1
|
Wu Y, Lin R, Yuan Q, Sun Y, Yuan Y, Jiang T, Jiang J, Mu P, Wen J, Deng Y. Mechanistic insights into deoxynivalenol-Induced hepatic cholestasis via IRE1α/HNF1α/FXR signaling dysregulation in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 301:118489. [PMID: 40513317 DOI: 10.1016/j.ecoenv.2025.118489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/25/2025] [Accepted: 06/06/2025] [Indexed: 06/16/2025]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin ubiquitously contaminating agricultural commodities, foodstuffs, and water systems, poses significant health risks to humans and livestock. As the primary detoxification organ, the liver exhibits marked susceptibility to DON-induced toxicity. Our study demonstrated that DON triggers hepatocellular injury by disrupting bile acid (BA) homeostasis and activating pro-inflammatory cascades. In murine models, DON exposure significantly elevated systemic and intrahepatic total bile acid (TBA) levels while upregulating pro-inflammatory cytokine expression. Notably, the accumulation of conjugated BAs and transcriptional dysregulation of BA-metabolizing genes identified farnesoid X receptor (FXR) suppression as the central mechanism driving DON-mediated cholestasis. Mechanistically, DON activates the Inositol-Requiring Enzyme 1α (IRE1α) branch of the unfolded protein response, leading to hepatic nuclear factor 1α (HNF1α) suppression via RNase-dependent mRNA degradation. This HNF1α downregulation directly attenuates FXR transcription, defining a novel IRE1α-HNF1α-FXR signaling axis in cholestatic pathogenesis. Pharmacological targeting of FXR with GW4064 or inhibition of IRE1α with KIRA6 effectively ameliorated DON-induced cholestasis and hepatocellular damage, validating this axis as a therapeutic target. These findings delineate the molecular crosstalk between endoplasmic reticulum stress and nuclear receptor signaling in mycotoxin hepatotoxicity and establish a mechanistic framework for mitigating DON contamination risks. By elucidating IRE1α's regulatory role and FXR's function in BA homeostasis, this study provides a foundation for developing interventions against foodborne toxicant-induced liver pathologies.
Collapse
Affiliation(s)
- Yuting Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Ruqin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Qianqian Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yu Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiwen Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Tianqing Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China.
| |
Collapse
|
2
|
Miyata M, Maeno K, Takagi R, Sugiura Y. Sodium alginate improves lipid disruption and alters the composition of the gut microbiota in farnesoid X receptor-null mice. Int J Food Sci Nutr 2025; 76:304-314. [PMID: 40024913 DOI: 10.1080/09637486.2025.2471106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Seaweed-derived dietary fibre sodium alginate (SA) has been shown to present with health benefits in food-derived disease models. To determine whether SA improves the disease rather than merely suppressing its progression, we assessed its effects using farnesoid X receptor (FXR)-deficient mice to provide a model of advanced hyperlipidaemia. Fxr-null mice were fed with a 5% SA-supplemented diet for nine weeks and showed significant decreases in the levels of liver triglycerides (p < 0.05), total cholesterol (p < 0.05), serum low-density lipoprotein-cholesterol (p < 0.001). The expression levels of fatty acid-synthesizing genes (Fas and Scd1) and cholesterol-metabolizing genes (Hmgcr, Hmgcs, and Abca1), were significantly reduced. Furthermore, the SA supplementation has altered the gut microbiota and significantly increased the abundance of the genus Oscillospira (p < 0.001) and Parabacteroides (p < 0.01). These results suggest that SA improves lipid disruption and influences the composition of the gut microbiota in the Fxr-null mice.
Collapse
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Kouhei Maeno
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Reina Takagi
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
3
|
Xiong Q, Zhu Z, Li T, Li X, Zhou Z, Chao Y, Yang C, Feng S, Qu Q, Li D. Molecular architecture of human LYCHOS involved in lysosomal cholesterol signaling. Nat Struct Mol Biol 2025; 32:905-913. [PMID: 39824977 DOI: 10.1038/s41594-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Abstract
Lysosomal membrane protein LYCHOS (lysosomal cholesterol signaling) translates cholesterol abundance to mammalian target of rapamycin activation. Here we report the 2.11-Å structure of human LYCHOS, revealing a unique fusion architecture comprising a G-protein-coupled receptor (GPCR)-like domain and a transporter domain that mediates homodimer assembly. The NhaA-fold transporter harbors a previously uncharacterized intramembrane Na+ pocket. The GPCR-like domain is stabilized, by analogy to canonical GPCRs, in an inactive state through 'tethered antagonism' by a lumenal loop and strong interactions at the cytosol side preventing the hallmark swing of the sixth transmembrane helix seen in active GPCRs. A cholesterol molecule and an associated docosahexaenoic acid (DHA)-phospholipid are entrapped between the transporter and GPCR-like domains, with the DHA-phospholipid occupying a pocket previously implicated in cholesterol sensing, indicating inter-domain coupling via dynamic lipid-protein interactions. Our work provides a high-resolution framework for functional investigations of the understudied LYCHOS protein.
Collapse
Affiliation(s)
- Qi Xiong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Zhini Zhu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Tingting Li
- Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaotian Li
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zixuan Zhou
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yulin Chao
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Chuanhui Yang
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Suihan Feng
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Qianhui Qu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
| | - Dianfan Li
- Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
4
|
Tang WZ, Huang KJ, Li X, Chen Y, Wang L, Wang YX, Tang Y, Deng BY, Liu TH, Lan X. Dose-response association between OGTT and adverse perinatal outcomes after IVF treatment: A cohort study based on a twin population. J Endocrinol Invest 2025:10.1007/s40618-025-02585-6. [PMID: 40252187 DOI: 10.1007/s40618-025-02585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/05/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Investigate the association between Oral Glucose Tolerance Test (OGTT) after in vitro fertilization (IVF) treatment and adverse maternal and neonatal outcomes in twin pregnancies. METHODS This retrospective study encompassed 2,541 twin pregnancies conceived through IVF treatment. Adverse maternal and neonatal outcomes were compared across different subgroups based on individual and combined OGTT classifications. A Spearman correlation regression model examined associations between OGTT levels at different time points and parameters such as gestational age, birth weight, and length. Subsequently, a Logistic regression model with restricted cubic splines (RCS) explored the relationships between OGTT levels at different time points and adverse pregnancy outcomes. Ultimately, nine types of machine learning models were developed using OGTT glucose values at different times to predict the risk of adverse pregnancy outcomes. RESULTS In subgroup analysis based on individual OGTT diagnosis, three time points were examined: fasting glucose (OGTT0), 1-hour post-glucose (OGTT1), and 2-hour post-glucose (OGTT2). OGTT0 ≥ 5.1 mmol/L was significantly associated with increased risks of ICP and neonatal hypoglycemia (p = 0.031; p = 0.022). OGTT1 ≥ 10 mmol/L correlated with higher risks of ICP and neonatal hyperbilirubinemia (p = 0.001; p = 0.002). OGTT2 ≥ 8.5 mmol/L was also linked to neonatal hyperbilirubinemia (p < 0.001). In combined impaired OGTT subgroups, the impaired fasting glucose (IFG) group had a higher incidence of neonatal hypoglycemia than the impaired glucose tolerance (IGT) group and IFG & IGT group, but a lower risk of neonatal hyperbilirubinemia. OGTT2 was negatively correlated with gestational age at delivery (β = - 0.08, p = 0.018), and both OGTT1 and OGTT2 were negatively correlated with neonatal birth weight (β = - 10.54, p = 0.008; β = - 15.04, p < 0.001), as well as OGTT2 with birth length (β = - 0.16, p = 0.009). The RCS logistic regression model indicated that the increase OGTT values was associated with the ICP risk, and the relationship between OGTT2 and neonatal hyperbilirubinemia was U-shaped. Among the various machine learning models predicting adverse outcomes, RandomForest exhibited superior performance. CONCLUSION OGTT values in twin pregnancies under IVF treatment are closely linked to adverse maternal and neonatal outcomes, with post-load glucose levels potentially serving as an early biomarker for identifying poorer outcomes. The inflection points in the RCS suggest a new indication point for the association between OGTT and adverse pregnancy outcomes in twin pregnancies conceived through IVF.
Collapse
Affiliation(s)
- Wei-Zhen Tang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Kang-Jin Huang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xia Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- The Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Ya Chen
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- The Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Lan Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Ying-Xiong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- The Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Bo-Yuan Deng
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- The Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Medical University, Box 197, No.1 Yixueyuan Rd, Chongqing, 400016, PR China.
| | - Xia Lan
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
- The Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Medical University, Box 197, No.1 Yixueyuan Rd, Chongqing, 400016, PR China.
| |
Collapse
|
5
|
Shi J, Cui J, Zheng T, Han X, Wang B, Wang W, Zhu C, Fang C, Zhou X, Cong N, Yin X, Yang Q. Comparative effects of aerobic and resistance exercise on bile acid profiles and liver function in patients with non-alcoholic fatty liver disease. BMC Gastroenterol 2025; 25:239. [PMID: 40211236 PMCID: PMC11983906 DOI: 10.1186/s12876-025-03826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
OBJECTIVE Our research aims to explore the effects of different exercise on liver function and bile acid in patients with non-alcoholic fatty liver disease (NAFLD), to identify the most beneficial exercise modalities for patients with NAFLD. DESIGN Participants were randomly divided into four groups: control group, aerobic training group, resistance training group, and aerobic training combined with resistance training group. Participants underwent assessments of body shape, blood lipid, glucose levels and liver function biochemical parameters. Their bile acid levels were measured using the LC-MS/MS system. Changes in these parameters before and after the intervention and differences between groups were analyzed. RESULTS Participants in the AT group showed significant improvements in liver function parameters. Additionally, levels of total bile acids and ursodeoxycholic acid significantly increased. The RT group and AT + RT group also showed improvements in body shape and liver function parameters, but the improvements in these groups were not as pronounced as those in the AT group. CONCLUSIONS Aerobic exercise is the most beneficial modality for young patients with NAFLD, as it significantly improves body shape and liver function while also reducing blood lipid and glucose levels. TRIAL REGISTRATION Clinical trial number NCT06338449, registered on March 22, 2024.
