1
|
Rathnayake UM, Wada J, Wall VE, Jones J, Jenkins LM, Andreotti AH, Samelson LE. Purification and characterization of full-length monomeric TEC family kinase, ITK. Protein Expr Purif 2025; 229:106682. [PMID: 39894064 PMCID: PMC11875054 DOI: 10.1016/j.pep.2025.106682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
An early step in the activation of T cells via the T cell antigen receptor is the phosphorylation and activation of phospholipase C-γ1 (PLC-γ1) by the TEC family tyrosine kinase, interleukin-2 (IL-2) inducible T cell kinase (ITK). PLC-γ1 activation occurs within a multi-protein complex comprised of the enzymes ITK, PLC-γ1, and VAV, and the adapter molecules, LAT, Gads, SLP-76, and NCK. Studies of ITK activation and the role of this heptameric complex in regulating ITK activation and function have not been possible due to the lack of success in the expression and purification of full-length, monomeric ITK protein. In this study, we have produced soluble full-length wild-type ITK protein by co-expressing an N-terminal solubility-tagged ITK construct with a kinase-specific co-chaperone CDC37 in an insect cell line. Although the majority of the purified ITK protein is oligomerized, there is a 13-fold increase in the yield of monomeric protein production compared to the last reported purification. Previous studies suggest that the ITK oligomerization is mediated by intermolecular interactions. We created several mutants to disrupt these self-associations. Expression of one of these, the C96E/T110I mutant, produced 20 times more monomer than the wild-type construct. The in vitro characterization of these protein constructs showed that the purified protein is stable and functional. This successful purification and in vitro characterization of full-length monomeric ITK protein will aid in understanding the mechanism by which ITK is recruited into the heptameric complex and is enabled to phosphorylate and activate PLC-γ1.
Collapse
Affiliation(s)
- Udumbara M Rathnayake
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Junya Wada
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vanessa E Wall
- Protein Expression Laboratory and RAS Reagents Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jane Jones
- Protein Expression Laboratory and RAS Reagents Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50014, USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Ahmed S, Saeed MU, Choudhury A, Mohammad T, Hussain A, AlAjmi MF, Yadav DK, Hassan MI. Therapeutic Targeting of Interleukin-2-Inducible T-Cell Kinase (ITK) for Cancer and Immunological Disorders: Potential Next-Generation ITK Inhibitors. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:105-115. [PMID: 39969899 DOI: 10.1089/omi.2024.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Interleukin-2-inducible T-cell kinase (ITK) is a critical tyrosine kinase enzyme that is involved in the activation and differentiation of T cells. ITK is mainly found in T cells, which plays an essential role in controlling T-cell receptor signaling and downstream pathways. ITK regulates the synthesis of cytokines, particularly interleukin-2 (IL-2), and the development of Th2 cells. ITK is of interest for drug discovery and molecular targeting in immunology, autoimmune diseases, and cancer. Here, we report a structure-based virtual screening utilizing a collection of small molecules obtained from the PubChem database with an eye on the discovery of drugs targeting ITK. The compounds were selected according to compliance with the Lipinski's rule of five. The molecular docking investigation focused on prioritizing binding affinity and specific interaction toward the kinase domain. The highest-ranking search results were subjected to identification of possible pan-assay interference compounds (PAINS), assessment of pharmacokinetic properties, and estimation of pharmacological activity using Prediction of Activity Spectra of Substances (PASS) analysis. The interactions among these chemicals and the salient residues in the interleukin-2-inducible T-cell kinase (ITK) kinase domain were unpacked using a two-dimensional approach. The reference inhibitor ITK-Inhibitor-2 (IMM) and four elucidated compounds with PubChem CIDs, namely, 90442621 (PFB), 141764004 (FTP), 149213796 (FPP), and 145983307 (MBD), showed significant binding affinity of -8, -10.4, -9.8, -10.2, and -10.7 kcal/mol, respectively, and high selectivity for the ITK binding pocket. In conclusion, this study reports on the potential of several compounds for therapeutic targeting of ITK. Furthermore, structural analysis revealed the interaction of proposed compounds and active site residues within the ATP-binding pocket is highly similar to known inhibitors but shares distinct interaction patterns that could improve specificity. This specificity and optimization hold potential for the development of next-generation ITK inhibitors with possible applications in the treatment of immune-related disorders and cancers. Further in vitro, in vivo, and translational clinical research are called for.
Collapse
Affiliation(s)
- Shazia Ahmed
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Umar Saeed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Zhang Y, Cheng K, Choi J. TCR Pathway Mutations in Mature T Cell Lymphomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1450-1458. [PMID: 37931208 PMCID: PMC10715708 DOI: 10.4049/jimmunol.2200682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2023] [Indexed: 11/08/2023]
Abstract
Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Gayler KM, Kong K, Reisenauer K, Taube JH, Wood JL. Staurosporine Analogs Via C-H Borylation. ACS Med Chem Lett 2020; 11:2441-2445. [PMID: 33335665 DOI: 10.1021/acsmedchemlett.0c00420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Staurosporine is among the most potent naturally occurring kinase inhibitors isolated to date and has served as a lead compound for numerous drug development efforts in several therapeutic areas. Herein we report that C-H borylation chemistry provides access to analogs of staurosporine that were previously inaccessible to medicinal chemists who, in the past four decades, have prepared over 1000 semisynthetic staurosporine analogs.
Collapse
Affiliation(s)
- Kevin M. Gayler
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Ke Kong
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | | | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, Texas 76798, United States
| | - John L. Wood
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
5
|
Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med (Berl) 2020; 98:1385-1395. [PMID: 32808093 PMCID: PMC7524833 DOI: 10.1007/s00109-020-01958-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 01/18/2023]
Abstract
ITK (IL-2-inducible tyrosine kinase) belongs to the Tec family kinases and is mainly expressed in T cells. It is involved in TCR signalling events driving processes like T cell development as well as Th2, Th9 and Th17 responses thereby controlling the expression of pro-inflammatory cytokines. Studies have shown that ITK is involved in the pathogenesis of autoimmune diseases as well as in carcinogenesis. The loss of ITK or its activity either by mutation or by the use of inhibitors led to a beneficial outcome in experimental models of asthma, inflammatory bowel disease and multiple sclerosis among others. In humans, biallelic mutations in the ITK gene locus result in a monogenetic disorder leading to T cell dysfunction; in consequence, mainly EBV infections can lead to severe immune dysregulation evident by lymphoproliferation, lymphoma and hemophagocytic lymphohistiocytosis. Furthermore, patients who suffer from angioimmunoblastic T cell lymphoma have been found to express significantly more ITK. These findings put ITK in the strong focus as a target for drug development.
