1
|
Yan Y, Sun Y, Guo X, An Y, Chang Y. Immune Evasion Mechanism of Neurotropic Viruses. Rev Med Virol 2024; 34:e2589. [PMID: 39384363 DOI: 10.1002/rmv.2589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
The persistent challenge posed by viruses that infect the central nervous system lies in their sophisticated ability to evade the host immune system. This review explores into the complex mechanisms of immune evasion employed by these neurotropic viruses, focussing on their modulation of host immune responses, evasion of adaptive immunity, and the cellular and molecular strategies that enable their persistence. Key areas explored include viral latency and reactivation, the inhibition of apoptosis, and antigenic variation, with a detailed examination of viral proteins and their interactions with host cellular processes.
Collapse
Affiliation(s)
- Yayun Yan
- The Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| | - Yu Sun
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| | - Xinyuan Guo
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| | - Yuanchao An
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| | - Ying Chang
- The Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| |
Collapse
|
2
|
Berquez M, Li AL, Luy MA, Venida AC, O'Loughlin T, Rademaker G, Barpanda A, Hu J, Yano J, Wiita A, Gilbert LA, Bruno PM, Perera RM. A multi-subunit autophagic capture complex facilitates degradation of ER stalled MHC-I in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620516. [PMID: 39554122 PMCID: PMC11565957 DOI: 10.1101/2024.10.27.620516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDA) evades immune detection partly via autophagic capture and lysosomal degradation of major histocompatibility complex class I (MHC-I). Why MHC-I is susceptible to capture via autophagy remains unclear. By synchronizing exit of proteins from the endoplasmic reticulum (ER), we show that PDAC cells display prolonged retention of MHC-I in the ER and fail to efficiently route it to the plasma membrane. A capture-complex composed of NBR1 and the ER-phagy receptor TEX264 facilitates targeting of MHC-I for autophagic degradation, and suppression of either receptor is sufficient to increase total levels and re-route MHC-I to the plasma membrane. Binding of MHC-I to the capture complex is linked to antigen presentation efficiency, as inhibiting antigen loading via knockdown of TAP1 or beta 2-Microglobulin led to increased binding between MHC-I and the TEX264-NBR1 capture complex. Conversely, expression of ER directed high affinity antigenic peptides led to increased MHC-I at the cell surface and reduced lysosomal degradation. A genome-wide CRISPRi screen identified NFXL1, as an ER-resident E3 ligase that binds to MHC-I and mediates its autophagic capture. High levels of NFXL1 are negatively correlated with MHC-I protein expression and predicts poor patient prognosis. These data highlight an ER resident capture complex tasked with sequestration and degradation of non-conformational MHC-I in PDAC cells, and targeting this complex has the potential to increase PDAC immunogenicity.
Collapse
|
3
|
Franks ML, An JH, Leavenworth JW. The Role of Natural Killer Cells in Oncolytic Virotherapy: Friends or Foes? Vaccines (Basel) 2024; 12:721. [PMID: 39066359 PMCID: PMC11281503 DOI: 10.3390/vaccines12070721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy (OVT) has emerged as a promising cancer immunotherapy, and is capable of potentiating other immunotherapies due to its capacity to increase tumor immunogenicity and to boost host antitumor immunity. Natural killer (NK) cells are a critical cellular component for mediating the antitumor response, but hold a mixed reputation for their role in mediating the therapeutic efficacy of OVT. This review will discuss the pros and cons of how NK cells impact OVT, and how to harness this knowledge for the development of effective strategies that could modulate NK cells to improve OVT-based therapeutic outcomes.
Collapse
Affiliation(s)
- Michael L. Franks
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ju-Hyun An
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Andrä J, Aisenbrey C, Sudheendra US, Prudhon M, Brezesinski G, Zschech C, Willumeit-Römer R, Leippe M, Gutsmann T, Bechinger B. Structural analysis of the NK-lysin-derived peptide NK-2 upon interaction with bacterial membrane mimetics consisting of phosphatidylethanolamine and phosphatidylglycerol. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184267. [PMID: 38159877 DOI: 10.1016/j.bbamem.2023.184267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
NK-2 is an antimicrobial peptide derived from helices 3 and 4 of the pore-forming protein of natural killer cells, NK-lysin. It has potent activities against Gram-negative and Gram-positive bacteria, fungi and protozoan parasites without being toxic to healthy human cells. In biophysical assays its membrane activities were found to require phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), lipids which dominate the composition of bacterial membranes. Here the structure and activities of NK-2 in binary mixtures of different PE/PG composition were investigated. CD spectroscopy reveals that a threshold concentration of 50 % PG is needed for efficient membrane association of NK-2 concomitant with a random coil - helix transition. Association with PE occurs but is qualitatively different when compared to PG membranes. Oriented solid-state NMR spectroscopy of NK-2 specifically labelled with 15N indicates that the NK-2 helices are oriented parallel to the PG bilayer surface. Upon reduction of the PG content to 20 mol% interactions are weaker and/or an in average more tilted orientation is observed. Fluorescence spectroscopy of differently labelled lipids is in agreement of an interfacial localisation of both helices where the C-terminal end is in a less hydrophobic environment. By inserting into the membrane interface and interacting differently with PE and PG the peptides probably induce high curvature strain which result in membrane openings and rupture.