Collapse
Affiliation(s)
- Jiasen Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Junchao Cui
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Tianlei Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xiaoping Han
- Department of Campus Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenjing Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chenggang Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chenle Fang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Ning Cong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Qiang Yang
- Department of Physical Education, Xuzhou Medical University, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
6
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
7
|
Ferraz ÁAB, Vianna CFM, Henriques DF, Gorgulho GCF, Santa-Cruz F, Siqueira LT, Kreimer F. The Impact of Cholecystectomy on the Metabolic Profile of Patients Previously Submitted to Bariatric Surgery. Surg Laparosc Endosc Percutan Tech 2025; 35:e1348. [PMID: 39618187 DOI: 10.1097/sle.0000000000001348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To evaluate the influence of late cholecystectomy following bariatric surgery on the postoperative evolution of weight loss and biochemical, metabolic, and micronutrient parameters. METHODS A retrospective study that assessed 86 patients who underwent cholecystectomy after at least 18 months of bariatric surgery. The analyzed variables included demographic data, comorbidities, weight loss, and biochemical, metabolic, and micronutrient parameters. RESULTS Among the analyzed patients, 20 underwent gastric bypass (GB) and 66 underwent sleeve gastrectomy (SG). The GB group comprised 55% of women, with a mean age of 54.4 years and a mean preoperative body mass index (BMI) of 29.2 kg/m 2 . The mean time elapsed between GB and cholecystectomy was 118.3±43.9 months. The sample of SG comprised 83.3% of women, with a mean age of 41.1 years and a mean preoperative BMI of 28.7 kg/m 2 . The mean time elapsed between SG and cholecystectomy was 26.1±17.5 months. Both SG and GB groups showed a reduction in the mean BMI, but it was not statistically significant after cholecystectomy. In the metabolic, biochemical, and micronutrient evaluation, there was no statistically significant difference, except in the GB group, where an increase in vitamin D was observed after cholecystectomy with statistical significance. CONCLUSION Cholecystectomy does not negatively impact the clinical and anthropometric evolution of patients previously submitted to bariatric surgery.
Collapse
Affiliation(s)
| | - Cassio F M Vianna
- Medical School, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Qu J, Meng F, Wang Z, Xu W. Unlocking Cardioprotective Potential of Gut Microbiome: Exploring Therapeutic Strategies. J Microbiol Biotechnol 2024; 34:2413-2424. [PMID: 39467697 PMCID: PMC11729380 DOI: 10.4014/jmb.2405.05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 10/30/2024]
Abstract
The microbial community inhabiting the human gut resembles a bustling metropolis, wherein beneficial bacteria play pivotal roles in regulating our bodily functions. These microorganisms adeptly break down resilient dietary fibers to fuel our energy, synthesize essential vitamins crucial for our well-being, and maintain the delicate balance of our immune system. Recent research indicates a potential correlation between alterations in the composition and activities of these gut microbes and the development of coronary artery disease (CAD). Consequently, scientists are delving into the intriguing realm of manipulating these gut inhabitants to potentially mitigate disease risks. Various promising strategies have emerged in this endeavor. Studies have evidenced that probiotics can mitigate inflammation and enhance the endothelial health of our blood vessels. Notably, strains such as Lactobacilli and Bifidobacteria have garnered substantial attention in both laboratory settings and clinical trials. Conversely, prebiotics exhibit anti-inflammatory properties and hold potential in managing conditions like hypertension and hypercholesterolemia. Synbiotics, which synergistically combine probiotics and prebiotics, show promise in regulating glucose metabolism and abnormal lipid profiles. However, uncertainties persist regarding postbiotics, while antibiotics are deemed unsuitable due to their potential adverse effects. On the other hand, TMAO blockers, such as 3,3-dimethyl-1-butanol, demonstrate encouraging outcomes in laboratory experiments owing to their anti-inflammatory and tissue-protective properties. Moreover, fecal transplantation, despite yielding mixed results, warrants further exploration and refinement. In this comprehensive review, we delve into the intricate interplay between the gut microbiota and CAD, shedding light on the multifaceted approaches researchers are employing to leverage this understanding for therapeutic advancements.
Collapse
Affiliation(s)
- Jun Qu
- Department of Internal Medicine-Cardiovascular, YanTai YuHuangDing Hospital, Yantai, Shandong, P.R. China
| | - Fantao Meng
- Department of Internal Medicine-Cardiovascular, LinYi Central Hospital, LinYi, Shandong, P.R. China
| | - Zhen Wang
- Department of Internal Medicine-Cardiovascular, YanTai YuHuangDing Hospital, Yantai, Shandong, P.R. China
| | - Wenhao Xu
- Department of Internal Medicine-Cardiovascular, YanTai YuHuangDing Hospital, Yantai, Shandong, P.R. China
| |
Collapse
|
9
|
Ramachandran P, Brice M, Sutherland EF, Hoy AM, Papachristoforou E, Jia L, Turner F, Kendall TJ, Marwick JA, Carragher NO, Oro D, Feigh M, Leeming DJ, Nielsen MJ, Karsdal MA, Hartmann N, Erickson M, Adorini L, Roth JD, Fallowfield JA. Aberrant basement membrane production by HSCs in MASLD is attenuated by the bile acid analog INT-767. Hepatol Commun 2024; 8:e0574. [PMID: 39585303 PMCID: PMC11596521 DOI: 10.1097/hc9.0000000000000574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/07/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The farnesoid X receptor (FXR) is a leading therapeutic target for metabolic dysfunction-associated steatohepatitis (MASH)-related fibrosis. INT-767, a potent FXR agonist, has shown promise in preclinical models. We aimed to define the mechanisms of INT-767 activity in experimental MASH and dissect cellular and molecular targets of FXR agonism in human disease. METHODS Leptin-deficient ob/ob mice were fed a MASH-inducing diet for 15 weeks before the study started. After baseline liver biopsy and stratification, mice were allocated to INT-767 (10 mg/kg/d) or vehicle treatment for 8 weeks, either alongside an ongoing MASH diet (progression) or following conversion to normal chow (reversal). Effects on extracellular matrix remodeling were analyzed histologically and by RNA-sequencing. Serum fibrosis biomarkers were measured longitudinally. Human liver samples were investigated using bulk and single-cell RNA-sequencing, histology, and cell culture assays. RESULTS INT-767 treatment was antifibrotic during MASH progression but not reversal, attenuating the accumulation of type I collagen and basement membrane proteins (type IV collagen and laminin). Circulating levels of PRO-C4, a type IV collagen formation marker, were reduced by INT-767 treatment and correlated with fibrosis. Expression of basement membrane constituents also correlated with fibrosis severity and adverse clinical outcomes in human MASH. Single-cell RNA-sequencing analysis of mouse and human livers, and immunofluorescence staining colocalized FXR and basement membrane expression to myofibroblasts within the fibrotic niche. Treatment of culture-activated primary human HSCs with INT-767 decreased expression of basement membrane components. CONCLUSIONS These findings highlight the importance of basement membrane remodeling in MASH pathobiology and as a source of circulating biomarkers. Basement membrane deposition by activated HSCs is abrogated by INT-767 treatment and measurement of basement membrane molecules should be included when determining the therapeutic efficacy of FXR agonists.
Collapse
Affiliation(s)
- Prakash Ramachandran
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Madara Brice
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Elena F. Sutherland
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna M. Hoy
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Eleni Papachristoforou
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Li Jia
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Frances Turner
- Edinburgh Genomics, University of Edinburgh, Edinburgh, UK
| | - Timothy J. Kendall
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - John A. Marwick
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | - Mary Erickson
- Intercept Pharmaceuticals Inc., San Diego, California, USA
| | | | | | - Jonathan A. Fallowfield
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Fang Y, Qin M, Zheng Q, Wang K, Han X, Yang Q, Sang X, Cao G. Role of Bile Acid Receptors in the Development and Function of Diabetic Nephropathy. Kidney Int Rep 2024; 9:3116-3133. [PMID: 39534198 PMCID: PMC11551060 DOI: 10.1016/j.ekir.2024.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) is a prevalent microvascular complication that occurs often in individuals with diabetes. It significantly raises the mortality rate of affected patients. Therefore, there is an urgent need to identify therapeutic targets for controlling and preventing the occurrence and development of DN. Bile acids (BAs) are now recognized as intricate metabolic integrators and signaling molecules. The activation of BAs has great promise as a therapeutic approach for preventing DN, renal damage caused by obesity, and nephrosclerosis. The nuclear receptors (NRs), farnesoid X receptor (FXR), pregnane X receptor (PXR), vitamin D receptor (VDR); and the G protein-coupled BA receptor, Takeda G-protein-coupled receptor 5 (TGR5) have important functions in controlling lipid, glucose, and energy metabolism, inflammation, as well as drug metabolism and detoxification. Over the past 10 years, there has been advancement in comprehending the biology and processes of BA receptors in the kidney, as well as in the creation of targeted BA receptor agonists. In this review, we discuss the role of BA receptors, FXR, PXR, VDR, and TGR5 in DN and their role in renal physiology, as well as the development and application of agonists that activate BA receptors for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Giacaglia MB, Felix VP, Santana MDFM, Amendola LS, Lerner PG, Fernandes SDE, Camacho CP, Passarelli M. The Composition of the HDL Particle and Its Capacity to Remove Cellular Cholesterol Are Associated with a Reduced Risk of Developing Active Inflammatory Rheumatoid Arthritis. Int J Mol Sci 2024; 25:10980. [PMID: 39456762 PMCID: PMC11507075 DOI: 10.3390/ijms252010980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In rheumatoid arthritis (RA), the risk of cardiovascular death is 50% higher compared to the general population. This increased risk is partly due to the systemic inflammation characteristic of RA and changes in the lipoprotein profiles. This study investigated plasma lipid levels, lipid ratios, and the composition and functionality of high-density lipoprotein (HDL) in control individuals and RA subjects based on the disease's inflammatory score (DAS28). This study included 50 control (CTR) individuals and 56 subjects with RA, divided into remission/low-activity disease (DAS28 < 3.2; n = 13) and active disease (DAS28 ≥ 3.2; n = 43). Plasma lipids (total cholesterol, TC; triglycerides, TG) and the HDL composition (TC; TG; phospholipids, PL) were determined using enzymatic methods; apolipoprotein B (apoB) and apoA-1 were measured by immunoturbidimetry. HDL-mediated cholesterol efflux and anti-inflammatory activity were assessed in bone marrow-derived macrophages. Comparisons were made using the Mann-Whitney test, and binary logistic regression was used to identify the predictors of active RA. A p-value < 0.05 was considered significant. TC, HDLc, and the TC/apoB ratio were higher in RA subjects compared to the CTR group. Subjects with active disease exhibited higher levels of TG and the TG/HDLc ratio and lower levels of HDLc, the TG/apoB ratio, TC, and apoA-1 in HDL particles compared to those with remission/low-activity RA. Increased levels of HDLc [odds ratio (OR) 0.931, 95% CI = 0.882-0.984], TC/apoB (OR 0.314, 95% CI = 0.126-0.78), HDL content in TC (OR 0.912, 95% CI = 0.853-0.976), PL (OR 0.973, 95% CI = 0.947-1.000), and apoA-1 (OR 0.932, 95% CI = 0.882-0.985) were associated with a decreased risk of active disease, but BMI (OR 1.169, 95% CI = 1.004-1.360) and TG (OR 1.031, 95% CI = 1.005-1.057) were positively associated with active disease. A reduction in HDL-mediated cholesterol efflux increased the OR for active RA by 26.2%. The plasma levels of HDLc, along with the composition and functionality of HDL, influence the inflammatory score in RA and may affect the development of cardiovascular disease.