Collapse
Affiliation(s)
- Kristina S Lechner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany
- Ludwig Demling Endoscopy Center of Excellence, Ulmenweg 18, 91054, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, 91052, Erlangen, Germany.
| |
Collapse
|
6
|
Howe MK, Dowdell K, Roy A, Niemela JE, Wilson W, McElwee JJ, Hughes JD, Cohen JI. Magnesium Restores Activity to Peripheral Blood Cells in a Patient With Functionally Impaired Interleukin-2-Inducible T Cell Kinase. Front Immunol 2019; 10:2000. [PMID: 31507602 PMCID: PMC6718476 DOI: 10.3389/fimmu.2019.02000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/07/2019] [Indexed: 12/02/2022] Open
Abstract
Interleukin-2-inducible T cell kinase (ITK) is critical for T cell signaling and cytotoxicity, and control of Epstein-Barr virus (EBV). We identified a patient with a novel homozygous missense mutation (D540N) in a highly conserved residue in the kinase domain of ITK who presented with EBV-positive lymphomatoid granulomatosis. She was treated with interferon and chemotherapy and her disease went into remission; however, she has persistent elevation of EBV DNA in the blood, low CD4 T cells, low NK cells, and nearly absent iNKT cells. Molecular modeling predicts that the mutation increases the flexibility of the ITK kinase domain impairing phosphorylation of the protein. Stimulation of her T cells resulted in reduced phosphorylation of ITK, PLCγ, and PKC. The CD8 T cells were moderately impaired for cytotoxicity and degranulation. Importantly, addition of magnesium to her CD8 T cells in vitro restored cytotoxicity and degranulation to levels similar to controls. Supplemental magnesium in patients with mutations in another protein important for T cell signaling, MAGT1, was reported to restore EBV-specific cytotoxicity. Our findings highlight the critical role of ITK for T cell activation and suggest the potential for supplemental magnesium to treat patients with ITK deficiency.
Collapse
Affiliation(s)
- Matthew K Howe
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kennichi Dowdell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Amitava Roy
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, United States
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | - Wyndham Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | | | | | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Design of a Novel and Selective IRAK4 Inhibitor Using Topological Water Network Analysis and Molecular Modeling Approaches. Molecules 2018; 23:molecules23123136. [PMID: 30501110 PMCID: PMC6321621 DOI: 10.3390/molecules23123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/13/2023] Open
Abstract
Protein kinases are deeply involved in immune-related diseases and various cancers. They are a potential target for structure-based drug discovery, since the general structure and characteristics of kinase domains are relatively well-known. However, the ATP binding sites in protein kinases, which serve as target sites, are highly conserved, and thus it is difficult to develop selective kinase inhibitors. To resolve this problem, we performed molecular dynamics simulations on 26 kinases in the aqueous solution, and analyzed topological water networks (TWNs) in their ATP binding sites. Repositioning of a known kinase inhibitor in the ATP binding sites of kinases that exhibited a TWN similar to interleukin-1 receptor-associated kinase 4 (IRAK4) allowed us to identify a hit molecule. Another hit molecule was obtained from a commercial chemical library using pharmacophore-based virtual screening and molecular docking approaches. Pharmacophoric features of the hit molecules were hybridized to design a novel compound that inhibited IRAK4 at low nanomolar levels in the in vitro assay.
Collapse
|
8
|
Chopra N, Wales TE, Joseph RE, Boyken SE, Engen JR, Jernigan RL, Andreotti AH. Dynamic Allostery Mediated by a Conserved Tryptophan in the Tec Family Kinases. PLoS Comput Biol 2016; 12:e1004826. [PMID: 27010561 PMCID: PMC4807093 DOI: 10.1371/journal.pcbi.1004826] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a Tec family non-receptor tyrosine kinase that plays a critical role in immune signaling and is associated with the immunological disorder X-linked agammaglobulinemia (XLA). Our previous findings showed that the Tec kinases are allosterically activated by the adjacent N-terminal linker. A single tryptophan residue in the N-terminal 17-residue linker mediates allosteric activation, and its mutation to alanine leads to the complete loss of activity. Guided by hydrogen/deuterium exchange mass spectrometry results, we have employed Molecular Dynamics simulations, Principal Component Analysis, Community Analysis and measures of node centrality to understand the details of how a single tryptophan mediates allostery in Btk. A specific tryptophan side chain rotamer promotes the functional dynamic allostery by inducing coordinated motions that spread across the kinase domain. Either a shift in the rotamer population, or a loss of the tryptophan side chain by mutation, drastically changes the coordinated motions and dynamically isolates catalytically important regions of the kinase domain. This work also identifies a new set of residues in the Btk kinase domain with high node centrality values indicating their importance in transmission of dynamics essential for kinase activation. Structurally, these node residues appear in both lobes of the kinase domain. In the N-lobe, high centrality residues wrap around the ATP binding pocket connecting previously described Catalytic-spine residues. In the C-lobe, two high centrality node residues connect the base of the R- and C-spines on the αF-helix. We suggest that the bridging residues that connect the catalytic and regulatory architecture within the kinase domain may be a crucial element in transmitting information about regulatory spine assembly to the catalytic machinery of the catalytic spine and active site. Bruton’s tyrosine kinase (Btk) belongs to the Tec family of protein tyrosine kinases, and plays a crucial role in the signaling pathway in B-cells. Alteration of Btk activity results in the serious immunological disorder, X-linked agammaglobulinemia. Btk is a multi-domain protein and the activity of the kinase domain is regulated by the adjacent non-catalytic domains, which mediate their effect by means of a conserved tryptophan residue. In this work, we have investigated the mechanism of regulation by this tryptophan residue, W395, in the linker preceding the Btk kinase domain. Using hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations we identify structural elements within the kinase domain that are required for function by transmitting the allosteric effects of W395. Molecular Dynamics simulations further guided us to delineate the kinase domain into dynamically correlated sets of residues using community analysis, thereby identifying the important communication nodes that connect the various elements of the kinase domain required for function. The analyses performed indicate clearly how the W395A mutant changes the communication pathway required for function.
Collapse
Affiliation(s)
- Nikita Chopra
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Raji E. Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Scott E. Boyken
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Robert L. Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Amy H. Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
9
|
Bruton's TK inhibitors: structural insights and evolution of clinical candidates. Future Med Chem 2015; 6:675-95. [PMID: 24895895 DOI: 10.4155/fmc.14.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bruton's TK (BTK) is a promising biological target for therapeutic intervention of several diseases including inflammatory diseases and cancer/B cell malignancies. Numerous research groups are actively engaged in investigating the functions of BTK, and discovering potent and selective BTK inhibitors as drug candidates. Revealed by x-ray crystal structures with ligands of diverse chemical structures, the ability of BTK kinase domain to adopt various inactive conformations offers unique opportunities to identify highly potent and exquisitely selective inhibitors. Both reversible and covalent inhibitor approaches have yielded candidates demonstrating safety profiles and efficacies in multiple preclinical models of autoimmunity and oncology. Two BTK inhibitors have entered human clinical trials for oncology indications. Ibrutinib won the US FDA approval in November 2013 to become the first-in-class BTK inhibitor for treating mantle cell lymphoma. This encouraging outcome and the other on-going human studies could ultimately expand the utility of BTK inhibitors to broader autoimmune disease areas.
