1
|
Xie Y, Wang R, Wu Z, Xie C, Gong S, Zhang J, Yu H, Song Z. Prophylactic application of sodium new houttuyfonate to regulate macrophage activation and antifungal infection in intra-abdominal candidiasis model mice. Int Immunopharmacol 2025; 159:114922. [PMID: 40412128 DOI: 10.1016/j.intimp.2025.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/10/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
The abuse of immunosuppressants causes damage to the immune system, while the pathological proliferation and translocation of symbiotic Candida albicans can result in abdominal infection in immunocompromised people. In this study, we established a mouse peritoneal C. albicans infection model and investigated the effects of preventive application of Sodium New Houttuyfonate (SNH) by analyzing the proportion of immune cells, polarization of peritoneal macrophages, changes in fungal tissue load, and histology, and the data showed prophylactic SNH administration yields a double anti-infection effect in phagocytosis and regulation of immunity according to the immune inflammatory states of the body. In vitro, neutral red, colony counting, cytometric bead array, RT-qPCR, western blot, inhibitor treatment, and detection of reactive oxygen species (ROS) and nitric oxide (NO) production on RAW264.7 macrophages showed SNH can stimulate the production of tumor necrosis factor-alpha (TNF-α) and CC motif ligand 2 (CCL2) and the release of ROS and NO through a TLR2/p38/NF-κB pathway. Taken together, our data provide an innovative insight into the prevention use of exogenous SNH for the treatment of C. albicans infection.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Zhihao Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Cheng Xie
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Shu Gong
- Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Hong Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| |
Collapse
|
2
|
Keymaram M, Lotfali E, Mousazadeh M, Nikkhah M, Raiesi O, Yadegari MH. Designing of eucalyptol nanoemulsion drug delivery system loaded with amphotericin B for Candida albicans biofilm control: in vitro and in vivo assessment using the Galleria mellonella model. Microb Pathog 2025; 205:107719. [PMID: 40398638 DOI: 10.1016/j.micpath.2025.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/13/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
OBJECTIVE (s): Candida species can form biofilm in various clinical settings, making them challenging to treat due to their resistance to antifungal drugs. The present study aimed to evaluate the effects of eucalyptol/amphotericin B nanoemulsion (NEA) on Candida albicans (C. albicans) biofilm. MATERIALS AND METHODS In this study, NEA was synthesized and its capacity to combat biofilms generated by four clinical isolates and a reference strain of C. albicans was investigated according to CLSI M27-A3 guidelines. The NEA was prepared using eucalyptol oil, Tween 80, and ethanol, and characterized by measuring particle size, Z-potential, and encapsulation efficiency (EE %). The cytotoxicity study was performed on myeloblast KG1 cells and human RBCs. The gene assessment and molecular docking were conducted by Real-Time PCR and AutoDock Vina software, respectively. The in vivo stage was conducted on Galleria mellonella (G. mellonella) larvae, and ultimately, histopathological analysis was executed using H and E Staining. RESULTS Based on the results obtained, the NEA exhibited EE of 80 % for Amphotericin B (AmB), displaying an average size of 39 nm and zeta potential of -2 mV. Minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) revealed more efficiency to inhibit biofilms (MIC Geomean = 4.25 μg/mL, MBIC Geomean = 19.58 μg/mL) compared to AmB (MIC Geomean = 17.05 μg/mL, MBIC Geomean = 59.37 μg/mL). While ALS1 and HWP1 gene expression remained unchanged, molecular docking suggested the binding of eucalyptol to ALS1 and HWP1 proteins. The results of FE-SEM demonstrated the biofilm destruction through yeast bursting and cytoplasm leakage. The NEA, in comparison to AmB, decreased melanization in tissue sections and also enhanced the survival of G. melonella larvae. CONCLUSION The NEA exhibited superior biocompatibility toward the KG1 myeloblasts cell line and RBCs cells additionally enhances the survival rate of G. mellonella larvae compared to AmB. Overall, NEA proved an efficient nano-formulated product against C. albicans biofilms.
Collapse
Affiliation(s)
- Mahyar Keymaram
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Omid Raiesi
- Department of Parasitology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Hossein Yadegari
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Pandey AM, Malwal SR, Valladares-Delgado M, Labrador-Fagúndez L, Stella BG, Díaz-Pérez LJ, Rey-Cibati A, Singh D, Stampolaki M, Hong S, Gennis RB, Kolocouris A, Benaim G, Oldfield E. Anti-Parasitics with a Triple Threat: Targeting Parasite Enzymes, the Proton Motive Force, and Host Cell-Mediated Killing. ACS Infect Dis 2025. [PMID: 40327058 DOI: 10.1021/acsinfecdis.5c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
We investigated the effects of the tuberculosis drug candidate SQ109 (8a) and of its analog MeSQ109 (8b) against Leishmania mexicana in promastigote and amastigote forms and against host cell macrophages finding potent activity (1.7 nM) for MeSQ109 against the intracellular forms, as well as low toxicity (∼61 μM) to host cells, resulting in a selectivity index of ∼36,000. We then investigated the mechanism of action of MeSQ109, finding that it targeted parasite mitochondria, collapsing the proton motive force, as well as targeting acidocalcisomes, rapidly increasing the intracellular Ca2+ concentration. Using an E. coli inverted membrane vesicle assay, we investigated the pH gradient collapse for SQ109 and 17 analogs, finding that there was a significant correlation (on average, R = 0.67, p = 0.008) between pH gradient collapse and cell growth inhibition in Trypanosoma brucei, T. cruzi, L. donovani, and Plasmodium falciparum. We also investigated pH gradient collapse with other antileishmanial agents: azoles, antimonials, benzofurans, amphotericin B, and miltefosine. The enhanced activity against intracellular trypanosomatids is seen with Leishmania spp. grown in macrophages but not with Trypanosoma cruzi in epithelial cells and is proposed to be due in part to host-based killing, based on the recent observation that SQ109 is known to convert macrophages to a pro-inflammatory (M1) phenotype.
Collapse
Affiliation(s)
- Akanksha M Pandey
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mariana Valladares-Delgado
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
- Department of Cell Physiology and Molecular Biophysics, Texas Tech Health Science Center, Lubbock, Texas 79430, United States
| | - Liesangerli Labrador-Fagúndez
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
| | - Bruno G Stella
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
| | - Luis José Díaz-Pérez
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
| | - André Rey-Cibati
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
| | - Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Marianna Stampolaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Sangjin Hong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Gustavo Benaim
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1050, Venezuela
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Hargarten JC, Ssebambulidde K, Anjum SH, Vaughan MJ, Xu J, Ganguly A, Dulek B, Otaizo-Carrasquero F, Song B, Tao S, Park YD, Scott TL, Höltermann TA, Schinazi RF, Chittiboina P, Billioux BJ, Hammoud DA, Olszewski MA, Williamson PR. Pathway-instructed therapeutic selection of ruxolitinib reduces neuroinflammation in fungal postinfectious inflammatory syndrome. SCIENCE ADVANCES 2025; 11:eadi9885. [PMID: 40117367 PMCID: PMC11927619 DOI: 10.1126/sciadv.adi9885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Therapies to reduce neuroinflammation following resolution of acute central nervous system (CNS) infections are urgently needed, particularly for patients with non-HIV-associated cryptococcal meningoencephalitis complicated by a postinfectious inflammatory response syndrome (cPIIRS). To identify druggable targets in cPIIRS, patient cerebral spinal fluid samples underwent transcriptional analysis, revealing a Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway dominance in neuroinflammatory gene signatures. MurinecPIIRS models recapitulated this pathway predominance and treatment with the JAK inhibitor ruxolitinib, confirmed a mechanistic requirement for this pathway in disease pathology. Ruxolitinib treatment improved markers of neuronal damage, reduced activated T cell and myeloid cells, and improved weight. On the basis of these findings, we conducted a first-in-human ruxolitinib treatment of patients with cPIIRS (NCT00001352). Ruxolitinib treatment of six patients led to demonstrated tolerability, reductions in inflammatory biomarkers and activated immune cells, and improved brain imaging. These results advocate for pathway-instructed therapeutics in neuroinflammatory diseases and endorse JAK inhibitors in further clinical studies of cPIIRS.
Collapse
Affiliation(s)
- Jessica C. Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Seher H. Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Malcolm J. Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor Veterans Affairs (VA) Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor Veterans Affairs (VA) Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Brittany Dulek
- Integrated Data Science Section, NIAID, NIH, Bethesda, MD, USA
| | | | - Brian Song
- Research Service, Ann Arbor Veterans Affairs (VA) Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Sijia Tao
- Center for Viroscience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School ofMedicine and Children‘s Healthcare of Atlanta, Atlanta, GA, USA
- Center for Acquired Immunodeficiency Syndrome (AIDS) Research, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yoon-Dong Park
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Terri L. Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tracey-Ann Höltermann
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Raymond F. Schinazi
- Center for Viroscience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School ofMedicine and Children‘s Healthcare of Atlanta, Atlanta, GA, USA
- Center for Acquired Immunodeficiency Syndrome (AIDS) Research, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA
| | | | - Dima A. Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor Veterans Affairs (VA) Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
5
|
Peixoto JF, Gonçalves-Oliveira LF, Dias-Lopes G, Souza-Silva F, Alves CR. Epoxy-a-lapachone in nanosystem: a prototype drug for leishmaniasis assessed in the binomial BALB/c - Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 2024; 119:e240115. [PMID: 39476028 PMCID: PMC11520661 DOI: 10.1590/0074-02760240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024] Open
Abstract
This perspective presents and supports arguments for a new formulation of epoxy-α-lapachone loaded microemulsion (ELAP-ME), a nanosystem, as a prototype drug for the treatment of leishmaniasis. The benefits of ELAP as a multitarget compound, with properties that affect key physiological pathways of Leishmania spp. are discussed. ELAP-ME demonstrated efficacy in murine infection models, particularly with the binomial BALB/c-Leishmania (Leishmania) amazonensis. Furthermore, it is proposed that the technological maturity of ELAP-ME be classified as Technology Readiness Level 4 (TLR 4) within the context of innovative drugs for American Cutaneous Leishmaniasis (ACL).
Collapse
Affiliation(s)
| | - Luiz Filipe Gonçalves-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ciências Biomédicas e Saúde, Cabo Frio, RJ, Brasil
| | - Franklin Souza-Silva
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde, Rio de Janeiro, RJ, Brasil
- Universidade Iguaçu, Nova Iguaçu, RJ, Brasil
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
6
|
Holzknecht J, Marx F. Navigating the fungal battlefield: cysteine-rich antifungal proteins and peptides from Eurotiales. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1451455. [PMID: 39323611 PMCID: PMC11423270 DOI: 10.3389/ffunb.2024.1451455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Fungi are ubiquitous in the environment and play a key role in the decomposition and recycling of nutrients. On the one hand, their special properties are a great asset for the agricultural and industrial sector, as they are used as source of nutrients, producers of enzymes, pigments, flavorings, and biocontrol agents, and in food processing, bio-remediation and plant growth promotion. On the other hand, they pose a serious challenge to our lives and the environment, as they are responsible for fungal infections in plants, animals and humans. Although host immunity opposes invading pathogens, certain factors favor the manifestation of fungal diseases. The prevalence of fungal infections is on the rise, and there is an alarming increase in the resistance of fungal pathogens to approved drugs. The limited number of antimycotics, the obstacles encountered in the development of new drugs due to the poor tolerability of antifungal agents in patients, the limited number of unique antifungal targets, and the low species specificity contribute to the gradual depletion of the antifungal pipeline and newly discovered antifungal drugs are rare. Promising candidates as next-generation therapeutics are antimicrobial proteins and peptides (AMPs) produced by numerous prokaryotic and eukaryotic organisms belonging to all kingdom classes. Importantly, filamentous fungi from the order Eurotiales have been shown to be a rich source of AMPs with specific antifungal activity. A growing number of published studies reflects the efforts made in the search for new antifungal proteins and peptides (AFPs), their efficacy, species specificity and applicability. In this review, we discuss important aspects related to fungi, their impact on our life and issues involved in treating fungal infections in plants, animals and humans. We specifically highlight the potential of AFPs from Eurotiales as promising alternative antifungal therapeutics. This article provides insight into the structural features, mode of action, and progress made toward their potential application in a clinical and agricultural setting. It also identifies the challenges that must be overcome in order to develop AFPs into therapeutics.
