ranganathan S, Gomes MM, Branchaud B, Messmer B, Ibsen SD. Turning antibodies off and on again using a covalently tethered blocking peptide. Commun Biol 2022; 5:1357. [PMID: 36496512 PMCID: PMC9741643 DOI: 10.1038/s42003-022-04094-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
In their natural form, antibodies are always in an "on-state" and are capable of binding to their targets. This leads to undesirable interactions in a wide range of therapeutic, analytical, and synthetic applications. Modulating binding kinetics of antibodies to turn them from an "off-state" to an "on-state" with temporal and spatial control can address this. Here we demonstrate a method to modulate binding activity of antibodies in a predictable and reproducible way. We designed a blocking construct that uses both covalent and non-covalent interactions with the antibody. The construct consisted of a Protein L protein attached to a flexible linker ending in a blocking-peptide designed to interact with the antibody binding site. A mutant Protein L was developed to enable photo-triggered covalent crosslinking to the antibody at a specific location. The covalent bond anchored the linker and blocking peptide to the antibody light chain keeping the blocking peptide close to the antibody binding site. This effectively put the antibody into an "off-state". We demonstrate that protease-cleavable and photocleavable moieties in the tether enable controlled antibody activation to the "on-state" for anti-FLAG and cetuximab antibodies. Protein L can bind a range of antibodies used therapeutically and in research for wide applicability.
Collapse
Affiliation(s)
- Michael Brasino
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Eli Wagnell
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Sean Hamilton
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201 USA
| | - Srivathsan Ranganathan
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Michelle M. Gomes
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Bruce Branchaud
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | | | - Stuart D. Ibsen
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201 USA
| |
Collapse
|
3
|
Oreste U, Ametrano A, Coscia MR. On Origin and Evolution of the Antibody Molecule. BIOLOGY 2021; 10:biology10020140. [PMID: 33578914 PMCID: PMC7916673 DOI: 10.3390/biology10020140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary Like many other molecules playing vital functions in animals, the antibody molecule possesses a complex structure with distinctive features. The structure of the basic unit, i.e., the immunoglobulin domain of very ancient origin is substantially simple. However, high complexity resides in the types and numbers of the domains composing the whole molecule. The emergence of the antibody molecule during evolution overturned the effectiveness of the organisms’ defense system. The particular organization of the coding genes, the mechanisms generating antibody diversity, and the plasticity of the overall protein structure, attest to an extraordinary successful evolutionary history. Here, we attempt to trace, across the evolutionary scale, the very early origins of the most significant features characterizing the structure of the antibody molecule and of the molecular mechanisms underlying its major role in recognizing an almost unlimited number of pathogens. Abstract The vertebrate immune system provides a powerful defense because of the ability to potentially recognize an unlimited number of pathogens. The antibody molecule, also termed immunoglobulin (Ig) is one of the major mediators of the immune response. It is built up from two types of Ig domains: the variable domain, which provides the capability to recognize and bind a potentially infinite range of foreign substances, and the constant domains, which exert the effector functions. In the last 20 years, advances in our understanding of the molecular mechanisms and structural features of antibody in mammals and in a variety of other organisms have uncovered the underlying principles and complexity of this fundamental molecule. One notable evolutionary topic is the origin and evolution of antibody. Many aspects have been clearly stated, but some others remain limited or obscure. By considering a wide range of prokaryotic and eukaryotic organisms through a literature survey about the topic, we have provided an integrated view of the emergence of antibodies in evolution and underlined the very ancient origins.
Collapse
Affiliation(s)
- Umberto Oreste
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
| | - Alessia Ametrano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Correspondence: ; Tel.: +39-081-6132556
| |
Collapse
|
4
|
Bong JH, Kim HR, Jung J, Park JH, Sung JS, Lee CK, Choi KH, Shin SS, Kang MJ, Kim HO, Lee DY, Pyun JC. Switching-peptides for one-step immunoassay and its application to the diagnosis of human hepatitis B. Biosens Bioelectron 2021; 178:112996. [PMID: 33524706 DOI: 10.1016/j.bios.2021.112996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 11/15/2022]
Abstract
Herein, we present switching-peptides for a one-step immunoassay, without the need for additional antibody treatment or washing steps to detect antigen-antibody interactions. Fluorescently labeled switching-peptides were dissociated from the immobilized antibody soon after the antigens were bound to the binding pockets. In this study, four different parts of the antibody (IgG) frame regions were chemically synthesized, and these peptides were bound to immobilized antibodies as switching-peptides. We presented the design principle of switching-peptides and used Pymol software, based on the changes in thermodynamic parameters, to study the interaction between antibodies and switching-peptides. The binding properties of switching-peptides were analyzed based on Förster resonance energy transfer between switching-peptides as well as between switching-peptides and antibodies (IgGs) isolated from different animals. The binding constants of the four switching-peptides to antibodies were estimated to be in the range of 1.48-3.29 μM. Finally, the feasibility of using switching-peptides for the quantitative one-step immunoassay was demonstrated by human hepatitis B surface antigen (hHBsAg) detection and statistical comparison of the assay results with those of conventional ELISA. The limit of detection for HBsAg was determined to be 56 ng/mL, and the dynamic range was estimated to be 136 ng/mL-33 μg/mL. These results demonstrate the feasibility of the one-step immunoassay for HBsAg.