Collapse
Affiliation(s)
- Marcia Benacchio Giacaglia
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo 01525-000, Brazil; (M.B.G.)
| | - Vitoria Pires Felix
- Laboratório de Lípides (LIM10), Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 01246-000, Brazil
| | - Monique de Fatima Mello Santana
- Laboratório de Lípides (LIM10), Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 01246-000, Brazil
| | - Leonardo Szalos Amendola
- Laboratório de Lípides (LIM10), Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 01246-000, Brazil
| | - Perola Goberstein Lerner
- Departamento de Reumatologia, Hospital do Servidor Público Municipal (HSPM), Sao Paulo 01532-000, Brazil
| | - Sibelle D. Elia Fernandes
- Laboratório de Análise Clínicas, Hospital do Servidor Público Municipal (HSPM), Sao Paulo 01532-000, Brazil
| | - Cleber Pinto Camacho
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo 01525-000, Brazil; (M.B.G.)
| | - Marisa Passarelli
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo 01525-000, Brazil; (M.B.G.)
- Laboratório de Lípides (LIM10), Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 01246-000, Brazil
| |
Collapse
|
12
|
Bai Y, Zhang J, Li J, Liao M, Zhang Y, Xia Y, Wei Z, Dai Y. Silibinin, a commonly used therapeutic agent for non-alcohol fatty liver disease, functions through upregulating intestinal expression of fibroblast growth factor 15/19. Br J Pharmacol 2024; 181:3663-3684. [PMID: 38839561 DOI: 10.1111/bph.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Silibinin is used to treat non-alcohol fatty liver disease (NAFLD) despite having rapid liver metabolism. Therefore, we investigated the role of the intestine in silibinin mechanism of action. EXPERIMENTAL APPROACH NAFLD mice model was established by feeding them with a high-fat diet (HFD). Liver pathological were examined using H&E and oil red O staining. Tissue distribution of silibinin was detected by LC-MS/MS. SiRNA was employed for gene silencing and plasmid was used for gene overexpression. ChIP-qPCR assay was performed to detect the levels of histone acetylation. Recombinant adeno-associated virus 9-short hairpin-fibroblast growth factor (FGF)-15 and -farnesoid X receptor (FXR; NR1H4) were used to knockdown expression of FGF-15 and FXR. KEY RESULTS Oral silibinin significantly reversed NAFLD in mice, although liver concentration was insufficient for reduction of lipid accumulation in hepatocytes. Among endogenous factors capable of reversing NAFLD, the expression of Fgf-15 was selectively up-regulated by silibinin in ileum and colon of mice. When intestinal expression of Fgf-15 was knocked down, protection of silibinin against lipid accumulation and injury of livers nearly disappeared. Silibinin could reduce activity of histone deacetylase 2 (HDAC2), enhance histone acetylation in the promoter region of FXR and consequently increase intestinal expression of FGF-15/19. CONCLUSION AND IMPLICATIONS Oral silibinin selectively promotes expression of FGF-15/19 in ileum by enhancing transcription of FXR via reduction of HDAC2 activity, and FGF-15/19 enters into circulation to exert anti-NAFLD action. As the site of action is the intestine this would explain the discrepancy between pharmacodynamics and pharmacokinetics of silibinin.
Collapse
Affiliation(s)
- Yujie Bai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jialin Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Liao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Hsiao YC, Yang Y, Liu CW, Peng J, Feng J, Zhao H, Teitelbaum T, Lu K. Multiomics to Characterize the Molecular Events Underlying Impaired Glucose Tolerance in FXR-Knockout Mice. J Proteome Res 2024; 23:3332-3341. [PMID: 38967328 DOI: 10.1021/acs.jproteome.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The prevalence of different metabolic syndromes has grown globally, and the farnesoid X receptor (FXR), a metabolic homeostat for glucose, lipid, and bile acid metabolisms, may serve an important role in the progression of metabolic disorders. Glucose intolerance by FXR deficiency was previously reported and observed in our study, but the underlying biology remained unclear. To investigate the ambiguity, we collected the nontargeted profiles of the fecal metaproteome, serum metabolome, and liver proteome in Fxr-null (Fxr-/-) and wild-type (WT) mice with LC-HRMS. FXR deficiency showed a global impact on the different molecular levels we monitored, suggesting its serious disruption in the gut microbiota, hepatic metabolism, and circulating biomolecules. The network and enrichment analyses of the dysregulated metabolites and proteins suggested the perturbation of carbohydrate and lipid metabolism by FXR deficiency. Fxr-/- mice presented lower levels of hepatic proteins involved in glycogenesis. The impairment of glycogenesis by an FXR deficiency may leave glucose to accumulate in the circulation, which may deteriorate glucose tolerance. Lipid metabolism was dysregulated by FXR deficiency in a structural-dependent manner. Fatty acid β-oxidations were alleviated, but cholesterol metabolism was promoted by an FXR deficiency. Together, we explored the molecular events associated with glucose intolerance by impaired FXR with integrated novel multiomic data.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jingya Peng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jiahao Feng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haoduo Zhao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Taylor Teitelbaum
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Ferraro B. The SR-B1ΔCT/LDLR KO mouse: A new tool to shed light on coronary artery disease. Atherosclerosis 2024; 395:117564. [PMID: 38796408 DOI: 10.1016/j.atherosclerosis.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Bartolo Ferraro
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig- Maximilian-University Munich, Planegg-Martinsried, Germany; Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
15
|
Han X, Wang J, Wu Y, Gu H, Zhao N, Liao X, Jiang M. Predictive value of bile acids as metabolite biomarkers for gallstone disease: A systematic review and meta-analysis. PLoS One 2024; 19:e0305170. [PMID: 39052638 PMCID: PMC11271903 DOI: 10.1371/journal.pone.0305170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The profiles of bile acids (BAs) in patients with gallstone disease (GSD) have been found to be altered markedly though in an inconsistent pattern. This study aims to characterize the variation of the BA profiles in GSD patients, thereby to discover the potential metabolite biomarkers for earlier detection of GSD. METHODS Literature search of eight electronic database in both English and Chinese was completed on May 11, 2023. The qualitative and quantitative reviews were performed to summarize the changes of BA profiles in GSD patients compared with healthy subjects. The concentrations of BAs were adopted as the primary outcomes and the weighted mean differences (WMDs) and 95% confidence interval (CI) were generated by random-effects meta-analysis models. RESULTS A total of 30 studies were enrolled which included 2313 participants and reported the 39 BAs or their ratios. Qualitative review demonstrated serum Taurocholic Acid (TCA), Glycochenodeoxycholic acid (GCDCA), Glycocholic acid (GCA), Taurochenodeoxycholic acid (TCDCA), Glycodeoxycholic acid (GDCA) and Deoxycholic acid (DCA) were significantly increased in GSD patients compared with healthy subjects. Meta analysis was performed in 16 studies and showed that serum Total BAs (TBA) (WMD = 1.36μmol/L, 95%CI = 0.33; 2.4) was elevated however bile TBA (WMD = -36.96mmol/L, 95%CI = -52.32; -21.6) was declined in GSD patients. GCA (WMD = 0.83μmol/L, 95%CI = 0.06; 1.6) and TCA (WMD = 0.51μmol/L; 95%CI = 0.18; 0.85) were both increased in serum sample; TCDCA (WMD = 2.64mmol/L, 95%CI = 0.16; 5.12) was rising, however GCDCA (WMD = -13.82mmol/L, 95%CI = -21.86; -5.78) was falling in bile sample of GSD patients. The level of serum DCA in the GSD patients was found to be increased by using chromatography, yet decreased by chromatography mass spectrometry. CONCLUSION The profiles of BAs demonstrated distinctive changes in GSD patients compared with healthy control subjects. Serum GCA, TCA and GCDCA, as the typically variant BAs, presented as a potential marker for earlier diagnosis of GSD, which could facilitate early prophylactic intervention. Yet, further validation of these biomarkers by longitudinal studies is still warranted in the future. PROSPERO registration number CRD42022339649.
Collapse
Affiliation(s)
- Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingnan Wu
- Department of Traditional Chinese Medicine, Inner Mongolia People’s Hospital, Hohhot, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
17
|
Li J, Wang M, Ma S, Jin Z, Yin H, Yang S. Association of gastrointestinal microbiome and obesity with gestational diabetes mellitus-an updated globally based review of the high-quality literatures. Nutr Diabetes 2024; 14:31. [PMID: 38773069 PMCID: PMC11109140 DOI: 10.1038/s41387-024-00291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVES The purpose of this review is to investigate the relationship between gastrointestinal microbiome, obesity, and gestational diabetes mellitus (GDM) in an objective manner. METHODS We conducted a thorough and comprehensive search of the English language literatures published in PubMed, Web of Science, and the Cochrane Library from the establishment of the library until 12 December 2023. Our search strategy included both keywords and free words searches, and we strictly applied inclusion and exclusion criteria. Meta-analyses and systematic reviews were prepared. RESULTS Six high-quality literature sources were identified for meta-analysis. However, after detailed study and analysis, a certain degree of heterogeneity was found, and the credibility of the combined analysis results was limited. Therefore, descriptive analyses were conducted. The dysbiosis of intestinal microbiome, specifically the ratio of Firmicutes/Bacteroides, is a significant factor in the development of metabolic diseases such as obesity and gestational diabetes. Patients with intestinal dysbiosis and obesity are at a higher risk of developing GDM. CONCLUSIONS During pregnancy, gastrointestinal microbiome disorders and obesity may contribute to the development of GDM, with all three factors influencing each other. This finding could aid in the diagnosis and management of patients with GDM through further research on their gastrointestinal microbiome.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Min Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Shuai Ma
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Zhong Jin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Haonan Yin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
18
|
Greco S, Campigotto M, D’Amuri A, Fabbri N, Passaro A. Dyslipidemia, Cholangitis and Fatty Liver Disease: The Close Underexplored Relationship: A Narrative Review. J Clin Med 2024; 13:2714. [PMID: 38731243 PMCID: PMC11084647 DOI: 10.3390/jcm13092714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
In assessing individual cardiovascular risk, dyslipidemia is known for emerging as a pivotal factor significantly contributing to major cardiovascular events. However, dyslipidemic patients frequently present with concurrent medical conditions, each with varying frequencies of occurrence; cholangitis, whether acute or chronic, and hepatic steatosis, along with associated conditions, are strongly associated with specific forms of dyslipidemia, and these associations are reasonably well elucidated. Conversely, evidence linking biliary disease to hepatic steatosis is comparatively scant. This narrative review aims to bridge this gap in knowledge concerning the interplay between dyslipidemia, cholangitis, and hepatic steatosis. By addressing this gap, clinicians can better identify patients at heightened risk of future major cardiovascular events, facilitating more targeted interventions and management strategies. The review delves into the intricate relationships between dyslipidemia and these hepatic and biliary clinical conditions, shedding light on potential mechanisms underlying their associations. Understanding these complex interactions is crucial for optimizing cardiovascular risk assessment as well and devising tailored treatment approaches for patients with dyslipidemia and associated hepatic disorders. Moreover, elucidating these connections empowers clinicians with the knowledge needed to navigate the multifaceted landscape of cardiovascular risk assessment and management effectively. By exploring the intricate relationships between dyslipidemia, cholangitis, and hepatic steatosis (without forgetting the possible clinical consequences of hepatic steatosis itself), this review not only contributes to the existing body of knowledge but also offers insights into potential avenues for further research and clinical practice. Thus, it serves as a valuable resource for healthcare professionals striving to enhance patient care and outcomes in the context of cardiovascular disease and associated hepatic conditions.
