1
|
Hu L, Lu J, Fan H, Niu C, Han Y, Caiyin Q, Wu H, Qiao J. FAS mediates apoptosis, inflammation, and treatment of pathogen infection. Front Cell Infect Microbiol 2025; 15:1561102. [PMID: 40330016 PMCID: PMC12052831 DOI: 10.3389/fcimb.2025.1561102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
The FAS cell surface death receptor, a member of the tumor necrosis factor receptor family, activates both apoptotic and non-apoptotic signaling upon interaction with its ligand FASL. It is critical in cell migration, invasion, immune responses, and carcinogenesis. Pathogen infection can influence host cells' behavior by modulating the FAS/FASL pathway, thereby influencing disease progression. Understanding the role of FAS signaling in the context of pathogen interactions is therefore crucial. This review examines FAS-mediated apoptotic and non-apoptotic signaling pathways, with particular emphasis on the mechanisms of apoptosis and inflammation induced by bacterial and viral infections. Additionally, it highlights therapeutic strategies, including drug, cytokine, antibody, and FASL recombinant protein therapies, providing new directions for treating pathogenic infections and cancers, as well as insights into developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Liying Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Changcheng Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Yanping Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Hong M, Wu X, He P, Peng R, Li L, Wu SQ, Zhao J, Han A, Zhang Y, Han J, Yang ZH. Residue Y362 is crucial for FLIP L to impart catalytic activity to pro-caspase-8 to suppress necroptosis. Cell Rep 2024; 43:114966. [PMID: 39520684 DOI: 10.1016/j.celrep.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The pro-form of caspase-8 prevents necroptosis by functioning in a proteolytically active complex with its catalytic-dead homolog, FLICE (FADD [Fas-associated death domain]-like interleukin 1β-converting enzyme)-like inhibitory protein long-form (FLIPL). However, how FLIPL imparts caspase-8 the catalytic activity to suppress necroptosis remains elusive. Here, we show that the protease-like domain of FLIPL is essential for the activity of the caspase-8-FLIPL heterodimer in blocking necroptosis. While substitution of two amino acids whose difference may contribute to the pseudo-caspase property of FLIPL with the corresponding amino acids in caspase-8 does not restore the protease activity of FLIPL, one of the amino acid replacements, tyrosine (Y) 362 to cysteine (C), is sufficient to completely abolish the activity of the caspase-8-FLIPL heterodimer in cleaving receptor-interacting protein 1 (RIP1), thus releasing the necroptosis blockade. Unconstrained necroptosis is observed in embryonic day (E)10.5-E11.5 embryos of FLIPL-Y362C knockin mice. Collectively, these results reveal that the protease-like domain of FLIPL has a special structure that imparts the pro-caspase-8-FLIPL heterodimer a unique catalytic activity toward RIP1 to prevent necroptosis.
Collapse
Affiliation(s)
- Mao Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiurong Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China
| | - Peng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rangxin Peng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Su-Qin Wu
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianbang Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Laboratory Animal Center, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zhang-Hua Yang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
3
|
Seyrek K, Espe J, Reiss E, Lavrik IN. The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System. Cells 2024; 13:1814. [PMID: 39513921 PMCID: PMC11545656 DOI: 10.3390/cells13211814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its stimulation can also elicit non-apoptotic or even survival signals. It has become clear that under certain cellular contexts, due to the various checkpoints, CD95 activation can trigger both apoptotic and non-apoptotic signals. The crosstalk of death and survival signals may occur at different levels of signal transduction. The strength of the CD95 stimulation, initial levels of anti-apoptotic proteins, and posttranslational modifications of the core DISC components have been proposed to be the most important factors in the life/death decisions at CD95. Successful therapeutic targeting of CD95 signaling pathways will require a better understanding of the crosstalk between CD95-induced apoptotic and cell survival pathways. In this review, in order to gain a systematic understanding of the crosstalk between CD95-mediated apoptosis and non-apoptotic signaling, we will discuss these issues in a step-by-step way.
Collapse
Affiliation(s)
| | | | | | - Inna N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.S.); (J.E.); (E.R.)
| |
Collapse
|
4
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Horozoglu C, Yildiz A, Sonmez D, Demirkol S, Yildiz Y, Arikan S, Yaylim I. TRAIL C1595T Variant Critically Alters the Level of sTRAIL in Terms of Histopathological Parameters in Colorectal Cancer. Indian J Clin Biochem 2024; 39:593-599. [PMID: 39346710 PMCID: PMC11436522 DOI: 10.1007/s12291-023-01146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/21/2023] [Indexed: 10/01/2024]
Abstract
TRAIL, a member of the TNF family, is expressed in tumor and tumor surrounding tissue in many solid organ cancers. While the induction of tumor-specific apoptosis in correlation with cytokine stimulation may cause anti-tumoral effects, the pro-tumorigenic effects of its expression by tumor surrounding tissue members have been reported in the literature. In our study, it was aimed to evaluate the effect of the gene variant of TRAIL on soluble levels in patients with colorectal cancer (CRC) on the molecular pathological axis. TRAIL C1595 gene variant PCR-RFLP and sTRAIL levels were determined by ELISA in age and sex adjusted CRC and control groups. It was determined that CT carriage was high in patients without perineural invasion and sTRAIL levels were approximately 2.72 times lower than CC in patients with CT in this group (p < 0.05). Similarly, sTRAIL level was found to be high in patients with CC genotype in CRC without lymph node metastas. It was determined that CT carriage was high in patients without perineural invasion and sTRAIL levels were approximately 2.49 times lower than CC in patients with CT in this group.is (p < 0.05). We think that TRAIL C1595T in CRC can change sTRAIL levels in the clinicopathological axis in advanced stages such as metastasis and invasion, but both are not independent risk factors.
Collapse
Affiliation(s)
- Cem Horozoglu
- Faculty of Medicine, Halic University, Istanbul, 34060 Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Asli Yildiz
- Faculty of Medicine, Biruni University, Istanbul, 34010 Turkey
| | - Dilara Sonmez
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, 34093 Turkey
| | - Seyda Demirkol
- Department of Molecular Biology and Genetics, Faculty of Engineering Natural Science, Biruni University, Istanbul, 34010 Turkey
| | - Yemliha Yildiz
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34396 Turkey
| | - Soykan Arikan
- Department of General Surgery, Basaksehir Cam and Sakura City Hospital, Istanbul, 34480 Turkey
| | - Ilhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, 34093 Turkey
| |
Collapse
|
6
|
Zhang C, Zhou Y, Xi S, Han D, Wang Z, Zhu J, Cai Y, Zhang H, Jin G, Mi Y. The TRIF-RIPK1-Caspase-8 signalling in the regulation of TLR4-driven gene expression. Immunology 2024; 172:566-576. [PMID: 38618995 DOI: 10.1111/imm.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
The inflammatory response is tightly regulated to eliminate invading pathogens and avoid excessive production of inflammatory mediators and tissue damage. Caspase-8 is a cysteine protease that is involved in programmed cell death. Here we show the TRIF-RIPK1-Caspase-8 is required for LPS-induced CYLD degradation in macrophages. TRIF functions in the upstream of RIPK1. The homotypic interaction motif of TRIF and the death domain of RIPK1 are essential for Caspase-8 activation. Caspase-8 cleaves CYLD and the D235A mutant is resistant to the protease activity of Caspase-8. TRIF and RIPK1 serve as substrates of Capase-8 in vitro. cFLIP interacts with Caspase-8 to modulate its protease activity on CYLD and cell death. Deficiency in TRIF, Caspase-8 or CYLD can lead to a decrease or increase in the expression of genes encoding inflammatory cytokines. Together, the TRIF-Caspase-8 and CYLD play opposite roles in the regulation of TLR4 signalling.
Collapse
Affiliation(s)
- Chengyang Zhang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangtong Xi
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danlin Han
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziyu Wang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingwen Zhu
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yizhe Cai
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haifeng Zhang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Jin
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Bhuker S, Kaur A, Rajauria K, Tuli HS, Saini AK, Saini RV, Gupta M. Allicin: a promising modulator of apoptosis and survival signaling in cancer. Med Oncol 2024; 41:210. [PMID: 39060753 DOI: 10.1007/s12032-024-02459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
According to the World Health Organization, cancer is the foremost cause of mortality globally. Various phytochemicals from natural sources have been extensively studied for their anticancer properties. Allicin, a powerful organosulfur compound derived from garlic, exhibits anticancer, antioxidant, anti-inflammatory, antifungal, and antibacterial properties. This review aims to update and evaluate the chemistry, composition, mechanisms of action, and pharmacokinetics Allicin. Allicin has garnered significant attention for its potential role in modulating Fas-FasL, Bcl2-Bax, PI3K-Akt-mTOR, autophagy, and miRNA pathways. At the molecular level, allicin induces the release of cytochrome c from the mitochondria and enhances the activation of caspases-3, -8, and -9. This is accompanied by the simultaneous upregulation of Bax and Fas expression in tumor cells. Allicin can inhibit excessive autophagy by activating the PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Allicin-loaded nano-formulations efficiently induce apoptosis in cancer cells while minimizing toxicity to normal cells. Safety and clinical aspects are meticulously scrutinized, providing insights into the tolerability and adverse effects associated with allicin administration, along with an overview of current clinical trials evaluating its therapeutic potential. In conclusion, this review underscores the promising prospects of allicin as a dietary-derived medicinal compound for cancer therapy. It emphasizes the need for further research to elucidate its precise mechanisms of action, optimize delivery strategies, and validate its efficacy in clinical settings.