Collapse
Affiliation(s)
- Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Chang Kyu Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Kyung-Hak Choi
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13494, Republic of Korea
| | - Seong-Shick Shin
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13494, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Do Young Lee
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13494, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Dong J, Miyake C, Yasuda T, Oyama H, Morita I, Tsukahara T, Takahashi M, Jeong HJ, Kitaguchi T, Kobayashi N, Ueda H. PM Q-probe: A fluorescent binding protein that converts many antibodies to a fluorescent biosensor. Biosens Bioelectron 2020; 165:112425. [DOI: 10.1016/j.bios.2020.112425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
|
6
|
Blötz C, Singh N, Dumke R, Stülke J. Characterization of an Immunoglobulin Binding Protein (IbpM) From Mycoplasma pneumoniae. Front Microbiol 2020; 11:685. [PMID: 32373096 PMCID: PMC7176901 DOI: 10.3389/fmicb.2020.00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 01/30/2023] Open
Abstract
Bacteria evolved many ways to invade, colonize and survive in the host tissue. Such complex infection strategies of other bacteria are not present in the cell-wall less Mycoplasmas. Due to their strongly reduced genomes, these bacteria have only a minimal metabolism. Mycoplasma pneumoniae is a pathogenic bacterium using its virulence repertoire very efficiently, infecting the human lung. M. pneumoniae can cause a variety of conditions including fever, inflammation, atypical pneumoniae, and even death. Due to its strongly reduced metabolism, M. pneumoniae is dependent on nutrients from the host and aims to persist as long as possible, resulting in chronic diseases. Mycoplasmas evolved strategies to subvert the host immune system which involve proteins fending off immunoglobulins (Igs). In this study, we investigated the role of MPN400 as the putative factor responsible for Ig-binding and host immune evasion. MPN400 is a cell-surface localized protein which binds strongly to human IgG, IgA, and IgM. We therefore named the protein MPN400 immunoglobulin binding protein of Mycoplasma (IbpM). A strain devoid of IbpM is slightly compromised in cytotoxicity. Taken together, our study indicates that M. pneumoniae uses a refined mechanism for immune evasion.
Collapse
Affiliation(s)
- Cedric Blötz
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Neil Singh
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Roger Dumke
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Technical University Dresden, Dresden, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Paloni M, Cavallotti C. Molecular Modeling of the Interaction of Protein L with Antibodies. ACS OMEGA 2017; 2:6464-6472. [PMID: 31457247 PMCID: PMC6645367 DOI: 10.1021/acsomega.7b01123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/27/2017] [Indexed: 06/10/2023]
Abstract
Protein L (PpL) is a bacterial protein which is used in the affinity chromatography stage of the production of monoclonal antibodies because of its ability to form high affinity complexes with the light chains of immunoglobulins. In the present work, the binding interfaces between one domain of PpL and antigen-binding fragments (Fab) have been investigated adopting molecular dynamics with the aim of determining the binding contribution of the residues located at the Fab-PpL interface. Because it is known that PpL binds antibodies through two distinct binding sites with different affinities, simulations were performed for both sites to determine interaction free energies to assess the relative binding contribution of the two sites. Mutational studies were then performed only on the dominant binding site. The binding free energy was evaluated with the molecular mechanics Poisson-Boltzmann surface area (MMPBSA) and umbrella sampling/weighted histogram analysis methods. Key residues for the formation of the dominant binding site complex were identified by means of alanine scanning performed both for the Fab and PpL domains. Residues of the light chain of the antibody that contribute most to binding were found to be located between SER7 and VAL13. Four residues from PpL are important for the stability of the complex: PHE839, LYS840, GLU849, and TYR853. Three residues of PpL that do not contribute to the interaction were mutated to histidine (HIS), which changes its protonation state as a function of pH, to find whether this could allow us to control the binding interaction energy. This can be useful in the elution stage of the affinity chromatography purification of antibodies if PpL is used as a ligand. These residues are GLN835, THR836, and ALA837. Molecular dynamics simulations with both protonated and unprotonated HIS were performed to mimic how changing pH may reflect on protein-ligand interaction energies. The MMPBSA approach was used to evaluate the variation of the affinity of the mutated systems with reference to the wild type. Our results show that these mutations could help in disrupting the complex under acidic conditions without impairing the affinity of PpL for the light chains at higher pHs.
Collapse
|
8
|
Lakhrif Z, Pugnière M, Henriquet C, di Tommaso A, Dimier-Poisson I, Billiald P, Juste MO, Aubrey N. A method to confer Protein L binding ability to any antibody fragment. MAbs 2015; 8:379-88. [PMID: 26683650 PMCID: PMC4966575 DOI: 10.1080/19420862.2015.1116657] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Recombinant antibody single-chain variable fragments (scFv) are difficult to purify homogeneously from a protein complex mixture. The most effective, specific and fastest method of purification is an affinity chromatography on Protein L (PpL) matrix. This protein is a multi-domain bacterial surface protein that is able to interact with conformational patterns on kappa light chains. It mainly recognizes amino acid residues located at the VL FR1 and some residues in the variable and constant (CL) domain. Not all kappa chains are recognized, however, and the lack of CL can reduce the interaction. From a scFv composed of IGKV10-94 according to IMGT®, it is possible, with several mutations, to transfer the motif from the IGKV12-46 naturally recognized by the PpL, and, with the single mutation T8P, to confer PpL recognition with a higher affinity. A second mutation S24R greatly improves the affinity, in particular by modifying the dissociation rate (kd). The equilibrium dissociation constant (KD) was measured at 7.2 10(-11) M by surface plasmon resonance. It was possible to confer PpL recognition to all kappa chains. This protein interaction can be modulated according to the characteristics of scFv (e.g., stability) and their use with conjugated PpL. This work could be extrapolated to recombinant monoclonal antibodies, and offers an alternative for protein A purification and detection.