Collapse
Affiliation(s)
- Jörg Andrä
- Department of Biotechnology, Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, Germany.
| | | | - U S Sudheendra
- University of Strasbourg / CNRS, UMR7177, Chemistry Institute, Strasbourg, France
| | - Marc Prudhon
- University of Strasbourg / CNRS, UMR7177, Chemistry Institute, Strasbourg, France
| | - Gerald Brezesinski
- Department of Physics, TU Darmstadt, Darmstadt, Germany; Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Claudia Zschech
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas Gutsmann
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany; Centre for Structural Systems Biology, Hamburg, Germany
| | - Burkhard Bechinger
- University of Strasbourg / CNRS, UMR7177, Chemistry Institute, Strasbourg, France; Institut Universitaire de France, 75005 Paris, France.
| |
Collapse
|
5
|
Zhou L, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Mao S, Zhao XX, Huang J, Gao Q, Zhu D, Jia R, Liu M, Chen S. Mechanism of herpesvirus protein kinase UL13 in immune escape and viral replication. Front Immunol 2022; 13:1088690. [PMID: 36531988 PMCID: PMC9749954 DOI: 10.3389/fimmu.2022.1088690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Upon infection, the herpes viruses create a cellular environment suitable for survival, but innate immunity plays a vital role in cellular resistance to viral infection. The UL13 protein of herpesviruses is conserved among all herpesviruses and is a serine/threonine protein kinase, which plays a vital role in escaping innate immunity and promoting viral replication. On the one hand, it can target various immune signaling pathways in vivo, such as the cGAS-STING pathway and the NF-κB pathway. On the other hand, it phosphorylates regulatory many cellular and viral proteins for promoting the lytic cycle. This paper reviews the research progress of the conserved herpesvirus protein kinase UL13 in immune escape and viral replication to provide a basis for elucidating the pathogenic mechanism of herpesviruses, as well as providing insights into the potential means of immune escape and viral replication of other herpesviruses that have not yet resolved the function of it.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Mingshu Wang,
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Sethumadhavan S, Barth M, Spaapen RM, Schmidt C, Trowitzsch S, Tampé R. Viral immune evasins impact antigen presentation by allele-specific trapping of MHC I at the peptide-loading complex. Sci Rep 2022; 12:1516. [PMID: 35087068 PMCID: PMC8795405 DOI: 10.1038/s41598-022-05000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients' allotypes.
Collapse
Affiliation(s)
- Sunesh Sethumadhavan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
7
|
Muñoz-López J, Oliveira JCL, Michel DAGR, Ferreira CS, Neto FG, Salnikov ES, Verly RM, Bechinger B, Resende JM. Membrane interactions of Ocellatins. Where do antimicrobial gaps stem from? Amino Acids 2021; 53:1241-1256. [PMID: 34251525 DOI: 10.1007/s00726-021-03029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
The antimicrobial peptides Ocellatin-LB1, -LB2 and -F1, isolated from frogs, are identical from residue 1 to 22, which correspond to the -LB1 sequence, whereas -LB2 carries an extra N and -F1 additional NKL residues at their C-termini. Despite the similar sequences, previous investigations showed different spectra of activities and biophysical investigations indicated a direct correlation between both membrane-disruptive properties and activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. This study presents experimental evidence as well as results from theoretical studies that contribute to a deeper understanding on how these peptides exert their antimicrobial activities and how small differences in the amino acid composition and their secondary structure can be correlated to these activity gaps. Solid-state NMR experiments allied to the simulation of anisotropic NMR parameters allowed the determination of the membrane topologies of these ocellatins. Interestingly, the extra Asn residue at the Ocellatin-LB2 C-terminus results in increased topological flexibility, which is mainly related to wobbling of the helix main axis as noticed by molecular dynamics simulations. Binding kinetics and thermodynamics of the interactions have also been assessed by Surface Plasmon Resonance and Isothermal Titration Calorimetry. Therefore, these investigations allowed to understand in atomic detail the relationships between peptide structure and membrane topology, which are in tune within the series -F1 > > -LB1 ≥ -LB2, as well as how peptide dynamics can affect membrane topology, insertion and binding.