Collapse
Affiliation(s)
- Salvatore Greco
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, FE, Italy;
- Department of Internal Medicine, Ospedale del Delta, Via Valle Oppio 2, 44023 Lagosanto, FE, Italy
| | - Michele Campigotto
- Gastroenterology and Digestive Endoscopy Unit, ASUGI, Cattinara University Hospital, Strada di Fiume 447, 34149 Trieste, TS, Italy;
| | - Andrea D’Amuri
- General Medicine Unit, Medical Department, ASST Mantova, Ospedale Carlo Poma, Strada Lago Paiolo 10, 46100 Mantova, MN, Italy;
| | - Nicolò Fabbri
- Department of General Surgery, Ospedale del Delta, Via Valle Oppio 2, 44023 Lagosanto, FE, Italy;
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, FE, Italy;
| |
Collapse
|
19
|
Zhu L, Litts B, Wang Y, Rein JA, Atzrodt CL, Chinnarasu S, An J, Thorson AS, Xu Y, Stafford JM. Ablation of IFNγ in myeloid cells suppresses liver inflammation and fibrogenesis in mice with hepatic small heterodimer partner (SHP) deletion. Mol Metab 2024; 83:101932. [PMID: 38589002 PMCID: PMC11035112 DOI: 10.1016/j.molmet.2024.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common complication of obesity and, in severe cases, progresses to metabolic dysfunction-associated steatohepatitis (MASH). Small heterodimer partner (SHP) is an orphan member of the nuclear receptor superfamily and regulates metabolism and inflammation in the liver via a variety of pathways. In this study, we investigate the molecular foundation of MASH progression in mice with hepatic SHP deletion and explore possible therapeutic means to reduce MASH. METHODS Hepatic SHP knockout mice (SHPΔhep) and their wild-type littermates (SHPfl/fl) of both sexes were fed a fructose diet for 14 weeks and subjected to an oral glucose tolerance test. Then, plasma lipids were determined, and liver lipid metabolism and inflammation pathways were analyzed with immunoblotting, RNAseq, and qPCR assays. To explore possible therapeutic intersections of SHP and inflammatory pathways, SHPΔhep mice were reconstituted with bone marrow lacking interferon γ (IFNγ-/-) to suppress inflammation. RESULTS Hepatic deletion of SHP in mice fed a fructose diet decreased liver fat and increased proteins for fatty acid oxidation and liver lipid uptake, including UCP1, CPT1α, ACDAM, and SRBI. Despite lower liver fat, hepatic SHP deletion increased liver inflammatory F4/80+ cells and mRNA levels of inflammatory cytokines (IL-12, IL-6, Ccl2, and IFNγ) in both sexes and elevated endoplasmic reticulum stress markers of Cox2 and CHOP in female mice. Liver bulk RNAseq data showed upregulation of genes whose protein products regulate lipid transport, fatty acid oxidation, and inflammation in SHPΔhep mice. The increased inflammation and fibrosis in SHPΔhep mice were corrected with bone marrow-derived IFNγ-/- myeloid cell transplantation. CONCLUSION Hepatic deletion of SHP improves fatty liver but worsens hepatic inflammation possibly by driving excess fatty acid oxidation, which is corrected by deletion of IFNγ specifically in myeloid cells. This suggests that hepatic SHP limits fatty acid oxidation during fructose diet feeding but, in doing so, prevents pro-MASH pathways. The IFNγ-mediated inflammation in myeloid cells appears to be a potential therapeutic target to suppress MASH.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA
| | - Bridget Litts
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey A Rein
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA
| | | | | | - Julia An
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA
| | - Ariel S Thorson
- Department of Molecular Physiology & Biophysics, Vanderbilt University, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John M Stafford
- Tennessee Valley Health System, Veterans Affairs, Nashville, TN, USA; Department of Molecular Physiology & Biophysics, Vanderbilt University, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA.
| |
Collapse
|
20
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
21
|
Chi L, YifeiYang, Bian X, Gao B, Tu P, Ru H, Lu K. Chronic sucralose consumption inhibits farnesoid X receptor signaling and perturbs lipid and cholesterol homeostasis in the mouse livers, potentially by altering gut microbiota functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:169603. [PMID: 38272087 DOI: 10.1016/j.scitotenv.2023.169603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Sucralose has raised concerns regarding its safety and recent studies have demonstrated that sucralose consumption can disrupt the normal gut microbiome and alter metabolic profiles in mice. However, the extent to which this perturbation affects the functional interaction between the microbiota and the host, as well as its potential impact on host health, remains largely unexplored. Here, we aimed to investigate whether chronic sucralose consumption, at levels within the Acceptable Daily Intake (ADI), could disturb key gut microbial functions and lead to adverse health effects in mice. Following six-month sucralose consumption, several bacterial genera associated with bile acid metabolism were decreased, including Lactobacillus and Ruminococcus. Consequently, the richness of secondary bile acid biosynthetic pathway and bacterial bile salt hydrolase gene were decreased in the sucralose-treated gut microbiome. Compared to controls, sucralose-consuming mice exhibited significantly lower ratios of free bile acids and taurine-conjugated bile acids in their livers. Additionally, several farnesoid X receptor (FXR) agonists were decreased in sucralose-treated mice. This reduction in hepatic FXR activation was associated with altered expression of down-stream genes, in the liver. Moreover, the expression of key lipogenic genes was up-regulated in the livers of sucralose-treated mice. Changes in hepatic lipid profiles were also observed, characterized by lower ceramide levels, a decreased PC/PE ratio, and a mildly increase in lipid accumulation. Additionally, sucralose-consumed mice exhibited higher hepatic cholesterol level compared to control mice, with up-regulation of cholesterol efflux genes and down-regulation of genes associated with reverse cholesterol transport. In conclusion, chronic sucralose consumption disrupts FXR signaling activation and perturbs hepatic lipid and cholesterol homeostasis, potentially by diminishing the bile acid metabolic capacity of the gut microbiome. These findings shed light on the complex interplay between sucralose, the gut microbiota, and host metabolism, raising important questions about the safety of its long-term consumption.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - YifeiYang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Xiaoming Bian
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, 30602, United States of America
| | - Bei Gao
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, 30602, United States of America
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States; Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, NC 27599, United States.
| |
Collapse
|
22
|
Hasan IH, Shaheen SY, Alhusaini AM, Mahmoud AM. Simvastatin mitigates diabetic nephropathy by upregulating farnesoid X receptor and Nrf2/HO-1 signaling and attenuating oxidative stress and inflammation in rats. Life Sci 2024; 340:122445. [PMID: 38278349 DOI: 10.1016/j.lfs.2024.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Diabetic nephropathy is one of the complications of diabetes that affects the kidney and can result in renal failure. The cholesterol-lowering drug simvastatin (SIM) has shown promising effects against diabetic nephropathy (DN). This study evaluated the protective role of SIM on DN, pointing to the involvement of farnesoid X receptor (FXR) and Nrf2/HO-1 signaling in attenuating inflammatory response, oxidative injury, and tissue damage in streptozotocin-induced diabetic rats. SIM was supplemented orally for 8 weeks, and samples were collected for analysis. SIM effectively ameliorated hyperglycemia, kidney hypertrophy, body weight loss, and tissue injury and fibrosis in diabetic animals. SIM mitigated oxidative stress (OS), inflammatory response, and cell death, as evidenced by the suppressed malondialdehyde, nitric oxide, myeloperoxidase, NF-kB, TNF-α, IL-1β, CD68, Bax, and caspase-3 in the diabetic kidney. These effects were linked to suppressed Keap1, upregulated FXR, Nrf2, and HO-1, and enhanced antioxidant defenses and Bcl-2. The in silico findings revealed the binding affinity of SIM with NF-kB, caspase-3, Keap1, HO-1, and FXR. In conclusion, SIM protects against DN by attenuating hyperglycemia, kidney injury, fibrosis, inflammation, and OS, and upregulating antioxidants, FXR, and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11459, Saudi Arabia..
| | - Sameerah Y Shaheen
- Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11459, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK..