Collapse
Affiliation(s)
- Zineb Lakhrif
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| | - Martine Pugnière
- b IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer , Montpellier , 34090 , France
| | - Corinne Henriquet
- b IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer , Montpellier , 34090 , France
| | - Anne di Tommaso
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| | - Isabelle Dimier-Poisson
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| | - Philippe Billiald
- c Muséum National d'Histoire Naturelle, UMR MNHN-CNRS 7245, 12 rue Buffon , Paris , 75231 , France
| | - Matthieu O Juste
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| | - Nicolas Aubrey
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| |
Collapse
|
9
|
Yang YH, Jiang YL, Zhang J, Wang L, Bai XH, Zhang SJ, Ren YM, Li N, Zhang YH, Zhang Z, Gong Q, Mei Y, Xue T, Zhang JR, Chen Y, Zhou CZ. Structural insights into SraP-mediated Staphylococcus aureus adhesion to host cells. PLoS Pathog 2014; 10:e1004169. [PMID: 24901708 PMCID: PMC4047093 DOI: 10.1371/journal.ppat.1004169] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/22/2014] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a β-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus.
Collapse
Affiliation(s)
- Yi-Hu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Juan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Xiao-Hui Bai
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Shi-Jie Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Yan-Min Ren
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Na Li
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Yong-Hui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Yide Mei
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Ting Xue
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
- * E-mail: (YC); (CZZ)
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, People's Republic of China
- * E-mail: (YC); (CZZ)
| |
Collapse
|
10
|
Planque SA, Nishiyama Y, Hara M, Sonoda S, Murphy SK, Watanabe K, Mitsuda Y, Brown EL, Massey RJ, Primmer SR, O'Nuallain B, Paul S. Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J Biol Chem 2014; 289:13243-58. [PMID: 24648510 PMCID: PMC4036335 DOI: 10.1074/jbc.m114.557231] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/13/2014] [Indexed: 01/10/2023] Open
Abstract
Peptide bond-hydrolyzing catalytic antibodies (catabodies) could degrade toxic proteins, but acquired immunity principles have not provided evidence for beneficial catabodies. Transthyretin (TTR) forms misfolded β-sheet aggregates responsible for age-associated amyloidosis. We describe nucleophilic catabodies from healthy humans without amyloidosis that degraded misfolded TTR (misTTR) without reactivity to the physiological tetrameric TTR (phyTTR). IgM class B cell receptors specifically recognized the electrophilic analog of misTTR but not phyTTR. IgM but not IgG class antibodies hydrolyzed the particulate and soluble misTTR species. No misTTR-IgM binding was detected. The IgMs accounted for essentially all of the misTTR hydrolytic activity of unfractionated human serum. The IgMs did not degrade non-amyloidogenic, non-superantigenic proteins. Individual monoclonal IgMs (mIgMs) expressed variable misTTR hydrolytic rates and differing oligoreactivity directed to amyloid β peptide and microbial superantigen proteins. A subset of the mIgMs was monoreactive for misTTR. Excess misTTR was dissolved by a hydrolytic mIgM. The studies reveal a novel antibody property, the innate ability of IgMs to selectively degrade and dissolve toxic misTTR species as a first line immune function.
Collapse
Affiliation(s)
- Stephanie A. Planque
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yasuhiro Nishiyama
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Mariko Hara
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sari Sonoda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sarah K. Murphy
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Kenji Watanabe
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Eric L. Brown
- the Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas 77030
| | | | - Stanley R. Primmer
- the Supercentenarian Research Foundation, Lauderhill, Florida 33319, and
| | - Brian O'Nuallain
- the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Sudhir Paul
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| |
Collapse
|
11
|
Silva CS, Lansalot M, Garcia JQ, Taipa MÂ, Martinho JM. Synthesis and characterization of biomimetic nanogels for immunorecognition. Colloids Surf B Biointerfaces 2013; 112:264-71. [DOI: 10.1016/j.colsurfb.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
|
12
|
Identification and grafting of a unique peptide-binding site in the Fab framework of monoclonal antibodies. Proc Natl Acad Sci U S A 2013; 110:17456-61. [PMID: 24101516 DOI: 10.1073/pnas.1307309110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Capitalizing on their extraordinary specificity, monoclonal antibodies (mAbs) have become one of the most reengineered classes of biological molecules. A major goal in many of these engineering efforts is to add new functionality to the parental mAb, including the addition of cytotoxins and imaging agents for medical applications. Herein, we present a unique peptide-binding site within the central cavity of the fragment antigen binding framework region of the chimeric, anti-epidermal growth factor receptor mAb cetuximab. We demonstrate through diffraction methods, biophysical studies, and sequence analysis that this peptide, a meditope, has moderate affinity for the Fab, is specific to cetuximab (i.e., does not bind to human IgGs), and has no significant effect on antigen binding. We further demonstrate by diffraction studies and biophysical methods that the meditope binding site can be grafted onto the anti-human epidermal growth factor receptor 2 mAb trastuzumab, and that the antigen binding affinity of the grafted trastuzumab is indistinguishable from the parental mAb. Finally, we demonstrate a bivalent meditope variant binds specifically and stably to antigen-bearing cells only in the presence of the meditope-enabled mAbs. Collectively, this finding and the subsequent characterization and engineering efforts indicate that this unique interface could serve as a noncovalent "linker" for any meditope-enabled mAb with applications in multiple mAb-based technologies including diagnostics, imaging, and therapeutic delivery.