Collapse
|
10
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
11
|
Selectively targeting an inactive conformation of interleukin-2-inducible T-cell kinase by allosteric inhibitors. Biochem J 2014; 460:211-22. [PMID: 24593284 DOI: 10.1042/bj20131139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ITK (interleukin-2-inducible T-cell kinase) is a critical component of signal transduction in T-cells and has a well-validated role in their proliferation, cytokine release and chemotaxis. ITK is an attractive target for the treatment of T-cell-mediated inflammatory diseases. In the present study we describe the discovery of kinase inhibitors that preferentially bind to an allosteric pocket of ITK. The novel ITK allosteric site was characterized by NMR, surface plasmon resonance, isothermal titration calorimetry, enzymology and X-ray crystallography. Initial screening hits bound to both the allosteric pocket and the ATP site. Successful lead optimization was achieved by improving the contribution of the allosteric component to the overall inhibition. NMR competition experiments demonstrated that the dual-site binders showed higher affinity for the allosteric site compared with the ATP site. Moreover, an optimized inhibitor displayed non-competitive inhibition with respect to ATP as shown by steady-state enzyme kinetics. The activity of the isolated kinase domain and auto-activation of the full-length enzyme were inhibited with similar potency. However, inhibition of the activated full-length enzyme was weaker, presumably because the allosteric site is altered when ITK becomes activated. An optimized lead showed exquisite kinome selectivity and is efficacious in human whole blood and proximal cell-based assays.
Collapse
|
12
|
Norman P. Inducible tyrosine kinase inhibitors: a review of the patent literature (2010 - 2013). Expert Opin Ther Pat 2014; 24:979-91. [PMID: 24990480 DOI: 10.1517/13543776.2014.936381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The non-receptor tyrosine kinase, inducible tyrosine kinase (Itk), plays an important role in thymus(T)-cell signalling and the production of pro-inflammatory cytokines. Itk, and the other Tec family members, Rlk and Tec, are viewed as attractive drug targets for new agents for the treatment of autoimmune and inflammatory diseases. Interest in Itk inhibitors is still modest compared to other kinases such as the Janus kinase (JAK) family or Syk. AREAS COVERED This article reviews the patent filings published from January 2010 to April 2014 that claim Itk inhibitors. It first considers those applications that claim selective, or apparently selective, Itk inhibitors. It then considers those applications that claim less-selective Itk inhibitors. The recent interest in irreversible Itk inhibitors is also discussed. EXPERT OPINION There is a difference of opinion as to the preferred utility for Itk inhibitors. Progress has been made in designing selective Itk inhibitors but little clinical progress. Until clinical data are available, it remains difficult to assess how well Itk inhibitors compare with JAK inhibitors as potential treatments for rheumatoid arthritis. However, animal data suggest that irreversible Itk inhibitors could be useful in treating asthma, whereas dual Itk inhibitors may have more utility in treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Peter Norman
- Norman Consulting , 18 Pink Lane, Burnham, Bucks, SL1 8JW , UK
| |
Collapse
|
13
|
Zhong Y, Johnson AJ, Byrd JC, Dubovsky JA. Targeting Interleukin-2-Inducible T-cell Kinase (ITK) in T-Cell Related Diseases. ACTA ACUST UNITED AC 2014; 2:1-11. [PMID: 27917390 DOI: 10.14304/surya.jpr.v2n6.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL2-inducible T-cell kinase (ITK), a member of the Tec family tyrosine kinases, is the predominant Tec kinase in T cells and natural killer (NK) cells mediating T cell receptor (TCR) and Fc receptor (Fc R) initiated signal transduction. ITK deficiency results in impaired T and NK cell functions, leading to various disorders including malignancies, inflammation, and autoimmune diseases. In this mini-review, the role of ITK in T cell signaling and the development of small molecule inhibitors of ITK for the treatment of T-cell related disorders is examined.
Collapse
Affiliation(s)
- Yiming Zhong
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - Jason A Dubovsky
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Montes de Oca J, Rodriguez Fris A, Appignanesi G, Fernández A. Productive induced metastability in allosteric modulation of kinase function. FEBS J 2014; 281:3079-91. [PMID: 24823615 DOI: 10.1111/febs.12844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/09/2014] [Accepted: 05/12/2014] [Indexed: 11/26/2022]
Abstract
Allosteric modulators of kinase function are of considerable pharmacological interest as blockers or agonists of key cell-signaling pathways. They are gaining attention due to their purported higher selectivity and efficacy relative to ATP-competitive ligands. Upon binding to the target protein, allosteric inhibitors promote a conformational change that purposely facilitates or hampers ATP binding. However, allosteric binding remains a matter of contention because the binding site does not fit with a natural ligand (i.e. ATP or phosphorylation substrate) of the protein. In this study, we show that allosteric binding occurs by means of a local structural motif that promotes association with the ligand. We specifically show that allosteric modulators promote a local metastable state that is stabilized upon association. The induced conformational change generates a local enrichment of the protein in the so-called dehydrons, which are solvent-exposed backbone hydrogen bonds. These structural deficiencies that are inherently sticky are not present in the apo form and constitute a local metastable state that promotes association with the ligand. This productive induced metastability (PIM) is likely to translate into a general molecular design concept.
Collapse
Affiliation(s)
- Joan Montes de Oca
- Sección Fisicoquímica, INQUISUR-UNS-CONICET-Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
15
|
Structure-functional prediction and analysis of cancer mutation effects in protein kinases. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:653487. [PMID: 24817905 PMCID: PMC4000980 DOI: 10.1155/2014/653487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/31/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal “low” activity state to the “active” state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes.
Collapse
|
16
|
MacKinnon CH, Lau K, Burch JD, Chen Y, Dines J, Ding X, Eigenbrot C, Heifetz A, Jaochico A, Johnson A, Kraemer J, Kruger S, Krülle TM, Liimatta M, Ly J, Maghames R, Montalbetti CAGN, Ortwine DF, Pérez-Fuertes Y, Shia S, Stein DB, Trani G, Vaidya DG, Wang X, Bromidge SM, Wu LC, Pei Z. Structure-based design and synthesis of potent benzothiazole inhibitors of interleukin-2 inducible T cell kinase (ITK). Bioorg Med Chem Lett 2013; 23:6331-5. [PMID: 24138940 DOI: 10.1016/j.bmcl.2013.09.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 11/17/2022]
Abstract
Inhibition of the non-receptor tyrosine kinase ITK, a component of the T-cell receptor signalling cascade, may represent a novel treatment for allergic asthma. Here we report the structure-based optimization of a series of benzothiazole amides that demonstrate sub-nanomolar inhibitory potency against ITK with good cellular activity and kinase selectivity. We also elucidate the binding mode of these inhibitors by solving the X-ray crystal structures of several inhibitor-ITK complexes.