Collapse
Affiliation(s)
- José Muñoz-López
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil.,UMR7177, Institut de Chimie, Université de Strasbourg/CNRS, 4, rue Blaise Pascal , 67000, Strasbourg, France
| | - Jade C L Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Daniel A G R Michel
- Departamento de Química, Universidade Federal Dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Carolina S Ferreira
- Departamento de Química, Universidade Federal Dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Francisco Gomes Neto
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Evgeniy S Salnikov
- UMR7177, Institut de Chimie, Université de Strasbourg/CNRS, 4, rue Blaise Pascal , 67000, Strasbourg, France
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal Dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Burkhard Bechinger
- UMR7177, Institut de Chimie, Université de Strasbourg/CNRS, 4, rue Blaise Pascal , 67000, Strasbourg, France.,Institut Universitaire de France, 75005, Paris, France
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
8
|
Aisenbrey C, Douat C, Kichler A, Guichard G, Bechinger B. Characterization of the DNA and Membrane Interactions of a Bioreducible Cell-Penetrating Foldamer in its Monomeric and Dimeric Form. J Phys Chem B 2020; 124:4476-4486. [DOI: 10.1021/acs.jpcb.0c01853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christopher Aisenbrey
- Institut de chimie, Université de Strasbourg/CNRS, UMR7177, 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Céline Douat
- Université Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Antoine Kichler
- Faculté de Pharmacie, Université de Strasbourg/CNRS, UMR7199, 74, route du Rhin, 67401 Illkirch, France
| | - Gilles Guichard
- Université Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Burkhard Bechinger
- Institut de chimie, Université de Strasbourg/CNRS, UMR7177, 4, rue Blaise Pascal, 67070 Strasbourg, France
- Institut Universitaire de France,
| |
Collapse
|
9
|
Trowitzsch S, Tampé R. Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annu Rev Biophys 2020; 49:135-161. [PMID: 32004089 DOI: 10.1146/annurev-biophys-121219-081643] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
10
|
Salnikov ES, Aisenbrey C, Pokrandt B, Brügger B, Bechinger B. Structure, Topology, and Dynamics of Membrane-Inserted Polypeptides and Lipids by Solid-State NMR Spectroscopy: Investigations of the Transmembrane Domains of the DQ Beta-1 Subunit of the MHC II Receptor and of the COP I Protein p24. Front Mol Biosci 2019; 6:83. [PMID: 31608287 PMCID: PMC6769064 DOI: 10.3389/fmolb.2019.00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/23/2019] [Indexed: 01/04/2023] Open
Abstract
MHC class II receptors carry important function in adaptive immunity and their malfunctioning is associated with diabetes type I, chronic inflammatory diseases and other autoimmune diseases. The protein assembles from the DQ alpha-1 and DQ beta-1 subunits where the transmembrane domains of these type I membrane proteins have been shown to be involved in homo- and heterodimer formation. Furthermore, the DQ alpha 1 chain carries a sequence motif that has been first identified in the context of p24, a protein involved in the formation of COPI vesicles of the intracellular transport machinery, to specifically interact with sphingomyelin-C18 (SM-C18). Here we investigated the membrane interactions and dynamics of DQ beta-1 in liquid crystalline POPC phospholipid bilayers by oriented 15N solid-state NMR spectroscopy. The 15N resonances are indicative of a helical tilt angle of the membrane anchor sequence around 20°. Two populations can be distinguished by their differential dynamics probably corresponding the DQ beta-1 mono- and homodimer. Whereas, this equilibrium is hardly affected by the addition of 5 mole% SM-C18 a single population is visible in DMPC lipid bilayers suggesting that the lipid saturation is an important parameter. Furthermore, the DQ alpha-1, DQ beta-1 and p24 transmembrane helical domains were reconstituted into POPC or POPC/SM-C18 lipid bilayers where the fatty acyl chain of either the phosphatidylcholine or of the sphingolipid have been deuterated. Interestingly in the presence of both sphingolipid and polypeptide a strong decrease in the innermost membrane order of the POPC palmitoyl chain is observed, an effect that is strongest for DQ beta-1. In contrast, for the first time the polypeptide interactions were monitored by deuteration of the stearoyl chain of SM-C18. The resulting 2H solid-state NMR spectra show an increase in order for p24 and DQ alpha-1 which both carry the SM recognition motif. Thereby the data are suggestive that SM-C18 together with the transmembrane domains form structures imposing positive curvature strain on the surrounding POPC lipids. This effect is attenuated when SM-C18 is recognized by the protein.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | | | - Bianca Pokrandt
- Biochemiezentrum der Universität Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Biochemiezentrum der Universität Heidelberg, Heidelberg, Germany
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| |
Collapse
|
11
|
Salnikov ES, De Zotti M, Bobone S, Mazzuca C, Raya J, Siano AS, Peggion C, Toniolo C, Stella L, Bechinger B. Trichogin GA IV Alignment and Oligomerization in Phospholipid Bilayers. Chembiochem 2019; 20:2141-2150. [PMID: 31125169 DOI: 10.1002/cbic.201900263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Å apart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Jesus Raya
