1
|
Tanaka J, Kuwajima H, Yuki R, Nakayama Y. Simvastatin activates the spindle assembly checkpoint and causes abnormal cell division by modifying small GTPases. Cell Signal 2024; 119:111172. [PMID: 38604342 DOI: 10.1016/j.cellsig.2024.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-β-cyclodextrin (MβCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.
Collapse
Affiliation(s)
- Junna Tanaka
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hiroki Kuwajima
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ryuzaburo Yuki
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
2
|
Chen J, Song M, Qian D, Liu L, Yang K, Shou Y, Zhao H, Zhang L. Atorvastatin rescues pulmonary artery hypertension by inhibiting the AKT/ERK-dependent PDGF-BB/HIF-1α axis. Panminerva Med 2024; 66:4-9. [PMID: 33908728 DOI: 10.23736/s0031-0808.20.03910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study is to explore the role of atorvastatin in rescuing pulmonary artery hypertension (PAH) by inhibiting the AKT/ERK-dependent PDGF-BB/HIF-1α axis. METHODS PAH model in rats was established by MCT induction, followed by Atorvastatin intervention. Pulmonary hemodynamic measurement and pulmonary morphological evaluation in rats were conducted. Human pulmonary artery smooth muscle cells (hPASMCs) were subjected to hypoxic exposure or PDGF-BB treatment, followed by atorvastatin induction. Relative levels of HIF-1α, p-ERK and p-Akt were detected. Viability and apoptosis were respectively determined by cell counting kit-8 (CCK-8) assay and flow cytometry. RESULTS Atorvastatin protected PAH-induced increases in RVSP and Fulton's index in rats. Meanwhile, it inhibited vascular remodeling following PAH by downregulating HIF-1α and PDGF-BB. Hypoxia or PDGF-BB treatment in hPASMCs resulted in upregulation of p-ERK and p-Akt, and viability increase, which were partially abolished by Atorvastatin intervention. In addition, atorvastatin triggered apoptosis in hypoxia or PDGF-BB-induced hPASMCs. CONCLUSIONS Atorvastatin inhibits the activation of HIF-1α and proliferative ability, and triggers apoptosis in hPASMCs exposed to hypoxia or PDGF-BB treatment through inactivating the AKT/ERK pathway.
Collapse
Affiliation(s)
- Jianfei Chen
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Mingbao Song
- Department of Cardiology, Kangxin Hospital of Chongqing, Chongqing, China
| | - Dehui Qian
- Department of Cardiology, Xingqiao Hospital, Chongqing, China
| | - Linqiong Liu
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Kun Yang
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Yunfeng Shou
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Hanru Zhao
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Li Zhang
- Department of Pathology, Southwest Hospital, Chongqing, China -
| |
Collapse
|
3
|
Almramhi MM, Finan C, Storm CS, Schmidt AF, Kia DA, Coneys R, Chopade S, Hingorani AD, Wood NW. Exploring the Role of Plasma Lipids and Statin Interventions on Multiple Sclerosis Risk and Severity: A Mendelian Randomization Study. Neurology 2023; 101:e1729-e1740. [PMID: 37657941 PMCID: PMC10624499 DOI: 10.1212/wnl.0000000000207777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/29/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There has been considerable interest in statins because of their pleiotropic effects beyond their lipid-lowering properties. Many of these pleiotropic effects are predominantly ascribed to Rho small guanosine triphosphatases (Rho GTPases) proteins. We aimed to genetically investigate the role of lipids and statin interventions on multiple sclerosis (MS) risk and severity. METHOD We used two-sample Mendelian randomization (MR) to investigate (1) the causal role of genetically mimic both cholesterol-dependent (through low-density lipoprotein cholesterol (LDL-C) and cholesterol biosynthesis pathway) and cholesterol-independent (through Rho GTPases) effects of statins on MS risk and MS severity, (2) the causal link between lipids (high-density lipoprotein cholesterol [HDL-C] and triglycerides [TG]) levels and MS risk and severity, and (3) the reverse causation between lipid fractions and MS risk. We used summary statistics from the Global Lipids Genetics Consortium (GLGC), eQTLGen Consortium, and the International MS Genetics Consortium (IMSGC) for lipids, expression quantitative trait loci, and MS, respectively (GLGC: n = 188,577; eQTLGen: n = 31,684; IMSGC (MS risk): n = 41,505; IMSGC (MS severity): n = 7,069). RESULTS The results of MR using the inverse-variance weighted method show that genetically predicted RAC2, a member of cholesterol-independent pathway (OR 0.86 [95% CI 0.78-0.95], p-value 3.80E-03), is implicated causally in reducing MS risk. We found no evidence for the causal role of LDL-C and the member of cholesterol biosynthesis pathway on MS risk. The MR results also show that lifelong higher HDL-C (OR 1.14 [95% CI 1.04-1.26], p-value 7.94E-03) increases MS risk but TG was not. Furthermore, we found no evidence for the causal role of lipids and genetically mimicked statins on MS severity. There is no evidence of reverse causation between MS risk and lipids. DISCUSSION Evidence from this study suggests that RAC2 is a genetic modifier of MS risk. Because RAC2 has been reported to mediate some of the pleiotropic effects of statins, we suggest that statins may reduce MS risk through a cholesterol-independent pathway (that is, RAC2-related mechanism(s)). MR analyses also support a causal effect of HDL-C on MS risk.
Collapse
Affiliation(s)
- Mona M Almramhi
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Chris Finan
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Catherine S Storm
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Amand F Schmidt
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Demis A Kia
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Rachel Coneys
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Sandesh Chopade
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Aroon D Hingorani
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Nick W Wood
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
4
|
Jitpratoom P, Boonyasiri A. Determinants of urinary tract infection in hospitalized patients with acute ischemic stroke. BMC Neurol 2023; 23:251. [PMID: 37391711 PMCID: PMC10311730 DOI: 10.1186/s12883-023-03296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Stroke is a major cause of morbidity and mortality worldwide. Urinary tract infection (UTI) is a common post-acute ischemic stroke (AIS) complication. We assessed the incidence, determinant factors, infection characteristics, post-stroke complications, and outcomes of hospitalized AIS patients with UTI. METHODS This retrospective cohort study included AIS patients admitted within 7 days of stroke onset. The patients were divided into the UTI group and the non-UTI (control) group. Clinical data were collected and compared between the groups. RESULTS There were 342 AIS patients (31 with UTIs and 311 controls). The multivariate analysis showed that an initial National Institutes of Health Stroke Scale (NIHSS) score of ≥ 15 (odds ratio [OR] 5.00, 95% confidence interval [CI] 1.33-18.72) and Foley catheter retention (OR 14.10, 95% CI 3.25-61.28) were risk factors for UTI, whereas smoking (OR 0.08, 95% CI 0.01-0.50), an initial systolic blood pressure (SBP) of > 120 mmHg (OR 0.06, 95% CI 0.01-0.31), and statin use (OR 0.02, 95% CI 0.0006-0.42) were protective factors. Twenty cases (64.5%) were community-acquired and 11 cases (35.3%) were hospital-acquired. Ten patients (32.3%) had catheter-associated UTIs. The most common pathogen was Escherichia coli (13 patients, 41.9%). Post-stroke complications were significantly more common in the UTI group, including pneumonia, respiratory failure, sepsis, brain edema, seizure, symptomatic hemorrhagic transformation, congestive heart failure, atrial fibrillation with a rapid ventricular response, acute kidney injury, and hyponatremia. The median length of stay (LOS) in the UTI group was 12 days versus 3 days in the control group (p < 0.001). The median 3-month modified Rankin Scale score was higher (5 in UTI and 2 in control; p < 0.001) and the median 3-month Barthel Index was lower (0 in UTI and 100 in control; p < 0.001) in the UTI group than in the control group. CONCLUSIONS The risk factors for post-AIS UTI included severe stroke (NIHSS score ≥ 15) and urethral catheter indwelling. An initial SBP of > 120 mmHg and statin use were protective factors. The UTI group had significantly worse post-stroke complications, a longer LOS, and worse 3-month outcomes. Smoking was protective, which requires further investigation.
Collapse
Affiliation(s)
| | - Adhiratha Boonyasiri
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Vital KD, Cardoso BG, Lima IP, Campos AB, Teixeira BF, Pires LO, Dias BC, de Alcantara Candido P, Cardoso VN, Fernandes SOA. Therapeutic effects and the impact of statins in the prevention of ulcerative colitis in preclinical models: A systematic review. Fundam Clin Pharmacol 2022; 37:493-507. [PMID: 36514874 DOI: 10.1111/fcp.12859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory condition of the large intestines. Although great advances have been made in the management of the disease with the introduction of immunomodulators and biological agents, the treatment of UC is still a challenge. So far, there are no definitive therapies for this condition. Statins are potent inhibitors of cholesterol biosynthesis, possess beneficial effects on primary and secondary prevention of coronary heart disease, and have high tolerability and safety. Furthermore, they may have potential roles in UC management due to their possible anti-inflammatory, immunomodulatory, and antioxidant activities. This systematic review aimed to gather information about the potential benefits of statins for managing UC, reducing inflammation and disease remission in animal models. A systematic search was performed in PubMed/MEDLINE, Scopus, Web of Science, and Virtual Health Library. The data were summarized in tables and critically analyzed. After the database search, 21 relevant studies were identified as eligible for this review. Preclinical studies using several colitis-induction protocols and various statins have shown numerous beneficial effects of these drugs on reducing disease activity, inflammatory profile, oxidative stress, and general clinical parameters of animals with UC. These studies revealed the potential of statins against the pathogenesis of UC. However, there are still important gaps regarding the molecular mechanisms of action of statins, leading to some contradictory results. Thus, more research on the molecular level to determine the roles of statins in colitis should be carried out to elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Kátia Duarte Vital
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Gatti Cardoso
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iasmin Pinheiro Lima
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Beatriz Campos
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Faria Teixeira
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Octávio Pires
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Coutinho Dias
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia de Alcantara Candido
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Hirano M, Hirano K. Critical role of Rho proteins in myosin light chain di-phosphorylation during early phase of endothelial barrier disruption. J Physiol Sci 2022; 72:32. [PMID: 36476233 PMCID: PMC10717653 DOI: 10.1186/s12576-022-00857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
We previously reported the Rho-associated coiled-coil containing protein kinase (ROCK)-mediated di-phosphorylation of myosin light chain (MLC) and actin bundle formation at the cell periphery as early events of the endothelial barrier disruption. We herein examined the role of RhoA during early events of barrier disruption. Treatment of cultured porcine aortic endothelial cells with simvastatin prevented the decrease in trans-endothelial electrical resistance, MLC di-phosphorylation and peripheral actin bundle formation seen 3 min after thrombin stimulation. Co-treatment with geranylgeranyl pyrophosphate rescued the thrombin-induced events. Thrombin increased a GTP-bound form of RhoA and phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at the ROCK site. The intracellular introduction of the inhibitory protein of RhoA inhibited the thrombin-induced di-phosphorylation of MLC. However, knockdown of either one of RhoA, RhoB or RhoC failed to inhibit thrombin-induced MLC di-phosphorylation. The findings suggest that Rho proteins play a critical role during early events of thrombin-induced barrier disruption.