Collapse
|
13
|
Bartels EM, Ribel-Madsen S. Cytokine measurements and possible interference from heterophilic antibodies--problems and solutions experienced with rheumatoid factor. Methods 2013; 61:18-22. [PMID: 23306035 DOI: 10.1016/j.ymeth.2012.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/06/2012] [Accepted: 12/24/2012] [Indexed: 12/31/2022] Open
Abstract
Cytokines are important in the understanding of the immune process in health and disease and are valuable indicators in diagnostics. Measurements of cytokines are based on immunometric methods, and it is important to understand possible pitfalls in these methods to produce reliable cytokine data. This paper focuses on obtaining optimal measurements when applying enzyme-linked immunosorbent assay (ELISA) or multiplex immunoassays (MIA). Cytokines are measured in serum or plasma, as well as in various other body fluids, all containing a series of antibodies and the possibility of interference from these. Some antibodies, such as heterophilic and human anti-animal antibodies, are able to interfere with all immunoassays, but the immunometric techniques are most prone to serious interference from this source. Another type, rheumatoid factor (RF) is a composite of different autoimmune antibodies which can be present in both blood and synovial fluid. RF is present in some arthritic diseases as well as in some other medical conditions. When present, especially RF IgM is known to interfere with the immunometric measurements. A possible and affordable solution to diminish this interference is PEG precipitation, but other efficient, but more expensive, methods, such as precipitation using Protein L or commercially available blocking agents, are also available. Interference of RF is at present not tested in all cytokine assays, but degree of interference from RF, human anti-animal and heterophilic antibodies, as well as from other possible disease-specific antibodies, must always be considered when developing and applying new assays for cytokine measurements.
Collapse
Affiliation(s)
- Else Marie Bartels
- The Parker Institute, Department of Rheumatology, Copenhagen University Hospitals Bispebjerg and Frederiksberg, Denmark.
| | | |
Collapse
|
14
|
Hutt M, Färber-Schwarz A, Unverdorben F, Richter F, Kontermann RE. Plasma half-life extension of small recombinant antibodies by fusion to immunoglobulin-binding domains. J Biol Chem 2012; 287:4462-9. [PMID: 22147690 PMCID: PMC3281650 DOI: 10.1074/jbc.m111.311522] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/23/2011] [Indexed: 12/22/2022] Open
Abstract
Many therapeutic proteins possessing a small size are rapidly cleared from circulation. Half-life extension strategies have therefore become increasingly important to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Here, we performed a comparative analysis of the half-life extension properties of various bacterial immunoglobulin-binding domains (IgBDs) derived from Staphylococcus protein A (SpA), Streptococcus protein G (SpG), and Finegoldia (formerly Peptostreptococcus) protein L (PpL). These domains, composed of 50-60 amino acid residues, were fused to the C terminus of a single-chain Fv and a bispecific single-chain diabody, respectively. All fusion proteins were produced in mammalian cells and retained their antigen-binding properties. The half-lives of the antibody molecules were prolonged to varying extents for the different IgBDs. The strongest effects in mice were observed for domain C3 of SpG (SpG(C3)) followed by domains B and D of SpA, suggesting that SpG(C3) is particularly useful to extend the plasma half-life of small proteins.
Collapse
Affiliation(s)
- Meike Hutt
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Aline Färber-Schwarz
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Felix Unverdorben
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Fabian Richter
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Roland E. Kontermann
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
El Khoury G, Rowe LA, Lowe CR. Biomimetic affinity ligands for immunoglobulins based on the multicomponent Ugi reaction. Methods Mol Biol 2012; 800:57-74. [PMID: 21964782 DOI: 10.1007/978-1-61779-349-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Affinity chromatography is the method of choice for biomolecule separation and isolation with highly specific target recognition; it is ideally suited to the purification of immunotherapeutic proteins (i.e., mAbs). Conventional affinity purification protocols are based on natural immunoglobulin (Ig)-binding proteins, which are expensive to produce, labile, unstable, and exhibit lot-to-lot variability. Biological ligands are now being replaced by cost-effective, synthetic ligands, derived from the concepts of rational design and combinatorial chemistry, aided by in silico approaches. In this chapter, we describe a new synthetic procedure for the development of affinity ligands for immunoglobulins based on the multicomponent Ugi reaction. The lead ligand developed herein is specific for the IgG-Fab fragment and mimics Protein L (PpL), an IgG-binding protein isolated from Peptostreptococcus magnus strains and usually used for the purification of antibodies and their fragments.
Collapse
Affiliation(s)
- Graziella El Khoury
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
16
|
Abstract
Proteins capable of non-immune binding of immunoglobulins G (IgG) of various mammalian species, i.e. without the involvement of the antigen-binding sites of the immunoglobulins, are widespread in bacteria. These proteins are located on the surface of bacterial cells and help them to evade the host's immune response due to protection against the action of complement and to decrease in phagocytosis. This review summarizes data on the structure of immunoglobulin-binding proteins (IBP) and their complexes with IgG. Common and distinctive structural features of IBPs of gram-positive bacteria (staphylococci, streptococci, peptostreptococci) are discussed. Conditions for IBP expression by bacteria and their functional heterogeneity are considered. Data on IBPs of gram-negative bacteria are presented.