Collapse
Affiliation(s)
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Innsbruck Medical University,
Innsbruck, Austria
| |
Collapse
|
7
|
Pandit S, Singh A, Singh J, Xess I, Singh TP, Singh G, Sharma P, Sharma S. Synergistic action of lactoferrin and its derived functional fragments as a promising therapeutic agent in combating mucormycosis. Future Microbiol 2024; 19:857-866. [PMID: 38904282 PMCID: PMC11290771 DOI: 10.1080/17460913.2024.2352263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/03/2024] [Indexed: 06/22/2024] Open
Abstract
Aim: Currently, we have limited armamentarium of antifungal agents against Mucorales. There is an urgent need to discover novel antifungal agents that are effective, safe and affordable. Materials & methods: In this study, the anti-Mucorale action of native lactoferrin (LF) and its functional fragments CLF, RR6 and LFcin against three common Mucorale species are reported. The synergistic action of LF with antifungal agents like amphotericin B, isavuconazole and posaconazole was analyzed using checkerboard technique. Results: All the three mucor species showed inhibition when treated with fragments. The checkerboard assay confirmed that native LF showed the best synergistic action against Mucorales in combination with Amphotericin B. Conclusion: These results highlight the potential therapeutic value of native LF against Mucorales.
Collapse
Affiliation(s)
- Surabhi Pandit
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi
| | - Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi
| | - Jiya Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi
| | - Immaculata Xess
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi
| | - Gagandeep Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi
| |
Collapse
|
8
|
Hon KLE, Chan VPY, Leung AKC, Leung KKY, Hui WF. Invasive fungal infections in critically ill children: epidemiology, risk factors and antifungal drugs. Drugs Context 2024; 13:2023-9-2. [PMID: 38915918 PMCID: PMC11195526 DOI: 10.7573/dic.2023-9-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/20/2024] [Indexed: 06/26/2024] Open
Abstract
Background Invasive fungal infections (IFIs) are important infectious complications amongst critically ill children. The most common fungal infections are due to Candida species. Aspergillus, Zygomycetes and Fusarium are also emerging because of the empirical use of antifungal drugs. This updated review discusses the epidemiology of IFIs as well as antifungal drugs, dosing and potential adverse effects in critically ill children. Methods A PubMed search was conducted with Clinical Queries using the key terms "antifungal", "children", "critical care" AND "paediatric intensive care unit" OR "PICU". The search strategy included clinical trials, randomized controlled trials, meta-analyses, observational studies and reviews and was limited to the English literature in paediatrics. Results Candida and Aspergillus spp. are the most prevalent fungi in paediatric IFIs, causing invasive candidiasis infections (ICIs) and invasive aspergillosis infections (IAIs), respectively. These IFIs are associated with high morbidity, mortality and healthcare costs. Candida albicans is the principal Candida spp. associated with paediatric ICIs. The risks and epidemiology for IFIs vary if considering previously healthy children treated in the paediatric intensive care unit or children with leukaemia, malignancy or a severe haematological disease. The mortality rate for IAIs in children is 2.5-3.5-fold higher than for ICIs. Four major classes of antifungals for critically ill children are azoles, polyenes, antifungal antimetabolites and echinocandins. Conclusions Antifungal agents are highly efficacious. For successful treatment outcomes, it is crucial to determine the optimal dosage, monitor pharmacokinetics parameters and adverse effects, and individualized therapeutic monitoring. Despite potent antifungal medications, ICIs and IAIs continue to be serious infections with high mortality rates. Pre-emptive therapy has been used for IAIs. Most guidelines recommend voriconazole as initial therapy of invasive aspergillosis in most patients, with consideration of combination therapy with voriconazole plus an echinocandin in selected patients with severe disease. The challenge is to identify critically ill patients at high risks of ICIs for targeted prophylaxis. Intravenous/per os fluconazole is first-line pre-emptive treatment for Candida spp. whereas intravenous micafungin or intravenous liposomal amphotericin B is alternative pre-emptive treatment.This article is part of the Challenges and strategies in the management of invasive fungal infections Special Issue: https://www.drugsincontext.com/special_issues/challenges-and-strategies-in-the-management-of-invasive-fungal-infections.
Collapse
Affiliation(s)
- Kam Lun Ellis Hon
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
- Department of Paediatrics, CUHKMC, The Chinese University of
Hong Kong,
Hong Kong,
China
| | - Vivian PY Chan
- Department of Pharmacy,
Hong Kong Children’s Hospital,
Hong Kong,
China
| | - Alexander KC Leung
- Department of Pediatrics, The University of Calgary, and The Alberta Children’s Hospital, Calgary, Alberta,
Canada
| | - Karen Ka Yan Leung
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
| | - Wun Fung Hui
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
| |
Collapse
|
9
|
Guo D, Shi C, Suo L, Ji X, Yue H, Yuan D, Luo J. "Click" amphotericin B in prodrug nanoformulations for enhanced systemic fungemia treatment. J Control Release 2024; 370:626-642. [PMID: 38734314 PMCID: PMC11923797 DOI: 10.1016/j.jconrel.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Severe nephrotoxicity and infusion-related side effects pose significant obstacles to the clinical application of Amphotericin B (AmB) in life-threatening systemic fungal infections. In pursuit of a cost-effective and safe formulation, we have introduced multiple phenylboronic acid (PBA) moieties onto a linear dendritic telodendrimer (TD) scaffold, enabling effective AmB conjugation via boronate chemistry through a rapid, high yield, catalysis-free and dialysis-free "Click" drug loading process. Optimized AmB-TD prodrugs self-assemble into monodispersed micelles characterized by small particle sizes and neutral surface charges. AmB prodrugs sustain drug release in circulation, which is accelerated in response to the acidic pH and Reactive Oxygen Species (ROS) in the infection and inflammation. Prodrugs mitigate the AmB aggregation status, reduce cytotoxicity and hemolytic activity compared to Fungizone®, and demonstrate superior antifungal activity to AmBisome®. AmB-PEG5kBA4 has a comparable maximum tolerated dose (MTD) to AmBisome®, while over 20-fold increase than Fungizone®. A single dose of AmB-PEG5kBA4 demonstrates superior efficacy to Fungizone® and AmBisome® in treating systemic fungal infections in both immunocompetent and immunocompromised mice.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Liye Suo
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Hao Yue
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Dekai Yuan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Sepsis Interdisciplinary Research Center (SIRC), State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
10
|
Dallalzadeh LO, Ediriwickrema LS, Fung SE, Men CJ, Kossler AL, Kupcha AC, Mawn LA, Burkat CN, van Landingham SW, Conger JR, Simmons B, Pham C, Akella SS, Setabutr P, Ho T, Couch SM, Kim JS, Demirci H, Korn BS, Kikkawa DO, Liu CY. Transcutaneous retrobulbar amphotericin B for rhino-orbital-cerebral mucormycosis: a multi-center retrospective comparative study. Orbit 2024; 43:41-48. [PMID: 36880205 DOI: 10.1080/01676830.2023.2186435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE To assess whether transcutaneous retrobulbar amphotericin B injections (TRAMB) reduce exenteration rate without increasing mortality in rhino-orbital-cerebral mucormycosis (ROCM). METHODS In this retrospective case-control study, 46 patients (51 eyes) with biopsy-proven ROCM were evaluated at 9 tertiary care institutions from 1998 to 2021. Patients were stratified by radiographic evidence of local orbital versus extensive involvement at presentation. Extensive involvement was defined by MRI or CT evidence of abnormal or loss of contrast enhancement of the orbital apex with or without cavernous sinus, bilateral orbital, or intracranial extension. Cases (+TRAMB) received TRAMB as adjunctive therapy while controls (-TRAMB) did not. Patient survival, globe survival, and vision/motility loss were compared between +TRAMB and -TRAMB groups. A generalized linear mixed effects model including demographic and clinical covariates was used to evaluate the impact of TRAMB on orbital exenteration and disease-specific mortality. RESULTS Among eyes with local orbital involvement, exenteration was significantly lower in the +TRAMB group (1/8) versus -TRAMB (8/14) (p = 0.04). No significant difference in mortality was observed between the ±TRAMB groups. Among eyes with extensive involvement, there was no significant difference in exenteration or mortality rates between the ±TRAMB groups. Across all eyes, the number of TRAMB injections correlated with a statistically significant decreased rate of exenteration (p = 0.048); there was no correlation with mortality. CONCLUSIONS Patients with ROCM with local orbital involvement treated with adjunctive TRAMB demonstrated a lower exenteration rate and no increased risk of mortality. For extensive involvement, adjunctive TRAMB does not improve or worsen these outcomes.