Collapse
Affiliation(s)
- Mayumi Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan.
| |
Collapse
|
7
|
Chen Y, Xu Y, Wang J, Prisinzano P, Yuan Y, Lu F, Zheng M, Mao W, Wan Y. Statins Lower Lipid Synthesis But Promote Secretion of Cholesterol-Enriched Extracellular Vesicles and Particles. Front Oncol 2022; 12:853063. [PMID: 35646709 PMCID: PMC9133486 DOI: 10.3389/fonc.2022.853063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid droplets are lipid-rich cytosolic organelles that play roles in cell signaling, membrane trafficking, and many other cellular activities. Recent studies revealed that lipid droplets in cancer cells have various biological functions, such as energy production, membrane synthesis, and chemoresistance, thereby fostering cancer progression. Accordingly, the administration of antilipemic agents could improve anti-cancer treatment efficacy given hydrophobic chemotherapeutic drugs could be encapsulated into lipid droplets and then expelled to extracellular space. In this study, we investigated whether statins could promote treatment efficacy of lipid droplet-rich ovarian SKOV-3 cells and the potential influences on generation and composition of cell-derived extracellular vesicles and particles (EVP). Our studies indicate that statins can significantly lower lipid biosynthesis. Moreover, statins can inhibit proliferation, migration, and invasion of SKOV-3 cells and enhance chemosensitivity in vitro and in vivo. Furthermore, statins can lower EVP secretion but enforce the release of cholesterol-enriched EVPs, which can further lower lipid contents in parental cells. It is the first time that the influence of statins on EVP generation and EVP-lipid composition is observed. Overall, we demonstrated that statins could inhibit lipid production, expel cholesterol to extracellular space via EVPs, and improve chemosensitivity.
Collapse
Affiliation(s)
- Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yongrui Xu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jing Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- Department of Hematology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peter Prisinzano
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yuhao Yuan
- Biophotonics and Translational Optical Imaging Lab, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Fake Lu
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
8
|
Sarkar P, Kumar GA, Shrivastava S, Chattopadhyay A. Chronic cholesterol depletion increases F-actin levels and induces cytoskeletal reorganization via a dual mechanism. J Lipid Res 2022; 63:100206. [PMID: 35390404 PMCID: PMC9096963 DOI: 10.1016/j.jlr.2022.100206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Previous work from us and others has suggested that cholesterol is an important lipid in the context of the organization of the actin cytoskeleton. However, reorganization of the actin cytoskeleton upon modulation of membrane cholesterol is rarely addressed in the literature. In this work, we explored the signaling crosstalk between cholesterol and the actin cytoskeleton by using a high-resolution confocal microscopic approach to quantitatively measure changes in F-actin content upon cholesterol depletion. Our results show that F-actin content significantly increases upon chronic cholesterol depletion, but not during acute cholesterol depletion. In addition, utilizing inhibitors targeting the cholesterol biosynthetic pathway at different steps, we show that reorganization of the actin cytoskeleton could occur due to the synergistic effect of multiple pathways, including prenylated Rho GTPases and availability of membrane phosphatidylinositol 4,5-bisphosphate. These results constitute one of the first comprehensive dissections of the mechanistic basis underlying the interplay between cellular actin levels and cholesterol biosynthesis. We envision these results will be relevant for future understating of the remodeling of the actin cytoskeleton in pathological conditions with altered cholesterol.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
9
|
Kowluru A, Gleason NF. Underappreciated roles for Rho GDP dissociation inhibitors (RhoGDIs) in cell function: Lessons learned from the pancreatic islet β-cell. Biochem Pharmacol 2022; 197:114886. [PMID: 34968495 PMCID: PMC8858860 DOI: 10.1016/j.bcp.2021.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Rho subfamily of G proteins (e.g., Rac1) have been implicated in glucose-stimulated insulin secretion from the pancreatic β-cell. Interestingly, metabolic stress (e.g., chronic exposure to high glucose) results in sustained activation of Rac1 leading to increased oxidative stress, impaired insulin secretion and β-cell dysfunction. Activation-deactivation of Rho G proteins is mediated by three classes of regulatory proteins, namely the guanine nucleotide exchange factors (GEFs), which facilitate the conversion of inactive G proteins to their active conformations; the GTPase-activating proteins (GAPs), which convert the active G proteins to their inactive forms); and the GDP-dissociation inhibitors (GDIs), which prevent the dissociation of GDP from G proteins. Contrary to a large number of GEFs (82 members) and GAPs (69 members), only three members of RhoGDIs (RhoGDIα, RhoGDIβ and RhoGDIγ) are expressed in mammalian cells.Even though relatively smaller in number, the GDIs appear to play essential roles in G protein function (e.g., subcellular targeting) for effector activation and cell regulation. Emerging evidence also suggests that the GDIs are functionally regulated via post-translational modification (e.g., phosphorylation) and by lipid second messengers, lipid kinases and lipid phosphatases. We highlight the underappreciated regulatory roles of RhoGDI-Rho G protein signalome in islet β-cell function in health and metabolic stress. Potential knowledge gaps in the field, and directions for future research for the identification of novel therapeutic targets to loss of functional β-cell mass under the duress of metabolic stress are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
10
|
Statins and Bempedoic Acid: Different Actions of Cholesterol Inhibitors on Macrophage Activation. Int J Mol Sci 2021; 22:ijms222212480. [PMID: 34830364 PMCID: PMC8623589 DOI: 10.3390/ijms222212480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023] Open
Abstract
Statins represent the most prescribed class of drugs for the treatment of hypercholesterolemia. Effects that go beyond lipid-lowering actions have been suggested to contribute to their beneficial pharmacological properties. Whether and how statins act on macrophages has been a matter of debate. In the present study, we aimed at characterizing the impact of statins on macrophage polarization and comparing these to the effects of bempedoic acid, a recently registered drug for the treatment of hypercholesterolemia, which has been suggested to have a similar beneficial profile but fewer side effects. Treatment of primary murine macrophages with two different statins, i.e., simvastatin and cerivastatin, impaired phagocytotic activity and, concurrently, enhanced pro-inflammatory responses upon short-term lipopolysaccharide challenge, as characterized by an induction of tumor necrosis factor (TNF), interleukin (IL) 1β, and IL6. In contrast, no differences were observed under long-term inflammatory (M1) or anti-inflammatory (M2) conditions, and neither inducible NO synthase (iNOS) expression nor nitric oxide production was altered. Statin treatment led to extracellular-signal regulated kinase (ERK) activation, and the pro-inflammatory statin effects were abolished by ERK inhibition. Bempedoic acid only had a negligible impact on macrophage responses when compared with statins. Taken together, our data point toward an immunomodulatory effect of statins on macrophage polarization, which is absent upon bempedoic acid treatment.
Collapse
|
11
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
12
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
13
|
Simvastatin enhances the efficacy of nilotinib in chronic myeloid leukaemia by post-translational modification and drug transporter modulation. Anticancer Drugs 2021; 32:526-536. [PMID: 33587350 DOI: 10.1097/cad.0000000000001028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The resistance of chronic myeloid leukaemia (CML) to tyrosine kinase inhibitors (TKIs) remains a significant clinical problem. Targeting alternative pathways, such as protein prenylation, is known to be effective in overcoming resistance. Simvastatin inhibits 3-hydroxy-3-methylglutaryl-CoA reductase (a key enzyme in isoprenoid-regulation), thereby inhibiting prenylation. We demonstrate that simvastatin alone effectively inhibits proliferation in a panel of TKI-resistant CML cell lines, regardless of mechanism of resistance. We further show that the combination of nilotinib and simvastatin synergistically kills CML cells via an increase in apoptosis and decrease in prosurvival proteins and cellular proliferation. Mechanistically, simvastatin inhibits protein prenylation as shown by increased levels of unprenylated Ras and rescue experiments with mevalonate resulted in abrogation of synergism. The combination also leads to an increase in the intracellular uptake and retention of radio-labelled nilotinib, which further enhances the inhibition of Bcr-Abl kinase activity. In primary CML samples, this combination inhibits clonogenicity in both imatinib-naive and resistant cells. Such combinatorial effects provide the basis for utilising these Food and Drug Administration-approved drugs as a potential clinical approach in overcoming resistance and improving CML treatment.
Collapse
|
14
|
Kumar GA, Chattopadhyay A. Membrane cholesterol regulates endocytosis and trafficking of the serotonin 1A receptor: Insights from acute cholesterol depletion. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158882. [PMID: 33429076 DOI: 10.1016/j.bbalip.2021.158882] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis and intracellular trafficking constitute important regulatory features associated with G protein-coupled receptor (GPCR) function. GPCR endocytosis involves several remodeling events at the plasma membrane orchestrated by a concerted interplay of a large number of proteins and membrane lipids. Although considerable literature exists on the protein framework underlying GPCR endocytosis, the role of membrane lipids in this process remains largely unexplored. In order to explore the role of membrane cholesterol (an essential and important lipid in higher eukaryotes) in GPCR endocytosis, we monitored the effect of acute cholesterol depletion using methyl-β-cyclodextrin (MβCD) on endocytosis and intracellular trafficking of the serotonin1A receptor, an important neurotransmitter GPCR. Our results show that the serotonin1A receptor exhibits agonist-induced clathrin-mediated endocytosis with a concentration-dependent inhibition in internalization with increasing concentrations of MβCD, which was restored upon cholesterol replenishment. Interestingly, subsequent to internalization under these conditions, serotonin1A receptors were re-routed toward lysosomal degradation, instead of endosomal recycling observed under normal conditions, thereby implicating membrane cholesterol in modulation of intracellular trafficking of the receptor. This raises the possibility of a novel cholesterol-dependent role of intracellular sorting proteins in GPCR trafficking. These results differ from our previous observations on the endocytosis of the serotonin1A receptor upon statin-induced chronic cholesterol depletion, in terms of endocytic pathway. We conclude that analysis of complex cellular trafficking events such as GPCR endocytosis under acute and chronic cholesterol depletion conditions should be carried out with caution due to fundamental differences underlying these processes.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
15
|
Rimondi E, Marcuzzi A, Casciano F, Tornese G, Pellati A, Toffoli B, Secchiero P, Melloni E. Role of vitamin D in the pathogenesis of atheromatosis. Nutr Metab Cardiovasc Dis 2021; 31:344-353. [PMID: 33500110 PMCID: PMC7486169 DOI: 10.1016/j.numecd.2020.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Cardiovascular disease is the main cause of death worldwide, but the collective efforts to prevent this pathological condition are directed exclusively to individuals at higher risk due to hypercholesterolemia, hypertension, obesity, diabetes. Recently, vitamin D deficiency was identified as a risk factor for cardiovascular disease in healthy people, as it predisposes to different vascular dysfunctions that can result in plaque development and fragility. In this scenario, the fundamental aim of the study was to reproduce a disease model inducing vitamin D deficiency and atheromatosis in ApoE-/- mice and then to evaluate the impact of this vitamin D status on the onset/progression of atheromatosis, focusing on plaque formation and instability. METHODS AND RESULTS In our murine disease model, vitamin D deficiency was achieved by 3 weeks of vitamin D deficient diet along with intraperitoneal paricalcitol injections, while atheromatosis by western-type diet administration. Under these experimental conditions, vitamin D deficient mice developed more unstable atheromatous plaques with reduced or absent fibrotic cap. Since calcium and phosphorus metabolism and also cholesterol and triglycerides systemic concentration were not affected by vitamin D level, our results highlighted the role of vitamin D deficiency in the formation/instability of atheromatous plaque and, although further studies are needed, suggested a possible intervention with vitamin D to prevent or delay the atheromatous disease. CONCLUSIONS The data obtained open the question about the potential role of the vitamins in the pharmacological treatments of cardiovascular disorders as coadjutant of the primary drugs used for these pathologies.