| |
Collapse
|
23
|
Zhao X, Wang Y, Wang L, Sun S, Li C, Zhang X, Chen L, Tian Y. Differences of serum glucose and lipid metabolism and immune parameters and blood metabolomics regarding the transition cows in the antepartum and postpartum period. Front Vet Sci 2024; 11:1347585. [PMID: 38371596 PMCID: PMC10869552 DOI: 10.3389/fvets.2024.1347585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
This study aims to investigate differences in metabolism regarding the transition cows. Eight cows were selected for the test. Serum was collected on antepartum days 14th (ap14) and 7th (ap7) and postpartum days 1st (pp1), 7th (pp7), and 14th (pp14) to detect biochemical parameters. The experiment screened out differential metabolites in the antepartum (ap) and postpartum (pp) periods and combined with metabolic pathway analysis to study the relationship and role between metabolites and metabolic abnormalities. Results: (1) The glucose (Glu) levels in ap7 were significantly higher than the other groups (p < 0.01). The insulin (Ins) levels of ap7 were significantly higher than pp7 (p = 0.028) and pp14 (p < 0.01), and pp1 was also significantly higher than pp14 (p = 0.016). The insulin resistance (HOMA-IR) levels of ap7 were significantly higher than ap14, pp7, and pp14 (p < 0.01). The cholestenone (CHO) levels of ap14 and pp14 were significantly higher than pp1 (p < 0.01). The CHO levels of pp14 were significantly higher than pp7 (p < 0.01). The high density lipoprotein cholesterol (DHDL) levels of pp1 were significantly lower than ap14 (p = 0.04), pp7 (p < 0.01), and pp14 (p < 0.01), and pp14 was also significantly higher than ap14 and ap7 (p < 0.01). (2) The interferon-gamma (IFN-γ) and tumor necrosis factor α (TNF-α) levels of ap7 were significantly higher than pp1 and pp7 (p < 0.01); the immunoglobulin A (IgA) levels of pp1 were significantly higher than ap7 and pp7 (p < 0.01); the interleukin-4 (IL-4) levels of pp7 were significantly higher than ap7 and pp1 (p < 0.01), the interleukin-6 (IL-6) levels of ap7 and pp1 were significantly higher than pp7 (p < 0.01). (3) Metabolomics identified differential metabolites mainly involved in metabolic pathways, such as tryptophan metabolism, alpha-linolenic acid metabolism, tyrosine metabolism, and lysine degradation. The main relevant metabolism was concentrated in lipid and lipid-like molecules, organic heterocyclic compounds, organic acids, and their derivatives. The results displayed the metabolic changes in the transition period, which laid a foundation for further exploring the mechanism of metabolic abnormalities in dairy cows in the transition period.
Collapse
Affiliation(s)
- Xinya Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yuxin Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Luyao Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Shouqiang Sun
- Tianjin Jialihe Animal Husbandry Group Co., Ltd., Tianjin, China
| | - Chaoyue Li
- Tianjin Jialihe Animal Husbandry Group Co., Ltd., Tianjin, China
| | - Xuewei Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Long Chen
- Beijing Dongfang Lianming Technology Development Co., Ltd., Beijing, China
| | - Yujia Tian
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
24
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
26
|
Huang Z, Zhou RR. Mechanism for FXR to regulate bile acid and glycolipid metabolism to improve NAFLD. Shijie Huaren Xiaohua Zazhi 2023; 31:797-807. [DOI: 10.11569/wcjd.v31.i19.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease, with liver metabolic disorders as major pathological changes, manifested as abnormal lipid accumulation, liver cell oxidative stress, etc., but its etiology is still unclear. The farnesol X receptor (FXR) is a major bile acid receptor in the "gut-liver axis", via which FXR regulates metabolism and affects the pathophysiological status of various substances through different pathways, thus contributing to the occurrence and development of NAFLD. Therefore, FXR has become a potential therapeutic target for NAFLD. This article reviews the relationship between FXR regulation of bile acid, glucose, and lipid metabolism through the "gut-liver axis" and the occurrence and development of NAFLD, to provide new insights and clues for further research about FXR-based pharmaceutical treatments.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Rong-Rong Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
27
|
Xiang T, Deng Z, Yang C, Tan J, Dou C, Luo F, Chen Y. Bile acid metabolism regulatory network orchestrates bone homeostasis. Pharmacol Res 2023; 196:106943. [PMID: 37777075 DOI: 10.1016/j.phrs.2023.106943] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Bile acids (BAs), synthesized in the liver and modified by the gut microbiota, have been widely appreciated not only as simple lipid emulsifiers, but also as complex metabolic regulators and momentous signaling molecules, which play prominent roles in the complex interaction among several metabolic systems. Recent studies have drawn us eyes on the diverse physiological functions of BAs, to enlarge the knowledge about the "gut-bone" axis due to the participation about the gut microbiota-derived BAs to modulate bone homeostasis at physiological and pathological stations. In this review, we have summarized the metabolic processes of BAs and highlighted the crucial roles of BAs targeting bile acid-activated receptors, promoting the proliferation and differentiation of osteoblasts (OBs), inhibiting the activity of osteoclasts (OCs), as well as reducing articular cartilage degradation, thus facilitating bone repair. In addition, we have also focused on the bidirectional effects of BA signaling networks in coordinating the dynamic balance of bone matrix and demonstrated the promising effects of BAs on the development or treatment for pathological bone diseases. In a word, further clinical applications targeting BA metabolism or modulating gut metabolome and related derivatives may be developed as effective therapeutic strategies for bone destruction diseases.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
28
|
Chang YC, Hsu CN, Chong K, Yang PJ, Ser KH, Lee PC, Chen SC, Hsuan CF, Lee YC, Hsu CC, Lee HL, Liao KCW, Hsieh ML, Chuang GT, Yang WS, Chu SL, Li WY, Chuang LM, Lee WJ. Roux-en-Y and One-Anastomosis Gastric Bypass Surgery Are Superior to Sleeve Gastrectomy in Lowering Glucose and Cholesterol Levels Independent of Weight Loss: a Propensity-Score Weighting Analysis. Obes Surg 2023; 33:3035-3050. [PMID: 37612578 DOI: 10.1007/s11695-023-06656-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The superior effects of gastric bypass surgery in preventing cardiovascular diseases compared with sleeve gastrectomy are well-established. However, whether these effects are independent of weight loss is not known. METHODS In this retrospective cohort study, we compared the change in cardiometabolic risks of 1073 diabetic patients undergoing Roux-en-Y gastric bypass (RYGB) (n = 265), one-anastomosis gastric bypass (OAGB) (n = 619), and sleeve gastrectomy (SG) (n = 189) with equivalent weight loss from the Min-Shen General Hospital. Propensity score-weighting, multivariate regression, and matching were performed to adjust for baseline differences. RESULTS After 12 months, OAGB and, to a lesser extent, RYGB exhibited superior effects on glycemic control compared with SG in patients with equivalent weight loss. The effect was significant in patients with mild-to-modest BMI reduction but diminished in patients with severe BMI reduction. RYGB and OAGB had significantly greater effects in lowering total and low-density lipoprotein cholesterol than SG, regardless of weight loss. The results of matching patients with equivalent weight loss yielded similar results. The longer length of bypassed biliopancreatic (BP) limbs was correlated with a greater decrease in glycemic levels, insulin resistance index, lipids, C-reactive protein (CRP) levels, and creatinine levels in patients receiving RYBG. It was correlated with greater decreases in BMI, fasting insulin, insulin resistance index, and C-reactive protein levels in patients receiving OAGB. CONCLUSION Diabetic patients receiving OAGB and RYGB had lower glucose and cholesterol levels compared with SG independent of weight loss. Our results suggest diabetic patients with cardiovascular risk factors such as hypercholesterolemia to receive bypass surgery.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- Center for Obesity, Lifestyle, and Metabolic Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chih-Neng Hsu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, 640, Taiwan
| | - Keong Chong
- Department of Medicine, Min-Sheng General Hospital, Taoyuan, 330, Taiwan
| | - Po-Jen Yang
- Center for Obesity, Lifestyle, and Metabolic Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Kong-Han Ser
- Department of Surgery, Ten-Chen General Hospital, Taoyuan, 326, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Shu-Chun Chen
- Department of Nursing, Ming-Sheng General Hospital, Taoyuan, 330, Taiwan
| | - Chin-Feng Hsuan
- Department of Internal Medicine, Division of Cardiology, E-Da Hospital, Kaohsiung, 824, Taiwan
- Department of Internal Medicine, Division of Cardiology, E-Da Dachang Hospital, Kaohsiung, 824, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 840, Taiwan
| | - Yi-Chih Lee
- Department of International Business, Chien Hsin University of Science and Technology, Taoyuan, 320, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Hsiao-Lin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Karen Chia-Wen Liao
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Meng-Lun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Gwo-Tsann Chuang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Wei-Shun Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, 302, Taiwan
| | - Shao-Lun Chu
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Wen-Yi Li
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, 640, Taiwan
| | - Lee-Ming Chuang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan.
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, 100, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Wei-Jei Lee
- Department of Medicine, Min-Sheng General Hospital, Taoyuan, 330, Taiwan.
- Department of Surgery, Min-Sheng General Hospital, Taoyuan, 330, Taiwan.
| |
Collapse
|
29
|
Saigo Y, Sasase T, Tohma M, Uno K, Shinozaki Y, Maekawa T, Sano R, Miyajima K, Ohta T. High-cholesterol diet in combination with hydroxypropyl-beta-cyclodextrin induces NASH-like disorders in the liver of rats. Physiol Res 2023; 72:371-382. [PMID: 37449749 PMCID: PMC10668992 DOI: 10.33549/physiolres.934981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 08/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a general term for fatty liver disease not caused by viruses or alcohol. Fibrotic hepatitis, cirrhosis, and hepatocellular carcinoma can develop. The recent increase in NAFLD incidence worldwide has stimulated drug development efforts. However, there is still no approved treatment. This may be due in part to the fact that non-alcoholic steatohepatitis (NASH) pathogenesis is very complex, and its mechanisms are not well understood. Studies with animals are very important for understanding the pathogenesis. Due to the close association between the establishment of human NASH pathology and metabolic syndrome, several animal models have been reported, especially in the context of overnutrition. In this study, we investigated the induction of NASH-like pathology by enhancing cholesterol absorption through treatment with hydroxypropyl-beta-cyclodextrin (CDX). Female Sprague-Dawley rats were fed a normal diet with normal water (control group); a high-fat (60 kcal%), cholesterol (1.25 %), and cholic acid (0.5 %) diet with normal water (HFCC group); or HFCC diet with 2 % CDX water (HFCC+CDX group) for 16 weeks. Compared to the control group, the HFCC and HFCC+CDX groups showed increased blood levels of total cholesterol, aspartate aminotransferase, and alanine aminotransferase. At autopsy, parameters related to hepatic lipid synthesis, oxidative stress, inflammation, and fibrosis were elevated, suggesting the development of NAFLD/NASH. Elevated levels of endoplasmic reticulum stress-related genes were evident in the HFCC+CDX group. In the novel rat model, excessive cholesterol intake and accelerated absorption contributed to NAFLD/NASH pathogenesis.