Collapse
Affiliation(s)
- E V Sidorin
- Pacific Institute of Bioorganic Chemistry, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok, Russia.
| | | |
Collapse
|
17
|
Day R, Lennox KP, Dahl DB, Vannucci M, Tsai JW. Characterizing the regularity of tetrahedral packing motifs in protein tertiary structure. ACTA ACUST UNITED AC 2010; 26:3059-66. [PMID: 21047817 DOI: 10.1093/bioinformatics/btq573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MOTIVATION While protein secondary structure is well understood, representing the repetitive nature of tertiary packing in proteins remains difficult. We have developed a construct called the relative packing group (RPG) that applies the clique concept from graph theory as a natural basis for defining the packing motifs in proteins. An RPG is defined as a clique of residues, where every member contacts all others as determined by the Delaunay tessellation. Geometrically similar RPGs define a regular element of tertiary structure or tertiary motif (TerMo). This intuitive construct provides a simple approach to characterize general repetitive elements of tertiary structure. RESULTS A dataset of over 4 million tetrahedral RPGs was clustered using different criteria to characterize the various aspects of regular tertiary structure in TerMos. Grouping this data within the SCOP classification levels of Family, Superfamily, Fold, Class and PDB showed that similar packing is shared across different folds. Classification of RPGs based on residue sequence locality reveals topological preferences according to protein sizes and secondary structure. We find that larger proteins favor RPGs with three local residues packed against a non-local residue. Classifying by secondary structure, helices prefer mostly local residues, sheets favor at least two local residues, while turns and coil populate with more local residues. To depict these TerMos, we have developed 2 complementary and intuitive representations: (i) Dirichlet process mixture density estimation of the torsion angle distributions and (ii) kernel density estimation of the Cartesian coordinate distribution. The TerMo library and representations software are available upon request.
Collapse
Affiliation(s)
- Ryan Day
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | |
Collapse
|
18
|
MacKenzie DA, Tailford LE, Hemmings AM, Juge N. Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem 2009; 284:32444-53. [PMID: 19758995 DOI: 10.1074/jbc.m109.040907] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lactobacillus reuteri mucus-binding protein (MUB) is a cell-surface protein that is involved in bacterial interaction with mucus and colonization of the digestive tract. The 353-kDa mature protein is representative of a broadly important class of adhesins that have remained relatively poorly characterized due to their large size and highly modular nature. MUB contains two different types of repeats (Mub1 and Mub2) present in six and eight copies, respectively, and shown to be responsible for the adherence to intestinal mucus. Here we report the 1.8-A resolution crystal structure of a type 2 Mub repeat (184 amino acids) comprising two structurally related domains resembling the functional repeat found in a family of immunoglobulin (Ig)-binding proteins. The N-terminal domain bears striking structural similarity to the repeat unit of Protein L (PpL) from Peptostreptococcus magnus, suggesting binding in a non-immune Fab-dependent manner. A distorted PpL-like fold is also seen in the C-terminal domain. As with PpL, Mub repeats were able to interact in vitro with a large repertoire of mammalian Igs, including secretory IgA. This hitherto undetected activity is consistent with the current model that antibody responses against commensal flora are of broad specificity and low affinity.
Collapse
Affiliation(s)
- Donald A MacKenzie
- Institute of Food Research, Colney Lane, Norwich NR4 7UA, United Kingdom
| | | | | | | |
Collapse
|
19
|
Sadler DP, Petrik E, Taniguchi Y, Pullen JR, Kawakami M, Radford SE, Brockwell DJ. Identification of a mechanical rheostat in the hydrophobic core of protein L. J Mol Biol 2009; 393:237-48. [PMID: 19683005 PMCID: PMC2796179 DOI: 10.1016/j.jmb.2009.08.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/23/2009] [Accepted: 08/07/2009] [Indexed: 11/22/2022]
Abstract
The ability of proteins and their complexes to withstand or respond to mechanical stimuli is vital for cells to maintain their structural organisation, to relay external signals and to facilitate unfolding and remodelling. Force spectroscopy using the atomic force microscope allows the behaviour of single protein molecules under an applied extension to be investigated and their mechanical strength to be quantified. protein L, a simple model protein, displays moderate mechanical strength and is thought to unfold by the shearing of two mechanical sub-domains. Here, we investigate the importance of side-chain packing for the mechanical strength of protein L by measuring the mechanical strength of a series of protein L variants containing single conservative hydrophobic volume deletion mutants. Of the five thermodynamically destabilised variants characterised, only one residue (I60V) close to the interface between two mechanical sub-domains was found to differ in mechanical properties to wild type (ΔFI60V–WT = − 36 pN at 447 nm s− 1, ΔxuI60V–WT = 0.2 nm). Φ-value analysis of the unfolding data revealed a highly native transition state. To test whether the number of hydrophobic contacts across the mechanical interface does affect the mechanical strength of protein L, we measured the mechanical properties of two further variants. protein L L10F, which increases core packing but does not enhance interfacial contacts, increased mechanical strength by 13 ± 11 pN at 447 nm s− 1. By contrast, protein L I60F, which increases both core and cross-interface contacts, increased mechanical strength by 72 ± 13 pN at 447 nm s− 1. These data suggest a method by which nature can evolve a varied mechanical response from a limited number of topologies and demonstrate a generic but facile method by which the mechanical strength of proteins can be rationally modified.
Collapse
Affiliation(s)
- David P Sadler
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Grafting of protein L-binding activity onto recombinant antibody fragments. Anal Biochem 2009; 388:331-8. [PMID: 19268418 DOI: 10.1016/j.ab.2009.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 11/24/2022]
Abstract
Recombinant antibody fragments consisting of variable domains can be easily produced in various host cells, but there is no universal system that can be used to purify and detect them in the free form or complexed with their antigen. Protein L (PpL) is a cell wall protein isolated from Peptostreptococcus magnus, which has been reported to interact with the V-KAPPA chain of some, but not all, antibodies. Here we grafted the V-KAPPA framework region 1 (FR1) sequence of a high-affinity PpL-binding antibody onto single-chain antibody fragments (scFvs), which have no reactivity with PpL. This substitution made it possible to purify and detect scFvs using PpL conjugates. It did not hinder scFv folding and expression in recombinant bacteria, and it did not interfere with their antigen-binding function. We also identified residue 12 as being potentially able to alter PpL binding. This study, therefore, suggests a way of engineering a PpL-binding site on any scFv without interfering with its function. This could provide a universally applicable method both for the rapid purification of functional recombinant antibody fragments and for their detection even when complexed with their antigen without requiring fusion to an epitope Flag.