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria UNL, Ruta Nacional N° 168, Km 472, Santa Fe, 3000, Argentina
| | - Cristina Peggion
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Burkhard Bechinger
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
12
|
Aisenbrey C, Salnikov ES, Bechinger B. Solid-State NMR Investigations of the MHC II Transmembrane Domains: Topological Equilibria and Lipid Interactions. J Membr Biol 2019; 252:371-384. [PMID: 31187155 DOI: 10.1007/s00232-019-00071-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex class II (MHC II) membrane proteins are key players in the adaptive immune response. An aberrant function of these molecules is associated with a large number of autoimmune diseases such as diabetes type I and chronic inflammatory diseases. The MHC class II is assembled from DQ alpha 1 and DQ beta 1 which come together as a heterodimer through GXXXG-mediated protein-protein interactions and a highly specific protein-sphingomyelin-C18 interaction motif located on DQA1. This association can have important consequences in regulating the function of these membrane proteins. Here, we investigated the structure and topology of the DQA1 and DQB1 transmembrane helical domains by CD-, oriented 2H and 15N solid-state NMR spectroscopies. The spectra at peptide-to-lipid ratios of 0.5 to 2 mol% are indicative of a topological equilibrium involving a helix crossing the membrane with a tilt angle of about 20° and another transmembrane topology with around 30° tilt. The latter is probably representing a dimer. Furthermore, at the lowest peptide-to-lipid ratio, a third polypeptide population becomes obvious. Interestingly, the DQB1 and to a lesser extent the DQA1 transmembrane helical domains exhibit a strong fatty acyl chain disordering effect on the inner segments of the 2H-labelled palmitoyl chain of POPC bilayers. This phosphatidylcholine disordering requires the presence of sphingomyelin-C18 suggesting that the ensemble of transmembrane polypeptide and sphingolipid exerts positive curvature strain.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Evgeniy S Salnikov
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Burkhard Bechinger
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France.
| |
Collapse
|
13
|
Aisenbrey C, Kemayo-Koumkoua P, Salnikov ES, Glattard E, Bechinger B. Investigations of the Structure, Topology, and Interactions of the Transmembrane Domain of the Lipid-Sorting Protein p24 Being Highly Selective for Sphingomyelin-C18. Biochemistry 2019; 58:2782-2795. [PMID: 31120242 DOI: 10.1021/acs.biochem.9b00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The p24 proteins play an important role in the secretory pathway where they selectively connect various cargo to other proteins, thereby being involved in the controlled assembly and disassembly of the coat protein complexes and lipid sorting. Recently, a highly selective lipid interaction motif has been identified within the p24 transmembrane domain (TMD) that recognizes the combination of the sphingomyelin headgroup and the exact length of the C18 fatty acyl chain (SM-C18). Here, we present investigations of the structure, dynamics, and sphingomyelin interactions of the p24 transmembrane region using circular dichroism, tryptophan fluorescence, and solid-state nuclear magnetic resonance (NMR) spectroscopies of the polypeptides and the surrounding lipids. Membrane insertion and/or conformation of the TMD is strongly dependent on the membrane lipid composition where the transmembrane helical insertion is strongest in the presence of 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) and SM-C18. By analyzing solid-state NMR angular restraints from a large number of labeled sites, we have found a tilt angle of 19° for the transmembrane helical domain at a peptide-to-lipid ratio of 1 mol %. Only minor changes in the solid-state NMR spectra are observed due to the presence of SM-C18; the only visible alterations are associated with the SM-C18 recognition motif close to the carboxy-terminal part of the hydrophobic transmembrane region in the proximity of the SM headgroup. Finally, the deuterium order parameters of POPC- d31 were nearly unaffected by the presence of SM-C18 or the polypeptide alone but decreased noticeably when the sphingomyelin and the polypeptide were added in combination.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| | - Patricia Kemayo-Koumkoua
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| | - Evgeniy S Salnikov
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| | - Elise Glattard
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| |
Collapse
|
14
|
Salnikov ES, Aisenbrey C, Anantharamaiah G, Bechinger B. Solid-state NMR structural investigations of peptide-based nanodiscs and of transmembrane helices in bicellar arrangements. Chem Phys Lipids 2019; 219:58-71. [DOI: 10.1016/j.chemphyslip.2019.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023]
|
15
|
Braner M, Koller N, Knauer J, Herbring V, Hank S, Wieneke R, Tampé R. Optical control of the antigen translocation by synthetic photo-conditional viral inhibitors. Chem Sci 2018; 10:2001-2005. [PMID: 30881629 PMCID: PMC6385481 DOI: 10.1039/c8sc04863k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/15/2018] [Indexed: 12/12/2022] Open
Abstract
By designing and engineering photo-conditional viral inhibitors, spatiotemporal control of the transporter associated with antigen processing TAP was sustained, allowing the on-demand antigen translocation in human immune cell lines and primary cells by light.