Collapse
Affiliation(s)
- Y Saigo
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zheng Y, Zhao J, Miao D, Xu T, Wang L, Liu C, Gao Y, Yu L, Shen C. Hepatoprotective effect of Typhaneoside on non-alcoholic fatty liver disease via farnesoid X receptor in vivo and in vitro. Biomed Pharmacother 2023; 164:114957. [PMID: 37295248 DOI: 10.1016/j.biopha.2023.114957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent health issues. The improvement of NAFLD is related to the activation of the farnesoid X receptor (FXR). Typhaneoside (TYP) is the main component of Typha orientalis Presl, which plays a positive role in the resistance of glucose and lipid metabolism disorders. This study aims to investigate the alleviative effect and the underlying mechanism of TYP on OAPA-induced cells and high-fat-diet (HFD)-induced mice with disorders of glucose and lipid metabolism, inflammation, oxidative stress and lower thermogenesis through FXR signaling. All the serum lipid, body weight, oxidative stress and inflammatory levels of WT mice were significantly increased after HFD administration. These mice were presented with pathological injury, liver tissue attenuation, energy expenditure, insulin resistance, and impaired glucose tolerance. These above-mentioned changes in HFD-induced mice were remarkably reversed by TYP, which improved HFD-induced energy expenditure, oxidative stress, inflammation, insulin resistance, and lipid accumulation in a dose-dependent manner by activating the expression of FXR. Furthermore, using a high throughput drug screening strategy based on fluorescent reporter genes, we found that TYP functions as a natural agonist of FXR.TYP-mediated FXR activation also significantly repressed TG hyperaccumulation in mouse primary Hepatocytes (MPHs). However, these beneficial effects of TYP were not observed in FXR-/- MPHs. Overall, activation of the FXR pathway by TYP is related to the improvement of metabolic parameters, such as blood glucose, lipid accumulation, insulin resistance, inflammation, oxidative stress and energy expenditure in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Zheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China
| | - Jian Zhao
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China
| | - Deyu Miao
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China
| | - Tingting Xu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China
| | - Liziniu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China
| | - Lili Yu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Chuangpeng Shen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China; The First People's Hospital of Kashgar Prefecture, Kashgar 844000, Xinjiang, China.
| |
Collapse
|
31
|
Fogelson KA, Dorrestein PC, Zarrinpar A, Knight R. The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology 2023; 164:1069-1085. [PMID: 36841488 PMCID: PMC10205675 DOI: 10.1053/j.gastro.2023.02.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
The human gut microbiome has been linked to numerous digestive disorders, but its metabolic products have been much less well characterized, in part due to the expense of untargeted metabolomics and lack of ability to process the data. In this review, we focused on the rapidly expanding information about the bile acid repertoire produced by the gut microbiome, including the impacts of bile acids on a wide range of host physiological processes and diseases, and discussed the role of short-chain fatty acids and other important gut microbiome-derived metabolites. Of particular note is the action of gut microbiome-derived metabolites throughout the body, which impact processes ranging from obesity to aging to disorders traditionally thought of as diseases of the nervous system, but that are now recognized as being strongly influenced by the gut microbiome and the metabolites it produces. We also highlighted the emerging role for modifying the gut microbiome to improve health or to treat disease, including the "engineered native bacteria'' approach that takes bacterial strains from a patient, modifies them to alter metabolism, and reintroduces them. Taken together, study of the metabolites derived from the gut microbiome provided insights into a wide range of physiological and pathophysiological processes, and has substantial potential for new approaches to diagnostics and therapeutics of disease of, or involving, the gastrointestinal tract.
Collapse
Affiliation(s)
- Kelly A Fogelson
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California.
| | - Amir Zarrinpar
- Center for Microbiome Innovation, University of California San Diego, San Diego, California; Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, San Diego, California; Division of Gastroenterology, University of California San Diego, San Diego, California; Institute of Diabetes and Metabolic Health, University of California San Diego, San Diego, California.
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California; Department of Bioengineering, University of California San Diego, San Diego, California; Department of Computer Science and Engineering, University of California San Diego, San Diego, California.
| |
Collapse
|
32
|
Kong M, Peng Y, Qiu L. Oligochitosan-based nanovesicles for nonalcoholic fatty liver disease treatment via the FXR/miR-34a/SIRT1 regulatory loop. Acta Biomater 2023; 164:435-446. [PMID: 37040811 DOI: 10.1016/j.actbio.2023.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently a common chronic liver disease worldwide. By now, however, there isn't any FDA-approved specific drug for NAFLD treatment. It has been noticed that farnesoid X receptor (FXR), miR-34a and Sirtuin1 (SIRT1) is related to the occurrence and development of NAFLD. A oligochitosan-derivated nanovesicle (UBC) with esterase responsive degradability was designed to co-encapsulate FXR agonist (obeticholic acid, OCA) and miR-34a antagomir (anta-miR-34a) into the hydrophobic membrane and the center aqueous lumen of nanovesicles, respectively, by dialysis method. The action of UBC/OCA/anta-miR-34a loop on the regulation of lipid deposition via nanovesicles was evaluated on high-fat HepG2 cells and HFD-induced mice. The obtained dual drug-loaded nanovesicles UBC/OCA/anta-miR-34a could enhance the cellular uptake and intracellular release of OCA and anta-miR-34a, leading to the reduced lipid deposition in high-fat HepG2 cells. In NAFLD mice models, UBC/OCA/anta-miR-34a achieved the best curative effect on the recovery of body weight and hepatic function. Meanwhile, in vitro and vivo experiments validated that UBC/OCA/anta-miR-34a effectively activated the expression level of SIRT1 by enhancing the FXR/miR-34a/SIRT1 regulatory loop. This study provides a promising strategy for constructing oligochitosan-derivated nanovesicles to co-deliver OCA and anta-miR-34a for NAFLD treatment. STATEMENT OF SIGNIFICANCE: This study proposed a strategy to construct oligochitosan-derivated nanovesicles to co-deliver obeticholic acid and miR-34a antagomir for NAFLD treatment. Based on the FXR/miR-34a/SIRT1 action loop, this nanovesicle effectively exerted a synergetic effect of OCA and anta-miR-34a to significantly regulate lipid deposition and recover liver function in NAFLD mice.
Collapse
Affiliation(s)
- Mengjie Kong
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Peng
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
33
|
Al Samarraie A, Pichette M, Rousseau G. Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24065420. [PMID: 36982492 PMCID: PMC10051145 DOI: 10.3390/ijms24065420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the primary cause of death globally, with nine million deaths directly attributable to ischemic heart diseases in 2020. Since the last few decades, great effort has been put toward primary and secondary prevention strategies through identification and treatment of major cardiovascular risk factors, including hypertension, diabetes, dyslipidemia, smoking, and a sedentary lifestyle. Once labelled “the forgotten organ”, the gut microbiota has recently been rediscovered and has been found to play key functions in the incidence of ASCVD both directly by contributing to the development of atherosclerosis and indirectly by playing a part in the occurrence of fundamental cardiovascular risk factors. Essential gut metabolites, such as trimethylamine N-oxide (TMAO), secondary bile acids, lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs), have been associated with the extent of ischemic heart diseases. This paper reviews the latest data on the impact of the gut microbiome in the incidence of ASCVD.
Collapse
Affiliation(s)
- Ahmad Al Samarraie
- Internal Medicine Department, Faculty of Medicine, University of Montreal, Montréal, QC H3T 1J4, Canada
| | - Maxime Pichette
- Cardiology Department, Faculty of Medicine, University of Montreal, Montréal, QC H3T 1J4, Canada
| | - Guy Rousseau
- Centre de Biomédecine, CIUSSS-NÎM/Hôpital du Sacré-Cœur, Montréal, QC H4J 1C5, Canada
- Correspondence:
| |
Collapse
|
34
|
Qin T, Gao X, Lei L, Feng J, Zhang W, Hu Y, Shen Z, Liu Z, Huan Y, Wu S, Xia J, Zhang L. Machine learning- and structure-based discovery of a novel chemotype as FXR agonists for potential treatment of nonalcoholic fatty liver disease. Eur J Med Chem 2023; 252:115307. [PMID: 37003047 DOI: 10.1016/j.ejmech.2023.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Farnesoid X receptor (FXR) is a promising target for drug discovery against nonalcoholic fatty liver disease (NAFLD). However, no FXR agonist has been approved for NAFLD so far. The R & D of FXR agonists are somewhat hindered by the lack of effective and safe chemotypes. To this end, we developed a multi-stage computational workflow to screen the Specs and ChemDiv chemical library for FXR agonists, which consisted of machine learning (ML)-based classifiers, shape-based and electrostatic-based models, a FRED-based molecular docking protocol, an ADMET prediction protocol and substructure search. As a result, we identified a novel chemotype that has never been reported before, with compound XJ02862 (ChemDiv ID: Y020-6413) as the representative. By designing an asymmetric synthesis strategy, we were able to prepare four isomers of compound XJ02862. Interestingly, one of the isomers, 2-((S)-1-((2S,4R)-2-methyl-4-(phenylamino)-3,4-dihydroquinolin-1(2H)-yl)-1-oxopropan-2-yl)hexahydro-1H-isoindole-1,3(2H)-dione (XJ02862-S2), showed potent FXR agonistic activity in HEK293T cells. The molecular docking, molecular dynamics simulations and site-directed mutagenesis suggested the hydrogen bond between compound XJ02862-S2 and HIS294 of FXR is essential for ligand binding. We further demonstrated that compound XJ02862-S2 had no agonistic effect on TGR5. Further biological experiments have shown that compound XJ02862-S2 could ameliorate hypercholesterolemia, hepatic steatosis, hyperglycemia, insulin resistance (IR) in high-fat-diet induced obese (DIO) mice. In term of molecular mechanism, compound XJ02862-S2 regulates the expression of FXR downstream genes involved in lipogenesis, cholesterol transport and bile acid biosynthesis and transport. Taken together, we have discovered a novel chemotype as potent FXR agonists for NAFLD by computational modeling, chemical synthesis and biological evaluation.