Collapse
Affiliation(s)
- Colin H MacKinnon
- Evotec (UK) Ltd, 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vargas L, Hamasy A, Nore BF, E. Smith CI. Inhibitors of BTK and ITK: State of the New Drugs for Cancer, Autoimmunity and Inflammatory Diseases. Scand J Immunol 2013; 78:130-9. [DOI: 10.1111/sji.12069] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/05/2013] [Indexed: 01/01/2023]
Affiliation(s)
- L. Vargas
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| | | | | | - C. I. E. Smith
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| |
Collapse
|
18
|
Affiliation(s)
- Jean-Damien Charrier
- Chemistry Department at Vertex Pharmaceuticals (Europe) Ltd, 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RW, UK
| | - Ronald MA Knegtel
- Chemistry Department at Vertex Pharmaceuticals (Europe) Ltd, 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RW, UK
| |
Collapse
|
19
|
Guo W, Liu R, Ono Y, Ma AH, Martinez A, Sanchez E, Wang Y, Huang W, Mazloom A, Li J, Ning J, Maverakis E, Lam KS, Kung HJ. Molecular characteristics of CTA056, a novel interleukin-2-inducible T-cell kinase inhibitor that selectively targets malignant T cells and modulates oncomirs. Mol Pharmacol 2012; 82:938-47. [PMID: 22899868 PMCID: PMC3477223 DOI: 10.1124/mol.112.079889] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/16/2012] [Indexed: 12/19/2022] Open
Abstract
Interleukin-2-inducible T-cell kinase (Itk) is a member of the Btk (Bruton's tyrosine kinase) family of tyrosine kinases. Itk plays an important role in normal T-cell functions and in the pathophysiology of both autoimmune diseases and T-cell malignancies. Here, we describe the initial characterization of a selective inhibitor, 7-benzyl-1-(3-(piperidin-1-yl)propyl)-2-(4-(pyridin-4-yl)phenyl)-1H-imidazo[4,5-g]quinoxalin-6(5H)-one (CTA056), that was developed through screening a 9600-compound combinatorial solution phase library, followed by molecular modeling, and extensive structure-activity relationship studies. CTA056 exhibits the highest inhibitory effects toward Itk, followed by Btk and endothelial and epithelial tyrosine kinase. Among the 41 cancer cell lines analyzed, CTA056 selectively targets acute lymphoblastic T-cell leukemia and cutaneous T-cell lymphoma. Normal T cells are minimally affected. Incubation of Jurkat and MOLT-4 cells with CTA056 resulted in the inhibition of the phosphorylation of Itk and its effectors including PLC-γ, Akt, and extracellular signal-regulated kinase, as well as the decreased secretion of targeted genes such as interleukin-2 and interferon-γ. Jurkat cells also underwent apoptosis in a dose-dependent manner when incubated with CTA056. The potent apoptosis-inducing potential of CTA056 is reflected by the significant modulation of microRNAs involved in survival pathways and oncogenesis. The in vitro cytotoxic effect on malignant T cells is further validated in a xenograft model. The selective expression and activation of Itk in malignant T cells, as well as the specificity of CTA056 for Itk, make this molecule a potential therapeutic agent for the treatment of T-cell leukemia and lymphoma.
Collapse
Affiliation(s)
- Wenchang Guo
- Department of Biochemistry and Molecular Medicine,,University of California Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Meganathan C, Sakkiah S, Lee Y, Narayanan JV, Lee KW. Discovery of potent inhibitors for interleukin-2-inducible T-cell kinase: structure-based virtual screening and molecular dynamics simulation approaches. J Mol Model 2012; 19:715-26. [DOI: 10.1007/s00894-012-1536-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/12/2012] [Indexed: 01/11/2023]
|
21
|
X-ray crystallographic structure-based design of selective thienopyrazole inhibitors for interleukin-2-inducible tyrosine kinase. Bioorg Med Chem Lett 2012; 22:3296-300. [DOI: 10.1016/j.bmcl.2012.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 11/22/2022]
|
22
|
Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 2012; 26:963-71. [PMID: 22289921 DOI: 10.1038/leu.2011.371] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this study was the appraisal of the clinical and functional consequences of germline mutations within the gene for the IL-2 inducible T-cell kinase, ITK. Among patients with Epstein-Barr virus-driven lymphoproliferative disorders (EBV-LPD), negative for mutations in SH2D1A and XIAP (n=46), we identified two patients with R29H or D500T,F501L,M503X mutations, respectively. Human wild-type (wt) ITK, but none of the mutants, was able to rescue defective calcium flux in murine Itk(-/-) T cells. Pulse-chase experiments showed that ITK mutations lead to varying reductions of protein half-life from 25 to 69% as compared with wt ITK (107 min). The pleckstrin homology domain of wt ITK binds most prominently to phosphatidylinositol monophosphates (PI(3)P, PI(4)P, PI(5)P) and to lesser extend to its double or triple phosphorylated derivates (PIP2, PIP3), interactions which were dramatically reduced in the patient with the ITK(R29H) mutant. ITK mutations are distributed over the entire protein and include missense, nonsense and indel mutations, reminiscent of the situation in its sister kinase in B cells, Bruton's tyrosine kinase.
Collapse
|
23
|
Knegtel RMA, Robinson DD. A Role for Hydration in Interleukin-2 Inducible T Cell Kinase (Itk) Selectivity. Mol Inform 2011; 30:950-9. [DOI: 10.1002/minf.201100086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/09/2011] [Indexed: 11/07/2022]
|
24
|
Muckelbauer J, Sack JS, Ahmed N, Burke J, Chang CY, Gao M, Tino J, Xie D, Tebben AJ. X-Ray Crystal Structure of Bone Marrow Kinase in the X Chromosome: A Tec Family Kinase. Chem Biol Drug Des 2011; 78:739-48. [DOI: 10.1111/j.1747-0285.2011.01230.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Qi Q, Kannan AK, August A. Structure and function of Tec family kinase Itk. Biomol Concepts 2011; 2:223-32. [PMID: 25962031 DOI: 10.1515/bmc.2011.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/11/2011] [Indexed: 11/15/2022] Open
Abstract
Itk is a member of the Tec family of kinases that is expressed predominantly in T cells. Itk regulates the T cell receptor signaling pathway to modulate T cell development and T helper cell differentiation, particularly Th2 differentiation. Itk is also important for the development and function of iNKT cells. In this review we discuss current progress on our understanding of the structure, activation and signaling pathway of Itk, in addition to inhibitors that have been developed, which target this kinase. We also place in context the function of Itk, available inhibitors and potential use in treating disease.
Collapse
|
26
|
Itk: the rheostat of the T cell response. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:297868. [PMID: 21747996 PMCID: PMC3116522 DOI: 10.1155/2011/297868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
The nonreceptor tyrosine kinase Itk plays a key role in TCR-initiated signaling that directly and significantly affects the regulation of PLCγ1 and the consequent mobilization of Ca2+. Itk also participates in the regulation of cytoskeletal reorganization as well as cellular adhesion, which is necessary for a productive T cell response. The functional cellular outcome of these molecular regulations by Itk renders it an important mediator of T cell development and differentiation. This paper encompasses the structure of Itk, the signaling parameters leading to Itk activation, and Itk effects on molecular pathways resulting in functional cellular outcomes. The incorporation of these factors persuades one to believe that Itk serves as a modulator, or rheostat, critically fine-tuning the T cell response.