Collapse
Affiliation(s)
- Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Annalisa Marcuzzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo'', Trieste, Italy
| | - Agnese Pellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Barbara Toffoli
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo'', Trieste, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Ahmadi M, Amiri S, Pecic S, Machaj F, Rosik J, Łos MJ, Alizadeh J, Mahdian R, da Silva Rosa SC, Schaafsma D, Shojaei S, Madrakian T, Zeki AA, Ghavami S. Pleiotropic effects of statins: A focus on cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165968. [PMID: 32927022 DOI: 10.1016/j.bbadis.2020.165968] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The statin drugs ('statins') potently inhibit hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase by competitively blocking the active site of the enzyme. Statins decrease de novo cholesterol biosynthesis and thereby reduce plasma cholesterol levels. Statins exhibit "pleiotropic" properties that are independent of their lipid-lowering effects. For example, preclinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. Furthermore, statins show chemo-sensitizing effects by impairing Ras family GTPase signaling. However, whether statins have clinically meaningful anti-cancer effects remains an area of active investigation. Both preclinical and clinical studies on the potential mechanisms of action of statins in several cancers have been reviewed in the literature. Considering the contradictory data on their efficacy, we present an up-to-date summary of the pleiotropic effects of statins in cancer therapy and review their impact on different malignancies. We also discuss the synergistic anti-cancer effects of statins when combined with other more conventional anti-cancer drugs to highlight areas of potential therapeutic development.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Shayan Amiri
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, R4046 - 351 Taché Ave, Winnipeg, Manitoba R2H 2A6, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, CA, USA
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Pathology, Pomeranian Medical University in Szczecin, Poland
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Pathology, Pomeranian Medical University in Szczecin, Poland
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Shahla Shojaei
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Amir A Zeki
- University of California, Davis School of Medicine. Division of Pulmonary, Critical Care, and Sleep Medicine. U.C. Davis Lung Center, Davis, California, USA; Veterans Affairs Medical Center, Mather, California, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
17
|
Delineation of cell death mechanisms induced by synergistic effects of statins and erlotinib in non-small cell lung cancer cell (NSCLC) lines. Sci Rep 2020; 10:959. [PMID: 31969600 PMCID: PMC6976657 DOI: 10.1038/s41598-020-57707-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) have been shown to overcome tyrosine kinase inhibitor (TKI) resistance in epithelial growth factor receptor (EGFR) mutated non-small cell lung cancer (NSCLC) cells in vivo and in vitro. However, little is known about the putative induction of non-apoptotic cell death pathways by statins. We investigated the effects of pitavastatin and fluvastatin alone or in combination with erlotinib in three NSCLC cell lines and examined the activation of different cell death pathways. We assessed apoptosis via fluorometric caspase assay and poly (ADP-ribose) polymerase 1 (PARP) cleavage. Furthermore, annexinV/propidium iodide (PI) flow cytometry was performed. Small molecule inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD), necrostatin 1 (Nec1), ferrostatin 1 (Fer1), Ac-Lys-Lys-Norleucinal (Calp1) were used to characterise cell death pathway(s) putatively (co-)activated by pitavastatin/erlotinib co-treatment. Synergism was calculated by additivity and isobolographic analyses. Pitavastatin and fluvastatin induced cell death in EGFR TKI resistant NSCLC cells lines A549, Calu6 and H1993 as shown by caspase 3 activation and PARP cleavage. Co-treatment of cells with pitavastatin and the EGFR TKI erlotinib resulted in synergistically enhanced cytotoxicity compared to pitavastatin monotherapy. Flow cytometry indicated the induction of alternative regulated cell death pathways. However, only co-treatment with mevalonic acid (Mev) or the pan-caspase inhibitor zVAD could restore cell viability. The results show that cytotoxicity mediated by statin/erlotinib co-treatment is synergistic and can overcome erlotinib resistance in K-ras mutated NSCLC and relies only on apoptosis.
Collapse
|
18
|
Ajdidi A, Sheehan G, Abu Elteen K, Kavanagh K. Assessment of the in vitro and in vivo activity of atorvastatin against Candida albicans. J Med Microbiol 2019; 68:1497-1506. [PMID: 31460860 DOI: 10.1099/jmm.0.001065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim. The aim of this work was to characterize the response of Candida albicans to atorvastatin, and to assess its in vivo antifungal capability.Methodology. The effect of atorvastatin on the growth and viability of C. albicans was assessed. The ability of the statin to alter cell permeability was quantified by measuring amino acid and protein leakage. The response of C. albicans to atorvastatin was assessed using label-free quantitative proteomics. The in vivo antifungal activity of atorvastatin was assessed using Galleria mellonella larvae infected with C. albicans.Results. Atorvastatin inhibited the growth of C. albicans. The atorvastatin-treated cells showed lower ergosterol levels than the controls, demonstrated increased calcofluor staining and released elevated quantities of amino acids and protein. Larvae infected with C. albicans showed a survival rate of 18.1±4.2 % at 144 h. In contrast, larvae administered atorvastatin (9.09 mg kg-1) displayed a survival rate of 60.2±6.4 % (P<0.05). Label-free quantitative proteomics identified 1575 proteins with 2 or more peptides and 465 proteins were differentially abundant (P<0.05). There was an increase in the abundance of enzymes with oxidoreductase and hydrolase activity in atorvastatin-treated cells, and squalene monooxygenase (4.52-fold increase) and lanosterol synthase (2.84-fold increase) were increased in abundance. Proteins such as small heat shock protein 21 (-6.33-fold) and glutathione peroxidase (-2.05-fold) were reduced in abundance.Conclusion. The results presented here indicate that atorvastatin inhibits the growth of C. albicans and is capable of increasing the survival of G. mellonella larvae infected with C. albicans.
Collapse
Affiliation(s)
- Ahmad Ajdidi
- SSPC Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gerard Sheehan
- SSPC Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Khaled Abu Elteen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Kevin Kavanagh
- SSPC Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
19
|
Hussein HM, Al-Khoury DK, Abdelnoor AM, Rahal EA. Atorvastatin increases the production of proinflammatory cytokines and decreases the survival of Escherichia coli-infected mice. Sci Rep 2019; 9:11717. [PMID: 31406240 PMCID: PMC6690901 DOI: 10.1038/s41598-019-48282-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
To assess whether the immunosuppressive effects of atorvastatin outweigh its antibacterial ones in an infection, mice were infected with Escherichia coli and administered atorvastatin; survival rates were then monitored. Mice treated with atorvastatin post-infection showed a remarkable decrease in their survival rate. On the other hand, the higher the level of serum IFN-γ in the infected mice treated with atorvastatin, the lower was the survival rate. Levels of IL-4 were markedly depressed in all groups infected with E. coli and treated with atorvastatin. Since atorvastatin inhibits IFN-γ expression in the absence of bacterial infection, we examined whether bacterial lipopolysaccharide (LPS) was the element capable of overriding this inhibition. Mouse peripheral blood mononuclear cells were treated with atorvastatin and lipopolysaccharide ex vivo then proinflammatory (IFN-γ, TNFα, IL-6) and prohumoral/regulatory (IL-4, IL-13, IL-10) cytokine levels were analyzed in culture supernatants. While proinflammatory cytokine levels were decreased upon treatment with atorvastatin alone, their levels were markedly elevated by treatment with LPS, bacterial lysate or bacterial culture supernatant. On the other hand, atorvastatin exerted an inhibitory effect on production of the prohumoral/regulatory cytokines. Our data indicates that any consideration for statins as antimicrobial treatment should assess the possible adverse outcomes.
Collapse
Affiliation(s)
- Hadi M Hussein
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Diva Kalash Al-Khoury
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Alexander M Abdelnoor
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon. .,Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
20
|
Rho GTPases in the Physiology and Pathophysiology of Peripheral Sensory Neurons. Cells 2019; 8:cells8060591. [PMID: 31208035 PMCID: PMC6627758 DOI: 10.3390/cells8060591] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.