Collapse
Affiliation(s)
- Sunaina Bhuker
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Avneet Kaur
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Kanitha Rajauria
- SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu, 603203, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Reena V Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory and Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
8
|
Tian X, Srinivasan PR, Tajiknia V, Sanchez Sevilla Uruchurtu AF, Seyhan AA, Carneiro BA, De La Cruz A, Pinho-Schwermann M, George A, Zhao S, Strandberg J, Di Cristofano F, Zhang S, Zhou L, Raufi AG, Navaraj A, Zhang Y, Verovkina N, Ghandali M, Ryspayeva D, El-Deiry WS. Targeting apoptotic pathways for cancer therapy. J Clin Invest 2024; 134:e179570. [PMID: 39007268 PMCID: PMC11245162 DOI: 10.1172/jci179570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Apoptosis is a form of programmed cell death that is mediated by intrinsic and extrinsic pathways. Dysregulation of and resistance to cell death are hallmarks of cancer. For over three decades, the development of therapies to promote treatment of cancer by inducing various cell death modalities, including apoptosis, has been a main goal of clinical oncology. Apoptosis pathways also interact with other signaling mechanisms, such as the p53 signaling pathway and the integrated stress response (ISR) pathway. In addition to agents directly targeting the intrinsic and extrinsic pathway components, anticancer drugs that target the p53 and ISR signaling pathways are actively being developed. In this Review, we discuss selected and promising anticancer therapies in various stages of development, including drug targets, mechanisms, and resistance to related treatments, focusing especially on B cell lymphoma 2 (BCL-2) inhibitors, TRAIL analogues, DR5 antibodies, and strategies that target p53, mutant p53, and the ISR.
Collapse
Affiliation(s)
- Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Vida Tajiknia
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Ashley F. Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Benedito A. Carneiro
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Jillian Strandberg
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Francesca Di Cristofano
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arunasalam Navaraj
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
10
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
11
|
Liu H, Yao Q, Wang X, Xie H, Yang C, Gao H, Xie C. The research progress of crosstalk mechanism of autophagy and apoptosis in diabetic vascular endothelial injury. Biomed Pharmacother 2024; 170:116072. [PMID: 38147739 DOI: 10.1016/j.biopha.2023.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
In recent years, the widespread prevalence of diabetes has become a major killer that threatens the health of people worldwide. Of particular concern is hyperglycemia-induced vascular endothelial injury, which is one of the factors that aggravate diabetic vascular disease. During the process of diabetic vascular endothelial injury, apoptosis is an important pathological manifestation and autophagy is a key regulatory mechanism. Autophagy and apoptosis interact with each other. Hence, the crosstalk mechanism between the two processes is an important means of regulating diabetic vascular endothelial injury. This article reviews the research progress in apoptosis in the context of diabetic vascular endothelial injury and discusses the crosstalk mechanism of autophagy and apoptosis and its role in this injury. The purpose is to guide the prevention and treatment of diabetic vascular endothelial injury in the future.
Collapse
Affiliation(s)
- Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Qiyuan Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China.
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| |
Collapse
|
12
|
Davidovich P, Higgins CA, Najda Z, Longley DB, Martin SJ. cFLIP L acts as a suppressor of TRAIL- and Fas-initiated inflammation by inhibiting assembly of caspase-8/FADD/RIPK1 NF-κB-activating complexes. Cell Rep 2023; 42:113476. [PMID: 37988267 DOI: 10.1016/j.celrep.2023.113476] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
TRAIL and FasL are potent inducers of apoptosis but can also promote inflammation through assembly of cytoplasmic caspase-8/FADD/RIPK1 (FADDosome) complexes, wherein caspase-8 acts as a scaffold to drive FADD/RIPK1-mediated nuclear factor κB (NF-κB) activation. cFLIP is also recruited to FADDosomes and restricts caspase-8 activity and apoptosis, but whether cFLIP also regulates death receptor-initiated inflammation is unclear. Here, we show that silencing or deletion of cFLIP leads to robustly enhanced Fas-, TRAIL-, or TLR3-induced inflammatory cytokine production, which can be uncoupled from the effects of cFLIP on caspase-8 activation and apoptosis. Mechanistically, cFLIPL suppresses Fas- or TRAIL-initiated NF-κB activation through inhibiting the assembly of caspase-8/FADD/RIPK1 FADDosome complexes, due to the low affinity of cFLIPL for FADD. Consequently, increased cFLIPL occupancy of FADDosomes diminishes recruitment of FADD/RIPK1 to caspase-8, thereby suppressing NF-κB activation and inflammatory cytokine production downstream. Thus, cFLIP acts as a dual suppressor of apoptosis and inflammation via distinct modes of action.
Collapse
Affiliation(s)
- Pavel Davidovich
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Catherine A Higgins
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
13
|
Shao Y, Wang Z, Wu J, Lu Y, Chen Y, Zhang H, Huang C, Shen H, Xu L, Fu Z. Unveiling immunogenic cell death-related genes in colorectal cancer: an integrated study incorporating transcriptome and Mendelian randomization analyses. Funct Integr Genomics 2023; 23:316. [PMID: 37789099 DOI: 10.1007/s10142-023-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Immunogenic cell death (ICD), a type of cell death that activates the tumor-specific immune response and thus exerts anti-tumor effects, is an emerging target in tumor therapy, but research on ICD-related genes (ICDGs) in colorectal cancer (CRC) remains limited. This study aimed to identify the CRC-specific ICDGs and explore their potential roles. Through RNA sequencing for tissue samples from CRC patients and integration with The Cancer Genome Atlas (TCGA) data, we identified 33 differentially expressed ICDGs in CRC. We defined the ICD score based on these genes in single-cell data, where a high score indicated an immune-active microenvironment. Additionally, molecular subtypes identified in bulk RNA data showed distinct immune landscapes. The ICD-related signature constructed with machine learning effectively distinguished patients' prognosis. The summary data-based Mendelian randomization (SMR) and colocalization analysis prioritized CFLAR for its positive association with CRC risk. Molecular docking revealed its stable binding with chemotherapeutic drugs like irinotecan. Furthermore, experimental validation confirmed CFLAR overexpression in CRC samples, and its knockdown inhibited tumor cell proliferation. Overall, this study expands the understanding of the potential roles and mechanisms of ICDGs in CRC and highlights CFLAR as a promising target for CRC.
Collapse
Affiliation(s)
- Yu Shao
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyu Wu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hengyang Shen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Martinez Lagunas K, Savcigil DP, Zrilic M, Carvajal Fraile C, Craxton A, Self E, Uranga-Murillo I, de Miguel D, Arias M, Willenborg S, Piekarek M, Albert MC, Nugraha K, Lisewski I, Janakova E, Igual N, Tonnus W, Hildebrandt X, Ibrahim M, Ballegeer M, Saelens X, Kueh A, Meier P, Linkermann A, Pardo J, Eming S, Walczak H, MacFarlane M, Peltzer N, Annibaldi A. Cleavage of cFLIP restrains cell death during viral infection and tissue injury and favors tissue repair. SCIENCE ADVANCES 2023; 9:eadg2829. [PMID: 37494451 PMCID: PMC10371024 DOI: 10.1126/sciadv.adg2829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we found an essential role for cFLIP cleavage in restraining cell death in different pathophysiological scenarios. Mice expressing a cleavage-resistant cFLIP mutant, CflipD377A, exhibited increased sensitivity to severe acute respiratory syndrome coronavirus (SARS-CoV)-induced lethality, impaired skin wound healing, and increased tissue damage caused by Sharpin deficiency. In vitro, abrogation of cFLIP cleavage sensitizes cells to tumor necrosis factor(TNF)-induced necroptosis and apoptosis by favoring complex-II formation. Mechanistically, the cell death-sensitizing effect of the D377A mutation depends on glutamine-469. These results reveal a crucial role for cFLIP cleavage in controlling the amplitude of cell death responses occurring upon tissue stress to ensure the execution of repair programs.