Collapse
Affiliation(s)
- Tong Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xuefeng Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lei Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhua Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
35
|
Katsimichas T, Theofilis P, Tsioufis K, Tousoulis D. Gut Microbiota and Coronary Artery Disease: Current Therapeutic Perspectives. Metabolites 2023; 13:256. [PMID: 36837875 PMCID: PMC9963624 DOI: 10.3390/metabo13020256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The human gut microbiota is the community of microorganisms living in the human gut. This microbial ecosystem contains bacteria beneficial to their host and plays important roles in human physiology, participating in energy harvest from indigestible fiber, vitamin synthesis, and regulation of the immune system, among others. Accumulating evidence suggests a possible link between compositional and metabolic aberrations of the gut microbiota and coronary artery disease in humans. Manipulating the gut microbiota through targeted interventions is an emerging field of science, aiming at reducing the risk of disease. Among the interventions with the most promising results are probiotics, prebiotics, synbiotics, and trimethylamine N-oxide (TMAO) inhibitors. Contemporary studies of probiotics have shown an improvement of inflammation and endothelial cell function, paired with attenuated extracellular matrix remodeling and TMAO production. Lactobacilli, Bifidobacteria, and Bacteroides are some of the most well studied probiotics in experimental and clinical settings. Prebiotics may also decrease inflammation and lead to reductions in blood pressure, body weight, and hyperlipidemia. Synbiotics have been associated with an improvement in glucose homeostasis and lipid abnormalities. On the contrary, no evidence yet exists on the possible benefits of postbiotic use, while the use of antibiotics is not warranted, due to potentially deleterious effects. TMAO inhibitors such as 3,3-dimethyl-1-butanol, iodomethylcholine, and fluoromethylcholine, despite still being investigated experimentally, appear to possess anti-inflammatory, antioxidant, and anti-fibrotic properties. Finally, fecal transplantation carries conflicting evidence, mandating the need for further research. In the present review we summarize the links between the gut microbiota and coronary artery disease and elaborate on the varied therapeutic measures that are being explored in this context.
Collapse
Affiliation(s)
| | | | | | - Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, 11527 Athens, Greece
| |
Collapse
|
36
|
Guo Y, Xie G, Zhang X. Role of FXR in Renal Physiology and Kidney Diseases. Int J Mol Sci 2023; 24:2408. [PMID: 36768731 PMCID: PMC9916923 DOI: 10.3390/ijms24032408] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Farnesoid X receptor, also known as the bile acid receptor, belongs to the nuclear receptor (NR) superfamily of ligand-regulated transcription factors, which performs its functions by regulating the transcription of target genes. FXR is highly expressed in the liver, small intestine, kidney and adrenal gland, maintaining homeostasis of bile acid, glucose and lipids by regulating a diverse array of target genes. It also participates in several pathophysiological processes, such as inflammation, immune responses and fibrosis. The kidney is a key organ that manages water and solute homeostasis for the whole body, and kidney injury or dysfunction is associated with high morbidity and mortality. In the kidney, FXR plays an important role in renal water reabsorption and is thought to perform protective functions in acute kidney disease and chronic kidney disease, especially diabetic kidney disease. In this review, we summarize the recent advances in the understanding of the physiological and pathophysiological function of FXR in the kidney.
Collapse
Affiliation(s)
| | | | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| |
Collapse
|
37
|
Abstract
Striving to optimize surgical outcomes, the Enhanced Recovery After Surgery (ERAS) pathway mitigates patients' stress through the implementation of evidence-based practices during the pre-, intra-, and postoperative periods. Intestinal flora is a sophisticated ecosystem integrating with the host and the external environment, which serves as a mediator in diverse interventions of ERAS to regulate human metabolism and inflammation. This review linked gut microbes and their metabolites with ERAS interventions, offering novel high-quality investigative proponents for ERAS. ERAS could alter the composition and function of intestinal flora in patients by alleviating various perioperative stress responses. Modifying gut flora through multiple modalities, such as diet and nutrition, to accelerate recovery might be a complementary approach when exploring novel ERAS initiatives. Meanwhile, the pandemic of COVID-19 and the availability of promising qualitative evidence created both challenges and opportunities for the establishment of ERAS mode.
Collapse
|
38
|
Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Prog Lipid Res 2023; 89:101209. [PMID: 36473673 DOI: 10.1016/j.plipres.2022.101209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
39
|
Manoharan N, Parasuraman R, Jayamurali D, Govindarajulu SN. The therapeutic role of microbial metabolites in human health and diseases. RECENT ADVANCES AND FUTURE PERSPECTIVES OF MICROBIAL METABOLITES 2023:1-38. [DOI: 10.1016/b978-0-323-90113-0.00002-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Tousoulis D, Guzik T, Padro T, Duncker DJ, De Luca G, Eringa E, Vavlukis M, Antonopoulos AS, Katsimichas T, Cenko E, Djordjevic-Dikic A, Fleming I, Manfrini O, Trifunovic D, Antoniades C, Crea F. Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovasc Res 2022; 118:3171-3182. [PMID: 35420126 PMCID: PMC11023489 DOI: 10.1093/cvr/cvac057] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
The human gut microbiota is the microbial ecosystem in the small and large intestines of humans. It has been naturally preserved and evolved to play an important role in the function of the gastrointestinal tract and the physiology of its host, protecting from pathogen colonization, and participating in vitamin synthesis, the functions of the immune system, as well as glucose homeostasis and lipid metabolism, among others. Mounting evidence from animal and human studies indicates that the composition and metabolic profiles of the gut microbiota are linked to the pathogenesis of cardiovascular disease, particularly arterial hypertension, atherosclerosis, and heart failure. In this review article, we provide an overview of the function of the human gut microbiota, summarize, and critically address the evidence linking compositional and functional alterations of the gut microbiota with atherosclerosis and coronary artery disease and discuss the potential of strategies for therapeutically targeting the gut microbiota through various interventions.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, 11527 Athens, Greece
| | - Tomasz Guzik
- Institute of Cardiovascular Medical Sciences, BHF Glasgow Cardiovascular Research Centre, UK
| | - Teresa Padro
- Sant Pau Institute for Biomedical Research, Barcelona, Spain
| | - Dirk J Duncker
- Department of Cardiology, Thorax Center, Erasmus MC, Rotterdam, the Netherlands
| | - Giuseppe De Luca
- Division of Cardiology, Eastern Piedmont University, Novara, Italy
| | - Etto Eringa
- Institute of Cardiovascular Research, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | - Alexios S Antonopoulos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, 11527 Athens, Greece
| | - Themistoklis Katsimichas
- 1st Cardiology Department, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, 11527 Athens, Greece
| | - Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Ingrid Fleming
- Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Olivia Manfrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | | | - Filippo Crea
- Department of Cardiology and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
41
|
Deng B, Tao L, Wang Y. Natural products against inflammation and atherosclerosis: Targeting on gut microbiota. Front Microbiol 2022; 13:997056. [PMID: 36532443 PMCID: PMC9751351 DOI: 10.3389/fmicb.2022.997056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) has become recognized as a crucial element in preserving human fitness and influencing disease consequences. Commensal and pathogenic gut microorganisms are correlated with pathological progress in atherosclerosis (AS). GM may thus be a promising therapeutic target for AS. Natural products with cardioprotective qualities might improve the inflammation of AS by modulating the GM ecosystem, opening new avenues for researches and therapies. However, it is unclear what components of natural products are useful and what the actual mechanisms are. In this review, we have summarized the natural products relieving inflammation of AS by regulating the GM balance and active metabolites produced by GM.
Collapse
Affiliation(s)
- Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyu Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Marotta C, Ahmad A, Luo E, Oosterhaven J, van Marle S, Adda N. EDP-297: A novel, farnesoid X receptor agonist-Results of a phase I study in healthy subjects. Clin Transl Sci 2022; 16:338-351. [PMID: 36369848 PMCID: PMC9926082 DOI: 10.1111/cts.13453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
EDP-297 is a farnesoid X receptor agonist under development for treating nonalcoholic steatohepatitis. The pharmacokinetic (PK), pharmacodynamic (PD), food effect, and safety were evaluated in a single ascending dose (SAD) and multiple ascending dose (MAD) phase I study. Healthy subjects received single EDP-297 doses of 20-600 μg or once daily doses of 5-90 μg for 14 days. Safety, PKs, and PDs were assessed, including fibroblast growth factor 19 (FGF-19) and 7-α-hydroxy-4-cholesten-3-one (C4). Among 82 subjects, EDP-297 was generally well-tolerated. Pruritus was observed in four subjects in the SAD phase and seven subjects in the MAD phase; four severe cases occurred at 90 μg in the MAD phase, including one that led to drug discontinuation. A grade 2 elevation in alanine aminotransferase occurred with 90 μg. Mean lipid values remained within normal range. Plasma exposures of EDP-297 increased with SADs and MADs, with mean half-life following multiple doses of 9-12.5 h. No food effect was observed. Mean FGF-19 increased and C4 decreased up to 95% and 92%, respectively. EDP-297 was generally well-tolerated up to 60 μg MAD, with linear PKs suitable for once daily oral dosing, target engagement, and no food effect.
Collapse
Affiliation(s)
| | - Alaa Ahmad
- Enanta Pharmaceuticals, Inc.WatertownMassachusettsUSA
| | - Ed Luo
- Enanta Pharmaceuticals, Inc.WatertownMassachusettsUSA
| | | | | | - Nathalie Adda
- Enanta Pharmaceuticals, Inc.WatertownMassachusettsUSA
| |
Collapse
|
43
|
Noonan T, Denzinger K, Talagayev V, Chen Y, Puls K, Wolf CA, Liu S, Nguyen TN, Wolber G. Mind the Gap-Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence. Pharmaceuticals (Basel) 2022; 15:1304. [PMID: 36355476 PMCID: PMC9695541 DOI: 10.3390/ph15111304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 01/08/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are amongst the most pharmaceutically relevant and well-studied protein targets, yet unanswered questions in the field leave significant gaps in our understanding of their nuanced structure and function. Three-dimensional pharmacophore models are powerful computational tools in in silico drug discovery, presenting myriad opportunities for the integration of GPCR structural biology and cheminformatics. This review highlights success stories in the application of 3D pharmacophore modeling to de novo drug design, the discovery of biased and allosteric ligands, scaffold hopping, QSAR analysis, hit-to-lead optimization, GPCR de-orphanization, mechanistic understanding of GPCR pharmacology and the elucidation of ligand-receptor interactions. Furthermore, advances in the incorporation of dynamics and machine learning are highlighted. The review will analyze challenges in the field of GPCR drug discovery, detailing how 3D pharmacophore modeling can be used to address them. Finally, we will present opportunities afforded by 3D pharmacophore modeling in the advancement of our understanding and targeting of GPCRs.