Collapse
|
21
|
Tennakoon M, Kankanamge D, Senarath K, Fasih Z, Karunarathne A. Statins Perturb G βγ Signaling and Cell Behavior in a G γ Subtype Dependent Manner. Mol Pharmacol 2019; 95:361-375. [PMID: 30765461 PMCID: PMC6402420 DOI: 10.1124/mol.118.114710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/25/2019] [Indexed: 01/08/2023] Open
Abstract
Guanine nucleotide-binding proteins (G proteins) facilitate the transduction of external signals to the cell interior, regulate most eukaryotic signaling, and thus have become crucial disease drivers. G proteins largely function at the inner leaflet of the plasma membrane (PM) using covalently attached lipid anchors. Both small monomeric and heterotrimeric G proteins are primarily prenylated, either with a 15-carbon farnesyl or a 20-carbon geranylgeranyl polyunsaturated lipid. The mevalonate [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase] pathway synthesizes lipids for G-protein prenylation. It is also the source of the precursor lipids for many biomolecules, including cholesterol. Consequently, the rate-limiting enzymes of the mevalonate pathway are major targets for cholesterol-lowering medications and anticancer drug development. Although prenylated G protein γ (Gγ) is essential for G protein-coupled receptor (GPCR)-mediated signaling, how mevalonate pathway inhibitors, statins, influence subcellular distribution of Gβγ dimer and Gαβγ heterotrimer, as well as their signaling upon GPCR activation, is poorly understood. The present study shows that clinically used statins not only significantly disrupt PM localization of Gβγ but also perturb GPCR-G protein signaling and associated cell behaviors. The results also demonstrate that the efficiency of prenylation inhibition by statins is Gγ subtype-dependent and is more effective toward farnesylated Gγ types. Since Gγ is required for Gβγ signaling and shows a cell- and tissue-specific subtype distribution, the present study can help understand the mechanisms underlying clinical outcomes of statin use in patients. This work also reveals the potential of statins as clinically usable drugs to control selected GPCR-G protein signaling.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Kanishka Senarath
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Zehra Fasih
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| |
Collapse
|
22
|
Purvis GSD, Collino M, Loiola RA, Baragetti A, Chiazza F, Brovelli M, Sheikh MH, Collotta D, Cento A, Mastrocola R, Aragno M, Cutrin JC, Reutelingsperger C, Grigore L, Catapano AL, Yaqoob MM, Norata GD, Solito E, Thiemermann C. Identification of AnnexinA1 as an Endogenous Regulator of RhoA, and Its Role in the Pathophysiology and Experimental Therapy of Type-2 Diabetes. Front Immunol 2019; 10:571. [PMID: 30972066 PMCID: PMC6446914 DOI: 10.3389/fimmu.2019.00571] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Annexin A1 (ANXA1) is an endogenously produced anti-inflammatory protein, which plays an important role in the pathophysiology of diseases associated with chronic inflammation. We demonstrate that patients with type-2 diabetes have increased plasma levels of ANXA1 when compared to normoglycemic subjects. Plasma ANXA1 positively correlated with fatty liver index and elevated plasma cholesterol in patients with type-2 diabetes, suggesting a link between aberrant lipid handling, and ANXA1. Using a murine model of high fat diet (HFD)-induced insulin resistance, we then investigated (a) the role of endogenous ANXA1 in the pathophysiology of HFD-induced insulin resistance using ANXA1−/− mice, and (b) the potential use of hrANXA1 as a new therapeutic approach for experimental diabetes and its microvascular complications. We demonstrate that: (1) ANXA1−/− mice fed a HFD have a more severe diabetic phenotype (e.g., more severe dyslipidemia, insulin resistance, hepatosteatosis, and proteinuria) compared to WT mice fed a HFD; (2) treatment of WT-mice fed a HFD with hrANXA1 attenuated the development of insulin resistance, hepatosteatosis and proteinuria. We demonstrate here for the first time that ANXA1−/− mice have constitutively activated RhoA. Interestingly, diabetic mice, which have reduced tissue expression of ANXA1, also have activated RhoA. Treatment of HFD-mice with hrANXA1 restored tissue levels of ANXA1 and inhibited RhoA activity, which, in turn, resulted in restoration of the activities of Akt, GSK-3β and endothelial nitric oxide synthase (eNOS) secondary to re-sensitization of IRS-1 signaling. We further demonstrate in human hepatocytes that ANXA1 protects against excessive mitochondrial proton leak by activating FPR2 under hyperglycaemic conditions. In summary, our data suggest that (a) ANXA1 is a key regulator of RhoA activity, which restores IRS-1 signal transduction and (b) recombinant human ANXA1 may represent a novel candidate for the treatment of T2D and/or its complications.
Collapse
Affiliation(s)
- Gareth S D Purvis
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rodrigo A Loiola
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Martina Brovelli
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy.,Centro SISA per lo studio del'Aterosclerosi, Bassini Hospital, Lombardy, Italy
| | - Madeeha H Sheikh
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Alessia Cento
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Molecular Biotechnology and Sciences for the Health, University of Turin, Turin, Italy
| | - Juan C Cutrin
- Department of Molecular Biotechnology and Sciences for the Health, University of Turin, Turin, Italy
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Liliana Grigore
- Centro SISA per lo studio del'Aterosclerosi, Bassini Hospital, Lombardy, Italy.,IRCCS Multimedica, Lombardy, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Magdi M Yaqoob
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy.,Centro SISA per lo studio del'Aterosclerosi, Bassini Hospital, Lombardy, Italy
| | - Egle Solito
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - Christoph Thiemermann
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
23
|
Biocatalyzed Synthesis of Statins: A Sustainable Strategy for the Preparation of Valuable Drugs. Catalysts 2019. [DOI: 10.3390/catal9030260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are the largest selling class of drugs prescribed for the pharmacological treatment of hypercholesterolemia and dyslipidaemia. Statins also possess other therapeutic effects, called pleiotropic, because the blockade of the conversion of HMG-CoA to (R)-mevalonate produces a concomitant inhibition of the biosynthesis of numerous isoprenoid metabolites (e.g., geranylgeranyl pyrophosphate (GGPP) or farnesyl pyrophosphate (FPP)). Thus, the prenylation of several cell signalling proteins (small GTPase family members: Ras, Rac, and Rho) is hampered, so that these molecular switches, controlling multiple pathways and cell functions (maintenance of cell shape, motility, factor secretion, differentiation, and proliferation) are regulated, leading to beneficial effects in cardiovascular health, regulation of the immune system, anti-inflammatory and immunosuppressive properties, prevention and treatment of sepsis, treatment of autoimmune diseases, osteoporosis, kidney and neurological disorders, or even in cancer therapy. Thus, there is a growing interest in developing more sustainable protocols for preparation of statins, and the introduction of biocatalyzed steps into the synthetic pathways is highly advantageous—synthetic routes are conducted under mild reaction conditions, at ambient temperature, and can use water as a reaction medium in many cases. Furthermore, their high selectivity avoids the need for functional group activation and protection/deprotection steps usually required in traditional organic synthesis. Therefore, biocatalysis provides shorter processes, produces less waste, and reduces manufacturing costs and environmental impact. In this review, we will comment on the pleiotropic effects of statins and will illustrate some biotransformations nowadays implemented for statin synthesis.
Collapse
|
24
|
Atorvastatin increases oxidative stress and inhibits cell migration of oral squamous cell carcinoma in vitro. Oral Oncol 2019; 90:109-114. [PMID: 30846168 DOI: 10.1016/j.oraloncology.2019.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/18/2018] [Accepted: 01/27/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study aimed to evaluate the effect of atorvastatin treatment on reactive oxygen species (ROS) production and tumor angiogenesis in oral squamous cell carcinomas. MATERIAL AND METHODS An HN13 cell line was treated with 1 µM, 5 µM, and 10 µM of atorvastatin. VEGF-A gene expression was evaluated by quantitative real time PCR. VEGF-A protein expression was quantified from total protein and conditioned media by ELISA. Cellular oxidative stress was measured using 2',7'-dichlorfluorescein-diacetate (DCFH-DA). Angiogenesis assay was performed using human umbilical vein endothelial cells (HUVEC). The effect of atorvastatin on cell migration was evaluated by wound healing assay. RESULTS 5 µM and 10 µM of atorvastatin significantly increased VEGF-A gene expression in the HN13 cell line. Intracellular expression of the VEGF-A protein was higher in the cells treated with 5 µM and 10 µM than in the control cells. VEGF-A protein expression was also higher in the conditioned media from the atorvastatin-treated cells than in the media from the DMSO-treated cells. 5 µM and 10 µM of atorvastatin increased oxidative stress. Regarding angiogenesis assay, 5 µM of atorvastatin resulted in higher numbers of branch points, compared to the solvent. 10 µM of atorvastatin treatment resulted in significantly reduced cell migration. CONCLUSIONS This study showed that atorvastatin increases the oxidative stress and angiogenesis in oral squamous cell carcinomas. The decrease of cell migration indicates atorvastatin's inhibitory effect in oral tumors. These results suggest that atorvastatin could increase the intracellular oxidative stress in these cells, leading to a toxic microenvironment and inhibiting their metastasis.
Collapse
|
25
|
Milenkovic U, Ilg MM, Zuccato C, Ramazani Y, De Ridder D, Albersen M. Simvastatin and the Rho-kinase inhibitor Y-27632 prevent myofibroblast transformation in Peyronie's disease-derived fibroblasts via inhibition of YAP/TAZ nuclear translocation. BJU Int 2019; 123:703-715. [PMID: 30536599 DOI: 10.1111/bju.14638] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To uncover the anti-myofibroblast (MFB) properties of Rho-kinase inhibitor (compound Y-27632) and simvastatin in an in vitro model of Peyronie's disease (PD), a sexually debilitating disease caused by an irreversible fibrotic plaque in the penile tunica albuginea (TA). MATERIALS AND METHODS Primary human fibroblasts (FBs) were isolated from surgically obtained TA tissue from patients with PD. To induce MFB status, cells were stimulated with 3 ng/mL transforming growth factor-β1 (TGF-β1). Increasing doses of Y-27632 and simvastatin were added. Real-time quantitative PCR was used to assess mRNA expression of α-smooth muscle actin (α-SMA), collagen III, elastin and connective tissue growth factor (CTGF) after 72 h. Western blot analysis was used to quantify α-SMA protein contents, and immunofluorescence (IF) was used to visualize MFB differentiation by staining for α-SMA after 72 h. A resazurin-based assay was used to assess cell viability to ensure the anti-MFB effect of the drugs. A mechanistic study was performed using IF staining for YAP/TAZ nuclear translocation. RESULTS After 72 h of stimulation with TGF-β1, a six- to 10-fold upregulation of α-SMA could be observed. When treated with Y-27632 or simvastatin, the α-SMA, collagen III, elastin and CTGF mRNA expression was impeded. Additionally, TGF-β1 stimulation showed a twofold increase in α-SMA protein expression, which was reversed to non-stimulated levels after treatment with Y-27632 and simvastatin. Using IF, stimulated cells were identified as MFB (α-SMA+, Vim+) as opposed to the non-stimulated, Y-27632- and simvastatin-treated cells (α-SMA-, Vim+). The resazurin-based assay confirmed that the cell viability was not compromised by the administered drugs. On stimulation with TGF-β1, nuclear translocation of YAP/TAZ could be observed, which was prevented by adding the aforementioned compounds. CONCLUSION Transformation of FBs into the contractile and extracellular matrix-producing MFBs occurs after TGF-β1 stimulation. In our experiments, Rho-kinase inhibition and simvastatin treatment were shown to prevent this in TGF-β1-stimulated cells on an RNA and protein level through the inhibition of YAP/TAZ nuclear translocation. Y-27632 and simvastatin could become a novel treatment option in the early treatment of PD.