Collapse
Affiliation(s)
- Kristel Martinez Lagunas
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Deniz Pinar Savcigil
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Matea Zrilic
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Carlos Carvajal Fraile
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Emily Self
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Iratxe Uranga-Murillo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego de Miguel
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Maykel Arias
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Michael Piekarek
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Marie Christine Albert
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Kalvin Nugraha
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Ina Lisewski
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Erika Janakova
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Natalia Igual
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Ximena Hildebrandt
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Mohammed Ibrahim
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Andrew Kueh
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julian Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sabine Eming
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
| | - Henning Walczak
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London WC1E 6BT, UK
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nieves Peltzer
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| |
Collapse
|
15
|
Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol 2023; 14:1191815. [PMID: 37483632 PMCID: PMC10361824 DOI: 10.3389/fimmu.2023.1191815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs), which are a group of chronic and diverse inflammatory diseases, are primarily characterized by weakness in the proximal muscles that progressively leads to persistent disability. Current treatments of IIMs depend on nonspecific immunosuppressive agents (including glucocorticoids and immunosuppressants). However, these therapies sometimes fail to regulate muscle inflammation, and some patients suffer from infectious diseases and other adverse effects related to the treatment. Furthermore, even after inflammation has subsided, muscle weakness persists in a significant proportion of the patients. Therefore, the elucidation of pathophysiology of IIMs and development of a better therapeutic strategy that not only alleviates muscle inflammation but also improves muscle weakness without increment of opportunistic infection is awaited. Muscle fiber death, which has been formerly postulated as "necrosis", is a key histological feature of all subtypes of IIMs, however, its detailed mechanisms and contribution to the pathophysiology remained to be elucidated. Recent studies have revealed that muscle fibers of IIMs undergo necroptosis, a newly recognized form of regulated cell death, and promote muscle inflammation and dysfunction through releasing inflammatory mediators such as damage-associated molecular patterns (DAMPs). The research on murine model of polymyositis, a subtype of IIM, revealed that the inhibition of necroptosis or HMGB1, one of major DAMPs released from muscle fibers undergoing necroptosis, ameliorated muscle inflammation and recovered muscle weakness. Furthermore, not only the necroptosis-associated molecules but also PGAM5, a mitochondrial protein, and reactive oxygen species have been shown to be involved in muscle fiber necroptosis, indicating the multiple target candidates for the treatment of IIMs acting through necroptosis regulation. This article overviews the research on muscle injury mechanisms in IIMs focusing on the contribution of necroptosis in their pathophysiology and discusses the potential treatment strategy targeting muscle fiber necroptosis.
Collapse
|
16
|
Contadini C, Ferri A, Cirotti C, Stupack D, Barilà D. Caspase-8 and Tyrosine Kinases: A Dangerous Liaison in Cancer. Cancers (Basel) 2023; 15:3271. [PMID: 37444381 DOI: 10.3390/cancers15133271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Caspase-8 is a cysteine-aspartic acid protease that has been identified as an initiator caspase that plays an essential role in the extrinsic apoptotic pathway. Evasion of apoptosis is a hallmark of cancer and Caspase-8 expression is silenced in some tumors, consistent with its central role in apoptosis. However, in the past years, several studies reported an increased expression of Caspase-8 levels in many tumors and consistently identified novel "non-canonical" non-apoptotic functions of Caspase-8 that overall promote cancer progression and sustain therapy resistance. These reports point to the ability of cancer cells to rewire Caspase-8 function in cancer and raise the question of which are the signaling pathways aberrantly activated in cancer that may contribute to the hijack of Caspase-8 activity. In this regard, tyrosine kinases are among the first oncogenes ever identified and genomic, transcriptomic and proteomic studies indeed show that they represent a class of signaling molecules constitutively activated in most of the tumors. Here, we aim to review and discuss the role of Caspase-8 in cancer and its interplay with Src and other tyrosine kinases.
Collapse
Affiliation(s)
- Claudia Contadini
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Alessandra Ferri
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10021, USA
| | - Claudia Cirotti
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Dwayne Stupack
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0803, USA
| | - Daniela Barilà
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
17
|
Ildefonso GV, Oliver Metzig M, Hoffmann A, Harris LA, Lopez CF. A biochemical necroptosis model explains cell-type-specific responses to cell death cues. Biophys J 2023; 122:817-834. [PMID: 36710493 PMCID: PMC10027451 DOI: 10.1016/j.bpj.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a form of regulated cell death associated with degenerative disorders, autoimmune and inflammatory diseases, and cancer. To better understand the biochemical mechanisms regulating necroptosis, we constructed a detailed computational model of tumor necrosis factor-induced necroptosis based on known molecular interactions from the literature. Intracellular protein levels, used as model inputs, were quantified using label-free mass spectrometry, and the model was calibrated using Bayesian parameter inference to experimental protein time course data from a well-established necroptosis-executing cell line. The calibrated model reproduced the dynamics of phosphorylated mixed lineage kinase domain-like protein, an established necroptosis reporter. A subsequent dynamical systems analysis identified four distinct modes of necroptosis signal execution, distinguished by rate constant values and the roles of the RIP1 deubiquitinating enzymes A20 and CYLD. In one case, A20 and CYLD both contribute to RIP1 deubiquitination, in another RIP1 deubiquitination is driven exclusively by CYLD, and in two modes either A20 or CYLD acts as the driver with the other enzyme, counterintuitively, inhibiting necroptosis. We also performed sensitivity analyses of initial protein concentrations and rate constants to identify potential targets for modulating necroptosis sensitivity within each mode. We conclude by associating numerous contrasting and, in some cases, counterintuitive experimental results reported in the literature with one or more of the model-predicted modes of necroptosis execution. In all, we demonstrate that a consensus pathway model of tumor necrosis factor-induced necroptosis can provide insights into unresolved controversies regarding the molecular mechanisms driving necroptosis execution in numerous cell types under different experimental conditions.
Collapse
Affiliation(s)
- Geena V Ildefonso
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marie Oliver Metzig
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas; Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Carlos F Lopez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
18
|
Li H, Li L, Qiu X, Zhang J, Hua Z. The interaction of CFLAR with p130Cas promotes cell migration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119390. [PMID: 36400248 DOI: 10.1016/j.bbamcr.2022.119390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
CASP8 and FADD Like Apoptosis Regulator (CFLAR) is a key anti-apoptotic regulator for resistance to apoptosis mediated by Fas and TRAIL. In addition to its anti-apoptotic function, CFLAR is also an important mediator of tumor growth. High level of CFLAR expression correlates with a more aggressive tumor. However, the mechanism of CFLAR signaling in malignant progression is not clear. Here we report a novel CFLAR-associated protein p130Cas, which is a general regulator of cell growth and cell migration. CFLAR-p130Cas association is mediated by the DED domain of CFLAR and the SD domain of p130Cas. Immunofluorescence observation showed that CFLAR had the colocalization with p130Cas at the focal adhesion of cell membrane. CFLAR overexpression promoted p130Cas phosphorylation and the formation of focal adhesion complex. Moreover, the enhancement of cell migration induced by CFLAR overexpression was obviously inhibited by p130Cas siRNA. In silico analysis on human database suggests high expressions of CFLAR or/and p130Cas are associated with poor prognosis of patients with lung cancer. Together, our results suggest a new mechanism for CFLAR involved in tumor development via association with p130Cas.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Luqi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xun Qiu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; School of Biopharmacy, China Pharmaceutical University, Nanjing, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China.
| |
Collapse
|
19
|
Bock FJ, Riley JS. When cell death goes wrong: inflammatory outcomes of failed apoptosis and mitotic cell death. Cell Death Differ 2023; 30:293-303. [PMID: 36376381 PMCID: PMC9661468 DOI: 10.1038/s41418-022-01082-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is a regulated cellular pathway that ensures that a cell dies in a structured fashion to prevent negative consequences for the tissue or the organism. Dysfunctional apoptosis is a hallmark of numerous pathologies, and treatments for various diseases are successful based on the induction of apoptosis. Under homeostatic conditions, apoptosis is a non-inflammatory event, as the activation of caspases ensures that inflammatory pathways are disabled. However, there is an increasing understanding that under specific conditions, such as caspase inhibition, apoptosis and the apoptotic machinery can be re-wired into a process which is inflammatory. In this review we discuss how the death receptor and mitochondrial pathways of apoptosis can activate inflammation. Furthermore, we will highlight how cell death due to mitotic stress might be a special case when it comes to cell death and the induction of inflammation.
Collapse
Affiliation(s)
- Florian J Bock
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Joel S Riley
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
20
|
Montinaro A, Walczak H. Harnessing TRAIL-induced cell death for cancer therapy: a long walk with thrilling discoveries. Cell Death Differ 2023; 30:237-249. [PMID: 36195672 PMCID: PMC9950482 DOI: 10.1038/s41418-022-01059-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/10/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) can induce apoptosis in a wide variety of cancer cells, both in vitro and in vivo, importantly without killing any essential normal cells. These findings formed the basis for the development of TRAIL-receptor agonists (TRAs) for cancer therapy. However, clinical trials conducted with different types of TRAs have, thus far, afforded only limited therapeutic benefit, as either the respectively chosen agonist showed insufficient anticancer activity or signs of toxicity, or the right TRAIL-comprising combination therapy was not employed. Therefore, in this review we will discuss molecular determinants of TRAIL resistance, the most promising TRAIL-sensitizing agents discovered to date and, importantly, whether any of these could also prove therapeutically efficacious upon cancer relapse following conventional first-line therapies. We will also discuss the more recent progress made with regards to the clinical development of highly active non-immunogenic next generation TRAs. Based thereupon, we next propose how TRAIL resistance might be successfully overcome, leading to the possible future development of highly potent, cancer-selective combination therapies that are based on our current understanding of biology TRAIL-induced cell death. It is possible that such therapies may offer the opportunity to tackle one of the major current obstacles to effective cancer therapy, namely overcoming chemo- and/or targeted-therapy resistance. Even if this were achievable only for certain types of therapy resistance and only for particular types of cancer, this would be a significant and meaningful achievement.