The immune system makes use of major histocompatibility complex class I (MHC I) molecules to present peptides to other immune cells, which can evoke an immune response. Within this process of antigen presentation, the MHC I peptide loading complex, consisting of a transporter associated with antigen processing TAP, MHC I, and chaperones, is key to the initiation of immune response by shuttling peptides from the cytosol into the ER lumen. However, it is still enigmatic how the flux of antigens is precisely coordinated in time and space, limiting our understanding of antigen presentation pathways. Here, we report on the development of a synthetic viral TAP inhibitor that can be cleaved by light. This photo-conditional inhibitor shows temporal blockade of TAP-mediated antigen translocation, which is unleashed upon illumination. The recovery of TAP activity was monitored at single-cell resolution both in human immune cell lines and primary cells. The development of a photo-conditional TAP inhibitor thus expands the repertoire of chemical intervention tools for immunological processes.
Collapse
Affiliation(s)
- M Braner
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - N Koller
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - J Knauer
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - V Herbring
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - S Hank
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - R Wieneke
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - R Tampé
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| |
Collapse
|
16
|
Abele R, Tampé R. Moving the Cellular Peptidome by Transporters. Front Cell Dev Biol 2018; 6:43. [PMID: 29761100 PMCID: PMC5937356 DOI: 10.3389/fcell.2018.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Living matter is defined by metastability, implying a tightly balanced synthesis and turnover of cellular components. The first step of eukaryotic protein degradation via the ubiquitin-proteasome system (UPS) leads to peptides, which are subsequently degraded to single amino acids by an armada of proteases. A small fraction of peptides, however, escapes further cytosolic destruction and is transported by ATP-binding cassette (ABC) transporters into the endoplasmic reticulum (ER) and lysosomes. The ER-resident heterodimeric transporter associated with antigen processing (TAP) is a crucial component in adaptive immunity for the transport and loading of peptides onto major histocompatibility complex class I (MHC I) molecules. Although the function of the lysosomal resident homodimeric TAPL-like (TAPL) remains, until today, only loosely defined, an involvement in immune defense is anticipated since it is highly expressed in dendritic cells and macrophages. Here, we compare the gene organization and the function of single domains of both peptide transporters. We highlight the structural organization, the modes of substrate binding and translocation as well as physiological functions of both organellar transporters.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Cluster of Excellence - Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
17
|
A dual inhibition mechanism of herpesviral ICP47 arresting a conformationally thermostable TAP complex. Sci Rep 2016; 6:36907. [PMID: 27845362 PMCID: PMC5109273 DOI: 10.1038/srep36907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/24/2016] [Indexed: 11/09/2022] Open
Abstract
As a centerpiece of antigen processing, the ATP-binding cassette transporter associated with antigen processing (TAP) became a main target for viral immune evasion. The herpesviral ICP47 inhibits TAP function, thereby suppressing an adaptive immune response. Here, we report on a thermostable ICP47-TAP complex, generated by fusion of different ICP47 fragments. These fusion complexes allowed us to determine the direction and positioning in the central cavity of TAP. ICP47-TAP fusion complexes are arrested in a stable conformation, as demonstrated by MHC I surface expression, melting temperature, and the mutual exclusion of herpesviral TAP inhibitors. We unveiled a conserved region next to the active domain of ICP47 as essential for the complete stabilization of the TAP complex. Binding of the active domain of ICP47 arrests TAP in an open inward facing conformation rendering the complex inaccessible for other viral factors. Based on our findings, we propose a dual interaction mechanism for ICP47. A per se destabilizing active domain inhibits the function of TAP, whereas a conserved C-terminal region additionally stabilizes the transporter. These new insights into the ICP47 inhibition mechanism can be applied for future structural analyses of the TAP complex.