Collapse
|
27
|
von Bonin A, Rausch A, Mengel A, Hitchcock M, Krüger M, von Ahsen O, Merz C, Röse L, Stock C, Martin SF, Leder G, Döcke WD, Asadullah K, Zügel U. Inhibition of the IL-2-inducible tyrosine kinase (Itk) activity: a new concept for the therapy of inflammatory skin diseases. Exp Dermatol 2011; 20:41-7. [PMID: 21158938 DOI: 10.1111/j.1600-0625.2010.01198.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
T-cell-mediated processes play an essential role in the pathogenesis of several inflammatory skin diseases such as atopic dermatitis, allergic contact dermatitis and psoriasis. The aim of this study was to investigate the role of the IL-2-inducible tyrosine kinase (Itk), an enzyme acting downstream of the T-cell receptor (TCR), in T-cell-dependent skin inflammation using three approaches. Itk knockout mice display significantly reduced inflammatory symptoms in mouse models of acute and subacute contact hypersensitivity (CHS) reactions. Systemic administration of a novel small molecule Itk inhibitor, Compound 44, created by chemical optimization of an initial high-throughput screening hit, inhibited Itk's activity with an IC50 in the nanomolar range. Compound 44 substantially reduced proinflammatory immune responses in vitro and in vivo after systemic administration in two acute CHS models. In addition, our data reveal that human Itk, comparable to its murine homologue, is expressed mainly in T cells and is increased in lesional skin from patients with atopic dermatitis and allergic contact dermatitis. Finally, silencing of Itk by RNA interference in primary human T cells efficiently blocks TCR-induced lymphokine secretion. In conclusion, Itk represents an interesting new target for the therapy of T-cell-mediated inflammatory skin diseases.
Collapse
Affiliation(s)
- Arne von Bonin
- Corporate Development-Innovation, Bayer AG, Leverkusen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Charrier JD, Miller A, Kay DP, Brenchley G, Twin HC, Collier PN, Ramaya S, Keily SB, Durrant SJ, Knegtel RMA, Tanner AJ, Brown K, Curnock AP, Jimenez JM. Discovery and structure-activity relationship of 3-aminopyrid-2-ones as potent and selective interleukin-2 inducible T-cell kinase (Itk) inhibitors. J Med Chem 2011; 54:2341-50. [PMID: 21391610 DOI: 10.1021/jm101499u] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Interleukin-2 inducible T-cell kinase (Itk) plays a role in T-cell functions, and its inhibition potentially represents an attractive intervention point to treat autoimmune and allergic diseases. Herein we describe the discovery of a series of potent and selective novel inhibitors of Itk. These inhibitors were identified by structure-based design, starting from a fragment generated de novo, the 3-aminopyrid-2-one motif. Functionalization of the 3-amino group enabled rapid enhancement of the inhibitory activity against Itk, while introduction of a substituted heteroaromatic ring in position 5 of the pyridone fragment was key to achieving optimal selectivity over related kinases. A careful analysis of the hydration patterns in the kinase active site was necessary to fully explain the observed selectivity profile. The best molecule prepared in this optimization campaign, 7v, inhibits Itk with a K(i) of 7 nM and has a good selectivity profile across kinases.
Collapse
Affiliation(s)
- Jean-Damien Charrier
- Department of Chemistry, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Herdemann M, Weber A, Jonveaux J, Schwoebel F, Stoeck M, Heit I. Optimisation of ITK inhibitors through successive iterative design cycles. Bioorg Med Chem Lett 2011; 21:1852-6. [DOI: 10.1016/j.bmcl.2011.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
30
|
Bagga V, Silakari O, Ghorela VS, Bahia MS, Rambabu G, Sarma J. A three-dimensional pharmacophore modelling of ITK inhibitors and virtual screening for novel inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:171-190. [PMID: 21391146 DOI: 10.1080/1062936x.2010.510480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Interleukin-2-inducible T-cell kinase (ITK) is a key member of the Tec family of non-receptor tyrosine kinases, and has been found to be a novel target for a number of inflammatory and autoimmune diseases. A three-dimensional pharmacophore model has been generated for protein ITK from its known inhibitors. The best HypoGen model consisted of four pharmacophore features: one hydrogen bond acceptor, one hydrogen bond donor and two hydrophobic rings. This model showed a correlation coefficient of 0.947, a root mean square deviation of 0.914 and a configuration cost of 16.866. The model was validated using test set prediction and Fischer's test. A test set containing 204 compounds showed an r(2) of 0.745 between estimated activity and activity measured experimentally. Fisher's test gave a confidence level of 95%. The best pharmacophore model (Hypo1) was then employed for virtual screening (3D database searching), including Lipinsiki's filter, to obtain a pool of more drug-like molecules. The molecular pool thus retrieved was subjected to docking analysis with a study protein to remove any molecules showing false positive activity for ITK.
Collapse
Affiliation(s)
- V Bagga
- Department of Pharmaceutical Science and Drug Research, Punjabi University, Patiala, Punjab, India
| | | | | | | | | | | |
Collapse
|
31
|
Joseph RE, Andreotti AH. Controlling the activity of the Tec kinase Itk by mutation of the phenylalanine gatekeeper residue. Biochemistry 2011; 50:221-9. [PMID: 21138328 PMCID: PMC3083488 DOI: 10.1021/bi101379m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The regulatory spine is a set of conserved residues that are assembled and disassembled upon activation and inactivation of kinases. We recently identified the regulatory spine within the immunologically important Tec family kinases and have shown that in addition to the core spine residues within the kinase domain itself, contributions from the SH2-kinase linker region result in an extended spine structure for this kinase family. Disruption of the regulatory spine, either by mutation or by removal of the amino-terminal SH2-kinase linker region or by mutation of core spine residues, leads to inactivation of the Tec kinases. With a focus on the Tec family members, Itk and Btk, we now show that the gatekeeper residue is also critical for the assembly of the regulatory spine. Mutation of the bulky Itk F434 gatekeeper residue to alanine or glycine inactivates Itk. The activity of the Itk F434A mutant can be recovered by a secondary site mutation within the N-terminal lobe, specifically L432I. The Itk L432I mutation likely rescues the activity of the gatekeeper F434A mutation by promoting the assembly of the regulatory spine. We also show that mutation of the Itk and Btk gatekeeper residues to methionine is sufficient to activate the isolated kinase domains of Tec kinases in the absence of the amino-terminal SH2-kinase linker. Thus, shifting the conformational equilibrium between the assembled and disassembled states of the regulatory spine by changing the nature of the gatekeeper residue is key to regulating the activity of Tec kinases.
Collapse
Affiliation(s)
- Raji E. Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA-50011
| | - Amy H. Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA-50011
| |
Collapse
|
32
|
Chandrasekaran M, Sakkiah S, Thangapandian S, Namadevan S, Kim HH, Kim YS, Lee KW. Pharmacophore Design for Anti-inflammatory Agent Targeting Interleukin-2 Inducible Tyrosine Kinase (Itk). B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.11.3333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Herdemann M, Heit I, Bosch FU, Quintini G, Scheipers C, Weber A. Identification of potent ITK inhibitors through focused compound library design including structural information. Bioorg Med Chem Lett 2010; 20:6998-7003. [PMID: 20965724 DOI: 10.1016/j.bmcl.2010.09.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
A series of novel compound libraries inhibiting interleukin-2 inducible T cell kinase (ITK) were designed, synthesized and evaluated. In the first design cycle two library scaffolds were identified showing low micromolar inhibition of ITK. Further iterative design cycles including crystal structure information of ITK and structurally related kinases led to the identification of indolylindazole and indolylpyrazolopyridine compounds with low nanomolar ITK inhibition.