Collapse
|
21
|
Screening isolates from antibody phage-display libraries. Drug Discov Today 2007; 13:318-24. [PMID: 18405844 DOI: 10.1016/j.drudis.2007.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/28/2007] [Accepted: 10/10/2007] [Indexed: 01/14/2023]
Abstract
Antibody phage display, coupled with automated screening, facilitates and potentiates the mining of complex combinatorial libraries and the identification of potent drug leads. In managing phage screening data, the behavior of individual phage isolates in binding assays must be linked to their antibody identities as deduced from DNA sequencing. Reviewed here are recently reported approaches for high-throughput screening of clones isolated from phage antibody libraries after selection on a defined antigen. Specific information management challenges, and possible solutions, are described for organizing screening data to enable rapid lead discovery using these antibody libraries.
Collapse
|
22
|
Graille M, Stura EA, Bossus M, Muller BH, Letourneur O, Battail-Poirot N, Sibaï G, Gauthier M, Rolland D, Le Du MH, Ducancel F. Crystal Structure of the Complex between the Monomeric Form of Toxoplasma gondii Surface Antigen 1 (SAG1) and a Monoclonal Antibody that Mimics the Human Immune Response. J Mol Biol 2005; 354:447-58. [PMID: 16242717 DOI: 10.1016/j.jmb.2005.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/01/2005] [Accepted: 09/02/2005] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii, the intracellular parasite responsible for toxoplasmosis infects more than one-third of the world population and can be life-threatening for fetuses and immunocompromised patients. The surface protein SAG1 is an important immune target, which provides a strong immune response against the invasive tachyzoite while the other forms of the parasite, devoid of SAG1 at their surface, are multiplying. In addition to this role as a "hot spot" decoy, SAG1 is predicted to act as an adhesin during host-cell attachment through its binding to proteoglycans. To begin to understand the relationships between SAG1 epitopes and the ligand-binding site, we have solved the crystal structure of the monomeric form of T.gondii SAG1 complexed to a Fab derived from a monoclonal antibody raised against tachyzoite particles. This antibody competes strongly with human Toxoplasma-specific sera, suggesting that its epitope is part of an immunodominant region present on the surface of SAG1. The structure reveals that this conformational epitope, located within the SAG1 N-terminal domain, does not overlap with the proposed ligand-binding pocket. This study provides the first structural description of the monomeric form of SAG1, and significant insights into its dual role of adhesin and immune target during parasite infection.
Collapse
Affiliation(s)
- Marc Graille
- Département d'Ingénierie et d'Etudes des Protéines, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Klimstra WB, Williams JC, Ryman KD, Heidner HW. Targeting Sindbis virus-based vectors to Fc receptor-positive cell types. Virology 2005; 338:9-21. [PMID: 15922395 DOI: 10.1016/j.virol.2005.04.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/01/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
Some viruses display enhanced infection for Fc receptor (FcR)-positive cell types when complexed with virus-specific immunoglobulin (Ig). This process has been termed antibody-dependent enhancement of viral infection (ADE). We reasoned that the mechanism of ADE could be exploited and adapted to target alphavirus-based vectors to FcR-positive cell types. Towards this goal, recombinant Sindbis viruses were constructed that express 1 to 4 immunoglobulin-binding domains of protein L (PpL) as N-terminal extensions of the E2 glycoprotein. PpL is a bacterial protein that binds the variable region of antibody kappa light chains from a range of mammalian species. The recombinant viruses incorporated PpL/E2 fusion proteins into the virion structure and recapitulated the species-specific Ig-binding phenotypes of native PpL. Virions reacted with non-immune serum or purified IgG displayed enhanced binding and ADE for several species-matched FcR-positive murine and human cell lines. ADE required virus expression of a functional PpL Ig-binding domain, and appeared to be FcgammaR-mediated. Specifically, ADE did not occur with FcgammaR-negative cells, did not require active complement proteins, and did not occur on FcgammaR-positive murine cell lines when virions were bound by murine IgG-derived F(ab')2 fragments.
Collapse
Affiliation(s)
- William B Klimstra
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
24
|
Nilsson E, Larsson A. Chicken Anti-Protein L for the Detection of Small Amounts of Protein L in the Presence of IgG. Hybridoma (Larchmt) 2005; 24:112-4. [PMID: 15857176 DOI: 10.1089/hyb.2005.24.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Protein L is a cell surface protein, expressed by Peptostreptoccocus magnus, which binds to the variable light chains of immunoglobulins without interfering with antigen binding. It can be used for purification of mammalian antibodies of all classes in contrast to the Ig-binding proteins protein A and protein G. Detection of protein L leakage into antibody preparations is important, since protein L could interfere in immunological assays and cause adverse reactions in vivo. Here we have developed a sandwich ELISA for detection of protein L in the presence or absence of mouse IgG utilizing specific chicken IgY antibodies. Protein L does not react with chicken IgY light chains, and it is therefore possible to make an antigen-specific assay. The assay can be used to detect protein L at a concentration of 0.3 ng/mL in the presence of IgG.