Collapse
Affiliation(s)
- Liane O Dallalzadeh
- Division of Oculofacial Plastic and Reconstructive Surgery, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, California, USA
| | - Lilangi S Ediriwickrema
- Division of Ophthalmic Plastic and Reconstructive Surgery, Gavin Herbert Eye Institute, UC Irvine, Irvine, California, USA
| | - Sammie E Fung
- Division of Oculofacial Plastic and Reconstructive Surgery, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, California, USA
| | - Clara J Men
- Division of Oculoplastic and Orbital Surgery, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Andrea L Kossler
- Division of Oculoplastic and Orbital Surgery, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Anna C Kupcha
- Division of Oculoplastics and Orbital Disease, Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Louise A Mawn
- Division of Oculoplastics and Orbital Disease, Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Cat N Burkat
- Oculoplastic, Orbital, & Cosmetic Facial Surgery, Department of Ophthalmology and Visual Sciences, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Suzanne W van Landingham
- Oculoplastic, Orbital, & Cosmetic Facial Surgery, Department of Ophthalmology and Visual Sciences, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Jordan R Conger
- Division of Ophthalmic Plastic and Reconstructive Surgery, Gavin Herbert Eye Institute, UC Irvine, Irvine, California, USA
| | - Brittany Simmons
- Division of Oculoplastic, Orbit, and Reconstructive Surgery, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Chau Pham
- Division of Oculoplastic, Orbit, and Reconstructive Surgery, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Sruti S Akella
- Oculoplastic and Reconstructive Surgery Service, Illinois Eye and Ear Infirmary, University of Illinois, Chicago, Illinois, USA
| | - Pete Setabutr
- Oculoplastic and Reconstructive Surgery Service, Illinois Eye and Ear Infirmary, University of Illinois, Chicago, Illinois, USA
| | - Tiffany Ho
- Division of Oculofacial Plastic and Reconstructive Surgery, Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Steven M Couch
- Division of Oculofacial Plastic and Reconstructive Surgery, Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jane S Kim
- Division of Eye Plastic, Orbital and Facial Cosmetic Surgery, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Hakan Demirci
- Division of Eye Plastic, Orbital and Facial Cosmetic Surgery, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Bobby S Korn
- Division of Oculofacial Plastic and Reconstructive Surgery, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, California, USA
- Division of Plastic and Reconstructive Surgery, UC San Diego Department of Surgery, La Jolla, California, USA
| | - Don O Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, California, USA
- Division of Plastic and Reconstructive Surgery, UC San Diego Department of Surgery, La Jolla, California, USA
| | - Catherine Y Liu
- Division of Oculofacial Plastic and Reconstructive Surgery, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Hargarten JC, Ssebambulidde K, Anjum SH, Vaughan MJ, Xu J, Song B, Ganguly A, Park YD, Scott T, Hammoud DA, Olszewski MA, Williamson PR. JAK/STAT Signaling Predominates in Human and Murine Fungal Post-infectious Inflammatory Response Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301483. [PMID: 38293201 PMCID: PMC10827263 DOI: 10.1101/2024.01.18.24301483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Post-infection inflammatory syndromes have been increasingly recognized as a cause of host damage in a variety of infectious diseases including tuberculosis, bacterial meningitis, and COVID-19. Recently, a post-infectious inflammatory response syndrome (PIIRS) was described in non-HIV-infected cryptococcal fungal meningoencephalitis (CM) as a major cause of mortality. Inflammatory syndromes are particularly severe in neurological infections due to the skull's rigid structure which limits unchecked tissue expansion from inflammatory-induced edema. In the present studies, neurologic transcriptional pathway analysis utilizing a murine PIIRS model demonstrated a predominance of Janus kinase/signal transducer and activator of transcription (JAK/STAT) activation. JAK/STAT inhibitor treatment resulted in improvements in CNS damage markers, reductions in intrathecal CD44hiCD62lo CD4+ effector CD4+ T-cells and MHC II+ inflammatory myeloid cells, and weight gains in mice, the latter after treatment with antifungals. Based on these data, pathway-driven steroid-sparing human treatment for steroid-refractory PIIRS was initiated using short courses of the JAK/STAT inhibitor ruxolitinib. These were well tolerated and reduced activated HLA-DR+ CD4+ and CD8+ cells and inflammatory monocytes as well as improved brain imaging. Together, these findings support the role of JAK/STAT in PIIRS as well as further study of JAK/STAT inhibitors as potential adjunctive therapy for PIRS and other neural inflammatory syndromes.
Collapse
Affiliation(s)
- Jessica C. Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Seher H. Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Malcolm J. Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Brian Song
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Yoon-dong Park
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Terri Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
12
|
Otsuka Y, Hara A, Minaga K, Sekai I, Kurimoto M, Masuta Y, Takada R, Yoshikawa T, Kamata K, Kudo M, Watanabe T. Leucine-rich repeat kinase 2 promotes the development of experimental severe acute pancreatitis. Clin Exp Immunol 2023; 214:182-196. [PMID: 37847786 PMCID: PMC10714192 DOI: 10.1093/cei/uxad106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
Translocation of gut bacteria into the pancreas promotes the development of severe acute pancreatitis (SAP). Recent clinical studies have also highlighted the association between fungal infections and SAP. The sensing of gut bacteria by pattern recognition receptors promotes the development of SAP via the production of proinflammatory cytokines; however, the mechanism by which gut fungi mediate SAP remains largely unknown. Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that regulates innate immunity against fungi via Dectin-1 activation. Here, we investigated the role of LRRK2 in SAP development and observed that administration of LRRK2 inhibitors attenuated SAP development. The degree of SAP was greater in Lrrk2 transgenic (Tg) mice than in control mice and was accompanied by an increased production of nuclear factor-kappaB-dependent proinflammatory cytokines. Ablation of the fungal mycobiome by anti-fungal drugs inhibited SAP development in Lrrk2 Tg mice, whereas the degree of SAP was comparable in Lrrk2 Tg mice with or without gut sterilization by a broad range of antibiotics. Pancreatic mononuclear cells from Lrrk2 Tg mice produced large amounts of IL-6 and TNF-α upon stimulation with Dectin-1 ligands, and inhibition of the Dectin-1 pathway by a spleen tyrosine kinase inhibitor protected Lrrk2 Tg mice from SAP. These data indicate that LRRK2 activation is involved in the development of SAP through proinflammatory cytokine responses upon fungal exposure.
Collapse
Affiliation(s)
- Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
13
|
Peruzzu D, Fecchi K, Venturi G, Gagliardi MC. Repurposing Amphotericin B and Its Liposomal Formulation for the Treatment of Human Mpox. Int J Mol Sci 2023; 24:ijms24108896. [PMID: 37240241 DOI: 10.3390/ijms24108896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Mpox (monkeypox) is a zoonotic viral disease caused by the mpox virus (MPXV). Recently in 2022, a multi-country Mpox outbreak has determined great concern as the disease rapidly spreads. The majority of cases are being noticed in European regions and are unrelated to endemic travel or known contact with infected individuals. In this outbreak, close sexual contact appears to be important for MPXV transmission, and an increasing prevalence in people with multiple sexual partners and in men who have sex with men has been observed. Although Vaccinia virus (VACV)-based vaccines have been shown to induce a cross-reactive and protective immune response against MPXV, limited data support their efficacy against the 2022 Mpox outbreak. Furthermore, there are no specific antiviral drugs for Mpox. Host-cell lipid rafts are small, highly dynamic plasma-membrane microdomains enriched in cholesterol, glycosphingolipids and phospholipids that have emerged as crucial surface-entry platforms for several viruses. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) inhibits fungal, bacterial and viral infection of host cells through its capacity to sequester host-cell cholesterol and disrupt lipid raft architecture. In this context, we discuss the hypothesis that AmphB could inhibit MPXV infection of host cells through disruption of lipid rafts and eventually through redistribution of receptors/co-receptors mediating virus entry, thus representing an alternative or additional therapeutic tool for human Mpox.
Collapse
Affiliation(s)
- Daniela Peruzzu
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Katia Fecchi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giulietta Venturi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Cristina Gagliardi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
14
|
Hoenigl M, Lewis R, van de Veerdonk FL, Verweij PE, Cornely OA. Liposomal amphotericin B—the future. J Antimicrob Chemother 2022; 77:ii21-ii34. [PMID: 36426674 PMCID: PMC9693803 DOI: 10.1093/jac/dkac353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in medicine have led to a growing number of people with compromised or suppressed immune systems who are susceptible to invasive fungal infections. In particular, severe fungal infections are becoming increasingly common in ICUs, affecting people within and outside of traditional risk groups alike. This is exemplified by the emergence of severe viral pneumonia as a significant risk factor for invasive pulmonary aspergillosis, and the recognition of influenza-associated pulmonary aspergillosis and, more recently, COVID-19-associated pulmonary aspergillosis. The treatment landscape for haematological malignancies has changed considerably in recent years, and some recently introduced targeted agents, such as ibrutinib, are increasing the risk of invasive fungal infections. Consideration must also be given to the risk of drug–drug interactions between mould-active azoles and small-molecule kinase inhibitors. At the same time, infections caused by rare moulds and yeasts are increasing, and diagnosis continues to be challenging. There is growing concern about azole resistance among both moulds and yeasts, mandating continuous surveillance and personalized treatment strategies. It is anticipated that the epidemiology of fungal infections will continue to change and that new populations will be at risk. Early diagnosis and appropriate treatment remain the most important predictors of survival, and broad-spectrum antifungal agents will become increasingly important. Liposomal amphotericin B will remain an essential therapeutic agent in the armamentarium needed to manage future challenges, given its broad antifungal spectrum, low level of acquired resistance and limited potential for drug–drug interactions.
Collapse
Affiliation(s)
- M Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz , Graz , Austria
- BioTechMed-Graz , Graz , Austria
- European Confederation of Medical Mycology (ECMM) Excellence Center, Medical University of Graz , Graz , Austria
| | - R Lewis
- Department of Medical and Surgical Sciences, Infectious Diseases Hospital, IRCSS S’Orsola-Malpighi, University of Bologna , Bologna , Italy
| | - F L van de Veerdonk
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center , Nijmegen , The Netherlands
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Center—CWZ Center of Expertise for Mycology , Nijmegen , The Netherlands
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - O A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Cologne , Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM) , Cologne , Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne , Cologne , Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln) , Cologne , Germany
| |
Collapse
|
15
|
Kumari S, Kumar V, Tiwari RK, Ravidas V, Pandey K, Kumar A. - Amphotericin B: A drug of choice for Visceral Leishmaniasis. Acta Trop 2022; 235:106661. [PMID: 35998680 DOI: 10.1016/j.actatropica.2022.106661] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022]
Abstract
Visceral leishmaniasis or Kala-azar is a vector-borne disease caused by an intracellular parasite of the genus leishmania. In India, Amphotericin B (AmB) is a first-line medication for treating leishmaniasis. After a large-scale resistance to pentavalent antimony therapy developed in Bihar state, it was rediscovered as an effective treatment for Leishmania donovani infection. AmB which binds to the ergosterol of protozoan cells causes a change in membrane integrity resulting in ions leakage, and ultimately leading to cell death. The treatment effect of liposomal AmB can be seen more quickly than deoxycholate AmB because, it has some toxic effects, but liposomal AmB is significantly less toxic. Evidence from studies suggested that ABLC (Abelcet) and ABCD (Amphotec) are as effective as L-AmB but Liposomal form (Ambisome) is a more widely accepted treatment option than conventional ones. Nevertheless, the world needs some way more efficient antileishmanial drugs that are less toxic and less expensive for people living with parasitic infections caused by Leishmania. So, academics, researchers, and sponsors need to focus on finding such drugs. This review provides a summary of the chemical, pharmacokinetic, drug-target interactions, stability, dose efficacy, and many other characteristics of the AmB and their various formulations. We have also highlighted the clinically significant aspects of PKDL and VL co-infection with HIV/TB.
Collapse
Affiliation(s)
- Shobha Kumari
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Vikash Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Ritesh Kumar Tiwari
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Vidyanand Ravidas
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India.
| |
Collapse
|
16
|
Xie Y, Zhou X, Zhang J, Yu H, Song Z. Immunomodulatory responses of differentially polarized macrophages to fungal infections. Int Immunopharmacol 2022; 111:109089. [PMID: 35964406 DOI: 10.1016/j.intimp.2022.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
Macrophages, the first line of defense against invasive fungi in the innate immune system, are widely distributed in the blood and tissues of the body. In response to various internal and external stimulators, macrophages can polarize into classically activated macrophages (M1) and alternatively activated macrophages (M2). These two types of polarized macrophages play different roles in antifungal activity and in maintaining the steady-state balance between inflammation and tissue repair. However, the antifungal mechanisms of M1- and M2-type macrophages have not been fully described. In this review, the immune regulatory mechanisms against pathogenic fungi of these two classical types of macrophages in various tissues are summarized. The effects of antifungal factors on macrophage differentiation are also highlighted. The description of these data, on the one hand provides valuable insight for future investigations and also highlights new strategies for the treatment of pathogenic fungal infections.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| | - Hong Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, PR China.