Collapse
Affiliation(s)
- Antonella Montinaro
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
- CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany.
- Center for Biochemistry, Medical Faculty, Joseph-Stelzmann-Str. 52, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
21
|
Mechanisms of Drug Resistance in Ovarian Cancer and Associated Gene Targets. Cancers (Basel) 2022; 14:cancers14246246. [PMID: 36551731 PMCID: PMC9777152 DOI: 10.3390/cancers14246246] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the United States, over 100,000 women are diagnosed with a gynecologic malignancy every year, with ovarian cancer being the most lethal. One of the hallmark characteristics of ovarian cancer is the development of resistance to chemotherapeutics. While the exact mechanisms of chemoresistance are poorly understood, it is known that changes at the cellular and molecular level make chemoresistance challenging to treat. Improved therapeutic options are needed to target these changes at the molecular level. Using a precision medicine approach, such as gene therapy, genes can be specifically exploited to resensitize tumors to therapeutics. This review highlights traditional and novel gene targets that can be used to develop new and improved targeted therapies, from drug efflux proteins to ovarian cancer stem cells. The review also addresses the clinical relevance and landscape of the discussed gene targets.
Collapse
|
22
|
Peng R, Wang CK, Wang‐Kan X, Idorn M, Kjær M, Zhou FY, Fiil BK, Timmermann F, Orozco SL, McCarthy J, Leung CS, Lu X, Bagola K, Rehwinkel J, Oberst A, Maelfait J, Paludan SR, Gyrd‐Hansen M. Human ZBP1 induces cell death-independent inflammatory signaling via RIPK3 and RIPK1. EMBO Rep 2022; 23:e55839. [PMID: 36268590 PMCID: PMC9724671 DOI: 10.15252/embr.202255839] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
ZBP1 is an interferon-induced cytosolic nucleic acid sensor that facilitates antiviral responses via RIPK3. Although ZBP1-mediated programmed cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway mediated by K63- and M1-linked ubiquitin chains, which depends on RIPK1 and RIPK3 as scaffolds independently of cell death. In human HT29 cells, ZBP1 associated with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. ZBP1-induced K63- and M1-linked ubiquitination of RIPK1 and ZBP1 to promote TAK1- and IKK-mediated inflammatory signaling and cytokine production. Inhibition of caspase activity suppressed ZBP1-induced cell death but enhanced cytokine production in a RIPK1- and RIPK3 kinase activity-dependent manner. Lastly, we provide evidence that ZBP1 signaling contributes to SARS-CoV-2-induced cytokine production. Taken together, we describe a ZBP1-RIPK3-RIPK1-mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspases, which may induce inflammation when ZBP1 is activated below the threshold needed to trigger a cell death response.
Collapse
Affiliation(s)
- Ruoshi Peng
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Chris Kedong Wang
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| | - Xuan Wang‐Kan
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Manja Idorn
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Majken Kjær
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| | - Felix Y Zhou
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Berthe Katrine Fiil
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| | - Frederik Timmermann
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| | - Susana L Orozco
- Department of ImmunologyUniversity of WashingtonSeattleWAUSA
| | - Julia McCarthy
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Carol S Leung
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Xin Lu
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Katrin Bagola
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
- Division of ImmunologyFederal Institute for Vaccines and Biomedicines, Paul‐Ehrlich‐InstitutLangenGermany
| | - Jan Rehwinkel
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Andrew Oberst
- Department of ImmunologyUniversity of WashingtonSeattleWAUSA
| | - Jonathan Maelfait
- VIB‐UGent Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | | | - Mads Gyrd‐Hansen
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
23
|
Holmgren C, Sunström Thörnberg E, Granqvist V, Larsson C. Induction of Breast Cancer Cell Apoptosis by TRAIL and Smac Mimetics: Involvement of RIP1 and cFLIP. Curr Issues Mol Biol 2022; 44:4803-4821. [PMID: 36286042 PMCID: PMC9600666 DOI: 10.3390/cimb44100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Smac mimetics are a group of compounds able to facilitate cell death in cancer cells. TNF-related apoptosis-inducing ligand (TRAIL) is a death receptor ligand currently explored in combination with Smac mimetics. The molecular mechanisms determining if the combination treatment results in apoptosis are however not fully understood. In this study, we aimed to shed light on these mechanisms in breast cancer cells. Three breast cancer cell lines, MDA-MB-468, CAMA-1 and MCF-7, were used to evaluate the effects of Smac mimetic LCL-161 and TRAIL using cell death assays and Western blot. The combination treatment induces apoptosis and caspase-8 cleavage in MDA-MB-468 and CAMA-1 but not in MCF-7 cells and downregulation of caspase-8 blocked apoptosis. Downregulation, but not kinase inhibition, of receptor-interacting protein 1 (RIP1) suppressed apoptosis in CAMA-1. Apoptosis is preceded by association of RIP1 with caspase-8. Downregulating cellular FLICE-like inhibitory protein (c-FLIP) resulted in increased caspase cleavage and some induction of apoptosis by TRAIL and LCL-161 in MCF-7. In CAMA-1, c-FLIP depletion potentiated TRAIL-induced caspase cleavage and LCL-161 did not increase it further. Our results lend further support to a model where LCL-161 enables the formation of a complex including RIP1 and caspase-8 and circumvents c-FLIP-mediated inhibition of caspase activation.
Collapse
|
24
|
Zuo W, Wakimoto M, Kozaiwa N, Shirasaka Y, Oh SW, Fujiwara S, Miyachi H, Kogure A, Kato H, Fujita T. PKR and TLR3 trigger distinct signals that coordinate the induction of antiviral apoptosis. Cell Death Dis 2022; 13:707. [PMID: 35970851 PMCID: PMC9378677 DOI: 10.1038/s41419-022-05101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/21/2023]
Abstract
RIG-I-like receptors (RLRs), protein kinase R (PKR), and endosomal Toll-like receptor 3 (TLR3) sense viral non-self RNA and are involved in cell fate determination. However, the mechanisms by which intracellular RNA induces apoptosis, particularly the role of each RNA sensor, remain unclear. We performed cytoplasmic injections of different types of RNA and elucidated the molecular mechanisms underlying viral dsRNA-induced apoptosis. The results obtained revealed that short 5'-triphosphate dsRNA, the sole ligand of RIG-I, induced slow apoptosis in a fraction of cells depending on IRF-3 transcriptional activity and IFN-I production. However, intracellular long dsRNA was sensed by PKR and TLR3, which activate distinct signals, and synergistically induced rapid apoptosis. PKR essentially induced translational arrest, resulting in reduced levels of cellular FLICE-like inhibitory protein and functioned in the TLR3/TRIF-dependent activation of caspase 8. The present results demonstrated that PKR and TLR3 were both essential for inducing the viral RNA-mediated apoptosis of infected cells and the arrest of viral production.
Collapse
Affiliation(s)
- Wenjie Zuo
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Mai Wakimoto
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Noriyasu Kozaiwa
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Yutaro Shirasaka
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Seong-Wook Oh
- grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Shiori Fujiwara
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hitoshi Miyachi
- grid.258799.80000 0004 0372 2033Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Amane Kogure
- grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hiroki Kato
- grid.15090.3d0000 0000 8786 803XInstitute for Cardiovascular Immunology, University Hospital Bonn, Bonn, 53127 Germany
| | - Takashi Fujita
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.15090.3d0000 0000 8786 803XInstitute for Cardiovascular Immunology, University Hospital Bonn, Bonn, 53127 Germany
| |
Collapse
|
25
|
Kholodenko IV, Gisina AM, Manukyan GV, Majouga AG, Svirshchevskaya EV, Kholodenko RV, Yarygin KN. Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death. Curr Issues Mol Biol 2022; 44:3428-3443. [PMID: 36005132 PMCID: PMC9406952 DOI: 10.3390/cimb44080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl2 and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
- Correspondence: ; Tel.: +7-(905)7765062; Fax: +7-(499)2450857
| | - Alisa M. Gisina
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| | - Garik V. Manukyan
- Petrovsky Russian Research Center of Surgery, 119991 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Konstantin N. Yarygin
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| |
Collapse
|
26
|
Tuomela K, Ambrose AR, Davis DM. Escaping Death: How Cancer Cells and Infected Cells Resist Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:867098. [PMID: 35401556 PMCID: PMC8984481 DOI: 10.3389/fimmu.2022.867098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic lymphocytes are critical in our immune defence against cancer and infection. Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-death processes and signalling within the target cell. Because of this reliance on an active response from the target cell, each mechanism of cell-mediated killing can be manipulated by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes. This includes resistance to perforin through degradation or reduced pore formation, resistance to granzyme B through inhibition or autophagy, and resistance to death receptors through inhibition of downstream signalling or changes in protein expression. We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and resistance mechanisms against this pathway. Altogether, it is clear that target cells are not passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can significantly constrain immune cell-mediated killing. Understanding these processes of immune evasion may lead to novel ideas for medical intervention.