Collapse
Affiliation(s)
- Uros Milenkovic
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Marcus M Ilg
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
| | - Carola Zuccato
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Faculty of Medicine and Surgery, University of Padua, Padua, Italy
| | - Yasaman Ramazani
- Department of Pediatric Nephrology and Growth and Regeneration, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Albersen
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Urology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Alizadeh J, Shojaei S, da Silva Rosa S, Rezaei Moghadam A, Zeki AA, Hashemi M, Los MJ, Gordon JW, Ghavami S. Detection of Small GTPase Prenylation and GTP Binding Using Membrane Fractionation and GTPase-linked Immunosorbent Assay. J Vis Exp 2018. [PMID: 30474639 DOI: 10.3791/57646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Rho GTPase family belongs to the Ras superfamily and includes approximately 20 members in humans. Rho GTPases are important in the regulation of diverse cellular functions, including cytoskeletal dynamics, cell motility, cell polarity, axonal guidance, vesicular trafficking, and cell cycle control. Changes in Rho GTPase signaling play an essential regulatory role in many pathological conditions, such as cancer, central nervous system diseases, and immune system-dependent diseases. The posttranslational modification of Rho GTPases (i.e., prenylation by mevalonate pathway intermediates) and GTP binding are key factors which affect the activation of this protein. In this paper, two essential and simple methods are provided to detect a broad range of Rho GTPase prenylation and GTP binding activities. Details of the technical procedures that have been used are explained step by step in this manuscript.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba; Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences
| | - Simone da Silva Rosa
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba
| | - Adel Rezaei Moghadam
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences
| | - Marek J Los
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia; Centre de biophysique moléculaire - UPR 4301, Centre national de la recherche scientifique (CNRS) CS80054; LinkoCare Life Sciences AB
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba; College of Nursing and Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences;
| |
Collapse
|
27
|
Shojaei S, Alizadeh J, Thliveris J, Koleini N, Kardami E, Hatch GM, Xu F, Hombach-Klonisch S, Klonisch T, Ghavami S. Statins: a new approach to combat temozolomide chemoresistance in glioblastoma. J Investig Med 2018; 66:1083-1087. [PMID: 30368483 DOI: 10.1136/jim-2018-000874] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2018] [Indexed: 02/07/2023]
Abstract
Patients with glioblastoma multiforme (GBM) have an average life expectancy of approximately 15 months. Recently, statins have emerged as a potential adjuvant cancer therapy due to their ability to inhibit cell proliferation and induce apoptosis in many types of cancer. The exact mechanisms that mediate the inhibitory actions of statins in cancer cells are largely unknown. The purpose of this proceeding paper is to discuss some of the known anticancer effects of statins, while focusing on GBM therapy that includes adjunct therapy of statins with chemotherapeutic agents.
Collapse
Affiliation(s)
- Shahla Shojaei
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Alizadeh
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James Thliveris
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Navid Koleini
- Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital AlbrechtsenResearch Center, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital AlbrechtsenResearch Center, Winnipeg, Manitoba, Canada
| | - Grant M Hatch
- Pharmacology & Therapeutics, Max Rady College of Medicine, Rady Faculty of Helath Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fred Xu
- Pharmacology & Therapeutics, Max Rady College of Medicine, Rady Faculty of Helath Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas Klonisch
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Saeid Ghavami
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
28
|
Bradbury P, Traini D, Ammit AJ, Young PM, Ong HX. Repurposing of statins via inhalation to treat lung inflammatory conditions. Adv Drug Deliv Rev 2018; 133:93-106. [PMID: 29890243 DOI: 10.1016/j.addr.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Despite many therapeutic advancements over the past decade, the continued rise in chronic inflammatory lung diseases incidence has driven the need to identify and develop new therapeutic strategies, with superior efficacy to treat these diseases. Statins are one class of drug that could potentially be repurposed as an alternative treatment for chronic lung diseases. They are currently used to treat hypercholesterolemia by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, that catalyses the rate limiting step in the mevalonate biosynthesis pathway, a key intermediate in cholesterol metabolism. Recent research has identified statins to have other protective pleiotropic properties including anti-inflammatory, anti-oxidant, muco-inhibitory effects that may be beneficial for the treatment of chronic inflammatory lung diseases. However, clinical studies have yielded conflicting results. This review will summarise some of the current evidences for statins pleiotropic effects that could be applied for the treatment of chronic inflammatory lung diseases, their mechanisms of actions, and the potential to repurpose statins as an inhaled therapy, including a detailed discussion on their different physical-chemical properties and how these characteristics could ultimately affect treatment efficacies. The repurposing of statins from conventional anti-cholesterol oral therapy to inhaled anti-inflammatory formulation is promising, as it provides direct delivery to the airways, reduced risk of side effects, increased bioavailability and tailored physical-chemical properties for enhanced efficacy.
Collapse
|
29
|
Small GTPase RAS in multiple sclerosis - exploring the role of RAS GTPase in the etiology of multiple sclerosis. Small GTPases 2018; 11:312-319. [PMID: 30043672 DOI: 10.1080/21541248.2018.1502591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
RAS signaling is involved in the development of autoimmunity in general. Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. It is widely recognized that a reduction of Foxp3+ regulatory T (Treg) cells is an immunological hallmark of MS, but the underlying mechanisms are unclear. In experimental autoimmune models, N-Ras and K-Ras inhibition triggers an anti-inflammatory effect up-regulating, via foxp3 elevation, the numbers and the functional suppressive properties of Tregs. Similarly, an increase in natural Tregs number during Experimental Autoimmune Encephalomyelitis (EAE) in R-RAS -/- mice results in attenuated disease. In humans, only KRAS GTPase isoform is involved in mechanism causing tolerance defects in rheumatoid arthritis (RA). T cells from these patients have increased transcription of KRAS (but not NRAS). RAS genes are major drivers in human cancers. Consequently, there has been considerable interest in developing anti-RAS inhibitors for cancer treatment. Despite efforts, no anti-RAS therapy has succeeded in the clinic. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mis-localization. The disappointing clinical outcome of Farnesyl Transferase Inhibitors (FTIs) in cancers has decreased interest in these drugs. However, FTIs suppress EAE by downregulation of myelin-reactive activated T-lymphocytes and statins are currently studied in clinical trials for MS. However, no pharmacologic approaches to targeting Ras proteins directly have yet succeeded. The therapeutic strategy to recover immune function through the restoration of impaired Tregs function with the mounting evidences regarding KRAS in autoimmune mediated disorder (MS, SLE, RA, T1D) suggest as working hypothesis the direct targeting KRAS activation using cancer-derived small molecules may be clinically relevant. ABBREVIATIONS FTIs: Farnesyl Transferase Inhibitors; MS: Multiple Sclerosis; RRMS: Relapsing Remitting Multiple Sclerosis; PPMS: Primary Progressive Multiple Sclerosis; Tregs: regulatory T-cells; Foxp3: Forkhead box P3; EAE: Experimental Autoimmune Encephalomyelitis; T1D: Type 1 Diabete; SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; CNS: Central Nervous System; TMEV: Theiler's murine encephalomyelitis virus; FTS: farnesyl thiosalicylic acid; TCR: T-Cell Receptor; AIA: Adjuvant-induced Arthritis; EAN: experimental autoimmune neuritis; HVR: hypervariable region; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A reductase; PBMC: Peripheral Blood Mononuclear Cells.
Collapse
|
30
|
Rajesh V, Mridhulmohan M, Jayaseelan S, Sivakumar P, Ganesan V. Mefenamic Acid Attenuates Chronic Alcohol Induced Cognitive Impairment in Zebrafish: Possible Role of Cholinergic Pathway. Neurochem Res 2018; 43:1392-1404. [PMID: 29796737 DOI: 10.1007/s11064-018-2554-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
Abstract
Based on the scientific evidence supporting the neuroinflammatory response contributes the cognitive impairment associated with chronic alcoholism and the neuroprotective actions of mefenamic acid with reversal of memory loss and brain inflammation in mice, this study was designed to evaluate the effect of mefenamic acid against chronic alcohol induced cognitive impairment in zebrafish model. Zebrafish were grouped and subjected to normal behavioral analysis in light-dark chamber for 10 days. The preference to dark compartment was noted in zebrafish. Zebrafish were grouped and exposed to escalating doses of alcohol for 28 days with and without mefenamic acid exposure (100 and 200 µg/L) and subjected to a fear conditioning passive avoidance task from day 13 of 28. The cognitive evaluation was performed for 10 days and the brain tissue was isolated to estimate acetylcholinesterase activity. In cognitive evaluation study, the normal zebrafish retained the memory of the learned task and avoided the dark. The alcohol exposed zebrafish showed impairment in retaining the memory of learned task. Mefenamic acid exposed zebrafish showed a significant protection against cognitive impairment caused by alcohol and retained the memory of learned task with a significant decrease in AChE activity in brain homogenate compared to alcohol exposed zebrafish. The results of this study suggest that the memory enhancing activity of mefenamic acid might be due to activation of cholinergic transmission that has protected neuroinflammatory and neurodegenerative conditions caused by alcohol.
Collapse
Affiliation(s)
- Venugopalan Rajesh
- Department of Pharmacology, The Erode College of Pharmacy, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India.
| | - Mohanan Mridhulmohan
- Department of Pharmacology, Devaki Amma Memorial College of Pharmacy, Malappuram District, Chelembra, Kerala, 673634, India
| | - Subramanian Jayaseelan
- Department of Pharmaceutical Analysis, The Erode College of Pharmacy, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| | - Palanivel Sivakumar
- Department of Pharmaceutical chemistry, The Erode College of Pharmacy, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| | - Vellaiyachamy Ganesan
- Department of Pharmaceutics, The Erode College of Pharmacy, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| |
Collapse
|
31
|
Hagiwara N, Watanabe M, Iizuka-Ohashi M, Yokota I, Toriyama S, Sukeno M, Tomosugi M, Sowa Y, Hongo F, Mikami K, Soh J, Fujito A, Miyashita H, Morioka Y, Miki T, Ukimura O, Sakai T. Mevalonate pathway blockage enhances the efficacy of mTOR inhibitors with the activation of retinoblastoma protein in renal cell carcinoma. Cancer Lett 2018; 431:182-189. [PMID: 29778569 DOI: 10.1016/j.canlet.2018.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
Abstract
Renal cell carcinoma (RCC) is the most common malignancy of kidney and remains largely intractable once it recurs after resection. mTOR inhibitors have been one of the mainstays used against recurrent RCC; however, there has been a major problem of the resistance to mTOR inhibitors, and thus new combination treatments with mTOR inhibitors are required. We here retrospectively showed that regular use of antilipidemic drug statins could provide a longer progression free survival (PFS) in RCC patients prescribed with an mTOR inhibitor everolimus than without statins (median PFS, 7.5 months vs. 3.2 months, respectively; hazard ratio, 0.52; 95% CI, 0.22-1.11). In order to give a rationale for this finding, we used RCC cell lines and showed the combinatorial effects of an mTOR inhibitor with statins induced a robust activation of retinoblastoma protein, whose mechanisms were involved in statins-mediated hindrance of KRAS or Rac1 protein prenylation. Finally, statins treatment also enhanced the efficacy of an mTOR inhibitor in RCC xenograft models. Thus, we provide molecular and (pre)clinical data showing that statins use could be a drug repositioning for RCC patients to enhance the efficacy of mTOR inhibitors.