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| |
Collapse
|
17
|
Activation of TLR-pathway to induce host Th1 immune respons eagainst visceral leishmaniasis: Involvement of galactosylated-flavonoids. Heliyon 2022; 8:e09868. [PMID: 35847617 PMCID: PMC9284459 DOI: 10.1016/j.heliyon.2022.e09868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/17/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Immunotherapeutic strategies against visceral leishmaniasis (VL) are pertinent because of the emergence of resistance against existing chemotherapy, coupled with their toxicity and high costs. Various bioactive components with potential immunomodulatory activity, such as alkaloids, terpenes, saponins, flavonoids obtained primarily from medicinal plants, have been screened against different disease models. Reports suggested that glycans containing terminal β-galactose can skew host immune response towards Th1 by engaging TLRs. In this study, two synthesized terminal galactose-containing flavones, Quercetin 3-d-galactoside (Q-gal) and Kaempferol 3-O-d-galactoside (K-gal), are profiled in terms of inducing host protective Th1 response in both in vitro & in vivo animal models of experimental VL individually against antimony-resistant & antimony-susceptible Leishmania donovani. Further, we explored that both Q-gal and K-gal induce TLR4 mediated Th1 response to encounter VL. Molecular docking analysis also suggested strong interaction with TLR4 for both the galactosides, with a slightly better binding potential towards Q-gal. Treatment with both Q-gal and K-gal showed significant antileishmanial efficacy. Each considerably diminished the liver and splenic parasite burden 60 days after post-infection (>90% in AG83 infected mice and >87% in GE1F8R infected mice) when administered at a 5 mg/kg/day body-weight dose for ten consecutive days. However, the treatments failed to clear the parasites in the TLR4 deficient C3H/HeJ mice. Treatment with these compounds favors the elevation of TLR4 dependent host protective Th1 cytokines and suppression of disease-promoting IL-10. Q-gal and K-gal also triggered sufficient ROS generation in macrophages to kill intracellular parasites directly. Galactosilated flavonoids treatment clears in-vivo drug-resistant Leishmania donovani infection. Quercetin 3-d-galactoside (Q-gal) & Kaempferol 3-O-d-galactoside (K-gal) induce host TLR4 pathway. These flavonoids up-regulate Th1 cytokines and suppress the disease-promoting IL-10. TLR4 deficient C3H/HeJ mice are unresponsive towards Q-gal and K-gal treatment.
Collapse
|
18
|
Nair AG, Dave TV. Transcutaneous retrobulbar injection of amphotericin B in rhino-orbital-cerebral mucormycosis: a review. Orbit 2021; 41:275-286. [PMID: 34720026 DOI: 10.1080/01676830.2021.1990351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mucormycosis is an aggressive and potentially fatal invasive fungal infection. The most common form of mucormycosis is rhino-orbital-cerebral mucormycosis (ROCM). While it is commonly seen in immunocompromised patients, it is also known to affect healthy individuals. The global disease burden of ROCM has increased significantly following the surge in cases during the COVID-19 pandemic. Endoscopic sinus debridement, systemic antifungal therapy, and control of the underlying immunosuppressive condition are essential for the management of ROCM. Orbital involvement, however, presents a challenge to clinicians. Intervention strategies that have been described to treat orbital disease include orbital exenteration, conservative orbital debridement with or without irrigation with amphotericin B and transcutaneous retrobulbar injection of amphotericin B (TRAMB). Currently, there is a lack of clarity regarding the indications and outcomes of TRAMB as a treatment modality. In this review, the drug formulations used, the complications, and outcomes of previously described cases that have used TRAMB in cases of ROCM are discussed. Favorable outcomes following TRAMB depend on appropriate patient selection and radiological evidence of the orbital burden of the disease. This review aims to familiarize clinicians with objective parameters for patient selection for TRAMB, namely the extent of the disease, the clinical features, and radiological findings; viz. the clinical interpretation of areas of contrast uptake and those of necrosis. TRAMB can be considered as a viable option in select cases of orbital mucormycosis where exenteration or debridement are not indicated, or when there is limited orbital disease.
Collapse
Affiliation(s)
- Akshay Gopinathan Nair
- Ophthalmic Plastic Surgery and Ocular Oncology Services, Aditya Jyot Eye Hospital, Mumbai, India.,Advanced Eye Hospital & Institute, Navi Mumbai, India.,Department of Ophthalmology, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, India.,Ophthalmic Plastic Surgery and Ocular Oncology Services, R. Jhunjhunwala Sankara Eye Hospital, Panvel, India
| | - Tarjani Vivek Dave
- Ophthalmic Plastic Surgery Service, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
19
|
Scardina T, Fawcett AJ, Patel SJ. Amphotericin-Associated Infusion-Related Reactions: A Narrative Review of Pre-Medications. Clin Ther 2021; 43:1689-1704. [PMID: 34696915 DOI: 10.1016/j.clinthera.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Amphotericin B has been reported to cause infusion-related adverse effects (IRAEs). To prevent IRAEs, pre-medications may be administered prior to the administration of amphotericin B. The effects of different formulations of amphotericin B (amphotericin B deoxycholate and lipid formulations), duration of infusion, and utility of pre-medications in preventing IRAEs are reviewed. METHODS PubMed, Ovid Medline, Embase, Web of Science, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, and the Scopus databases were searched with the following search terms: pre-medication, amphotericin B, and its related compounds. Upon review, a total of 39 publications were considered for inclusion. FINDINGS In vitro and in vivo studies have reported that amphotericin B deoxycholate stimulates pro-inflammatory cytokine genes causing IRAEs. Nonetheless, the clinical literature has reported that IRAEs occur among patients who received pre-medications. In comparison to amphotericin B deoxycholate, lipid-based formulations of amphotericin may result in a lower or similar risk for IRAEs. IMPLICATIONS The routine use of pre-medications to prevent IRAEs after the administration of amphotericin B (amphotericin B deoxycholate or lipid formulations) would not be warranted.
Collapse
Affiliation(s)
- Tonya Scardina
- Department of Pharmacy, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois.
| | - Andrea J Fawcett
- Lurie Children's Pediatric Research & Evidence Synthesis Center (PRECIISE; A JBI Affiliated Group), Chicago, Illinois; Department of Clinical and Organizational Development, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - Sameer J Patel
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
20
|
Ubals M, Bosch-Nicolau P, Sánchez-Montalvá A, Salvador F, Aparicio-Español G, Sulleiro E, Silgado A, Soriano-Arandes A, Espiau M, Ferrer B, Pou D, Treviño B, Molina I, García-Patos V. Treatment of Complex Cutaneous Leishmaniasis with Liposomal Amphotericin B. Pathogens 2021; 10:1253. [PMID: 34684202 PMCID: PMC8537943 DOI: 10.3390/pathogens10101253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There is no consensus for the best treatment of complex cutaneous leishmaniasis (CL). We aimed to describe a cohort of CL, focusing on liposomal amphotericin B (L-AmB) treatment outcome. METHODS We performed a retrospective study in Vall d'Hebron University Hospital (Barcelona, Spain). All patients with parasitologically proven CL diagnosed from 2012 to 2018 were included. RESULTS The analysis included 41 patients with CL. The median age was 39 years (IQR 12- 66); 12 (29%) were children, and 29 (71%) were men. Regarding treatment, 24 (59%) received local treatment, whereas 17 (41%) had complex CL and were offered intravenous systemic treatment. Sixteen patients received L-AmB; eight (50%) had adverse events, and three (19%) discontinued treatment for safety reasons. All cases were considered cured within the first year post-treatment. CONCLUSIONS L-AmB for complex CL showed no treatment failures, offering an alternative treatment option for patients with complex CL. Clinicians should pay close attention to the potential adverse events of L-AmB and adopt an active drug safety surveillance scheme to rapidly detect reversible side effects.
Collapse
Affiliation(s)
- Maria Ubals
- Department of Dermatology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.U.); (G.A.-E.); (V.G.-P.)
- Doctoral Programme in Medicine and Translational Research: International Health Track, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Pau Bosch-Nicolau
- Department of Infectious Diseases, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.B.-N.); (F.S.); (I.M.)
| | - Adrián Sánchez-Montalvá
- Department of Infectious Diseases, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.B.-N.); (F.S.); (I.M.)
| | - Fernando Salvador
- Department of Infectious Diseases, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.B.-N.); (F.S.); (I.M.)
| | - Gloria Aparicio-Español
- Department of Dermatology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.U.); (G.A.-E.); (V.G.-P.)
- Facultat de Medicina, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Elena Sulleiro
- Department of Clinical Microbiology, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.S.); (A.S.)
| | - Aroa Silgado
- Department of Clinical Microbiology, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.S.); (A.S.)
| | - Antoni Soriano-Arandes
- Department of Paediatrics, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.S.-A.); (M.E.)
| | - Maria Espiau
- Department of Paediatrics, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.S.-A.); (M.E.)
| | - Berta Ferrer
- Department of Pathology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Diana Pou
- Tropical Medicine and International Health Unit, Drassanes-Vall d’Hebron, PROSICS Barcelona, 08035 Barcelona, Spain; (D.P.); (B.T.)
| | - Begoña Treviño
- Tropical Medicine and International Health Unit, Drassanes-Vall d’Hebron, PROSICS Barcelona, 08035 Barcelona, Spain; (D.P.); (B.T.)
| | - Israel Molina
- Department of Infectious Diseases, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.B.-N.); (F.S.); (I.M.)
| | - Vicente García-Patos
- Department of Dermatology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.U.); (G.A.-E.); (V.G.-P.)
- Facultat de Medicina, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
21
|
Kozma GT, Mészáros T, Bakos T, Hennies M, Bencze D, Uzonyi B, Győrffy B, Cedrone E, Dobrovolskaia MA, Józsi M, Szebeni J. Mini-Factor H Modulates Complement-Dependent IL-6 and IL-10 Release in an Immune Cell Culture (PBMC) Model: Potential Benefits Against Cytokine Storm. Front Immunol 2021; 12:642860. [PMID: 33995361 PMCID: PMC8113956 DOI: 10.3389/fimmu.2021.642860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokine storm (CS), an excessive release of proinflammatory cytokines upon overactivation of the innate immune system, came recently to the focus of interest because of its role in the life-threatening consequences of certain immune therapies and viral diseases, including CAR-T cell therapy and Covid-19. Because complement activation with subsequent anaphylatoxin release is in the core of innate immune stimulation, studying the relationship between complement activation and cytokine release in an in vitro CS model holds promise to better understand CS and identify new therapies against it. We used peripheral blood mononuclear cells (PBMCs) cultured in the presence of autologous serum to test the impact of complement activation and inhibition on cytokine release, testing the effects of liposomal amphotericin B (AmBisome), zymosan and bacterial lipopolysaccharide (LPS) as immune activators and heat inactivation of serum, EDTA and mini-factor H (mfH) as complement inhibitors. These activators induced significant rises of complement activation markers C3a, C4a, C5a, Ba, Bb, and sC5b-9 at 45 min of incubation, with or without ~5- to ~2,000-fold rises of IL-1α, IL-1β, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13 and TNFα at 6 and 18 h later. Inhibition of complement activation by the mentioned three methods had differential inhibition, or even stimulation of certain cytokines, among which effects a limited suppressive effect of mfH on IL-6 secretion and significant stimulation of IL-10 implies anti-CS and anti-inflammatory impacts. These findings suggest the utility of the model for in vitro studies on CS, and the potential clinical use of mfH against CS.