Collapse
Affiliation(s)
| | | | - Daniel M. Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
27
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
28
|
Gissler MC, Stachon P, Wolf D, Marchini T. The Role of Tumor Necrosis Factor Associated Factors (TRAFs) in Vascular Inflammation and Atherosclerosis. Front Cardiovasc Med 2022; 9:826630. [PMID: 35252400 PMCID: PMC8891542 DOI: 10.3389/fcvm.2022.826630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
TNF receptor associated factors (TRAFs) represent a family of cytoplasmic signaling adaptor proteins that regulate, bundle, and transduce inflammatory signals downstream of TNF- (TNF-Rs), interleukin (IL)-1-, Toll-like- (TLRs), and IL-17 receptors. TRAFs play a pivotal role in regulating cell survival and immune cell function and are fundamental regulators of acute and chronic inflammation. Lately, the inhibition of inflammation by anti-cytokine therapy has emerged as novel treatment strategy in patients with atherosclerosis. Likewise, growing evidence from preclinical experiments proposes TRAFs as potent modulators of inflammation in atherosclerosis and vascular inflammation. Yet, TRAFs show a highly complex interplay between different TRAF-family members with partially opposing and overlapping functions that are determined by the level of cellular expression, concomitant signaling events, and the context of the disease. Therefore, inhibition of specific TRAFs may be beneficial in one condition and harmful in others. Here, we carefully discuss the cellular expression and signaling events of TRAFs and evaluate their role in vascular inflammation and atherosclerosis. We also highlight metabolic effects of TRAFs and discuss the development of TRAF-based therapeutics in the future.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- *Correspondence: Dennis Wolf
| | - Timoteo Marchini
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
29
|
Li Y, Wang H, Zhang Z, Tang C, Zhou X, Mohan C, Wu T. Identification of polo-like kinase 1 as a therapeutic target in murine lupus. Clin Transl Immunology 2022; 11:e1362. [PMID: 35024139 PMCID: PMC8733964 DOI: 10.1002/cti2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/21/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The signalling cascades that contribute to lupus pathogenesis are incompletely understood. We address this by using an unbiased activity‐based kinome screen of murine lupus. Methods An unbiased activity‐based kinome screen (ABKS) of 196 kinases was applied to two genetically different murine lupus strains. Systemic and renal lupus were evaluated following in vivo PLK1blockade. The upstream regulators and downstream targets of PLK1 were also interrogated. Results Multiple signalling cascades were noted to be more active in murine lupus spleens, including PLK1. In vivo administration of a PLK1‐specific inhibitor ameliorated splenomegaly, anti‐dsDNA antibody production, proteinuria, BUN and renal pathology in MRL.lpr mice (P < 0.05). Serum IL‐6, IL‐17 and kidney injury molecule 1 (KIM‐1) were significantly decreased after PLK1 inhibition. PLK1 inhibition reduced germinal centre and marginal zone B cells in the spleen, but changes in T cells were not significant. In vitro, splenocytes were treated with anti‐mouse CD40 Ab or F(ab’)2 fragment anti‐mouse IgM. After 24‐h stimulation, IL‐6 secretion was significantly reduced upon PLK1 blockade, whereas IL‐10 production was significantly increased. The phosphorylation of mTOR was assessed in splenocyte subsets, which revealed a significant change in myeloid cells. PLK1 blockade reduced phosphorylation associated with mTOR signalling, while Aurora‐A emerged as a potential upstream regulator of PLK1. Conclusion The Aurora‐A → PLK1 → mTOR signalling axis may be central in lupus pathogenesis, and emerges as a potential therapeutic target.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Hongting Wang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Zijing Zhang
- Department of Biomedical Engineering University of Houston Houston TX USA.,Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan China
| | - Chenling Tang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Xinjin Zhou
- Department of Pathology Baylor University Medical Center at Dallas Dallas TX USA
| | - Chandra Mohan
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Tianfu Wu
- Department of Biomedical Engineering University of Houston Houston TX USA
| |
Collapse
|
30
|
Ivanisenko NV, Seyrek K, Hillert-Richter LK, König C, Espe J, Bose K, Lavrik IN. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 2021; 8:190-209. [PMID: 34973957 DOI: 10.1016/j.trecan.2021.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
The extrinsic pathway is mediated by death receptors (DRs), including CD95 (APO-1/Fas) or TRAILR-1/2. Defects in apoptosis regulation lead to cancer and other malignancies. The master regulator of the DR networks is the cellular FLICE inhibitory protein (c-FLIP). In addition to its key role in apoptosis, c-FLIP may exert other cellular functions, including control of necroptosis, pyroptosis, nuclear factor κB (NF-κB) activation, and tumorigenesis. To gain further insight into the molecular mechanisms of c-FLIP action in cancer networks, we focus on the structure, isoforms, interactions, and post-translational modifications of c-FLIP. We also discuss various avenues to target c-FLIP in cancer cells for therapeutic benefit.
Collapse
Affiliation(s)
- Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Kakoli Bose
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Inna N Lavrik
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
31
|
Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation. Cell Death Dis 2021; 12:833. [PMID: 34482382 PMCID: PMC8418603 DOI: 10.1038/s41419-021-04126-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/01/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Caspase-8 is a unique member of caspases with a dual role in cell death and survival. Caspase-8 expression is often lost in some tumors, but increased in others, indicating a potential pro-survival function in cancer. By analyzing transcriptome of enzalutamide-resistant prostate cancer cells, we found that resistance was conferred by a mild caspase-8 upregulation that in turn led to NF-κB activation and the subsequent upregulation of the downstream IL-8. Mechanistically, we found that the pro-survival and enzalutamide-resistance-promoting features of caspase-8 were independent of its proteolytic activity, using a catalytically-inactive caspase-8 mutant. We further demonstrated that caspase-8 pro-apoptotic function was inhibited via cFLIP binding. Moreover, high caspase-8 expression was correlated with a worse prognosis in prostate cancer patients. Collectively, our work demonstrates that enzalutamide-resistance is mediated by caspase-8 upregulation and the consequent increase in NF-κB/IL-8 mediated survival signaling, highlighting caspase-8 and NF-κB as potential therapeutic targets to overcome enzalutamide-resistance in CRPC.
Collapse
|
32
|
Chen J, Li J, Jiang H, Yu J, Wang H, Wang N, Chen S, Mo W, Wang P, Tanguay RL, Dong Q, Huang C. Developmental co-exposure of TBBPA and titanium dioxide nanoparticle induced behavioral deficits in larval zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112176. [PMID: 33780780 DOI: 10.1016/j.ecoenv.2021.112176] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Both tetrabromobisphenol A (TBBPA) and titanium dioxide nanoparticle (TiO2 NP) have widespread commercial applications, resulting in their ubiquitous co-presence in the environment and biota. Although environmental chemicals exist as mixtures, toxicity studies are nearly always conducted with single chemicals. Few studies explore potential interactions of different chemical mixtures. In this study, we employ the sensitive developing nerve system in zebrafish to assess the neurotoxicity of TBBPA/TiO2 NP mixtures. Specifically, zebrafish embryos were exposed to solvent control (0.1% DMSO), 2 μM TBBPA, 0.1 mg/L TiO2 NP, and their mixture from 8 to 120 h post fertilization (hpf), and motor/social behavioral assessments were conducted on embryos/larvae at different developmental stages. Our results showed that TBBPA/TiO2 NP single or co-exposures increased spontaneous movement, decreased touch response and swim speed, and affected social behaviors of light/dark preference, shoaling, mirror attack and social contact. In particular, many of these phenotypes were manifested with higher magnitude of changes from the mixture exposure. These behavioral deficits were also accompanied with increased cell death in olfactory region and neuromasts in the lateral line system, increased ROS in gallbladder, pancreas, liver, and intestine, as well as increased lipid peroxidation and decreased ATP levels in whole larval tissue homogenates. Further, genes coding for key cell apoptosis marker and antioxidant enzyme were significantly upregulated by these two chemicals, in particular to their mixture. Interestingly, the co-presence of TBBPA also increased the mean particle size of TiO2 NP in the exposure solutions and the TiO2 NP content in larval tissue. Together, our analysis suggests that TBBPA/TiO2 NP induced behavioral changes may be due to physical accumulation of these two chemicals in the target organs, and TiO2 NP may serve as carriers for increased accumulation of TBBPA. To conclude, we demonstrated that TBBPA/TiO2 NP together cause increased bioaccumulation of TiO2, and heightened responses in behavior, cell apoptosis and oxidative stress. Our findings also highlight the importance of toxicity assessment using chemical mixtures.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Jiani Li
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hao Jiang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jiajian Yu
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongzhu Wang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Nengzhuang Wang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Shan Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wen Mo
- Zhejiang Rehabilitation Medical Center, Hangzhou 310051, PR China
| | - Ping Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, 28645 East Highway 34, Corvallis, OR 97333, United States
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
33
|
Han JH, Park J, Kang TB, Lee KH. Regulation of Caspase-8 Activity at the Crossroads of Pro-Inflammation and Anti-Inflammation. Int J Mol Sci 2021; 22:ijms22073318. [PMID: 33805003 PMCID: PMC8036737 DOI: 10.3390/ijms22073318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022] Open
Abstract
Caspase-8 has been classified as an apoptotic caspase, and its initial definition was an initiator of extrinsic cell death. During the past decade, the concept of caspase-8 functioning has been changed by findings of its additional roles in diverse biological processes. Although caspase-8 was not originally thought to be involved in the inflammation process, many recent works have determined that caspase-8 plays an important role in the regulatory functions of inflammatory processes. In this review, we describe the recent advances in knowledge regarding the manner in which caspase-8 modulates the inflammatory responses concerning inflammasome activation, cell death, and cytokine induction.