Collapse
Affiliation(s)
- Nobuhisa Hagiwara
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Motoki Watanabe
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Mahiro Iizuka-Ohashi
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Japan
| | - Isao Yokota
- Department of Biostatistics, Kyoto Prefectural University of Medicine, Japan
| | - Seijiro Toriyama
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Mamiko Sukeno
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuhiro Tomosugi
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshihiro Sowa
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Fumiya Hongo
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Kazuya Mikami
- Department of Urology, Japanese Red Cross Kyoto Daiichi Hospital, Honmachi, Higashiyama-ku, Kyoto, 605-0981, Japan
| | - Jintetsu Soh
- Department of Urology, Japanese Red Cross Kyoto Daini Hospital, Kamannza-marutamachi, Kamigyo-ku, Kyoto, 602-8026, Japan
| | - Akira Fujito
- Department of Urology, Saiseikai Suita Hospital, Kawazonocho, Suita, Osaka, 564-0013, Japan
| | - Hiroaki Miyashita
- Department of Urology, Omihachiman City Hospital, Tsuchida-cho, Omihachiman, Shiga, 523-0082, Japan
| | - Yukako Morioka
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Tsuneharu Miki
- Department of Urology, Saiseikai Shigaken Hospital, Ohashi, Ritto, Shiga, 520-3046, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Toshiyuki Sakai
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
32
|
Selim A, Khalaf MM, Gad AM, Abd El-Raouf OM. Evaluation of the possible nephroprotective effects of vitamin E and rosuvastatin in amikacin-induced renal injury in rats. J Biochem Mol Toxicol 2017; 31. [PMID: 28683192 DOI: 10.1002/jbt.21957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/02/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
Abstract
Amikacin (AMIK) is an aminoglycoside antibiotic that possesses considerable nephrotoxic adverse effects. This study examined the protective effects of vitamin E (VIT. E) or rosuvastatin (ROSU) against AMIK-induced nephrotoxicity. For this purpose, eight groups of rats were used. Two control groups received saline and vehicle, AMIK group (1.2 g/kg, i.p.), VIT. E group (1000 mg/kg; p.o.), ROSU group (10 mg/kg; p.o.), AMIK + VIT. E group, AMIK + ROSU group, and combination group. The results showed that AMIK significantly increased serum levels of urea and creatinine. Meanwhile, serum levels of total protein and albumin were decreased. The kidney content of malondialdehyde was increased, whereas glutathione content and catalase activity were decreased. Tumor necrosis factor-α and nuclear transcriptional factor levels were increased. Conversely, administration of VIT. E and/or ROSU with AMIK ameliorated such damage and reduced DNA fragmentation, apoptosis, and necrosis. In conclusion, co-administration of VIT. E, ROSU, or their combination alleviated AMIK-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ahmed Selim
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ola M Abd El-Raouf
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
33
|
Saeedi Saravi SS, Saeedi Saravi SS, Arefidoust A, Dehpour AR. The beneficial effects of HMG-CoA reductase inhibitors in the processes of neurodegeneration. Metab Brain Dis 2017; 32:949-965. [PMID: 28578514 DOI: 10.1007/s11011-017-0021-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
Statins, cholesterol lowering drugs, have been demonstrated to exert beneficial effects in other conditions such as primary and progressing neurodegenerative diseases beyond their original role. Observation that statins ameliorate the neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and cerebral ischemic stroke, the neuroprotective effects of these drugs are thought to be linked to their anti-inflammatory, anti-oxidative, and anti-excitotoxic properties. Despite the voluminous literature on the clinical advantages of 3-hydroxy-3-methylglutaryl Co-enzyme A reductase (HMGCR) inhibitors (statins) in cardiovascular system, the neuroprotective effects and the underlying mechanisms are little understood. Hence, the present review tries to provide a critical overview on the statin-induced neuroprotection, which are presumed to be associated with the ability to reduce cholesterol, Amyloid-β and apolipoprotein E (ApoE) levels, decrease reactive oxygen and nitrogen species (ROS and RNS) formation, inhibit excitotoxicity, modulate matrix metalloproteinases (MMPs), stimulate endothelial nitric oxide synthase (eNOS), and increase cerebral blood perfusion. This review is also aimed to illustrate that statins protect neurons against the neuro-inflammatory processes through balancing pro-inflammatory/anti-inflammatory cytokines. Ultimately, the beneficial role of statins in ameliorating the development of PD, AD, MS and cerebral ischemic stroke has been separately reviewed.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Sobhan Saeedi Saravi
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Arefidoust
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Legler DF, Matti C, Laufer JM, Jakobs BD, Purvanov V, Uetz-von Allmen E, Thelen M. Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention. Mol Pharmacol 2017; 91:331-338. [PMID: 28082305 DOI: 10.1124/mol.116.107151] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022] Open
Abstract
Chemokine receptors are seven transmembrane-domain receptors belonging to class A of G-protein-coupled receptors (GPCRs). The receptors together with their chemokine ligands constitute the chemokine system, which is essential for directing cell migration and plays a crucial role in a variety of physiologic and pathologic processes. Given the importance of orchestrating cell migration, it is vital that chemokine receptor signaling is tightly regulated to ensure appropriate responses. Recent studies highlight a key role for cholesterol in modulating chemokine receptor activities. The steroid influences the spatial organization of GPCRs within the membrane bilayer, and consequently can tune chemokine receptor signaling. The effects of cholesterol on the organization and function of chemokine receptors and GPCRs in general include direct and indirect effects (Fig. 1). Here, we review how cholesterol and some key metabolites modulate functions of the chemokine system in multiple ways. We emphasize the role of cholesterol in chemokine receptor oligomerization, thereby promoting the formation of a signaling hub enabling integration of distinct signaling pathways at the receptor-membrane interface. Moreover, we discuss the role of cholesterol in stabilizing particular receptor conformations and its consequence for chemokine binding. Finally, we highlight how cholesterol accumulation, its deprivation, or cholesterol metabolites contribute to modulating cell orchestration during inflammation, induction of an adaptive immune response, as well as to dampening an anti-tumor immune response.
Collapse
Affiliation(s)
- Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland (D.F.L., C.M., J.M.L., B.D.J, V.P., E.U.A.); Konstanz Research School Chemical Biology, University of Konstanz, Germany (D.F.L., C.M., J.M.L); and Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland (M.T.)
| | - Christoph Matti
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland (D.F.L., C.M., J.M.L., B.D.J, V.P., E.U.A.); Konstanz Research School Chemical Biology, University of Konstanz, Germany (D.F.L., C.M., J.M.L); and Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland (M.T.)
| | - Julia M Laufer
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland (D.F.L., C.M., J.M.L., B.D.J, V.P., E.U.A.); Konstanz Research School Chemical Biology, University of Konstanz, Germany (D.F.L., C.M., J.M.L); and Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland (M.T.)
| | - Barbara D Jakobs
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland (D.F.L., C.M., J.M.L., B.D.J, V.P., E.U.A.); Konstanz Research School Chemical Biology, University of Konstanz, Germany (D.F.L., C.M., J.M.L); and Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland (M.T.)
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland (D.F.L., C.M., J.M.L., B.D.J, V.P., E.U.A.); Konstanz Research School Chemical Biology, University of Konstanz, Germany (D.F.L., C.M., J.M.L); and Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland (M.T.)
| | - Edith Uetz-von Allmen
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland (D.F.L., C.M., J.M.L., B.D.J, V.P., E.U.A.); Konstanz Research School Chemical Biology, University of Konstanz, Germany (D.F.L., C.M., J.M.L); and Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland (M.T.)
| | - Marcus Thelen
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland (D.F.L., C.M., J.M.L., B.D.J, V.P., E.U.A.); Konstanz Research School Chemical Biology, University of Konstanz, Germany (D.F.L., C.M., J.M.L); and Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland (M.T.)
| |
Collapse
|
35
|
Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells. Sci Rep 2017; 7:44841. [PMID: 28344327 PMCID: PMC5366866 DOI: 10.1038/srep44841] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
The mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway. In all cancer cell types tested, simvastatin-induced cell death was not rescued by cholesterol, but was dependent on GGPP- and FPP-depletion. We confirmed that simvastatin caused the translocation of the small Rho GTPases RhoA, Cdc42, and Rac1/2/3 from cell membranes to the cytosol in U251 (glioblastoma), A549 (lung adenocarcinoma) and MDA-MB-231(breast cancer). Simvastatin-induced Rho-GTP loading significantly increased in U251 cells which were reversed with MEV, FPP, GGPP. In contrast, simvastatin did not change Rho-GTP loading in A549 and MDA-MB-231. Inhibition of geranylgeranyltransferase I by GGTi-298, but not farnesyltransferase by FTi-277, induced significant cell death in U251, A549, and MDA-MB-231. These results indicate that MEV cascade inhibition by simvastatin induced the intrinsic apoptosis pathway via inhibition of Rho family prenylation and depletion of GGPP, in a variety of different human cancer cell lines.
Collapse
|
36
|
Xie R, Yang Y, Cui W, Yin H, Zheng H, Zhang J, You L. Atorvastatin can ameliorate left atrial stunning induced by radiofrequency ablation for atrial fibrillation. Can J Physiol Pharmacol 2017; 95:985-992. [PMID: 28301729 DOI: 10.1139/cjpp-2016-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to study the functional changes of the left atrium after radiofrequency ablation treatment for atrial fibrillation and the therapeutic effect of atorvastatin. Fifty-eight patients undergoing radiofrequency ablation for atrial fibrillation were randomly divided into non-atorvastatin group and atorvastatin group. Patients in the atorvastatin group were treated with atorvastatin 20 mg p.o. per night in addition to the conventional treatment of atrial fibrillation; patients in the non-atorvastatin group received conventional treatment of atrial fibrillation only. Echocardiography was performed before radiofrequency ablation operation and 1 week, 2 weeks, 3 weeks, and 4 weeks after operation. Two-dimensional ultrasound speckle tracking imaging system was used to measure the structural indexes of the left atrium. Results indicated that there was no significant change for indexes representing the structural status of the left atrium within a month after radiofrequency ablation (P > 0.05); however, there were significant changes for indexes representing the functional status of the left atrium. There were also significant changes in indexes reflecting left atrial strain status: the S and SRs of atorvastatin group were higher than those of non-atorvastatin group (P < 0.05). In summary, atorvastatin could improve left atrial function and shorten the duration of atrial stunning after radiofrequency ablation of atrial fibrillation.