Collapse
|
34
|
Joseph RE, Xie Q, Andreotti AH. Identification of an allosteric signaling network within Tec family kinases. J Mol Biol 2010; 403:231-42. [PMID: 20826165 DOI: 10.1016/j.jmb.2010.08.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 01/20/2023]
Abstract
The Tec family kinases are tyrosine kinases that function primarily in hematopoietic cells. The catalytic activity of the Tec kinases is positively influenced by the regulatory domains outside of the kinase domain. The current lack of a full-length Tec kinase structure leaves a void in our understanding of how these positive regulatory signals are transmitted to the kinase domain. Recently, a conserved structure within kinases, the 'regulatory spine', which assembles and disassembles as a kinase switches between its active and inactive states, has been identified. Here, we define the residues that comprise the regulatory spine within Tec kinases. Compared to previously characterized systems, the Tec kinases contain an extended regulatory spine that includes a conserved methionine within the C-helix and a conserved tryptophan within the Src homology 2-kinase linker of Tec kinases. This extended regulatory spine forms a conduit for transmitting the presence of the regulatory domains of Tec kinases to the catalytic domain. We further show that mutation of the gatekeeper residue at the edge of the regulatory spine stabilizes the regulatory spine, resulting in a constitutively active kinase domain. Importantly, the regulatory spine is preassembled in this gatekeeper mutant, rendering phosphorylation on the activation loop unnecessary for its activity. Moreover, we show that the disruption of the conserved electrostatic interaction between Bruton's tyrosine kinase R544 on the activation loop and Bruton's tyrosine kinase E445 on the C-helix also aids in the assembly of the regulatory spine. Thus, the extended regulatory spine is a key structure that is critical for maintaining the activity of Tec kinases.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
35
|
Kutach AK, Villaseñor AG, Lam D, Belunis C, Janson C, Lok S, Hong LN, Liu CM, Deval J, Novak TJ, Barnett JW, Chu W, Shaw D, Kuglstatter A. Crystal Structures of IL-2-inducible T cell Kinase Complexed with Inhibitors: Insights into Rational Drug Design and Activity Regulation. Chem Biol Drug Des 2010; 76:154-63. [DOI: 10.1111/j.1747-0285.2010.00993.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Abstract
UNLABELLED Importance of field: IL-2 inducible T-cell kinase (Itk) is a non-receptor tyrosine kinase of the Tec family. It plays an important role in T cell signaling and the production of various pro-inflammatory cytokines such as IL-2, IL-4, IL-5, IL-10 and IL-13. Inhibition of Itk has been a target for the treatment of diseases related to inflammation disorders such as psoriasis and allergic asthma. Rich resources on the structural information for Itk made discovery of novel selective Itk inhibitors blossom in the past decade. AREAS COVERED IN THIS REVIEW In this report, distinct structural classes of specific Itk inhibitors are summarized and their in vitro/in vivo properties are discussed. WHAT THE READER WILL GAIN A summary of 21 patents including 16 different chemical structure classes of Itk inhibitors. The in vivo efficacies of some of the inhibitors in animal models are also discussed. TAKE HOME MESSAGE Although some of the inhibitors show efficacy in different animal models, which implies potential for therapeutic use in human, there is not yet a chemical entity reported in clinical trials. The prospects for Itk inhibitors will rely on the quality of the compound and the validity of the target in patients within the selected therapeutic area.
Collapse
Affiliation(s)
- Ho Yin Lo
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA.
| |
Collapse
|
37
|
Villaseñor AG, Wong A, Shao A, Garg A, Kuglstatter A, Harris SF. Acoustic matrix microseeding: improving protein crystal growth with minimal chemical bias. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:568-76. [PMID: 20445232 DOI: 10.1107/s0907444910005512] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/10/2010] [Indexed: 11/10/2022]
Abstract
A crystal seeding technique is introduced that uses acoustic waves to deliver nanolitre volumes of seed suspension into protein drops. The reduction in delivery volume enables enhanced crystal growth in matrix-seeding experiments without concern for bias from chemical components in the seed-carrying buffer suspension. Using this technique, it was found that while buffer components alone without seed can marginally promote crystal growth in some cases, crystal seeding is far more effective in boosting the number of sparse-matrix conditions that yield protein crystals.
Collapse
Affiliation(s)
- Armando G Villaseñor
- Department of Discovery Technologies, Roche Palo Alto LLC, 3431 Hillview Avenue, Palo Alto, California 94304, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Min L, Wu W, Joseph RE, Fulton DB, Berg L, Andreotti AH. Disrupting the intermolecular self-association of Itk enhances T cell signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4228-35. [PMID: 20237289 PMCID: PMC3066017 DOI: 10.4049/jimmunol.0901908] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Tec family tyrosine kinase (Itk), is a key component of the TCR signaling pathway. Biochemical studies have shown that Itk activation requires recruitment of Itk to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. However, the regulation of Itk enzymatic activity by Itk domain interactions is not yet well understood. In this study, we show that full-length Itk self-associates in an intermolecular fashion. Using this information, we have designed an Itk variant that exhibits reduced self-association but maintains normal binding to exogenous ligands via each of its regulatory domains. When expressed in insect cells, the Itk substrate phospholipase Cgamma1 is phosphorylated more efficiently by the Itk variant than by wild-type Itk. Furthermore, expression of the Itk variant in primary murine T cells induced higher ERK activation and increased calcium flux following TCR stimulation compared with that of wild-type Itk. Our results indicate that the Tec kinase Itk is negatively regulated by intermolecular clustering and that disruption of this clustering leads to increased Itk kinase activity following TCR stimulation.
Collapse
Affiliation(s)
| | - Wenfang Wu
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | | | | | - Leslie Berg
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Amy H. Andreotti
- To whom correspondence should be addressed: Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011; Tel.: 515-294-4953; Fax: 515-294-0453;
| |
Collapse
|
39
|
The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 2010; 22:1175-84. [PMID: 20206686 DOI: 10.1016/j.cellsig.2010.03.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/01/2010] [Indexed: 01/03/2023]
Abstract
The Src, Syk, and Tec family kinases are three of the most well characterized tyrosine kinase families found in the human genome. Members of these kinase families function downstream of antigen and F(c) receptors in hematopoietic cells and transduce signals leading to calcium mobilization, altered gene expression, cytokine production, and cell proliferation. Over the last several years, structural and biochemical studies have begun to uncover the molecular mechanisms regulating activation of these kinases. It appears that each kinase family functions as a distinct type of molecular switch. This review discusses the activation of the Src, Syk, and Tec kinases from the perspective of structure, phosphorylation, allosteric regulation, and kinetics. The multiple factors that regulate the Src, Syk, and Tec families illustrate the important role played by each of these kinases in immune cell signaling.
Collapse
|
40
|
Marcotte DJ, Liu YT, Arduini RM, Hession CA, Miatkowski K, Wildes CP, Cullen PF, Hong V, Hopkins BT, Mertsching E, Jenkins TJ, Romanowski MJ, Baker DP, Silvian LF. Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Sci 2010; 19:429-39. [PMID: 20052711 PMCID: PMC2866269 DOI: 10.1002/pro.321] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 12/20/2022]
Abstract
Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B-cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand-bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS-354825) at 1.9 A resolution or to 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolospyrimidin- 7-yl-cyclopentane at 1.6 A resolution. This data provides information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp-Glu-Ile motif in the N-terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.