Collapse
Affiliation(s)
- Jun-Hyuk Han
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (J.-H.H.); (J.P.); (K.-H.L.)
| | - Jooho Park
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (J.-H.H.); (J.P.); (K.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea
| | - Tae-Bong Kang
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (J.-H.H.); (J.P.); (K.-H.L.)
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea
- Correspondence: ; Tel.: +82-43-840-3904
| | - Kwang-Ho Lee
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (J.-H.H.); (J.P.); (K.-H.L.)
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea
| |
Collapse
|
34
|
MIND bomb 2 prevents RIPK1 kinase activity-dependent and -independent apoptosis through ubiquitylation of cFLIP L. Commun Biol 2021; 4:80. [PMID: 33469115 PMCID: PMC7815719 DOI: 10.1038/s42003-020-01603-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Mind bomb 2 (MIB2) is an E3 ligase involved in Notch signalling and attenuates TNF-induced apoptosis through ubiquitylation of receptor-interacting protein kinase 1 (RIPK1) and cylindromatosis. Here we show that MIB2 bound and conjugated K48– and K63–linked polyubiquitin chains to a long-form of cellular FLICE-inhibitory protein (cFLIPL), a catalytically inactive homologue of caspase 8. Deletion of MIB2 did not impair the TNF-induced complex I formation that mediates NF-κB activation but significantly enhanced formation of cytosolic death-inducing signalling complex II. TNF-induced RIPK1 Ser166 phosphorylation, a hallmark of RIPK1 death-inducing activity, was enhanced in MIB2 knockout cells, as was RIPK1 kinase activity-dependent and -independent apoptosis. Moreover, RIPK1 kinase activity-independent apoptosis was induced in cells expressing cFLIPL mutants lacking MIB2-dependent ubiquitylation. Together, these results suggest that MIB2 suppresses both RIPK1 kinase activity-dependent and -independent apoptosis, through suppression of RIPK1 kinase activity and ubiquitylation of cFLIPL, respectively. Nakabayashi et al find that the E3 ligase MIB2 ubiquitylates the apoptosis-inhibitor cFLIP and that deletion of MIB2 enhances both RIPK1 kinase-dependent and -independent apoptosis through an increase in RIPK1 kinase activity and impairment of ubiquitylation of cFLIPL, respectively.
Collapse
|
35
|
Pharmacological targeting of c-FLIP L and Bcl-2 family members promotes apoptosis in CD95L-resistant cells. Sci Rep 2020; 10:20823. [PMID: 33257694 PMCID: PMC7705755 DOI: 10.1038/s41598-020-76079-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/21/2020] [Indexed: 11/08/2022] Open
Abstract
The development of efficient combinatorial treatments is one of the key tasks in modern anti-cancer therapies. An apoptotic signal can either be induced by activation of death receptors (DR) (extrinsic pathway) or via the mitochondria (intrinsic pathway). Cancer cells are characterized by deregulation of both pathways. Procaspase-8 activation in extrinsic apoptosis is controlled by c-FLIP proteins. We have recently reported the small molecules FLIPinB/FLIPinBγ targeting c-FLIPL in the caspase-8/c-FLIPL heterodimer. These small molecules enhanced caspase-8 activity in the death-inducing signaling complex (DISC), CD95L/TRAIL-induced caspase-3/7 activation and subsequent apoptosis. In this study to increase the pro-apoptotic effects of FLIPinB/FLIPinBγ and enhance its therapeutic potential we investigated costimulatory effects of FLIPinB/FLIPinBγ in combination with the pharmacological inhibitors of the anti-apoptotic Bcl-2 family members such as ABT-263 and S63845. The combination of these inhibitors together with FLIPinB/FLIPinBγ increased CD95L-induced cell viability loss, caspase activation and apoptosis. Taken together, our study suggests new approaches for the development of combinatorial anti-cancer therapies specifically targeting both intrinsic and extrinsic apoptosis pathways.
Collapse
|
36
|
Ivanisenko NV, Lavrik IN. Mathematical Modeling Reveals the Importance of the DED Filament Composition in the Effects of Small Molecules Targeting Caspase-8/c-FLIP L Heterodimer. BIOCHEMISTRY (MOSCOW) 2020; 85:1134-1144. [PMID: 33202199 DOI: 10.1134/s0006297920100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Procaspase-8 activation at the death-inducing signaling complex (DISC) triggers extrinsic apoptotic pathway. Procaspase-8 activation takes place in the death effector domain (DED) filaments and is regulated by c-FLIP proteins, in particular, by the long isoform c-FLIPL. Recently, the first-in-class chemical probe targeting the caspase-8/c-FLIPL heterodimer was reported. This rationally designed small molecule, FLIPin, enhances caspase-8 activity after initial heterodimer processing. Here, we used a kinetic mathematical model to gain an insight into the mechanisms of FLIPin action in a complex with DISC, in particular, to unravel the effects of FLIPin at different stoichiometry and composition of the DED filament. Analysis of this model has identified the optimal c-FLIPL to procaspase-8 ratios in different cellular landscapes favoring the activity of FLIPin. We predicted that the activity FLIPin is regulated via different mechanisms upon c-FLIPL downregulation or upregulation. Our study demonstrates that a combination of mathematical modeling with system pharmacology allows development of more efficient therapeutic approaches and prediction of optimal treatment strategies.
Collapse
Affiliation(s)
- N V Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - I N Lavrik
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, 39106, Germany
| |
Collapse
|
37
|
Ivanisenko NV, Seyrek K, Kolchanov NA, Ivanisenko VA, Lavrik IN. The role of death domain proteins in host response upon SARS-CoV-2 infection: modulation of programmed cell death and translational applications. Cell Death Discov 2020; 6:101. [PMID: 33072409 PMCID: PMC7547561 DOI: 10.1038/s41420-020-00331-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
The current pandemic of novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) poses a significant global public health threat. While urgent regulatory measures in control of the rapid spread of this virus are essential, scientists around the world have quickly engaged in this battle by studying the molecular mechanisms and searching for effective therapeutic strategies against this deadly disease. At present, the exact mechanisms of programmed cell death upon SARS-CoV-2 infection remain to be elucidated, though there is increasing evidence suggesting that cell death pathways play a key role in SARS-CoV-2 infection. There are several types of programmed cell death, including apoptosis, pyroptosis, and necroptosis. These distinct programs are largely controlled by the proteins of the death domain (DD) superfamily, which play an important role in viral pathogenesis and host antiviral response. Many viruses have acquired the capability to subvert the program of cell death and evade the host immune response, mainly by virally encoded gene products that control cell signaling networks. In this mini-review, we will focus on SARS-CoV-2, and discuss the implication of restraining the DD-mediated signaling network to potentially suppress viral replication and reduce tissue damage.