Collapse
Affiliation(s)
- Ruiqin Xie
- Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China.,Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Yingtao Yang
- Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China.,Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Wei Cui
- Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China.,Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Hongning Yin
- Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China.,Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Hongmei Zheng
- Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China.,Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jidong Zhang
- Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China.,Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Ling You
- Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China.,Department of Cardiology, the Second Hospital of Hebei Medical University. No. 215, West Heping Road, Shijiazhuang, 050000, Hebei, China
| |
Collapse
|
37
|
Millar FR, Janes SM, Giangreco A. Epithelial cell migration as a potential therapeutic target in early lung cancer. Eur Respir Rev 2017; 26:26/143/160069. [PMID: 28143875 PMCID: PMC9489048 DOI: 10.1183/16000617.0069-2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023] Open
Abstract
Lung cancer is the most lethal cancer type worldwide, with the majority of patients presenting with advanced stage disease. Targeting early stage disease pathogenesis would allow dramatic improvements in lung cancer patient survival. Recently, cell migration has been shown to be an integral process in early lung cancer ontogeny, with preinvasive lung cancer cells shown to migrate across normal epithelium prior to developing into invasive disease. TP53 mutations are the most abundant mutations in human nonsmall cell lung cancers and have been shown to increase cell migration via regulation of Rho-GTPase protein activity. In this review, we explore the possibility of targeting TP53-mediated Rho-GTPase activity in early lung cancer and the opportunities for translating this preclinical research into effective therapies for early stage lung cancer patients. Preinvasive lung cancer cell migration is a potential novel therapeutic target in early lung cancerhttp://ow.ly/FJGm305JxMQ
Collapse
Affiliation(s)
- Fraser R Millar
- Lungs for Living, UCL Respiratory, Division of Medicine, University College London, London, UK.,Dept of Thoracic Medicine, University College London Hospital, London, UK
| | - Sam M Janes
- Lungs for Living, UCL Respiratory, Division of Medicine, University College London, London, UK.,Dept of Thoracic Medicine, University College London Hospital, London, UK
| | - Adam Giangreco
- Lungs for Living, UCL Respiratory, Division of Medicine, University College London, London, UK
| |
Collapse
|
38
|
Fahmy UA, Aljaeid BM. Combined strategy for suppressing breast carcinoma MCF-7 cell lines by loading simvastatin on alpha lipoic acid nanoparticles. Expert Opin Drug Deliv 2016; 13:1653-1660. [PMID: 27636370 DOI: 10.1080/17425247.2016.1236788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Augmentation of simvastatin (SMV) cytotoxicity in breast carcinoma cell lines MCF-7, by: improvement of cellular uptake and loading on alpha lipoic acid (ALA). METHODS In this study, SMV was loaded on ALA nanoparticles and characterized for surface morphology, SMV entrapment efficiency percent (%EE), zeta potential and release profile. Cellular viability, morphology and uptake and DNA fragmentations were analyzed as a hallmark of cellular apoptosis. RESULTS TEM images demonstrated spherical nanoparticles with particle size 104.7 ± 5.5 nm, SMV %EE was 95.8 ± 2.1% with a zeta potential - 23.6 ± 5.4 mV, and release properties were significantly enhanced. IC50 was decreased to 22.2 ± 2.4 µM while raw SMV was 49.3 ± 6.6 µM. Cellular uptake of SMV-ALA nanoparticles was increased by about 3- and 2-folds after 2 and 4 h, respectively. DNA fragments confirmed the apoptosis property of ALA, which is associated with SMV cytotoxicity. CONCLUSION This study suggests evidence that SMV loaded on ALA nanoparticles increases the MCF-7 cellular uptake and cytotoxic effects induced by SMV as revealed by significantly enhanced cell death rates in MCF-7 cells. These findings demonstrate that ALA induces cell death, which makes the combination a candidate for tumor therapy.
Collapse
Affiliation(s)
- Usama A Fahmy
- a Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Bader M Aljaeid
- a Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
39
|
Qiu Y, Chen WY, Wang ZY, Liu F, Wei M, Ma C, Huang YG. Simvastatin Attenuates Neuropathic Pain by Inhibiting the RhoA/LIMK/Cofilin Pathway. Neurochem Res 2016; 41:2457-2469. [DOI: https:/doi.org/10.1007/s11064-016-1958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
|
40
|
García-Álvarez I, Fernández-Mayoralas A, Moreno-Lillo S, Sánchez-Sierra M, Nieto-Sampedro M, Doncel-Pérez E. Inhibition of glial proliferation, promotion of axonal growth and myelin production by synthetic glycolipid: A new approach for spinal cord injury treatment. Restor Neurol Neurosci 2016; 33:895-910. [PMID: 26484699 DOI: 10.3233/rnn-150572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE After spinal cord injury (SCI) a glial scar is generated in the area affected that forms a barrier for axon growth and myelination, preventing functional recovery. Recently, we have described a synthetic glycolipid (IG20) that inhibited proliferation of human glioma cells. We show now that IG20 inhibited the proliferation of astrocytes and microglial cells, the principal cellular components of the glial scar, and promoting axonal outgrowth and myelin production in vitro. METHODS Glial cells were inhibited with IG20 (IC50≈10 μM) and studied by RT-PCR, Western Blotting, immunoprecipitation and fluorescence microscopy. Axonal outgrowth in dorsal root ganglia (DRG) and myelin production by oligodendrocytes were analyzed by immunocytochemistry. Adult rats were assayed in spinal cord contusion model and the recovery of treated animals (n = 6) and controls (n = 6) was followed. RESULTS The IG20 was localized in the cytosol of glial cells, forming a complex with RhoGDIα, a regulator of RhoGTPases. Treatment of astroglial cultures with IG20 increase the expression of BDNF receptor genes (TrkBT1, TrkB Full). IG20 reduced the astroglial marker GFAP, while increasing production of myelin basic protein in oligodendrocytes and promoted axonal outgrowth from DRG neurons. Local injection of IG20, near a spinal cord contusion, promoted the recovery of lesioned animals analyzed by BBB test (P < 0.05). CONCLUSIONS We propose that inhibition of astrocytes and microglia by IG20 could be diminished the glial scar formation, inducing the re-growth and myelination of axons, these elements constitute a new approach for SCI therapy.
Collapse
Affiliation(s)
- Isabel García-Álvarez
- Grupo de Química Neuro-regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, Toledo, Spain
| | | | - Sandra Moreno-Lillo
- Grupo de Química Neuro-regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, Toledo, Spain
| | - María Sánchez-Sierra
- Grupo de Química Neuro-regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, Toledo, Spain
| | | | - Ernesto Doncel-Pérez
- Grupo de Química Neuro-regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, Toledo, Spain
| |
Collapse
|
41
|
Pouwels KB, Widyakusuma NN, Bos JHJ, Hak E. Association between statins and infections among patients with diabetes: a cohort and prescription sequence symmetry analysis. Pharmacoepidemiol Drug Saf 2016; 25:1124-1130. [PMID: 27365184 PMCID: PMC5129506 DOI: 10.1002/pds.4052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/12/2016] [Accepted: 05/27/2016] [Indexed: 12/26/2022]
Abstract
Purpose A previous meta‐analysis of randomized trials did not confirm findings from observational studies that suggested that statins reduce the risk of infection. However, animal experiments indicate that statins may be more effective in reducing the risk and/or the severity of infection among patients with diabetes. Hence, we evaluated the effect of statins on antibiotic prescriptions (a proxy for infections) among patients with drug‐treated type 2 diabetes using two confounding‐reducing observational designs. Methods We conducted a prescription sequence symmetry analysis and a cohort study using the IADB.nl pharmacy prescription database. For the prescription sequence symmetry analysis, a sequence ratio was calculated. The matched cohort study, comparing the time to first antibiotic prescription between periods that statins are initiated and non‐use periods, was analyzed using stratified Cox regression. Results Prescription sequence symmetry analysis of 4684 patients with drug‐treated type 2 diabetes resulted in an adjusted sequence ratio of 0.86 (95% confidence interval [CI]: 0.81 to 0.91). Corresponding figures for the cohort analysis comparing 9852 statin‐initiation with 4928 non‐use periods showed similar results (adjusted hazard ratio: 0.88, 95%CI: 0.83 to 0.95). Conclusions These findings suggest that statins are associated with a reduced risk of infections among patients with drug‐treated type 2 diabetes. © 2016 The Authors. Pharmacoepidemiology and Drug Safety Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Koen B Pouwels
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Pharmacy, University of Groningen, Groningen, the Netherlands.
| | - Niken N Widyakusuma
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Jens H J Bos
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Eelko Hak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
42
|
Courtney R, Landreth GE. LXR Regulation of Brain Cholesterol: From Development to Disease. Trends Endocrinol Metab 2016; 27:404-414. [PMID: 27113081 PMCID: PMC4986614 DOI: 10.1016/j.tem.2016.03.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023]
Abstract
Liver X receptors (LXRs) are master regulators of cholesterol homeostasis and inflammation in the central nervous system (CNS). The brain, which contains a disproportionately large amount of the body's total cholesterol (∼25%), requires a complex and delicately balanced cholesterol metabolism to maintain neuronal function. Dysregulation of cholesterol metabolism has been implicated in numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Due to their cholesterol-sensing and anti-inflammatory activities, LXRs are positioned centrally in the everyday maintenance of CNS function. This review focuses on recent research into the role of LXRs in the CNS during normal development and homeostasis and in disease states.