Collapse
|
18
|
Lehnert E, Mao J, Mehdipour AR, Hummer G, Abele R, Glaubitz C, Tampé R. Antigenic Peptide Recognition on the Human ABC Transporter TAP Resolved by DNP-Enhanced Solid-State NMR Spectroscopy. J Am Chem Soc 2016; 138:13967-13974. [DOI: 10.1021/jacs.6b07426] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Ahmad Reza Mehdipour
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str.
3, 60438 Frankfurt
am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str.
3, 60438 Frankfurt
am Main, Germany
| | | | | | | |
Collapse
|
19
|
Oldham ML, Hite RK, Steffen AM, Damko E, Li Z, Walz T, Chen J. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 2016; 529:537-40. [PMID: 26789246 PMCID: PMC4848044 DOI: 10.1038/nature16506] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Cellular immunity against viral infection and tumor cells depends on antigen presentation by the major histocompatibility complex class 1 molecules (MHC I). Intracellular antigenic peptides are transported into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP) and then loaded onto the nascent MHC I, which are exported to the cell surface and present peptides to the immune system1. Cytotoxic T lymphocytes recognize non-self peptides and program the infected or malignant cells for apoptosis. Defects in TAP account for immunodeficiency and tumor development. To escape immune surveillance, some viruses have evolved strategies to either down-regulate TAP expression or directly inhibit TAP activity. To date neither the architecture of TAP nor the mechanism of viral inhibition has been elucidated at the structural level. In this study we describe the cryo-electron microscopy (cryo-EM) structure of human TAP in complex with its inhibitor ICP47, a small protein produced by the herpes simplex virus I. We show that the twelve transmembrane helices and two cytosolic nucleotide-binding domains (NBDs) of the transporter adopt an inward-facing conformation with the two NBDs separated. The viral inhibitor ICP47 forms a long helical hairpin, which plugs the translocation pathway of TAP from the cytoplasmic side. Association of ICP47 precludes substrate binding and also prevents NBD closure necessary for ATP hydrolysis. This work illustrates a striking example of immune evasion by persistent viruses. By blocking viral antigens from entering the ER, herpes simplex virus is hidden from cytotoxic T lymphocytes, which may contribute to establishing a lifelong infection in the host.
Collapse
Affiliation(s)
- Michael L Oldham
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| | - Richard K Hite
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| | - Alanna M Steffen
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| | - Ermelinda Damko
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Zongli Li
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Thomas Walz
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Jue Chen
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
20
|
Membrane interactions of phylloseptin-1, -2, and -3 peptides by oriented solid-state NMR spectroscopy. Biophys J 2015; 107:901-11. [PMID: 25140425 DOI: 10.1016/j.bpj.2014.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 01/10/2023] Open
Abstract
Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using (2)H and (15)N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8° probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent (2)H quadrupolar splittings from methyl-deuterated alanines and one (15)N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with (15)N and (2)H isotopes of only a few amino acid residues.
Collapse
|
21
|
Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. J Mol Biol 2015; 427:1102-18. [DOI: 10.1016/j.jmb.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
|
22
|
Lin J, Eggensperger S, Hank S, Wycisk AI, Wieneke R, Mayerhofer PU, Tampé R. A negative feedback modulator of antigen processing evolved from a frameshift in the cowpox virus genome. PLoS Pathog 2014; 10:e1004554. [PMID: 25503639 PMCID: PMC4263761 DOI: 10.1371/journal.ppat.1004554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022] Open
Abstract
Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing. Virus-infected or malignant transformed cells are eliminated by cytotoxic T lymphocytes, which recognize antigenic peptide epitopes in complex with major histocompatibility complex class I (MHC I) molecules at the cell surface. The majority of such peptides are derived from proteasomal degradation in the cytosol and are then translocated into the ER lumen in an energy-consuming reaction via the transporter associated with antigen processing (TAP), which delivers the peptides onto MHC I molecules as final acceptors. Viruses have evolved sophisticated strategies to escape this immune surveillance. Here we show that the cowpox viral protein CPXV012 inhibits the ER peptide translocation machinery by allosterically blocking ATP binding and hydrolysis by TAP. The short ER resident active domain of the viral protein evolved from a reading frame shift in the cowpox virus genome and exploits the ER-lumenal negative feedback peptide sensor of TAP. This CPXV012-induced conformational arrest of TAP is signaled by a unique communication across the ER membrane to the cytosolic motor domains of the peptide pump. Furthermore, this study provides the rare opportunity to decipher on a molecular level how nature plays hide and seek with a pathogen and its host.