Collapse
Affiliation(s)
- Nikita V. Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Kamil Seyrek
- Translational Inflammation Research, CDS, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikolay A. Kolchanov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vladimir A. Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Inna N. Lavrik
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Translational Inflammation Research, CDS, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
38
|
Liu L, Lalaoui N. 25 years of research put RIPK1 in the clinic. Semin Cell Dev Biol 2020; 109:86-95. [PMID: 32938551 DOI: 10.1016/j.semcdb.2020.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of inflammation. To warrant cell survival and appropriate immune responses, RIPK1 is post-translationally regulated by ubiquitylations, phosphorylations and caspase-8-mediated cleavage. Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1 and can cause inflammatory diseases in humans. Conversely, activation of RIPK1 cytotoxicity can be advantageous for cancer treatment. Small molecules targeting RIPK1 are under development for the treatment of cancer, inflammatory and neurogenerative disorders. We will discuss the molecular mechanisms controlling the functions of RIPK1, its pathologic role in humans and the therapeutic opportunities in targeting RIPK1, specifically in the context of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
39
|
Thapa B, Kc R, Uludağ H. TRAIL therapy and prospective developments for cancer treatment. J Control Release 2020; 326:335-349. [PMID: 32682900 DOI: 10.1016/j.jconrel.2020.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Tumor Necrosis Factor (TNF) Related Apoptosis-Inducing Ligand (TRAIL), an immune cytokine of TNF-family, has received much attention in late 1990s as a potential cancer therapeutics due to its selective ability to induce apoptosis in cancer cells. TRAIL binds to cell surface death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) and facilitates formation of death-inducing signaling complex (DISC), eventually activating the p53-independent apoptotic cascade. This unique mechanism makes the TRAIL a potential anticancer therapeutic especially for p53-mutated tumors. However, recombinant human TRAIL protein (rhTRAIL) and TRAIL-R agonist monoclonal antibodies (mAb) failed to exert robust anticancer activities due to inherent and/or acquired resistance, poor pharmacokinetics and weak potencies for apoptosis induction. To get TRAIL back on track as a cancer therapeutic, multiple strategies including protein modification, combinatorial approach and TRAIL gene therapy are being extensively explored. These strategies aim to enhance the half-life and bioavailability of TRAIL and synergize with TRAIL action ultimately sensitizing the resistant and non-responsive cells. We summarize emerging strategies for enhanced TRAIL therapy in this review and cover a wide range of recent technologies that will provide impetus to rejuvenate the TRAIL therapeutics in the clinical realm.
Collapse
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Remant Kc
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
40
|
Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol 2020; 109:121-141. [PMID: 32531842 DOI: 10.1002/jlb.3mr0420-305r] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Caspase-8 is an apical caspase involved in the programmed form of cell death called apoptosis that is critically important for mammalian development and immunity. Apoptosis was historically described as immunologically silent in contrast to other types of programmed cell death such as necroptosis or pyroptosis. Recent reports suggest considerable crosstalk between these different forms of cell death. It is becoming increasingly clear that caspase-8 has many non-apoptotic roles, participating in multiple processes including regulation of necroptosis (mediated by receptor-interacting serine/threonine kinases, RIPK1-RIPK3), inflammatory cytokine expression, inflammasome activation, and cleavage of IL-1β and gasdermin D, and protection against shock and microbial infection. In this review, we discuss the involvement of caspase-8 in cell death and inflammation and highlight its role in innate immune responses and in the relationship between different forms of cell death. Caspase-8 is one of the central components in this type of crosstalk.
Collapse
Affiliation(s)
- Pontus Orning
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Egil Lien
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
41
|
Donado CA, Cao AB, Simmons DP, Croker BA, Brennan PJ, Brenner MB. A Two-Cell Model for IL-1β Release Mediated by Death-Receptor Signaling. Cell Rep 2020; 31:107466. [PMID: 32268091 PMCID: PMC7192215 DOI: 10.1016/j.celrep.2020.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 01/22/2023] Open
Abstract
Interleukin-1β (IL-1β) is a key orchestrator of anti-microbial immunity whose secretion is typically dependent on activation of inflammasomes. However, many pathogens have evolved strategies to evade inflammasome activation. Here we describe an alternative, two-cell model for IL-1β release where invariant natural killer T (iNKT) cells use the death receptor pathway to instruct antigen-presenting cells to secrete IL-1β. Following cognate interactions with TLR-primed bone marrow-derived dendritic cells (BMDCs), iNKT cells rapidly translocate intracellular Fas ligand to the surface to engage Fas on BMDCs. Fas ligation activates a caspase-8-dependent signaling cascade in BMDCs that drives IL-1β release largely independent of inflammasomes. The apoptotic program initiated by Fas ligation rapidly transitions into a pyroptosis-like form of cell death mediated by gasdermin D. Together, our findings support a two-cell model for IL-1β secretion that may supersede inflammasome activation when cytosolic triggers fail.
Collapse
Affiliation(s)
- Carlos A Donado
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Anh B Cao
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Daimon P Simmons
- Department of Pathology, Brigham and Women's and Harvard Medical School, Boston, MA 02115, USA
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Smyth P, Sessler T, Scott CJ, Longley DB. FLIP(L): the pseudo-caspase. FEBS J 2020; 287:4246-4260. [PMID: 32096279 PMCID: PMC7586951 DOI: 10.1111/febs.15260] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Possessing structural homology with their active enzyme counterparts but lacking catalytic activity, pseudoenzymes have been identified for all major enzyme groups. Caspases are a family of cysteine‐dependent aspartate‐directed proteases that play essential roles in regulating cell death and inflammation. Here, we discuss the only human pseudo‐caspase, FLIP(L), a paralog of the apoptosis‐initiating caspases, caspase‐8 and caspase‐10. FLIP(L) has been shown to play a key role in regulating the processing and activity of caspase‐8, thereby modulating apoptotic signaling mediated by death receptors (such as TRAIL‐R1/R2), TNF receptor‐1 (TNFR1), and Toll‐like receptors. In this review, these canonical roles of FLIP(L) are discussed. Additionally, a range of nonclassical pseudoenzyme roles are described, in which FLIP(L) functions independently of caspase‐8. These nonclassical pseudoenzyme functions enable FLIP(L) to play key roles in the regulation of a wide range of biological processes beyond its canonical roles as a modulator of cell death.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Tamas Sessler
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
43
|
Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer 2020; 1873:188357. [PMID: 32147543 DOI: 10.1016/j.bbcan.2020.188357] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is a cysteine - aspartate specific protease that classically triggers the extrinsic apoptotic pathway, in response to the activation of cell surface Death Receptors (DRs) like FAS, TRAIL-R and TNF-R. Besides it's roles in triggering death receptor-mediated apoptosis, Caspase-8 has also been implicated in the onsets of anoikis, autophagy and pyroptosis. Furthermore, Caspase-8 also plays a crucial pro-survival function by inhibiting an alternative form of programmed cell death called necroptosis. Low expression levels of pro-Caspase-8 is therefore associated with the malignant transformation of cancers. However, the long-held notion that pro-Caspase-8 expression/activity is generally lost in most cancers, thereby contributing to apoptotic escape and enhanced resistance to anti-cancer therapeutics, has been found to be true for only a minority of cancers types. In the majority of cases, pro-Caspase-8 expression is maintained and sometimes elevated, while it's apoptotic activity is regulated through different mechanisms. This supports the notion that the non-apoptotic functions of Caspase-8 offer growth advantage in these cancer types and have, therefore, gained renewed interest in the recent years. In light of these reasons, a number of therapeutic approaches have been employed, with the intent of targeting pro-Caspase-8 in cancer cells. In this review, we would attempt to discuss - the classic roles of Caspase-8 in initiating apoptosis; it's non-apoptotic functions; it's the clinical significance in different cancer types; and the therapeutic applications exploiting the ability of pro-Caspase-8 to regulate various cellular functions.
Collapse
|
44
|
Humphreys LM, Fox JP, Higgins CA, Majkut J, Sessler T, McLaughlin K, McCann C, Roberts JZ, Crawford NT, McDade SS, Scott CJ, Harrison T, Longley DB. A revised model of TRAIL-R2 DISC assembly explains how FLIP(L) can inhibit or promote apoptosis. EMBO Rep 2020; 21:e49254. [PMID: 32009295 PMCID: PMC7054686 DOI: 10.15252/embr.201949254] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 11/23/2022] Open
Abstract
The long FLIP splice form FLIP(L) can act as both an inhibitor and promoter of caspase‐8 at death‐inducing signalling complexes (DISCs) formed by death receptors such as TRAIL‐R2 and related intracellular complexes such as the ripoptosome. Herein, we describe a revised DISC assembly model that explains how FLIP(L) can have these opposite effects by defining the stoichiometry (with respect to caspase‐8) at which it converts from being anti‐ to pro‐apoptotic at the DISC. We also show that in the complete absence of FLIP(L), procaspase‐8 activation at the TRAIL‐R2 DISC has significantly slower kinetics, although ultimately the extent of apoptosis is significantly greater. This revised model of DISC assembly also explains why FLIP's recruitment to the TRAIL‐R2 DISC is impaired in the absence of caspase‐8 despite showing that it can interact with the DISC adaptor protein FADD and why the short FLIP splice form FLIP(S) is the more potent inhibitor of DISC‐mediated apoptosis.