Collapse
Affiliation(s)
- Rebecca Courtney
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
43
|
Simvastatin Attenuates Neuropathic Pain by Inhibiting the RhoA/LIMK/Cofilin Pathway. Neurochem Res 2016; 41:2457-69. [PMID: 27216618 DOI: 10.1007/s11064-016-1958-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/26/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Abstract
Neuropathic pain occurs due to deleterious changes in the nervous system caused by a lesion or dysfunction. Currently, neuropathic pain management is unsatisfactory and remains a challenge in clinical practice. Studies have suggested that actin cytoskeleton remodeling may be associated with neural plasticity and may involve a nociceptive mechanism. Here, we found that the RhoA/LIM kinase (LIMK)/cofilin pathway, which regulates actin dynamics, was activated after chronic constriction injury (CCI) of the sciatic nerve. Treatments that reduced RhoA/LIMK/cofilin pathway activity, including simvastatin, the Rho kinase inhibitor Y-27632, and the synthetic peptide Tat-S3, attenuated actin filament disruption in the dorsal root ganglion and CCI-induced neuropathic pain. Over-activation of the cytoskeleton caused by RhoA/LIMK/cofilin pathway activation may produce a scaffold for the trafficking of nociceptive signaling factors, leading to chronic neuropathic pain. Here, we found that simvastatin significantly decreased the ratio of membrane/cytosolic RhoA, which was significantly increased after CCI, by inhibiting the RhoA/LIMK/cofilin pathway. This effect was highly dependent on the function of the cytoskeleton as a scaffold for signal trafficking. We conclude that simvastatin attenuated neuropathic pain in rats subjected to CCI by inhibiting actin-mediated intracellular trafficking to suppress RhoA/LIMK/cofilin pathway activity.
Collapse
|
44
|
Jaikumkao K, Pongchaidecha A, Chattipakorn N, Chatsudthipong V, Promsan S, Arjinajarn P, Lungkaphin A. Atorvastatin improves renal organic anion transporter 3 and renal function in gentamicin-induced nephrotoxicity in rats. Exp Physiol 2016; 101:743-53. [DOI: 10.1113/ep085571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/18/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Krit Jaikumkao
- Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | | | - Sasivimon Promsan
- Department of Physiology, Faculty of Medical Sciences; The University of Phayao; Phayao Thailand
| | - Phatchawan Arjinajarn
- Department of Biology, Faculty of Science; Chiang Mai University; Chiang Mai Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
45
|
Göbel A, Thiele S, Browne AJ, Rauner M, Zinna VM, Hofbauer LC, Rachner TD. Combined inhibition of the mevalonate pathway with statins and zoledronic acid potentiates their anti-tumor effects in human breast cancer cells. Cancer Lett 2016; 375:162-171. [DOI: 10.1016/j.canlet.2016.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/22/2022]
|
46
|
Binnington B, Nguyen L, Kamani M, Hossain D, Marks DL, Budani M, Lingwood CA. Inhibition of Rab prenylation by statins induces cellular glycosphingolipid remodeling. Glycobiology 2016; 26:166-80. [PMID: 26405105 PMCID: PMC4691287 DOI: 10.1093/glycob/cwv084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Statins, which specifically inhibit HMG Co-A reductase, the rate-limiting step of cholesterol biosynthesis, are widely prescribed to reduce serum cholesterol and cardiac risk, but many other effects are seen. We now show an effect of these drugs to induce profound changes in the step-wise synthesis of glycosphingolipids (GSLs) in the Golgi. Glucosylceramide (GlcCer) was increased several-fold in all cell lines tested, demonstrating a widespread effect. Additionally, de novo or elevated lactotriaosylceramide (Lc3Cer; GlcNAcβ1-3Galβ1-4GlcCer) synthesis was observed in 70%. Western blot showed that GlcCer synthase (GCS) was elevated by statins, and GCS and Lc3Cer synthase (Lc3S) activities were increased; however, transcript was elevated for Lc3S only. Supplementation with the isoprenoid precursor, geranylgeranyl pyrophosphate (GGPP), a downstream product of HMG Co-A reductase, reversed statin-induced glycosyltransferase and GSL elevation. The Rab geranylgeranyl transferase inhibitor 3-PEHPC, but not specific inhibitors of farnesyl transferase, or geranylgeranyl transferase I, was sufficient to replicate statin-induced GlcCer and Lc3Cer synthesis, supporting a Rab prenylation-dependent mechanism. While total cholesterol was unaffected, the trans-Golgi network (TGN) cholesterol pool was dissipated and medial Golgi GCS partially relocated by statins. GSL-dependent vesicular retrograde transport of Verotoxin and cholera toxin to the Golgi/endoplasmic reticulum were blocked after statin or 3-PEHPC treatment, suggesting aberrant, prenylation-dependent vesicular traffic as a basis of glycosyltransferase increase and GSL remodeling. These in vitro studies indicate a previously unreported link between Rab prenylation and regulation of GCS activity and GlcCer metabolism.
Collapse
Affiliation(s)
- Beth Binnington
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada
| | - Long Nguyen
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada
| | - Mustafa Kamani
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada Department of Biochemistry
| | - Delowar Hossain
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada
| | - David L Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Monique Budani
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Clifford A Lingwood
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada Department of Biochemistry Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
47
|
Lampi MC, Faber CJ, Huynh J, Bordeleau F, Zanotelli MR, Reinhart-King CA. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption. PLoS One 2016; 11:e0147033. [PMID: 26761203 PMCID: PMC4712048 DOI: 10.1371/journal.pone.0147033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/28/2015] [Indexed: 12/20/2022] Open
Abstract
Arterial stiffening accompanies both aging and atherosclerosis, and age-related stiffening of the arterial intima increases RhoA activity and cell contractility contributing to increased endothelium permeability. Notably, statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors whose pleiotropic effects include disrupting small GTPase activity; therefore, we hypothesized the statin simvastatin could be used to attenuate RhoA activity and inhibit the deleterious effects of increased age-related matrix stiffness on endothelial barrier function. Using polyacrylamide gels with stiffnesses of 2.5, 5, and 10 kPa to mimic the physiological stiffness of young and aged arteries, endothelial cells were grown to confluence and treated with simvastatin. Our data indicate that RhoA and phosphorylated myosin light chain activity increase with matrix stiffness but are attenuated when treated with the statin. Increases in cell contractility, cell-cell junction size, and indirect measurements of intercellular tension that increase with matrix stiffness, and are correlated with matrix stiffness-dependent increases in monolayer permeability, also decrease with statin treatment. Furthermore, we report that simvastatin increases activated Rac1 levels that contribute to endothelial barrier enhancing cytoskeletal reorganization. Simvastatin, which is prescribed clinically due to its ability to lower cholesterol, alters the endothelial cell response to increased matrix stiffness to restore endothelial monolayer barrier function, and therefore, presents a possible therapeutic intervention to prevent atherogenesis initiated by age-related arterial stiffening.
Collapse
Affiliation(s)
- Marsha C. Lampi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Courtney J. Faber
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - John Huynh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Francois Bordeleau
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Matthew R. Zanotelli
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Cynthia A. Reinhart-King
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
48
|
Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes: Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions-A Review Article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6353469. [PMID: 26881035 PMCID: PMC4736421 DOI: 10.1155/2016/6353469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of huge efforts in understanding pathogenetic mechanisms and in developing effective therapies that have transformed this syndrome into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition. Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis.
Collapse
|
49
|
Ting M, Whitaker EJ, Albandar JM. Systematic review of the in vitro effects of statins on oral and perioral microorganisms. Eur J Oral Sci 2015; 124:4-10. [PMID: 26718458 DOI: 10.1111/eos.12239] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2015] [Indexed: 01/07/2023]
Abstract
Statins are medications administered orally and are widely used for lowering the blood cholesterol level. The aim of this study was to investigate the effects of orally administered statins on microorganisms infecting oral and perioral tissues. We performed a systematic review of published studies of the in vitro antimicrobial effects of statins on bacteria, viruses, and fungi, and searched PubMed, Web of Science, Cochrane Central, and Google scholar. Studies show that most statins exhibit antimicrobial effects against various oral microorganisms. Simvastatin is most effective against the periodontal pathogens Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, and against most dental plaque bacteria, including Streptococcus mutans. Statins also exhibit antiviral properties against human cytomegalovirus, hepatitis B virus, and hepatitis C virus, and have antifungal properties against Candida albicans, Aspergillus fumigatus, and Zygomycetes spp. There were notable differences in the minimum inhibitory concentrations (MICs) between different studies, which may be attributed to differences in study design. Further studies are warranted to ascertain if statins can be solubilized so that patients, who have been prescribed statins for cardiovascular diseases, can use the medication as a swish and swallow, giving patients the added benefit of the antimicrobial action topically in the mouth against infectious oral diseases.
Collapse
Affiliation(s)
- Miriam Ting
- Predoctoral Program, Temple University School of Dentistry, Philadelphia, PA, USA
| | - Eugene J Whitaker
- Department of Restorative Dentistry, Temple University School of Dentistry, Philadelphia, PA, USA
| | - Jasim M Albandar
- Department of Periodontology and Oral Implantology, Temple University School of Dentistry, Philadelphia, PA, USA
| |
Collapse
|
50
|
Yan C, Wang X, Liu Y, Abdulnour RE, Wu M, Gao H. Protective Role of Rho Guanosine Diphosphate Dissociation Inhibitor, Ly-GDI, in Pulmonary Alveolitis. PLoS One 2015; 10:e0140804. [PMID: 26469087 PMCID: PMC4607448 DOI: 10.1371/journal.pone.0140804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022] Open
Abstract
Growing evidences indicate that Ly-GDI, an inhibitory protein of Rho GTPases, plays an essential role in regulating actin cytoskeletal alteration which is indispensible for the process such as phagocytosis. However, the role of Ly-GDI in inflammation remains largely unknown. In the current study, we found that Ly-GDI expression was significantly decreased in the IgG immune complex-injured lungs. To determine if Ly-GDI might regulate the lung inflammatory response, we constructed adenovirus vectors that could mediate ectopic expression of Ly-GDI (Adeno-Ly-GDI). In vivo mouse lung expression of Ly-GDI resulted in a significant attenuation of IgG immune complex-induced lung injury, which was due to the decreased pulmonary permeability and lung inflammatory cells, especially neutrophil accumulation. Upon IgG immune complex deposition, mice with Ly-GDI over-expression in the lungs produced significant less inflammatory mediators (TNF-α, IL-6, MCP-1, and MIP-1α) in bronchoalveolar lavage fluid when compared control mice receiving airway injection of Adeno-GFP. Mechanically, IgG immune complex-induced NF-κB activity was markedly suppressed by Ly-GDI in both alveolar macrophages and lungs as measured by luciferase assay and electrophoretic mobility shift assay. These findings suggest that Ly-GDI is a critical regulator of inflammatory injury after deposition of IgG immune complexes and that it negatively regulates the lung NF-κB activity.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Anesthesiology, Perioperative&Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Ximo Wang
- Department of Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Yanlan Liu
- Department of Anesthesiology, Perioperative&Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raja-Elie Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Wu
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Hongwei Gao
- Department of Anesthesiology, Perioperative&Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Surgery, Tianjin Nankai Hospital, Tianjin, China
- * E-mail:
| |
Collapse
|