Collapse
Affiliation(s)
- Jiacheng Lin
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sabine Eggensperger
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Susanne Hank
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Agnes I. Wycisk
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Peter U. Mayerhofer
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
- * E-mail: (PUM); (RT)
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
- Cluster of Excellence – Macromolecular Complexes, Goethe-University Frankfurt, Frankfurt, Germany
- * E-mail: (PUM); (RT)
| |
Collapse
|
23
|
Eggensperger S, Fisette O, Parcej D, Schäfer LV, Tampé R. An annular lipid belt is essential for allosteric coupling and viral inhibition of the antigen translocation complex TAP (transporter associated with antigen processing). J Biol Chem 2014; 289:33098-108. [PMID: 25305015 DOI: 10.1074/jbc.m114.592832] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The transporter associated with antigen processing (TAP) constitutes a focal element in the adaptive immune response against infected or malignantly transformed cells. TAP shuttles proteasomal degradation products into the lumen of the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. Here, the heterodimeric TAP complex was purified and reconstituted in nanodiscs in defined stoichiometry. We demonstrate that a single heterodimeric core-TAP complex is active in peptide binding, which is tightly coupled to ATP hydrolysis. Notably, with increasing peptide length, the ATP turnover was gradually decreased, revealing that ATP hydrolysis is coupled to the movement of peptide through the ATP-binding cassette transporter. In addition, all-atom molecular dynamics simulations show that the observed 22 lipids are sufficient to form an annular belt surrounding the TAP complex. This lipid belt is essential for high affinity inhibition by the herpesvirus immune evasin ICP47. In conclusion, nanodiscs are a powerful approach to study the important role of lipids as well as the function, interaction, and modulation of the antigen translocation machinery.
Collapse
Affiliation(s)
- Sabine Eggensperger
- From the Institute of Biochemistry, Biocenter, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M
| | - Olivier Fisette
- the Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, 44780 Bochum, and
| | - David Parcej
- From the Institute of Biochemistry, Biocenter, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M
| | - Lars V Schäfer
- the Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, 44780 Bochum, and
| | - Robert Tampé
- From the Institute of Biochemistry, Biocenter, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., the Cluster of Excellence-Macromolecular Complexes, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| |
Collapse
|
24
|
Luteijn RD, Hoelen H, Kruse E, van Leeuwen WF, Grootens J, Horst D, Koorengevel M, Drijfhout JW, Kremmer E, Früh K, Neefjes JJ, Killian A, Lebbink RJ, Ressing ME, Wiertz EJHJ. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP. THE JOURNAL OF IMMUNOLOGY 2014; 193:1578-89. [PMID: 25024387 DOI: 10.4049/jimmunol.1400964] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs.
Collapse
Affiliation(s)
- Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Hanneke Hoelen
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Elisabeth Kruse
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wouter F van Leeuwen
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jennine Grootens
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Martijn Koorengevel
- Department of Membrane Biochemistry and Biophysics, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Elisabeth Kremmer
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Molecular Immunology, 81377 Munich, Germany
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; and
| | - Jacques J Neefjes
- Department of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Antoinette Killian
- Department of Membrane Biochemistry and Biophysics, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| |
Collapse
|
25
|
Kemayo Koumkoua P, Aisenbrey C, Salnikov E, Rifi O, Bechinger B. On the design of supramolecular assemblies made of peptides and lipid bilayers. J Pept Sci 2014; 20:526-36. [PMID: 24909405 DOI: 10.1002/psc.2656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 02/02/2023]
Abstract
Peptides confer interesting properties to materials, supramolecular assemblies and to lipid membranes and are used in analytical devices or within delivery vehicles. Their relative ease of production combined with a high degree of versatility make them attractive candidates to design new such products. Here, we review and demonstrate how CD- and solid-state NMR spectroscopic approaches can be used to follow the reconstitution of peptides into membranes and to describe some of their fundamental characteristics. Whereas CD spectroscopy is used to monitor secondary structure in different solvent systems and thereby aggregation properties of the highly hydrophobic domain of p24, a protein involved in vesicle trafficking, solid-state NMR spectroscopy was used to deduce structural information and the membrane topology of a variety of peptide sequences found in nature or designed. (15)N chemical shift solid-state NMR spectroscopy indicates that the hydrophobic domain of p24 as well as a designed sequence of 19 hydrophobic amino acid residues adopt transmembrane alignments in phosphatidylcholine membranes. In contrast, the amphipathic antimicrobial peptide magainin 2 and the designed sequence LK15 align parallel to the bilayer surface. Additional angular information is obtained from deuterium solid-state NMR spectra of peptide sites labelled with (2)H3-alanine, whereas (31)P and (2)H solid-state NMR spectra of the lipids furnish valuable information on the macroscopic order and phase properties of the lipid matrix. Using these approaches, peptides and reconstitution protocols can be elaborated in a rational manner, and the analysis of a great number of peptide sequences is reviewed. Finally, a number of polypeptides with membrane topologies that are sensitive to a variety of environmental conditions such as pH, lipid composition and peptide-to-lipid ratio will be presented.