Collapse
Affiliation(s)
- Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Tamás Bakos
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Dániel Bencze
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Győrffy
- Second Department of Bioinformatics and Pediatrics, Semmelweis University, Budapest, Hungary
- Lendület Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mihály Józsi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| |
Collapse
|
22
|
Jafari M, Abolmaali SS, Tamaddon AM, Zomorodian K, Sarkari BS. Nanotechnology approaches for delivery and targeting of Amphotericin B in fungal and parasitic diseases. Nanomedicine (Lond) 2021; 16:857-877. [PMID: 33890492 DOI: 10.2217/nnm-2020-0482] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amphotericin B (AMB), with widespread antifungal and anti-parasitic activities and low cross-resistance with other drugs, has long been identified as a potent antimicrobial drug. However, its clinical toxicities, especially nephrotoxicity, have limited its use in clinical practice. Lately, nano-based systems have been the subject of serious research and becoming an effective strategy to improve toxicity and antimicrobial potency. Commercial AMB lipid formulations have been developed in order to improve the therapeutic index and nephrotoxicity, while limited use is mainly due to their high cost. The review aimed to highlight the updated information on nanotechnology-based approaches to the development of AMB delivery and targeting systems for treatment of fungal diseases and leishmaniasis, regarding therapeutic challenges and achievements of various delivery systems.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Kamiar Zomorodian
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran
| | - Bahador Shahriarirad Sarkari
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran
| |
Collapse
|
23
|
Matha K, Calvignac B, Gangneux JP, Benoit JP. The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking. Expert Opin Drug Deliv 2020; 18:471-487. [PMID: 33217254 DOI: 10.1080/17425247.2021.1853701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Although life-threatening if left untreated, visceral leishmaniasis (VL) is still a neglected endemic disease in 98 countries worldwide. The number of drugs available is low and few are in clinical trials. In the last decades, efforts have been made on the development of nanocarriers as drug delivery systems to treat VL. Given the preferential intracellular location of the parasite in the liver and spleen macrophages, the rationale is sturdy. In a clinical setting, liposomal amphotericin B displays astonishing cure rates.Areas covered: A literature search was performed through PubMed and Google Scholar. We critically reviewed the main literature highlighting the success of nanomedicine in VL. We also reviewed the hurdles and yet unfulfilled promises rising awareness of potential drawbacks of nanomedicine in VL.Expert opinion: VL is a disease where nanomedicines successes shine through. However, there are a lot of obstacles on the road to developing more efficient strategies such as targeting functionalization, oral formulations, or combined therapies. And those strategies raise many questions.
Collapse
Affiliation(s)
- Kevin Matha
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France.,CHU Angers, département Pharmacie,4 rue Larrey, 49933 Angers cedex 9, France
| | - Brice Calvignac
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset , (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.,Laboratoire de Parasitologie-Mycologie, CHU de Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Jean-Pierre Benoit
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France.,CHU Angers, département Pharmacie,4 rue Larrey, 49933 Angers cedex 9, France
| |
Collapse
|
24
|
do Carmo Silva L, de Oliveira AA, de Souza DR, Barbosa KLB, Freitas e Silva KS, Carvalho Júnior MAB, Rocha OB, Lima RM, Santos TG, Soares CMDA, Pereira M. Overview of Antifungal Drugs against Paracoccidioidomycosis: How Do We Start, Where Are We, and Where Are We Going? J Fungi (Basel) 2020; 6:jof6040300. [PMID: 33228010 PMCID: PMC7712482 DOI: 10.3390/jof6040300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Dienny Rodrigues de Souza
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Katheryne Lohany Barros Barbosa
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Marcos Antonio Batista Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Raisa Melo Lima
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Thaynara Gonzaga Santos
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| |
Collapse
|
25
|
Rebouças-Silva J, Tadini MC, Devequi-Nunes D, Mansur AL, S Silveira-Mattos P, I de Oliveira C, R Formiga F, Berretta AA, Marquele-Oliveira F, Borges VM. Evaluation of in vitro and in vivo Efficacy of a Novel Amphotericin B-Loaded Nanostructured Lipid Carrier in the Treatment of Leishmania braziliensis Infection. Int J Nanomedicine 2020; 15:8659-8672. [PMID: 33177824 PMCID: PMC7652360 DOI: 10.2147/ijn.s262642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/27/2020] [Indexed: 12/03/2022] Open
Abstract
Background Leishmaniasis is a neglected disease, and the current therapeutic arsenal for its treatment is seriously limited by high cost and toxicity. Nanostructured lipid carriers (NLCs) represent a promising approach due to high drug loading capacity, controlled drug release profiles and superior stability. Here, we explore the efficacy of a unique pH-sensitive amphotericin B-loaded NLC (AmB-NLC) in Leishmania braziliensis infection in vitro and in vivo. Methods and Results AmB-NLC was assessed by dynamic light scattering and atomic force microscopy assays. The carrier showed a spherical shape with a nanometric size of 242.0 ± 18.3 nm. Zeta potential was suggestive of high carrier stability (−42.5 ± 1.5 mV), and the NLC showed ~99% drug encapsulation efficiency (EE%). In biological assays, AmB-NLC presented a similar IC50 as free AmB and conventional AmB deoxycholate (AmB-D) (11.7 ± 1.73; 5.3 ± 0.55 and 13 ± 0.57 ng/mL, respectively), while also presenting higher selectivity index and lower toxicity to host cells, with no observed production of nitric oxide or TNF-α by in vitro assay. Confocal microscopy revealed the rapid uptake of AmB-NLC by infected macrophages after 1h, which, in association with more rapid disruption of AmB-NLC at acidic pH levels, may directly affect intracellular parasites. Leishmanicidal effects were evaluated in vivo in BALB/c mice infected in the ear dermis with L. braziliensis and treated with a pentavalent antimonial (Sb5+), liposomal AmB (AmB-L) or AmB-NLC. After 6 weeks of infection, AmB-NLC treatment resulted in smaller ear lesion size in all treated mice, indicating the efficacy of the novel formulation. Conclusion Here, we preliminarily demonstrate the effectiveness of an innovative and cost-effective AmB-NLC formulation in promoting the killing of intracellular L. braziliensis. This novel carrier system could be a promising alternative for the future treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Jéssica Rebouças-Silva
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.,Postgraduate Program in Pathology, Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Maraine Catarina Tadini
- Eleve Science Research and Development, Ribeirão Preto, São Paulo, Brazil.,Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Devequi-Nunes
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.,Laboratory of Pharmaceutical Formulations, SENAI Institute of Innovation in Advanced Health Systems, Salvador, Bahia, Brazil
| | - Ana Luíza Mansur
- Eleve Science Research and Development, Ribeirão Preto, São Paulo, Brazil
| | - Paulo S Silveira-Mattos
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.,Postgraduate Program in Pathology, Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Camila I de Oliveira
- Postgraduate Program in Pathology, Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil.,Laboratory of Vector-Borne Infectious Diseases, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Fábio R Formiga
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil.,Postgraduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| | - Andresa A Berretta
- Laboratory of Research, Development and Innovation, Apis Flora Industrial e Comercial Ltda, Ribeirão Preto, São Paulo, Brazil
| | | | - Valéria M Borges
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.,Postgraduate Program in Pathology, Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| |
Collapse
|
26
|
Adler-Moore J, Lewis RE, Brüggemann RJM, Rijnders BJA, Groll AH, Walsh TJ. Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin B. Clin Infect Dis 2020; 68:S244-S259. [PMID: 31222254 PMCID: PMC6495008 DOI: 10.1093/cid/ciz064] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The improved safety profile and antifungal efficacy of liposomal amphotericin B (LAmB) compared to conventional amphotericin B deoxycholate (DAmB) is due to several factors including, its chemical composition, rigorous manufacturing standards, and ability to target and transit through the fungal cell wall. Numerous preclinical studies have shown that LAmB administered intravenously distributes to tissues frequently infected by fungi at levels above the minimum inhibitory concentration (MIC) for many fungi. These concentrations can be maintained from one day to a few weeks, depending upon the tissue. Tissue accumulation is dose-dependent with drug clearance occurring most rapidly from the brain and slowest from the liver and spleen. LAmB localizes in lung epithelial lining fluid, within liver and splenic macrophages and in kidney distal tubules. LAmB has been used successfully in therapeutic and prophylactic animal models to treat many different fungal pathogens, significantly increasing survival and reducing tissue fungal burden.
Collapse
Affiliation(s)
- Jill Adler-Moore
- Department of Biological Sciences, California State Polytechnic University, Pomona
| | - Russell E Lewis
- Unit of Infectious Diseases, Policlinico Sant'Orsola-Malpighi, Department of Medical Sciences and Surgery, University of Bologna, Italy
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital Muenster, Germany
| | - Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| |
Collapse
|
27
|
Dragotakes Q, Stouffer KM, Fu MS, Sella Y, Youn C, Yoon OI, De Leon-Rodriguez CM, Freij JB, Bergman A, Casadevall A. Macrophages use a bet-hedging strategy for antimicrobial activity in phagolysosomal acidification. J Clin Invest 2020; 130:3805-3819. [PMID: 32298242 PMCID: PMC7346583 DOI: 10.1172/jci133938] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Microbial ingestion by a macrophage results in the formation of an acidic phagolysosome but the host cell has no information on the pH susceptibility of the ingested organism. This poses a problem for the macrophage and raises the fundamental question of how the phagocytic cell optimizes the acidification process to prevail. We analyzed the dynamical distribution of phagolysosomal pH in murine and human macrophages that had ingested live or dead Cryptococcus neoformans cells, or inert beads. Phagolysosomal acidification produced a range of pH values that approximated normal distributions, but these differed from normality depending on ingested particle type. Analysis of the increments of pH reduction revealed no forbidden ordinal patterns, implying that the phagosomal acidification process was a stochastic dynamical system. Using simulation modeling, we determined that by stochastically acidifying a phagolysosome to a pH within the observed distribution, macrophages sacrificed a small amount of overall fitness to gain the benefit of reduced variation in fitness. Hence, chance in the final phagosomal pH introduces unpredictability to the outcome of the macrophage-microbe, which implies a bet-hedging strategy that benefits the macrophage. While bet hedging is common in biological systems at the organism level, our results show its use at the organelle and cellular level.
Collapse
Affiliation(s)
- Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Kaitlin M. Stouffer
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Yehonatan Sella
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christine Youn
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Olivia Insun Yoon
- Johns Hopkins University, Krieger School of Arts and Sciences, Baltimore, Maryland, USA
| | - Carlos M. De Leon-Rodriguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Joudeh B. Freij
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
28
|
AL-Khikani FHO. Amphotericin B from antifungal to antiviral therapy: promising modern therapeutic branch. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.53649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: Amphotericin B (AmB) which belongs to the polyene group has a wide spectrum in vitro and in vivo antimicrobial activity against fungi and parasites, but resistance to AmB is rare despite extensive use.
Material and methods: Atotal of 2530 articles were investigated in PubMed (n = 1525), Medline (n = 705), and Google Scholar (n = 300). From 2530 articles, only 61 studies were included in this review. All the short and full articles were searched that were scheduled to be published until April 2020.
Results: After its discovery, AmB has been one of the most common first-line choices in treating systemic fungal infection for over seven decades from its discovery. Recently, some studies have focused on the potential antimicrobial action of AmB against some enveloped and non-enveloped viruses, such as human immunodeficiency virus, Japanese encephalitis virus, herpes simplex virus, and Rubella virus.
Discussion: Among the invading pathogens, viruses constitute the most common ones,Due to the continuous spreading of viral infections with the rise in death numbers, new therapeutics development is urgent, as in general, some lethal viruses have no specific antiviral drugs or vaccines. So, this review may serve as an impetus for researchers working in the field of medical microbiology, vaccination, and antiviral drug design by discussing the most recent information about the antiviral action of AmB, as well as trying to provide a deeper understanding of major properties, mechanisms of action, immune system responses, and antimicrobial efficiency of AmB.