Collapse
Affiliation(s)
- Luke M Humphreys
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Jennifer P Fox
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Catherine A Higgins
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Joanna Majkut
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Tamas Sessler
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Kirsty McLaughlin
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Christopher McCann
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Jamie Z Roberts
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Nyree T Crawford
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Simon S McDade
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Christopher J Scott
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Timothy Harrison
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
45
|
Ruder B, Günther C, Stürzl M, Neurath MF, Cesarman E, Ballon G, Becker C. Viral FLIP blocks Caspase-8 driven apoptosis in the gut in vivo. PLoS One 2020; 15:e0228441. [PMID: 31999759 PMCID: PMC6992192 DOI: 10.1371/journal.pone.0228441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/15/2020] [Indexed: 01/01/2023] Open
Abstract
A strict cell death control in the intestinal epithelium is indispensable to maintain barrier integrity and homeostasis. In order to achieve a balance between cell proliferation and cell death, a tight regulation of Caspase-8, which is a key player in controlling apoptosis, is required. Caspase-8 activity is regulated by cellular FLIP proteins. These proteins are expressed in different isoforms (cFLIPlong and cFLIPshort) which determine cell death and survival. Interestingly, several viruses encode FLIP proteins, homologous to cFLIPshort, which are described to regulate Caspase-8 and the host cell death machinery. In the current study a mouse model was generated to show the impact of viral FLIP (vFLIP) from Kaposi’s Sarcoma-associated Herpesvirus (KSHV)/ Human Herpesvirus-8 (HHV-8) on cell death regulation in the gut. Our results demonstrate that expression of vFlip in intestinal epithelial cells suppressed cFlip expression, but protected mice from lethality, tissue damage and excessive apoptotic cell death induced by genetic cFlip deletion. Finally, our model shows that vFlip expression decreases cFlip mediated Caspase-8 activation in intestinal epithelial cells. In conclusion, our data suggests that viral FLIP neutralizes and compensates for cellular FLIP, efficiently counteracting host cell death induction and facilitating further propagation in the host organism.
Collapse
Affiliation(s)
- Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, United States of America
| | - Gianna Ballon
- Department of Pathology and Laboratory Services, Cooper University Health Care, Camden, NY, United States of America
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
46
|
Hillert LK, Ivanisenko NV, Busse D, Espe J, König C, Peltek SE, Kolchanov NA, Ivanisenko VA, Lavrik IN. Dissecting DISC regulation via pharmacological targeting of caspase-8/c-FLIP L heterodimer. Cell Death Differ 2020; 27:2117-2130. [PMID: 31959913 DOI: 10.1038/s41418-020-0489-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 11/09/2022] Open
Abstract
Pharmacological targeting via small molecule-based chemical probes has recently acquired an emerging importance as a valuable tool to delineate molecular mechanisms. Induction of apoptosis via CD95/Fas and TRAIL-R1/2 is triggered by the formation of the death-inducing signaling complex (DISC). Caspase-8 activation at the DISC is largely controlled by c-FLIP proteins. However molecular mechanisms of this control have just started to be uncovered. In this study we report the first-in-class chemical probe targeting c-FLIPL in the heterodimer caspase-8/c-FLIPL. This rationally designed small molecule was aimed to imitate the closed conformation of the caspase-8 L2' loop and thereby increase caspase-8 activity after initial processing of the heterodimer. In accordance with in silico predictions, this small molecule enhanced caspase-8 activity at the DISC, CD95L/TRAIL-induced caspase activation, and subsequent apoptosis. The generated computational model provided further evidence for the proposed effects of the small molecule on the heterodimer caspase-8/c-FLIPL. In particular, the model has demonstrated that boosting caspase-8 activity by the small molecule at the early time points after DISC assembly is crucial for promoting apoptosis induction. Taken together, our study allowed to target the heterodimer caspase-8/c-FLIPL and get new insights into molecular mechanisms of its activation.
Collapse
Affiliation(s)
- Laura K Hillert
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Denise Busse
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Sergey E Peltek
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Nikolai A Kolchanov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Vladimir A Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
47
|
Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly. Oncogene 2019; 39:1756-1772. [PMID: 31740779 DOI: 10.1038/s41388-019-1100-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway.
Collapse
|
48
|
RIPK1 Mediates TNF-Induced Intestinal Crypt Apoptosis During Chronic NF-κB Activation. Cell Mol Gastroenterol Hepatol 2019; 9:295-312. [PMID: 31606566 PMCID: PMC6957844 DOI: 10.1016/j.jcmgh.2019.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Tumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- κB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice. METHODS Human IBD specimens were stained for p65 and cleaved caspase-3. C57BL/6 mice with constitutively active IKKβ in IEC (Ikkβ(EE)IEC), Ripk1D138N/D138N knockin mice, and Ripk3-/- mice were injected with TNF or lipopolysaccharide. Enteroids were also isolated from these mice and challenged with TNF with or without RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole. Ripoptosome-mediated caspase-8 activation was assessed by immunoprecipitation. RESULTS NF-κB activation in human IBD correlated with appearance of cleaved caspase-3. Congruently, unlike normal mouse IECs that are TNF-resistant, IECs in Ikkβ(EE)IEC mice and enteroids were susceptible to TNF-dependent apoptosis, which depended on the protein kinase function of RIPK1. Constitutively active IKKβ facilitated ripoptosome formation, a RIPK1 signaling complex that mediates caspase-8 activation by TNF. Butylated hydroxyanisole treatment and RIPK1 inhibitors attenuated TNF-induced and ripoptosome-mediated caspase-8 activation and IEC death in vitro and in vivo. CONCLUSIONS Contrary to common expectations, chronic NF-κB activation induced intestinal crypt apoptosis after TNF stimulation, resulting in severe mucosal erosion. RIPK1 kinase inhibitors selectively inhibited TNF destructive properties while preserving its survival and proliferative properties, which do not require RIPK1 kinase activity. RIPK1 kinase inhibition could be a potential treatment for IBD.
Collapse
|
49
|
Kreckel J, Anany MA, Siegmund D, Wajant H. TRAF2 Controls Death Receptor-Induced Caspase-8 Processing and Facilitates Proinflammatory Signaling. Front Immunol 2019; 10:2024. [PMID: 31555268 PMCID: PMC6727177 DOI: 10.3389/fimmu.2019.02024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) knockout (KO) cells were generated to investigate the role of TRAF2 in signaling by TNFR1 and the CD95-type death receptors (DRs) TRAILR1/2 and CD95. To prevent negative selection effects arising from the increased cell death sensitivity of TRAF2-deficient cells, cell lines were used for the generation of the TRAF2 KO variants that were protected from DR-induced apoptosis downstream of caspase-8 activation. As already described in the literature, TRAF2 KO cells displayed enhanced constitutive alternative NFκB signaling and reduced TNFR1-induced activation of the classical NFκB pathway. There was furthermore a significant but only partial reduction in CD95-type DR-induced upregulation of the proinflammatory NFκB-regulated cytokine interleukin-8 (IL8), which could be reversed by reexpression of TRAF2. In contrast, expression of the TRAF2-related TRAF1 protein failed to functionally restore TRAF2 deficiency. TRAF2 deficiency resulted furthermore in enhanced procaspase-8 processing by DRs, but this surprisingly came along with a reduction in net caspase-8 activity. In sum, our data argue for (i) a non-obligate promoting function of TRAF2 in proinflammatory DR signaling and (ii) a yet unrecognized stabilizing effect of TRAF2 on caspase-8 activity.
Collapse
Affiliation(s)
- Jennifer Kreckel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mohammed A Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Division of Genetic Engineering and Biotechnology, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
50
|
Garcia-Carbonell R, Yao SJ, Das S, Guma M. Dysregulation of Intestinal Epithelial Cell RIPK Pathways Promotes Chronic Inflammation in the IBD Gut. Front Immunol 2019; 10:1094. [PMID: 31164887 PMCID: PMC6536010 DOI: 10.3389/fimmu.2019.01094] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are common intestinal bowel diseases (IBD) characterized by intestinal epithelial injury including extensive epithelial cell death, mucosal erosion, ulceration, and crypt abscess formation. Several factors including activated signaling pathways, microbial dysbiosis, and immune deregulation contribute to disease progression. Although most research efforts to date have focused on immune cells, it is becoming increasingly clear that intestinal epithelial cells (IEC) are important players in IBD pathogenesis. Aberrant or exacerbated responses to how IEC sense IBD-associated microbes, respond to TNF stimulation, and regenerate and heal the injured mucosa are critical to the integrity of the intestinal barrier. The role of several genes and pathways in which single nucleotide polymorphisms (SNP) showed strong association with IBD has recently been studied in the context of IEC. In patients with IBD, it has been shown that the expression of specific dysregulated genes in IECs plays an important role in TNF-induced cell death and microbial sensing. Among them, the NF-κB pathway and its target gene TNFAIP3 promote TNF-induced and receptor interacting protein kinase (RIPK1)-dependent intestinal epithelial cell death. On the other hand, RIPK2 functions as a key signaling protein in host defense responses induced by activation of the cytosolic microbial sensors nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1 and NOD2). The RIPK2-mediated signaling pathway leads to the activation of NF-κB and MAP kinases that induce autophagy following infection. This article will review these dysregulated RIPK pathways in IEC and their role in promoting chronic inflammation. It will also highlight future research directions and therapeutic approaches involving RIPKs in IBD.
Collapse
Affiliation(s)
| | - Shih-Jing Yao
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|