Collapse
Affiliation(s)
- Douglas J Marcotte
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Yu-Ting Liu
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Robert M Arduini
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Catherine A Hession
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Konrad Miatkowski
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Craig P Wildes
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Patrick F Cullen
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Victor Hong
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Brian T Hopkins
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | | | - Tracy J Jenkins
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Michael J Romanowski
- Sunesis Pharmaceuticals, Inc.395 Oyster Point Boulevard, South San Francisco, California 94080
| | - Darren P Baker
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| | - Laura F Silvian
- Biogen Idec, Inc., Drug Discovery Department12 Cambridge Center, Cambridge, Massachusetts 02142
| |
Collapse
|
41
|
Sacristán C, Schattgen SA, Berg LJ, Bunnell SC, Roy AL, Rosenstein Y. Characterization of a novel interaction between transcription factor TFII-I and the inducible tyrosine kinase in T cells. Eur J Immunol 2009; 39:2584-95. [PMID: 19701889 DOI: 10.1002/eji.200839031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
TCR signaling leads to the activation of kinases such as inducible tyrosine kinase (Itk), a key regulatory protein in T-lymphocyte activation and function. The homolog of Itk in B cells is Bruton's tyrosine kinase, previously shown to bind and phosphorylate the transcription factor TFII-I. TFII-I plays major roles in transcription and signaling. Our purpose herein was twofold: first, to identify some of the molecular determinants involved in TFII-I activation downstream of receptor crosslinking in T cells and second, to uncover the existence of Itk-TFII-I signaling in T lymphocytes. We report for the first time that TFII-I is tyrosine phosphorylated upon TCR, TCR/CD43, and TCR/CD28 co-receptor engagement in human and/or murine T cells. We show that Itk physically interacts with TFII-I and potentiates TFII-I-driven c-fos transcription. We demonstrate that TFII-I is phosphorylated upon co-expression of WT, but not kinase-dead, or kinase-dead/R29C mutant Itk, suggesting these residues are important for TFII-I phosphorylation, presumably via an Itk-dependent mechanism. Structural analysis of TFII-I-Itk interactions revealed that the first 90 residues of TFII-I are dispensable for Itk binding. Mutations within Itk's kinase, pleckstrin-homology, and proline-rich regions did not abolish TFII-I-Itk binding. Our results provide an initial step in understanding the biological role of Itk-TFII-I signaling in T-cell function.
Collapse
Affiliation(s)
- Catarina Sacristán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| | | | | | | | | | | |
Collapse
|
42
|
Lin L, Czerwinski R, Kelleher K, Siegel MM, Wu P, Kriz R, Aulabaugh A, Stahl M. Activation loop phosphorylation modulates Bruton's tyrosine kinase (Btk) kinase domain activity. Biochemistry 2009; 48:2021-32. [PMID: 19206206 DOI: 10.1021/bi8019756] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bruton's tyrosine kinase (Btk) plays a central role in signal transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. A number of cell signaling studies clearly show that Btk is activated by Lyn, a Src family kinase, through phosphorylation on activation loop tyrosine 551 (Y(551)). However, the detailed molecular mechanism regulating Btk activation remains unclear. In particular, we do not fully understand the correlation of kinase activity with Y(551) phosphorylation, and the role of the noncatalytic domains of Btk in the activation process. Insect cell expressed full-length Btk is enzymatically active, but a truncated version of Btk, composed of only the kinase catalytic domain, is largely inactive. Further characterization of both forms of Btk by mass spectrometry showed partial phosphorylation of Y(551) of the full-length enzyme and none of the truncated kinase domain. To determine whether the lack of activity of the kinase domain was due to the absence of Y(551) phosphorylation, we developed an in vitro method to generate Y(551) monophosphorylated Btk kinase domain fragment using the Src family kinase Lyn. Detailed kinetic analyses demonstrated that the in vitro phosphorylated Btk kinase domain has a similar activity as the full-length enzyme while the unphosphorylated kinase domain has a very low k(cat) and is largely inactive. A divalent magnesium metal dependence study established that Btk requires a second magnesium ion for activity. Furthermore, our analysis revealed significant differences in the second metal-binding site among the kinase domain and the full-length enzyme that likely account for the difference in their catalytic profile. Taken together, our study provides important mechanistic insights into Btk kinase activity and phosphorylation-mediated regulation.
Collapse
Affiliation(s)
- Laura Lin
- Structural Biology and Computational Chemistry, Wyeth Research, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The control of cellular signaling cascades is of utmost importance in regulating the immune response. Exquisitely precise protein-protein interactions and chemical modification of substrates by enzymatic catalysis are the fundamental components of the signals that alert immune cells to the presence of a foreign antigen. In particular, the phosphorylation events induced by protein kinase activity must be spatially and temporally regulated by specific interactions to maintain a normal and effective immune response. High resolution structures of many protein kinases along with supporting biochemical data are providing significant insight into the intricate regulatory mechanisms responsible for controlling cellular signaling. The Tec family kinases are immunologically important kinases for which regulatory details are beginning to emerge. This review focuses on bringing together structural insights gained over the years to develop an understanding of how domain interactions both within the Tec kinases and between the Tec kinases and other signaling molecules control immune cell function.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50010, USA
| | | |
Collapse
|
44
|
Abstract
Interleukin-2-inducible T cell kinase (ITK) is a non-receptor tyrosine kinase expressed in T cells, NKT cells and mast cells which plays a crucial role in regulating the T cell receptor (TCR), CD28, CD2, chemokine receptor CXCR4, and FcepsilonR-mediated signaling pathways. In T cells, ITK is an important mediator for actin reorganization, activation of PLCgamma, mobilization of calcium, and activation of the NFAT transcription factor. ITK plays an important role in the secretion of IL-2, but more critically, also has a pivotal role in the secretion of Th2 cytokines, IL-4, IL-5 and IL-13. As such, ITK has been shown to regulate the development of effective Th2 response during allergic asthma as well as infections of parasitic worms. This ability of ITK to regulate Th2 responses, along with its pattern of expression, has led to the proposal that it would represent an excellent target for Th2-mediated inflammation. We discuss here the possibilities and pitfalls of targeting ITK for inflammatory disorders.
Collapse
Affiliation(s)
- Nisebita Sahu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
45
|
Joseph RE, Fulton DB, Andreotti AH. Mechanism and functional significance of Itk autophosphorylation. J Mol Biol 2007; 373:1281-92. [PMID: 17897671 PMCID: PMC2753204 DOI: 10.1016/j.jmb.2007.08.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/16/2007] [Accepted: 08/28/2007] [Indexed: 12/11/2022]
Abstract
Tec family non-receptor tyrosine kinases (Itk, Btk, Tec, Rlk and Bmx) are characterized by the presence of an autophosphorylation site within the non-catalytic Src homology 3 (SH3) domain. The full-length Itk mutant containing phenylalanine in place of the autophosphorylated tyrosine has been studied in Itk-deficient primary T cells. These studies revealed that the non-phosphorylated enzyme restores Itk mediated signaling only partially. In spite of these insights, the precise role of the Tec kinase autophosphorylation site is unclear and the mechanism of the autophosphorylation reaction within the Tec kinases is not known. Here, we show both in vitro and in vivo that Itk autophosphorylation on Y180 within the SH3 domain occurs exclusively via an intramolecular, in cis mechanism. Using an in vitro kinase assay, we show that mutation of the Itk autophosphorylation site Y180 to Phe decreases kinase activity of the full-length enzyme by increasing Km for a peptide substrate. Moreover, mutation of Y180 to Glu, a residue chosen to mimic the phosphorylated tyrosine, alters the ligand-binding capability of the Itk SH3 domain in a ligand-dependent fashion. NMR chemical shift mapping gives residue-specific structural insight into the effect of the Y180E mutation on ligand binding. These data provide a molecular level context with which to interpret in vivo functional data and allow development of a structural model for Itk autophosphorylation.