Conclusion: Since AmB is expected to alter the structure of the viral envelope, membrane integrity of cells, and internal cellular organelles, besides its other unique properties, such as host immunomodulatory effects, this review suggested that AmB as an effective anti-fungi drug may hold the promise of formulating a novel therapeutic option to treat many dangerous viruses, including those for treating which there are no active drugs or vaccines.
Collapse
|
29
|
Al-Khikani FHO. Amphotericin B as antiviral drug: Possible efficacy against COVID-19. Ann Thorac Med 2020; 15:118-124. [PMID: 32831932 PMCID: PMC7423209 DOI: 10.4103/atm.atm_147_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/20/2023] Open
Abstract
Since its discovery, amphotericin B (AmB) is still one of the most common first-line choices in treatment pulmonary mycoses for over seventh decades from discovery. AmB which is belonged to the polyene group has a wide spectrum in vitro and in vivo antimicrobial activity against fungi and parasites, resistance to AmB is rare despite extensive use. Recently, some studies focused on the potential antimicrobial action of AmB against some enveloped viruses such as human immunodeficiency virus, Japanese encephalitis virus, and rubella virus. Coronaviruses are enveloped positive-sense RNA nucleic acid viruses that have club-like spikes, characterized by a distinctive replication strategy; they are round and sometimes pleomorphic shapes. COVID-19 is regarding the new genera of coronaviridae that appear the first time in Wuhan, China, in early December 2019. Due to the continuous spreading of the novel COVID-19 with the exponential rise in death numbers, new therapeutic development is urgent, in general, there are no specific antiviral drugs or vaccines for 2019-novel coronavirus. Hence, this review may serve as an impetus for researchers working in the field of medical microbiology, vaccination, and antiviral drug design by discussion the most recent information about the antiviral action of AmB against COVID-19 infection as well as trying to a deep understanding of major properties, mechanisms of action, immune system responses, and antimicrobial efficiency of AmB. Since AmB is expected to alter the structure of the viral envelope, membrane integrity of cells, and internal cellular organelles, besides its other unique properties such as host immunomodulatory effects, so this review suggested that AmB as an effective anti-fungi drug thus may hold the promise of formulating a novel therapeutic option to treat COVID-19.
Collapse
|
30
|
Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics (Basel) 2020; 9:antibiotics9060312. [PMID: 32526921 PMCID: PMC7345657 DOI: 10.3390/antibiotics9060312] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Candidiasis can be present as a cutaneous, mucosal or deep-seated organ infection, which is caused by more than 20 types of Candida sp., with C. albicans being the most common. These are pathogenic yeast and are usually present in the normal microbiome. High-risk individuals are patients of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), organ transplant, and diabetes. During infection, pathogens can adhere to complement receptors and various extracellular matrix proteins in the oral and vaginal cavity. Oral and vaginal Candidiasis results from the overgrowth of Candida sp. in the hosts, causing penetration of the oral and vaginal tissues. Symptoms include white patches in the mouth, tongue, throat, and itchiness or burning of genitalia. Diagnosis involves visual examination, microscopic analysis, or culturing. These infections are treated with a variety of antifungals that target different biosynthetic pathways of the pathogen. For example, echinochandins target cell wall biosynthesis, while allylamines, azoles, and morpholines target ergosterol biosynthesis, and 5-Flucytosine (5FC) targets nucleic acid biosynthesis. Azoles are commonly used in therapeutics, however, because of its fungistatic nature, Candida sp. evolve azole resistance. Besides azoles, Candida sp. also acquire resistance to polyenes, echinochandins, and 5FC. This review discusses, in detail, the drug resistance mechanisms adapted by Candida sp.
Collapse
Affiliation(s)
- Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, NY 11794, USA; (S.S.-T.); (B.C.F.)
- Correspondence:
| | - Sutthichai Sae-Tia
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, NY 11794, USA; (S.S.-T.); (B.C.F.)
| | - Bettina C. Fries
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, NY 11794, USA; (S.S.-T.); (B.C.F.)
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, NY 11794, USA
- Veterans Administration Medical Center, Northport, New York, NY 11768, USA
| |
Collapse
|
31
|
Liu J, Li M, Gan ZQ, Wang YJ, Lin CR, Chen ZL, Jiang Y, Peng FH. Postinfectious inflammatory response syndrome in HIV-uninfected and nontransplant men after cryptococcal meningitis. Future Microbiol 2020; 15:613-621. [PMID: 32490698 DOI: 10.2217/fmb-2019-0252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: The aim of our study was to describe the characteristics of postinfectious inflammatory response syndrome (PIIRS) in HIV-uninfected and nontransplant men after cryptococcal meningitis (CM). Patients & methods: A case-control study was designed to compare HIV-uninfected and nontransplant male CM patients with and without PIIRS. Results: CM-PIIRS patients had increased rates of hearing loss, V-P shunt placement, amphotericin B treatment, higher cerebrospinal fluid pressures and Cryptococcus counts in the first CM episode. CM-PIIRS episode was characterized by higher frequencies of headache and fever, higher C-reactive protein, erythrocyte sedimentation rate, cerebrospinal fluid white blood cell (WBC) counts and modified Rankin Score. Brain MRI scans revealed the high signal lesions on axial flair imaging. Receipt of corticosteroid therapy was associated with lower rates of fever and better modified Rankin Score scores at 1 month after treatment. Conclusion: CM-PIIRS episode differs to the initial presentation, may help to identify which patients are at risk to develop PIIRS. Steroids therapy could be beneficial.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Min Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Zhou-Qing Gan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Yi-Jie Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Chu-Rong Lin
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Zhuo-Lin Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Fu-Hua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
32
|
Mungroo M, Anwar A, Khan NA, Siddiqui R. Gold-Conjugated Curcumin as a Novel Therapeutic Agent against Brain-Eating Amoebae. ACS OMEGA 2020; 5:12467-12475. [PMID: 32548431 PMCID: PMC7271413 DOI: 10.1021/acsomega.0c01305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that cause infection of the central nervous system, granulomatous amoebic encephalitis (GAE) and primary amoebic meningoencephalitis (PAM), respectively. The fact that mortality rates for cases of GAE and PAM are more than 95% indicates the need for new therapeutic agents against those amoebae. Considering that curcumin exhibits a wide range of biological properties and has shown efficacy against Acanthamoeba castellanii, we evaluated the amoebicidal properties of curcumin against N. fowleri and B. mandrillaris. Curcumin showed significant amoebicidal activities with an AC50 of 172 and 74 μM against B. mandrillaris and N. fowleri, respectively. Moreover, these compounds were also conjugated with gold nanoparticles to further increase their amoebicidal activities. After conjugation with gold nanoparticles, amoebicidal activities of the drugs were increased by up to 56 and 37% against B. mandrillaris and N. fowleri, respectively. These findings are remarkable and suggest that clinically available curcumin and our gold-conjugated curcumin nanoparticles hold promise in the improved treatment of fatal infections caused by brain-eating amoebae and should serve as a model in the rationale development of therapeutic interventions against other infections.
Collapse
Affiliation(s)
| | - Ayaz Anwar
- Department
of Biological Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Naveed Ahmed Khan
- Department
of Biology, Chemistry and Environmental Sciences, College of Arts
and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Department
of Biology, Chemistry and Environmental Sciences, College of Arts
and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
33
|
Valentim-Silva JR, Macedo SRA, de Barros NB, Dos Santos Ferreira A, da Silva JHM, de Figueiredo Nicolete LD, Nicolete R. Antileishmanial drugs activate inflammatory signaling pathways via toll-like receptors (docking approach) from Leishmania amazonensis-infected macrophages. Int Immunopharmacol 2020; 85:106640. [PMID: 32470884 DOI: 10.1016/j.intimp.2020.106640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
The activation of proinflammatory cellular processes and signals such as those linked to NF-kB in macrophages are involved in the control of infection by Leishmania ssp. However, little is known about the influence of the drugs used in the treatment on the host cellular inflammatory signaling pathways. This study aimed to evaluate the effects of different drugs used in the treatment of leishmaniasis on inflammatory profile related to Toll-like receptors (TLRs) from L. amazonensis-infected macrophages. J774 macrophage-like cells were infected with the promastigote forms (5:1) and 24 hs incubated with Amphotericin B (AmB), Glucantime® (GLU) or Pentamidine (Pent). The following inflammatory pathways were evaluated: NF-κB p65, NF-κB p65 phosphorylated (Ser536), stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) phosphorylated (Thr183/Tyr185), p38 mitogen activated protein kinase (MAPK p38) phosphorylated (Thr180/Tyr182), signal transducer and activator of transcription-3 (Stat3) phosphorylated (Tyr705) and inhibitor kappa B-α (IκB-α) phosphorylated (Ser32). In silico tests were performed to evaluate the molecular affinity between TLRs and antileishmanial drugs. Molecular docking showed that affinities varied significantly among the binders evaluated. The lowest affinity (-8.6 Kcal/Mol) was calculated for AmB in complex with TLR4. Pent showed higher values for TLR1, TLR2 and TLR3, while for TLR4 the affinity value was lower (5.5 Kcal/Mol). The values obtained for GLU were the highest for the set of binders tested. From the infected macrophages, treatments inhibited NF-kB p65 for GLU (65.44%), for Pent (46.43%) and for AmB (54.07%) compared to untreated infected macrophages. The activation of the signaling pathway of NF-kB, SAPK/JNK and IκB-α caused by AmB and Pent may potentiate the microbicidal mechanisms of the infected macrophages.
Collapse
Affiliation(s)
- João Rafael Valentim-Silva
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil; Physical Education Department of Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil; Physical Education Department of University Center UNINORTE, Rio Branco, AC, Brazil
| | - Sharon Rose Aragão Macedo
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil; União das Escolas Superiores de Rondônia (UNIRON), Porto Velho, RO, Brazil
| | - Neuza Biguinati de Barros
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil; Faculdades Integradas Aparício Carvalho (FIMCA), Porto Velho, RO, Brazil
| | - Amália Dos Santos Ferreira
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil
| | | | - Larissa Deadame de Figueiredo Nicolete
- Fundação Oswaldo Cruz (FIOCRUZ Ceará), Eusébio, CE, Brazil; Instituto de Ciências da Saúde da Universidade Internacional da Integração Luso Afro Brasileira (UNILAB), Redenção, CE, Brazil
| | - Roberto Nicolete
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil; Fundação Oswaldo Cruz (FIOCRUZ Ceará), Eusébio, CE, Brazil.
| |
Collapse
|
34
|
da Silva ACB, Sardi JDCO, de Oliveira DGL, de Oliveira CFR, Dos Santos HF, Dos Santos EL, Crusca E, Cardoso MH, Franco OL, Macedo MLR. Development of a novel anti-biofilm peptide derived from profilin of Spodoptera frugiperda. BIOFOULING 2020; 36:516-527. [PMID: 32619153 DOI: 10.1080/08927014.2020.1776857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Candida yeast infections are the fourth leading cause of death worldwide. Peptides with antimicrobial activity are a promising alternative treatment for such infections. Here, the antifungal activity of a new antimicrobial peptide-PEP-IA18-was evaluated against Candida species. PEP-IA18 was designed from the primary sequence of profilin, a protein from Spodoptera frugiperda, and displayed potent activity against Candida albicans and Candida tropicalis, showing a minimum inhibitory concentration (MIC) of 2.5 µM. Furthermore, the mechanism of action of PEP-IA18 involved interaction with the cell membrane (ergosterol complexation). Treatment at MIC and/or 10 × MIC significantly reduced biofilm formation and viability. PEP-IA18 showed low toxicity toward human fibroblasts and only revealed hemolytic activity at high concentrations. Thus, PEP-IA18 exhibited antifungal and anti-biofilm properties with potential applicability in the treatment of infections caused by Candida species.