Collapse
Affiliation(s)
- Elin Nilsson
- Department of Medical Sciences, Clinical Chemistry, University Hospital, Uppsala, Sweden
| | | |
Collapse
|
25
|
Enever C, Tomlinson IM, Lund J, Levens M, Holliger P. Engineering High Affinity Superantigens by Phage Display. J Mol Biol 2005; 347:107-20. [PMID: 15733921 DOI: 10.1016/j.jmb.2005.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 12/10/2004] [Accepted: 01/05/2005] [Indexed: 11/22/2022]
Abstract
Protein L (PpL) is a B-cell superantigen from Peptostreptococcus magnus known to bind to mammalian Vkappa light chains. PpL from P.magnus strain 312 comprises five homologous immunoglobulin (Ig) binding domains. We first analysed the binding of the individual domains (B1-B5) of PpL(312) to human Vkappa light chains (huVkappa) subtypes 1 (huVkappaI) and 3 (huVkappaIII). Using a combination of rational design and phage selection we isolated mutants of the N-terminal B1 domain with a 14-fold increased affinity for huVkappa1 (B1kappa1) and >tenfold increased affinity for huVkappaIII (B1kappa3). We investigated the potential of the selected domains, in particular the B1kappa1 domain, as reagents in immunochemistry and immunotherapy. B1kappa1 proved a superior reagent than the wild-type domain, allowing up to tenfold more sensitive detection of human Vkappa antibody fragments in ELISA. A fusion protein of B1kappa1 with a human Vlambda antibody scFv fragment promoted the efficient recruitment of antibody encoded effector functions including complement, mononuclear phagocyte respiratory burst and phagocytosis through retargeting of IgGkappa and IgMkappa. Our results suggest that superantigens with improved affinity and/or specificity are easily accessible through protein engineering. Such engineered superantigens should prove useful as reagents in immunochemistry and may have potential as agents in immunotherapy.
Collapse
Affiliation(s)
- Carolyn Enever
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | |
Collapse
|
26
|
Roque ACA, Taipa MA, Lowe CR. An artificial protein L for the purification of immunoglobulins and Fab fragments by affinity chromatography. J Chromatogr A 2005; 1064:157-67. [PMID: 15739883 DOI: 10.1016/j.chroma.2004.11.102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development and characterization of an artificial protein L (PpL) for the affinity purification of antibodies is described. Ligand 8/7, which emerged as the lead from a de novo designed combinatorial library of ligands, inhibits the interaction of PpL with IgG and Fab by competitive ELISA and shows negligible binding to Fc. The ligand 8/7 adsorbent (Ka approximately 10(4) M(-1)) compared well with PpL in binding to immunoglobulins from different classes and sources and, in addition, bound to IgG1 with K and lambda isotypes (92% and 100% of loaded protein) and polyclonal IgG from sheep, cow, goat and chicken. These properties were also reflected in the efficient isolation of immunoglobulins from crude samples.
Collapse
Affiliation(s)
- A Cecília A Roque
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | | | | |
Collapse
|
27
|
Roque ACA, Taipa MA, Lowe CR. Synthesis and screening of a rationally designed combinatorial library of affinity ligands mimicking protein L fromPeptostreptococcus magnus. J Mol Recognit 2005; 18:213-24. [PMID: 15688433 DOI: 10.1002/jmr.733] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rational design and combinatorial chemistry were utilized to search for lead protein L (PpL) mimetics for application as affinity ligands for the purification of antibodies and small fragments, such as Fab and scFv, and as potential diagnostic or therapeutic agents. Inspection of the key structural features of the complex between PpL and human Fab prompted the de novo design and combinatorial synthesis of a 169-membered solid-phase ligand library, which was assessed for binding to human IgG and subsequent selectivity for the Fab fragment. Eight ligands were selected, chemically characterized and compared with a commercial PpL-adsorbent for binding pure immunoglobulin fractions. The most promising lead, ligand 8/7, when immobilized on an agarose support, behaved in a similar fashion to PpL in isolating Fab fragments from papain digests of human IgG to a final purity of 97%.
Collapse
Affiliation(s)
- A Cecília A Roque
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisboa, Portugal
| | | | | |
Collapse
|
28
|
Svensson HG, Wedemeyer WJ, Ekstrom JL, Callender DR, Kortemme T, Kim DE, Sjöbring U, Baker D. Contributions of amino acid side chains to the kinetics and thermodynamics of the bivalent binding of protein L to Ig kappa light chain. Biochemistry 2004; 43:2445-57. [PMID: 14992582 DOI: 10.1021/bi034873s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein L is a bacterial surface protein with 4-5 immunoglobulin (Ig)-binding domains (B1-B5), each of which appears to have two binding sites for Ig, corresponding to the two edges of its beta-sheet. To verify these sites biochemically and to probe their relative contributions to the protein L-Ig kappa light chain (kappa) interaction, we compared the binding of PLW (the Y47W mutant of the B1 domain) to that of mutants designed to disrupt binding to sites 1 and 2, using gel filtration, BIAcore surface plasmon resonance, fluorescence titration, and solid-phase radioimmunoassays. Gel filtration experiments show that PLW binds kappa both in 1:1 complexes and multivalently, consistent with two binding sites. Covalent dimers of the A20C and V51C mutants of PLW were prepared to eliminate site 1 and site 2 binding, respectively; both the A20C and V51C dimers bind kappa in 1:1 complexes and multivalently, indicating that neither site 1 nor site 2 is solely responsible for kappa binding. The A20R mutant was designed computationally to eliminate site 1 binding while preserving site 2 binding; consistent with this design, the A20R mutant binds kappa in 1:1 complexes but not multivalently. To probe the contributions of amino acid side chains to binding, we prepared 75 point mutants spanning nearly every residue of PLW; BIAcore studies of these mutants revealed two binding-energy "hot spots" consistent with sites 1 and 2. These data indicate that PLW binds kappa at both sites with similar affinities (high nanomolar), with the strongest contributions to the binding energy from Tyr34 (site 2) and Tyr36 (site 1). Compared to other protein-protein complexes, the binding is insensitive to amino acid substitutions at these sites, consistent with the large number of main chain interactions relative to side chain interactions. The strong binding of protein L to Ig kappa light chains of various species may result from the ambidextrous binding of the B1-B5 domains and the unimportance of specific side chain interactions.