Collapse
Affiliation(s)
- Theresa Noonan
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Farnesoid X Receptor Overexpression Decreases the Migration, Invasion and Angiogenesis of Human Bladder Cancers via AMPK Activation and Cholesterol Biosynthesis Inhibition. Cancers (Basel) 2022; 14:cancers14184398. [PMID: 36139556 PMCID: PMC9497084 DOI: 10.3390/cancers14184398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bladder cancer is one of the most prevailing cancers worldwide. Although treatments for urothelial carcinoma have improved, the rate of recurrence observed in the clinic is still high. The aim of this study was to evaluate whether cholesterol biosynthesis is involved in the effect of Farnesoid X Receptor (FXR) on bladder cancers. FXR overexpression contributed to activation of 5' AMP-activated protein kinase (AMPK) and decreased cholesterol levels. FXR overexpression reduced cholesterol biosynthesis and secretion by downregulating Sterol Regulatory Element Binding Protein 2 (SREBP2) and 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR) expression. In addition, an AMPK inhibitor, dorsomorphin, reversed the inhibition of migration, invasion and angiogenesis by FXR overexpression. In a metastatic xenograft animal study, FXR overexpression suppressed bladder cancer lung metastasis by decreasing matrix metalloproteinase-2 (MMP2), SREBP2 and HMGCR expression. Moreover, FXR overexpression combined with atorvastatin treatment further enhanced the downregulation of the migratory, adhesive, invasive and angiogenic properties in human urothelial carcinoma. In clinical observations, statin administration was associated with better survival rates of early-stage bladder cancer patients. Our results may provide guidance for improving therapeutic strategies for the treatment of urothelial carcinoma.
Collapse
|
45
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
46
|
Panzitt K, Zollner G, Marschall HU, Wagner M. Recent advances on FXR-targeting therapeutics. Mol Cell Endocrinol 2022; 552:111678. [PMID: 35605722 DOI: 10.1016/j.mce.2022.111678] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
The bile acid receptor FXR has emerged as a bona fide drug target for chronic cholestatic and metabolic liver diseases, ahead of all non-alcoholic fatty liver disease (NAFLD). FXR is highly expressed in the liver and intestine and activation at both sites differentially contributes to its desired metabolic effects. Unrestricted FXR activation, however, also comes along with undesired effects such as a pro-atherogenic lipid profile, pruritus and hepatocellular toxicity under certain conditions. Several pre-clinical studies have confirmed the potency of FXR activation for cholestatic and metabolic liver diseases, but overall it remains still open whether selective activation of intestinal FXR is advantageous over pan-FXR activation and whether restricted or modulated FXR activation can limit some of the side effects. Even more, FXR antagonist also bear the potential as intestinal-selective drugs in NAFLD models. In this review we will discuss the molecular prerequisites for FXR activation, pan-FXR activation and intestinal FXR in/activation from a therapeutic point of view, different steroidal and non-steroidal FXR agonists, ways to restrict FXR activation and finally what we have learned from pre-clinical models and clinical trials with different FXR therapeutics.
Collapse
Affiliation(s)
- Katrin Panzitt
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Gernot Zollner
- Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria.
| |
Collapse
|
47
|
Rivera-Andrade A, Petrick JL, Alvarez CS, Graubard BI, Florio AA, Kroker-Lobos MF, Parisi D, Freedman ND, Lazo M, Guallar E, Groopman JD, Ramirez-Zea M, McGlynn KA. Circulating bile acid concentrations and non-alcoholic fatty liver disease in Guatemala. Aliment Pharmacol Ther 2022; 56:321-329. [PMID: 35484638 PMCID: PMC9233027 DOI: 10.1111/apt.16948] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a major liver disease worldwide. Bile acid dysregulation may be a key feature in its pathogenesis and progression. AIMS To characterise the relationship between bile acid levels and NAFLD at the population level METHODS: We conducted a cross-sectional study in Guatemala in 2016 to examine the prevalence of NAFLD. Participants (n = 415) completed questionnaires, donated blood samples and had a brief medical exam. NAFLD was determined by calculation of the fatty liver index. The levels of 15 circulating bile acids were determined by LC-MS/MS. Adjusted prevalence odds ratios (PORadj ) and 95% CI were calculated to examine the relationships between bile acid levels (in tertiles) and NAFLD. RESULTS Persons with NAFLD had significantly higher levels of the conjugated primary bile acids glycocholic acid (GCA) (PORadj T3 vs T1 = 1.85), taurocholic acid (TCA) (PORadj T3 vs T1 = 2.45) and taurochenodeoxycholic acid (TCDCA) (PORadj T3 vs T1 = 2.10), as well as significantly higher levels the unconjugated secondary bile acid, deoxycholic acid (DCA) (PORadj T3 vs T1 = 1.78) and its conjugated form, taurodeoxycholic acid (TDCA) (PORadj T3 vs T1 = 1.81). CONCLUSIONS The bile acid levels of persons with and without NAFLD differed significantly. Among persons with NAFLD, higher levels of the conjugated forms of CA (i.e. GCA, TCA) and the secondary bile acids that derive from CA (i.e. DCA, TDCA) may indicate there is hepatic overproduction of CA, which may affect the liver via aberrant signalling mediated by the bile acids.
Collapse
Affiliation(s)
- Alvaro Rivera-Andrade
- Institute of Nutrition of Central America and Panama (INCAP) Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala
| | | | - Christian S. Alvarez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Barry I. Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Andrea A. Florio
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maria F. Kroker-Lobos
- Institute of Nutrition of Central America and Panama (INCAP) Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala
| | | | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mariana Lazo
- Department of General Internal Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Eliseo Guallar
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - John D. Groopman
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA,Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Manuel Ramirez-Zea
- Institute of Nutrition of Central America and Panama (INCAP) Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
48
|
Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. Int J Mol Sci 2022; 23:ijms23116046. [PMID: 35682726 PMCID: PMC9181207 DOI: 10.3390/ijms23116046] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Bile acids (BAs) are a group of amphiphilic molecules consisting of a rigid steroid core attached to a hydroxyl group with a varying number, position, and orientation, and a hydrophilic side chain. While BAs act as detergents to solubilize lipophilic nutrients in the small intestine during digestion and absorption, they also act as hormones. Farnesoid X receptor (FXR) is a nuclear receptor that forms a heterodimer with retinoid X receptor α (RXRα), is activated by BAs in the enterohepatic circulation reabsorbed via transporters in the ileum and the colon, and plays a critical role in regulating gene expression involved in cholesterol, BA, and lipid metabolism in the liver. The FXR/RXRα heterodimer also exists in the distal ileum and regulates production of fibroblast growth factor (FGF) 15/FGF19, a hormone traveling via the enterohepatic circulation that activates hepatic FGF receptor 4 (FGFR4)-β-klotho receptor complex and regulates gene expression involved in cholesterol, BA, and lipid metabolism, as well as those regulating cell proliferation. Agonists for FXR and analogs for FGF15/19 are currently recognized as a promising therapeutic target for metabolic syndrome and cholestatic diseases.
Collapse
|
49
|
Zhou JX, Li CN, Liu YM, Lin SQ, Wang Y, Xie C, Nan FJ. Discovery of 9,11-Seco-Cholesterol Derivatives as Novel FXR Antagonists. ACS OMEGA 2022; 7:17401-17405. [PMID: 35647433 PMCID: PMC9134407 DOI: 10.1021/acsomega.2c01567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The farnesoid X receptor (FXR) plays an important role in the regulation of bile acid, lipid, and glucose homeostasis. Recent findings have shown that the inhibition of FXR is beneficial to improvement of related metabolic diseases and cholestasis. In the present work, 9,11-seco-cholesterol derivatives were designed and synthesized by cleaving the C ring of cholesterol and were identified as novel structures of FXR antagonists. Compound 9a displayed the best FXR antagonistic activity at the cellular level (IC50 = 4.6 μM) and decreased the expression of the target genes of FXR in vivo.
Collapse
Affiliation(s)
- Jia-Xu Zhou
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People’s Republic of China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Cui-Na Li
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Ya-Meng Liu
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Su-Qin Lin
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210046, People’s Republic
of China
| | - Ying Wang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Cen Xie
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Fa-Jun Nan
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People’s Republic of China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
- Drug
Discovery Shandong Laboratory, Bohai Rim
Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People’s Republic of China
| |
Collapse
|
50
|
Lai CR, Wang HH, Chang HH, Tsai YL, Tsai WC, Lee CR, Changchien CY, Cheng YC, Wu ST, Chen Y. Enhancement of Farnesoid X Receptor Inhibits Migration, Adhesion and Angiogenesis through Proteasome Degradation and VEGF Reduction in Bladder Cancers. Int J Mol Sci 2022; 23:ijms23095259. [PMID: 35563650 PMCID: PMC9103877 DOI: 10.3390/ijms23095259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Bladder cancer is a malignant tumor mainly caused by exposure to environmental chemicals, with a high recurrence rate. NR1H4, also known as Farnesoid X Receptor (FXR), acts as a nuclear receptor that can be activated by binding with bile acids, and FXR is highly correlated with the progression of cancers. The aim of this study was to verify the role of FXR in bladder cancer cells. (2) Methods: A FXR overexpressed system was established to investigate the effect of cell viability, migration, adhesion, and angiogenesis in low-grade TSGH8301 and high-grade T24 cells. (3) Results: After FXR overexpression, the ability of migration, adhesion, invasion and angiogenesis of bladder cancer cells declined significantly. Focal adhesive complex, MMP2, MMP9, and angiogenic-related proteins were decreased, while FXR was overexpressed in bladder cancer cells. Moreover, FXR overexpression reduced vascular endothelial growth factor mRNA and protein expression and secretion in bladder cancer cells. After treatment with the proteosome inhibitor MG132, the migration, adhesion and angiogenesis caused by FXR overexpression were all reversed in bladder cancer cells. (4) Conclusions: These results may provide evidence on the role of FXR in bladder cancer, and thus may improve the therapeutic efficacy of urothelial carcinoma in the future.
Collapse
Affiliation(s)
- Chien-Rui Lai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (C.-R.L.); (H.-H.C.); (C.-Y.C.); (Y.-C.C.)
| | - Hisao-Hsien Wang
- Department of Urology, Cheng Hsin General Hospital, Taipei 11490, Taiwan;
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (C.-R.L.); (H.-H.C.); (C.-Y.C.); (Y.-C.C.)
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.T.); (W.-C.T.)
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.T.); (W.-C.T.)
| | - Chen-Ray Lee
- Department of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chih-Ying Changchien
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (C.-R.L.); (H.-H.C.); (C.-Y.C.); (Y.-C.C.)
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (C.-R.L.); (H.-H.C.); (C.-Y.C.); (Y.-C.C.)
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (S.-T.W.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (C.-R.L.); (H.-H.C.); (C.-Y.C.); (Y.-C.C.)
- Correspondence: (S.-T.W.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| |
Collapse
|