Collapse
Affiliation(s)
- Amanda Carolina Borges da Silva
- Protein Purification Laboratory and Biological Functions, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Janaina de Cassia Orlandi Sardi
- Protein Purification Laboratory and Biological Functions, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Daniella Gorete Lourenço de Oliveira
- Protein Purification Laboratory and Biological Functions, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Center for Biotechnology and Bioprospecting Studies Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Helder Freitas Dos Santos
- Center for Biotechnology and Bioprospecting Studies Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Edson Lucas Dos Santos
- Center for Biotechnology and Bioprospecting Studies Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Edson Crusca
- Department of Biochemistry, Institute of Chemistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Marlon Henrique Cardoso
- S-inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande, MS, Brazil
- Center for Proteomic and Biochemical Analysis, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, DF, Brazil
- Graduate Program in Molecular Pathology, Faculty of Medicine, University of Brasilia, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- S-inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande, MS, Brazil
- Center for Proteomic and Biochemical Analysis, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, DF, Brazil
- Graduate Program in Molecular Pathology, Faculty of Medicine, University of Brasilia, Brasília, DF, Brazil
| | - Maria Lígia Rodrigues Macedo
- Protein Purification Laboratory and Biological Functions, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
35
|
André S, Rodrigues V, Pemberton S, Laforge M, Fortier Y, Cordeiro-da-Silva A, MacDougall J, Estaquier J. Antileishmanial Drugs Modulate IL-12 Expression and Inflammasome Activation in Primary Human Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1869-1880. [PMID: 32132181 DOI: 10.4049/jimmunol.1900590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/02/2020] [Indexed: 01/10/2023]
Abstract
Leishmaniases are neglected tropical diseases. The treatment of leishmaniasis relies exclusively on chemotherapy including amphotericin B (AmB), miltefosine (hexadecylphosphocholine), and pentamidine. Besides the fact that these molecules are harmful for patients, little is known about the impact of such antileishmanial drugs on primary human cells in relation to immune function. The present study demonstrates that all antileishmanial drugs inhibit CD4 and CD8 T cell proliferation at the doses that are not related to increased cell death. Our results highlight that antileishmanial drugs have an impact on monocytes by altering the expression of IL-12 induced by LPS, whereas only AmB induced IL-10 secretion; both cytokines are essential in regulating Th1 cell-mediated immunity. Interestingly, IL-12 and anti-IL-10 Abs improved T cell proliferation inhibited by AmB. Furthermore, our results show that in contrast to hexadecylphosphocholine and pentamidine, AmB induced gene expression of the inflammasome pathway. Thus, AmB induced IL-1β and IL-18 secretions, which are reduced by specific inhibitors of caspase activation (Q-VD) and NLRP3 activation (MCC950). Our results reveal previously underestimated effects of antileishmanial drugs on primary human cells.
Collapse
Affiliation(s)
- Sonia André
- INSERM-U1124, Paris University, 75006 Paris, France
| | | | - Sarah Pemberton
- INSERM-U1124, Paris University, 75006 Paris, France.,Photeomix, 93160 Noisy Le Grand, France
| | | | | | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular da Universidade do Porto, 450-313 Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 450-313 Porto, Portugal; and
| | | | - Jérôme Estaquier
- INSERM-U1124, Paris University, 75006 Paris, France; .,Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, Quebec G1V 4G2, Canada
| |
Collapse
|
36
|
Impact of immunosuppressive and antifungal drugs on PBMC- and whole blood-based flow cytometric CD154 + Aspergillus fumigatus specific T-cell quantification. Med Microbiol Immunol 2020; 209:579-592. [PMID: 32236695 DOI: 10.1007/s00430-020-00665-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
Flow cytometric quantification of CD154+ mould specific T-cells in antigen-stimulated peripheral blood mononuclear cells (PBMCs) or whole blood has been described as a supportive biomarker to diagnose invasive mould infections and to monitor therapeutic outcomes. As patients at risk frequently receive immunosuppressive and antifungal medication, this study compared the matrix-dependent impact of representative drugs on CD154+ T-cell detection rates. PBMCs and whole blood samples from healthy adults were pre-treated with therapeutic concentrations of liposomal amphotericin B, voriconazole, posaconazole, cyclosporine A (CsA) or prednisolone. Samples were then stimulated with an Aspergillus fumigatus lysate or a viral antigen cocktail (CPI) and assessed for CD154+ T-helper cell frequencies. Specific T-cell detection rates and technical assay properties remained largely unaffected by exposure of both matrices to the studied antifungals. By contrast, CsA and prednisolone pre-treatment of isolated PBMCs and whole blood adversely impacted specific T-cell detection rates and caused elevated inter-replicate variation. Unexpectedly, the whole blood-based protocol that uses additional α-CD49d co-stimulation was less susceptible to CsA and prednisolone despite prolonged drug exposure in the test tube. Accordingly, addition of α-CD49d during PBMC stimulation partially attenuated the impact of immunosuppressive drugs on test performance. Translating these results into the clinical setting, false-negative results of CD154+ antigen-specific T-cell quantification need to be considered in patients receiving T-cell-active immunosuppressive medication. Optimized co-stimulation regimes with α-CD49d could contribute to an improved feasibility of functional T-cell assays in immunocompromised patient populations.
Collapse
|
37
|
Levan-based hydrogels for controlled release of Amphotericin B for dermal local antifungal therapy of Candidiasis. Eur J Pharm Sci 2020; 145:105255. [DOI: 10.1016/j.ejps.2020.105255] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 12/27/2022]
|
38
|
Antimicrobial Therapy in the Context of the Damage-Response Framework: the Prospect of Optimizing Therapy by Reducing Host Damage. Antimicrob Agents Chemother 2020; 64:AAC.01800-19. [PMID: 31740558 DOI: 10.1128/aac.01800-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
By design, antimicrobial agents act directly on microbial targets. These drugs aim to eliminate microbes and are remarkably effective against susceptible organisms. Nonetheless, some patients succumb to infectious diseases despite appropriate antimicrobial therapy. Today, with very few exceptions, physicians select antimicrobial therapy based on its activity against the targeted organism without consideration of how the regimen affects patients' immune responses. An important concept to emerge in the past few decades is that immune responses to microbes can be detrimental by enhancing host damage, which can translate into clinical disease. A central tenet of the damage-response framework (DRF) of microbial pathogenesis is that the relevant outcome of host-microbe interaction is the damage that occurs in the host, which can be due to microbial factors, host factors, or both. Given that host damage can make patients sick, reducing it should be a goal of treating infectious diseases. Inflammation and damage that stem from the host response to an infectious disease can increase during therapy with some antimicrobial agents and decrease during therapy with others. When a patient cannot eliminate a microbe with their own immune response, antimicrobial therapy is essential for microbial elimination, and yet it can affect the inflammatory response. In this essay, we discuss antimicrobial therapy in the context of the DRF and propose that consideration of the DRF may help tailor therapy to a patient's need to augment or reduce inflammation.
Collapse
|
39
|
Obayes AL-Khikani F, Ayit A. Prospects in Immunomodulatory activity of Amphotericin B in viral infection: Promising developing therapeutic branch. JOURNAL OF CURRENT RESEARCH IN SCIENTIFIC MEDICINE 2020. [DOI: 10.4103/jcrsm.jcrsm_29_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
41
|
Forrester S, Siefert K, Ashwin H, Brown N, Zelmar A, James S, Lagos D, Timmis J, Chatterjee M, Mottram JC, Croft SL, Kaye PM. Tissue-specific transcriptomic changes associated with AmBisome® treatment of BALB/c mice with experimental visceral leishmaniasis. Wellcome Open Res 2019; 4:198. [PMID: 31976381 PMCID: PMC6961418 DOI: 10.12688/wellcomeopenres.15606.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Liposomal amphotericin B (AmBisome®) as a treatment modality for visceral leishmaniasis (VL) has had significant impact on patient care in some but not all regions where VL is endemic. As the mode of action of AmBisome® in vivo is poorly understood, we compared the tissue-specific transcriptome in drug-treated vs untreated mice with experimental VL. Methods: BALB/c mice infected with L. donovani were treated with 8mg/kg AmBisome®, resulting in parasite elimination from liver and spleen over a 7-day period. At day 1 and day 7 post treatment (R x+1 and R x+7), transcriptomic profiling was performed on spleen and liver tissue from treated and untreated mice and uninfected mice. BALB/c mice infected with M. bovis BCG (an organism resistant to amphotericin B) were analysed to distinguish between direct effects of AmBisome® and those secondary to parasite death. Results: AmBisome® treatment lead to rapid parasitological clearance. At R x+1, spleen and liver displayed only 46 and 88 differentially expressed (DE) genes (P<0.05; 2-fold change) respectively. In liver, significant enrichment was seen for pathways associated with TNF, fatty acids and sterol biosynthesis. At R x+7, the number of DE genes was increased (spleen, 113; liver 400). In spleen, these included many immune related genes known to be involved in anti-leishmanial immunity. In liver, changes in transcriptome were largely accounted for by loss of granulomas. PCA analysis indicated that treatment only partially restored homeostasis. Analysis of BCG-infected mice treated with AmBisome® revealed a pattern of immune modulation mainly targeting macrophage function. Conclusions: Our data indicate that the tissue response to AmBisome® treatment varies between target organs and that full restoration of homeostasis is not achieved at parasitological cure. The pathways required to restore homeostasis deserve fuller attention, to understand mechanisms associated with treatment failure and relapse and to promote more rapid restoration of immune competence.
Collapse
Affiliation(s)
- Sarah Forrester
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Karin Siefert
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Helen Ashwin
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Najmeeyah Brown
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Andrea Zelmar
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sally James
- Biosciences Technology Facility, University of York, York, YO10 5DD, UK
| | - Dimitris Lagos
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Jon Timmis
- Department of Electronic Engineering, University of York, UK, York, YO10 5DD, UK
| | - Mitali Chatterjee
- Department of Pharmacology, Jawaharlal Institute of Post Graduate Medical Education and Research, Kolkata, 700 020, India
| | - Jeremy C. Mottram
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Simon L. Croft
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul M. Kaye
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| |
Collapse
|
42
|
Braga SS. Multi-target drugs active against leishmaniasis: A paradigm of drug repurposing. Eur J Med Chem 2019; 183:111660. [PMID: 31514064 DOI: 10.1016/j.ejmech.2019.111660] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022]
Abstract
This mini-review focuses on leishmanicidal drugs that were sourced from small molecules previously approved for other diseases. The mechanisms of action of these molecules are herein explored, to probe the origins of their inter-species growth inhibitory activities. It is shown how the transversal action of the azoles - fluconazole, posaconazole and itraconazole - in both fungi and Leishmania is due to the occurrence of the same target, lanosterol 14-α-demethylase, in these two groups of species. In turn, the drugs miltefosine and amphotericin B are presented as truly multi-target agents, acting on small molecules, proteins, genes and even organelles. Steps towards future leishmanicidal drug candidates based on the multi-target strategy and on drug repurposing are also briefly presented.