Collapse
|
29
|
Goodyear CS, Narita M, Silverman GJ. In Vivo VL-Targeted Activation-Induced Apoptotic Supraclonal Deletion by a Microbial B Cell Toxin. THE JOURNAL OF IMMUNOLOGY 2004; 172:2870-7. [PMID: 14978088 DOI: 10.4049/jimmunol.172.5.2870] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To interfere with host immune responses, some microbial pathogens produce proteins with the properties of superantigens, which can interact via conserved V region framework subdomains of the Ag receptors of lymphocytes rather than the complementarity-determining region involved in the binding of conventional Ags. In recent studies, we have elucidated how a model B cell superantigen affects the host immune system by targeting a conserved V(H) site on the Ag receptors of B lymphocytes. To determine whether these findings represent a general paradigm, we investigated the in vivo immunobiologic properties of protein L of Peptostreptococcus magnus (PpL), a microbial Ig-binding protein specific for a V region site on Ig L chains. Our studies confirmed that PpL binding is restricted to a subset of murine Vkappa-expressing B cells, and found that B cells with stronger PpL-binding activity are associated with certain B cell subsets: splenic marginal zone (CD21(high) CD23(low)), splenic CD1(+), peritoneal B-1a (IgD(low) CD5(+)), and CD21(high) CD24(high) B cells in peripheral lymph nodes, mesenteric lymph nodes, and Peyer's patches. Infusion of PpL triggered a sequence of events in B cell receptor (BCR)-targeted B cells, with rapid down-regulation of BCR, the induction of an activation phenotype, and limited rounds of proliferation. Apoptosis followed through a process heralded by the dissipation of mitochondrial membrane potential, the induction of the caspase pathway, DNA fragmentation, and the deposition of B cell apoptotic bodies. These studies define a common pathway by which microbial toxins that target V region-associated BCR sites induce programmed cell death.
Collapse
Affiliation(s)
- Carl S Goodyear
- Rheumatic Disease Core Center, Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
30
|
Affiliation(s)
- Roald Nezlin
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
31
|
Housden NG, Harrison S, Housden HR, Thomas KA, Beckingham JA, Roberts SE, Bottomley SP, Graille M, Stura E, Gore MG. Observation and characterization of the interaction between a single immunoglobulin binding domain of protein L and two equivalents of human kappa light chains. J Biol Chem 2003; 279:9370-8. [PMID: 14668335 DOI: 10.1074/jbc.m312938200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detailed stopped-flow studies in combination with site-directed mutagenesis, isothermal titration calorimetry data and x-ray crystallographic knowledge have revealed that the biphasic pre-equilibrium fluorescence changes reported for a single Ig-binding domain of protein L from Peptostreptococcus magnus binding to kappa light chain are due to the binding of the kappa light chain at two separate sites on the protein L molecule. Elimination of binding site 2 through the mutation A66W has allowed the K(d) for kappa light chain binding at site 1 to be measured by stopped-flow fluorescence and isothermal titration calorimetry techniques, giving values of 48.0 +/- 8.0 nM and 37.5 +/- 7.3 nM respectively. Conversely, a double mutation Y53F/L57H eliminates binding at site 1 and has allowed the K(d) for binding at site 2 to be determined. Stopped-flow fluorimetry suggests this to be 3.4 +/- 0.8 microM in good agreement with the value of 4.6 +/- 0.8 microM determined by isothermal titration calorimetry. The mutation Y53F reduces the affinity of site 1 to approximately that of site 2.
Collapse
Affiliation(s)
- Nicholas G Housden
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, Hants SO16 7PX, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ménez R, Bossus M, Muller BH, Sibaï G, Dalbon P, Ducancel F, Jolivet-Reynaud C, Stura EA. Crystal structure of a hydrophobic immunodominant antigenic site on hepatitis C virus core protein complexed to monoclonal antibody 19D9D6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1917-24. [PMID: 12574359 DOI: 10.4049/jimmunol.170.4.1917] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The first crystal structure of a complex between a hepatitis C virus (HCV) core protein-derived peptide (residues 13-40) and the Ab fragment of a murine mAb (19D9D6) has been solved, allowing determination of the recognized epitope and elucidation of its conformation. This Ab, raised against the first 120 residues of the core protein, recognizes core particles and strongly competes with anticore human Abs, suggesting that it is highly representative of the human anti-HCV core response. Its epitope lies within the first 45 aa of the protein, the major antigenic segment of core recognized both by murine and human Abs. Surprisingly, the recognized epitope (29-37: QIVGGVYLL) has an unusual preponderance of hydrophobic residues, some of which are buried in a small hydrophobic core in the nuclear magnetic resonance structure of the peptide (2-45) in solution, suggesting that the Ab may induce a structural rearrangement upon recognition. The flexibility may reside entirely within the Ag, since the Fab'-peptide complex structure at 2.34 A shows that the Ab binding site is hardly perturbed by complexation. Given that the recognized residues are unlikely to be solvent exposed, we are left with the interesting possibility that Ab-core interactions may take place in a nonaqueous environment.
Collapse
Affiliation(s)
- Renée Ménez
- Unité Mixte Commissariat à l'Energie Atomique, bioMérieux and Département d'Ingénierie et d'Etudes des Protéines, Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|