Collapse
Affiliation(s)
- Raji E. Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - D. Bruce Fulton
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Amy H. Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
46
|
Hantschel O, Rix U, Schmidt U, Bürckstümmer T, Kneidinger M, Schütze G, Colinge J, Bennett KL, Ellmeier W, Valent P, Superti-Furga G. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci U S A 2007; 104:13283-8. [PMID: 17684099 PMCID: PMC1940229 DOI: 10.1073/pnas.0702654104] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Indexed: 01/13/2023] Open
Abstract
Dasatinib is a small-molecule kinase inhibitor used for the treatment of imatinib-resistant chronic myelogenous leukemia (CML). We have analyzed the kinases targeted by dasatinib by using an unbiased chemical proteomics approach to detect binding proteins directly from lysates of CML cells. Besides Abl and Src kinases, we have identified the Tec kinases Btk and Tec, but not Itk, as major binders of dasatinib. The kinase activity of Btk and Tec, but not of Itk, was inhibited by nanomolar concentrations of dasatinib in vitro and in cultured cells. We identified the gatekeeper residue as the critical determinant of dasatinib susceptibility. Mutation of Thr-474 in Btk to Ile and Thr-442 in Tec to Ile conferred resistance to dasatinib, whereas mutation of the corresponding residue in Itk (Phe-435) to Thr sensitized the otherwise insensitive Itk to dasatinib. The configuration of this residue may be a predictor for dasatinib sensitivity across the kinome. Analysis of mast cells derived from Btk-deficient mice suggested that inhibition of Btk by dasatinib may be responsible for the observed reduction in histamine release upon dasatinib treatment. Furthermore, dasatinib inhibited histamine release in primary human basophils and secretion of proinflammatory cytokines in immune cells. The observed inhibition of Tec kinases by dasatinib predicts immunosuppressive (side) effects of this drug and may offer therapeutic opportunities for inflammatory and immunological disorders.
Collapse
Affiliation(s)
- Oliver Hantschel
- *Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria
| | - Uwe Rix
- *Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria
| | - Uwe Schmidt
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria; and
| | - Tilmann Bürckstümmer
- *Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria
| | - Michael Kneidinger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Gregor Schütze
- *Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria
| | - Jacques Colinge
- *Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria
| | - Keiryn L. Bennett
- *Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria
| | - Wilfried Ellmeier
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria; and
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- *Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria
| |
Collapse
|
47
|
Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Structure 2007; 14:1835-44. [PMID: 17161373 DOI: 10.1016/j.str.2006.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 01/10/2023]
Abstract
Interleukin-1 (IL-1) receptor-associated kinase-4 (IRAK-4) is a serine/threonine kinase that plays an essential role in signal transduction by Toll/IL-1 receptors (TIRs). Here, we report the crystal structures of the phosphorylated human IRAK-4 kinase domain in complex with a potent inhibitor and with staurosporine to 2.0 and 2.2 A, respectively. The structures reveal that IRAK-4 has a unique tyrosine gatekeeper residue that interacts with the conserved glutamate from helix alphaC. Consequently, helix alphaC is "pulled in" to maintain the active orientation, and the usual pre-existing hydrophobic back pocket of the ATP-binding site is abolished. The peptide substrate-binding site is more open when compared with other protein kinases due to a marked movement of helix alphaG. The pattern of phosphate ligand interactions in the activation loop bears a close resemblance to that of a tyrosine kinase. Our results provide insights into IRAK-4 function and the design of selective inhibitors.
Collapse
|
48
|
Abstract
The Tec family of tyrosine kinases consists of five members (Itk, Rlk, Tec, Btk, and Bmx) that are expressed predominantly in hematopoietic cells. The exceptions, Tec and Bmx, are also found in endothelial cells. Tec kinases constitute the second largest family of cytoplasmic protein tyrosine kinases. While B cells express Btk and Tec, and T cells express Itk, Rlk, and Tec, all four of these kinases (Btk, Itk, Rlk, and Tec) can be detected in mast cells. This chapter will focus on the biochemical and cell biological data that have been accumulated regarding Itk, Rlk, Btk, and Tec. In particular, distinctions between the different Tec kinase family members will be highlighted, with a goal of providing insight into the unique functions of each kinase. The known functions of Tec kinases in T cell and mast cell signaling will then be described, with a particular focus on T cell receptor and mast cell Fc epsilon RI signaling pathways.
Collapse
Affiliation(s)
- Martin Felices
- Department of Pathology, University of Massachusetts Medical School, Massachusetts, USA
| | | | | | | |
Collapse
|
49
|
Brown K, Cheetham GMT. Crystal structures and inhibitors of proteins involved in IL-2 release and T cell signaling. VITAMINS AND HORMONES 2006; 74:31-59. [PMID: 17027510 DOI: 10.1016/s0083-6729(06)74002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Kieron Brown
- Vertex Pharmaceuticals (Europe) Ltd., Abingdon Oxfordshire OX14 4RY, United Kingdom
| | | |
Collapse
|
50
|
Pletneva EV, Sundd M, Fulton DB, Andreotti AH. Molecular details of Itk activation by prolyl isomerization and phospholigand binding: the NMR structure of the Itk SH2 domain bound to a phosphopeptide. J Mol Biol 2006; 357:550-61. [PMID: 16436281 DOI: 10.1016/j.jmb.2005.12.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 12/13/2022]
Abstract
The Src homology 2 (SH2) domain of interleukin-2 tyrosine kinase (Itk) is a critical component of the regulatory apparatus controlling the activity of this immunologically important enzyme. To gain insight into the structural features associated with the activated form of Itk, we have solved the NMR structure of the SH2 domain bound to a phosphotyrosine-containing peptide (pY) and analyzed changes in trans-hydrogen bond scalar couplings ((3h)J(NC')) that result from pY binding. Isomerization of a single prolyl imide bond in this domain is responsible for simultaneous existence of two distinct SH2 conformers. Prolyl isomerization directs ligand recognition: the trans conformer preferentially binds pY. The structure of the SH2/pY complex provides insight into the ligand specificity; the BG loop in the ligand-free trans SH2 conformer is pre-arranged for optimal contacts with the pY+3 residue of the ligand. Analysis of (3h)J(NC') couplings arising from hydrogen bonds has revealed propagation of structural changes from the pY binding pocket to the CD loop containing conformationally heterogeneous proline as well as to the alphaB helix, on the opposite site of the domain. These findings offer a structural framework for understanding the roles of prolyl isomerization and pY binding in Itk regulation.
Collapse
Affiliation(s)
- Ekaterina V Pletneva
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|