Collapse
Affiliation(s)
- Susana Santos Braga
- QOPNA & LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
43
|
Mungroo MR, Anwar A, Khan NA, Siddiqui R. Brain-eating Amoebae Infection: Challenges and Opportunities in Chemotherapy. Mini Rev Med Chem 2019; 19:980-987. [PMID: 30868950 DOI: 10.2174/1389557519666190313161854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022]
Abstract
Pathogenic free-living amoeba are known to cause a devastating infection of the central nervous system and are often referred to as "brain-eating amoebae". The mortality rate of more than 90% and free-living nature of these amoebae is a cause for concern. It is distressing that the mortality rate has remained the same over the past few decades, highlighting the lack of interest by the pharmaceutical industry. With the threat of global warming and increased outdoor activities of public, there is a need for renewed interest in identifying potential anti-amoebic compounds for successful prognosis. Here, we discuss the available chemotherapeutic options and opportunities for potential strategies in the treatment and diagnosis of these life-threatening infections.
Collapse
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
44
|
Abstract
Cryptococcus neoformans is an encapsulated yeast responsible for approximately a quarter of a million deaths worldwide annually despite therapy, and upwards of 11% of HIV/AIDS-related deaths, rivaling the impact of tuberculosis and malaria. However, the most effective antifungal agent, amphotericin B, requires intravenous delivery and has significant renal and hematopoietic toxicity, making it difficult to utilize, especially in resource-limited settings. The present studies describe a new nanoparticle crystal encapsulated formulation of amphotericin B known as encochleated amphotericin B (CAmB) that seeks to provide an oral formulation that is low in toxicity and cost. Using a 3-day delayed model of murine cryptococcal meningoencephalitis and a large inoculum of a highly virulent strain of serotype A C. neoformans, CAmB, in combination with flucytosine, was found to have efficacy equivalent to parental amphotericin B deoxycholate with flucytosine and superior to oral fluconazole without untoward toxicity. Transport of fluorescent CAmB particles to brain as well as significant brain levels of amphotericin drug was demonstrated in treated mice, and immunological profiles were similar to those of mice treated with conventional amphotericin B. Additional toxicity studies using a standardized rat model showed negligible toxicity after a 28-day treatment schedule. These studies thus offer the potential for an efficacious oral formulation of a known fungicidal drug against intrathecal cryptococcal disease.IMPORTANCE Cryptococcus neoformans is a significant global fungal pathogen that kills an estimated quarter of a million HIV-infected individuals yearly and has poor outcomes despite therapy. The most effective therapy, amphotericin B, is highly effective in killing the fungus but is available only in highly toxic, intravenous formulations that are unavailable in most of the developing world, where cryptococcal disease in most prevalent. For example, in Ethiopia, reliance on the orally available antifungal fluconazole results in high mortality, even when initiated as preemptive therapy at the time of HIV diagnosis. Thus, alternative agents could result in significant saving of lives. Toward this end, the present work describes the development of a new formulation of amphotericin B (CAmB) that encapsulates the drug as a crystal lipid nanoparticle that facilitates oral absorption and prevents toxicity. Successful oral absorption of the drug was demonstrated in a mouse model that, in combination with the antifungal flucytosine, provided efficacy equal to a parental preparation of amphotericin B plus flucytosine. These studies demonstrate the potential for CAmB in combination with flucytosine to provide an effective oral formulation of a well-known, potent fungicidal drug combination.
Collapse
|
45
|
Antifungal Drugs Influence Neutrophil Effector Functions. Antimicrob Agents Chemother 2019; 63:AAC.02409-18. [PMID: 30910895 DOI: 10.1128/aac.02409-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/17/2019] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidence for immunomodulatory side effects of antifungal agents on different immune cells, e.g., T cells. Therefore, the aim of our study was to clarify these interactions with regard to the effector functions of polymorphonuclear neutrophils (PMN). Human PMN were preincubated with fluconazole (FLC), voriconazole (VRC), posaconazole (POS), isavuconazole (ISA), caspofungin (CAS), micafungin (MFG), conventional amphotericin B (AMB), and liposomal amphotericin B (LAMB). PMN then were analyzed by flow cytometry for activation, degranulation, and phagocytosis and by dichlorofluorescein assay to detect reactive oxygen species (ROS). Additionally, interleukin-8 (IL-8) release was measured by enzyme-linked immunosorbent assay. POS led to enhanced activation, degranulation, and generation of ROS, whereas IL-8 release was reduced. In contrast, ISA-pretreated PMN showed decreased activation signaling, impaired degranulation, and lower generation of ROS. MFG caused enhanced expression of activation markers but impaired degranulation, phagocytosis, generation of ROS, and IL-8 release. CAS showed increased phagocytosis, whereas degranulation and generation of ROS were reduced. AMB led to activation of almost all effector functions besides impaired phagocytosis, whereas LAMB did not alter any effector functions. Independent from class, antifungal agents show variable influence on neutrophil effector functions in vitro Whether this is clinically relevant needs to be clarified.
Collapse
|
46
|
Decker C, Wurster S, Lazariotou M, Hellmann AM, Einsele H, Ullmann AJ, Löffler J. Analysis of the in vitro activity of human neutrophils against Aspergillus fumigatus in presence of antifungal and immunosuppressive agents. Med Mycol 2019; 56:514-519. [PMID: 29420763 DOI: 10.1093/mmy/myx069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are essential in the first line defense against moulds. This in vitro study assessed different neutrophil effector mechanisms in the presence of clinically relevant antifungal and immunosuppressive agents. Therapeutic concentrations of liposomal amphotericin B led to reduced IL-8 and oxidative burst response to the synthetic stimulus PMA, whereas no major alterations of oxidative burst, phagocytosis, or cytokine response to germinated stages of Aspergillus fumigatus and no supra-additive effects of antifungal and immunosuppressive drugs were observed. Conventional and liposomal amphotericin B as well as voriconazole, however, led to reduced neutrophil extracellular trap formation in response to A. fumigatus germ tubes.
Collapse
Affiliation(s)
- Christina Decker
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Sebastian Wurster
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Maria Lazariotou
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Anna-Maria Hellmann
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Hermann Einsele
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Andrew J Ullmann
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| | - Jürgen Löffler
- University Hospital of Wuerzburg, Department of Internal Medicine II, Wuerzburg
| |
Collapse
|
47
|
Shirzadi MR. Lipsosomal amphotericin B: a review of its properties, function, and use for treatment of cutaneous leishmaniasis. Res Rep Trop Med 2019; 10:11-18. [PMID: 31118866 PMCID: PMC6500877 DOI: 10.2147/rrtm.s200218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/23/2019] [Indexed: 02/01/2023] Open
Abstract
The genus Leishmania includes a number of protozoan parasites that cause a wide range of infections named leishmaniasis. Leishmaniasis may be appear in three clinical forms — cutaneous (CL), visceral, and mucocutaneous (MCL) — with variation in their presentation and severity: diffuse CL and post–kala-azar dermal leishmaniasis). The prevalent signs of CL are nonhealing ulcers on exposed skin, but infected patients may have other dermatologic symptoms. In the 1960s, amphotericin B deoxycholate was introduced as a second-line therapy for CL and MCL. However, widespread administration of the agent was prevented, due to its renal and systemic toxicity, high price, and obstacles to intravenous use in leishmaniasis-endemic regions. Amphotericin B binds to ergosterol in the photogenic cell membranes and causes changes in membrane permeability, leakage of ions, and finally cell death. Compared to amphotericin B deoxycholate, a higher dose of liposomal amphotericin B should be administered to show the treatment effect. A high percentage of liposomal amphotericin B is “fastened” in the liposome and not biologically effective. Amphotericin B deoxycholate has some toxic effects, and liposomal amphotericin B is meaningfully less toxic compared to it. Treatment options for CL are limited, due to variation in species causing CL and pharmacokinetic issues. Amphotericin B is effective against some particular forms of CL.
Collapse
Affiliation(s)
- Mohammad Reza Shirzadi
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran.,Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
48
|
Curry JL, Reuben A, Szczepaniak-Sloane R, Ning J, Milton DR, Lee CH, Hudgens C, George S, Torres-Cabala C, Johnson D, Subramanya S, Wargo JA, Mudaliar K, Wistuba II, Prieto VG, Diab A, Tetzlaff MT. Gene expression profiling of lichenoid dermatitis immune-related adverse event from immune checkpoint inhibitors reveals increased CD14 + and CD16 + monocytes driving an innate immune response. J Cutan Pathol 2019; 46:627-636. [PMID: 30883858 DOI: 10.1111/cup.13454] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cancer patients receiving antibodies abrogating immune checkpoint pathways may develop a diverse array of immune-related adverse events (irAEs), of which lichenoid dermatitis (LD) is the most common. The mechanism driving the emergence of these irAEs remain understudied, underscoring a critical need to determine the unique gene expression profiles and immune composition in LD-irAE. METHODS LD-irAE (n = 3) and benign lichenoid keratosis (BLK) control (n = 3) were profiled with NanoString nCounter PanCancer Immune Profiling Panel interrogating the mRNA levels of 770 genes. Immunohistochemical (IHC) studies (n = 14 samples) for CD14, CD16, T-Bet, Gata-3, and FoxP3 were further evaluated using Aperio digital image analysis. RESULTS The LD-irAE showed downregulation of 93 mRNA transcripts (P < 0.05) and upregulation of 74 mRNA transcripts (P < 0.04) including toll-like receptor (TLR) 2 and TLR4 (P < 0.05). CD14+ and CD16+ monocytes quantified by IHC (H-score) were higher in LD-irAE than in the BLK control (P < 0.05). The immune composition of LD-irAE exhibited higher numbers of T-Bet+ (Th1) cells compared with Gata-3+ (Th2) cells (P = 0.016) and lower numbers of FoxP3 (T regulatory) cells (P = 0.008). CONCLUSIONS LD-irAE exhibited activation of CD14/TLR innate immune response with increased CD14+ and CD16+ monocytes compared with BLK control. CD14/TLR signaling may drive the development of LD-irAE.
Collapse
Affiliation(s)
- Jonathan L Curry
- Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Szczepaniak-Sloane
- Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Ning
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denái R Milton
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chi H Lee
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney Hudgens
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Saira George
- Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Torres-Cabala
- Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Johnson
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sandesh Subramanya
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ignacio I Wistuba
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Victor G Prieto
- Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adi Diab
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael T Tetzlaff
- Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
49
|
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
50
|
Ruh C, Banjade R, Mandadi S, Marr C, Sumon Z, Crane JK. Immunomodulatory Effects of Antimicrobial Drugs. Immunol Invest 2018; 46:847-863. [PMID: 29058544 DOI: 10.1080/08820139.2017.1373900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christine Ruh
- a Antibiotic Stewardship Pharmacist , Erie County Medical Center , Buffalo , NY , USA
| | - Rashmi Banjade
- b Infectious Diseases Fellow , University at Buffalo , Buffalo , New York , USA
| | - Subhadra Mandadi
- b Infectious Diseases Fellow , University at Buffalo , Buffalo , New York , USA
| | - Candace Marr
- b Infectious Diseases Fellow , University at Buffalo , Buffalo , New York , USA
| | - Zarchi Sumon
- b Infectious Diseases Fellow , University at Buffalo , Buffalo , New York , USA
| | - John K Crane
- c Division of Infectious Diseases , University at Buffalo , Buffalo , New York , USA
| |
Collapse
|