Collapse
Affiliation(s)
- Patricia Kemayo Koumkoua
- Université de Strasbourg / CNRS, UMR7177, Institut de Chimie, 1, rue Blaise Pascal, 67070, Strasbourg, France
| | | | | | | | | |
Collapse
|
26
|
Multicolour fluorescence-detection size-exclusion chromatography for structural genomics of membrane multiprotein complexes. PLoS One 2013; 8:e67112. [PMID: 23825631 PMCID: PMC3692423 DOI: 10.1371/journal.pone.0067112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022] Open
Abstract
Many interesting and important membrane proteins are hetero-oligomeric. However, besides naturally abundant examples, the structures of relatively few such complexes are known. Partly, this is due to difficulties in expression, stoichiometric assembly, and in the evaluation of their stability prior to crystallization trials. Here we describe a new approach, which allows rapid assessment of protein complex quality, assembly and stoichiometry, simplifying the search for conditions conducive to long-term stability and crystallization. Multicolour fluorescence size-exclusion chromatography (MC-FSEC) is used to enable tracking of individual subunits through expression, solubilization and purification steps. We show how the method has been applied to the heterodimeric transporter associated with antigen processing (TAP) and demonstrate how it may be extended in order to analyse membrane multisubunit assemblies.
Collapse
|
27
|
Wang P, Kan Q, Yu Z, Li L, Zhang Z, Pan X, Feng T. Recombinant adenovirus expressing ICP47 gene suppresses the ability of dendritic cells by restricting specific T cell responses. Cell Immunol 2013; 282:129-35. [PMID: 23774531 DOI: 10.1016/j.cellimm.2013.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/21/2013] [Accepted: 05/14/2013] [Indexed: 11/16/2022]
Abstract
Adenoviral vectors have been demonstrated to be one of the most effective vehicles to deliver foreign DNA into dendritic cells (DCs). However, the response of host immune systems against foreign gene products is a major obstacle to successful gene therapy. Infected cell protein 47 (ICP47) inhibits MHC Ⅰ antigen presentation pathway by binding to host transporter associated with antigen presentation (TAP), and thereby attenuates of specific cytotoxic T lymphocytes (CTLs) responses and evades the host immune clearance. This subject was designed to construct a recombinant adenovirus expressing His-tag-ICP47 fusion protein to investigate further the role of ICP47 in the elimination of transgene expression. Consequently, a recombinant adenovirus expressing the His-tag-ICP47 fusion protein was successfully constructed and it had the abilities of attenuating the stimulatory capacity of DCs by reducing the proliferation of lymphocytes and cytokine production of perforin compared with those of the r-track group and the control group. Our observations provide the first evidence of the regulation mechanism of ICP47 on DC-based immunotherapy for long-term persistence.
Collapse
Affiliation(s)
- Peng Wang
- Nursing College, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Comparing effects of BK virus agnoprotein and herpes simplex-1 ICP47 on MHC-I and MHC-II expression. Clin Dev Immunol 2013; 2013:626823. [PMID: 23606871 PMCID: PMC3623393 DOI: 10.1155/2013/626823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/30/2013] [Indexed: 11/17/2022]
Abstract
Background. Among human polyomaviruses, only BK virus (BKV) and JC virus (JCV) encode an agnoprotein upstream of VP1 on the viral late transcript. BKV agnoprotein is abundantly expressed late in the viral life cycle, but specific cellular and humoral immune responses are low or absent. We hypothesized that agnoprotein might contribute to BKV immune evasion by downregulating HLA expression, similar to Herpes simplex virus-1 ICP47. Methods UTA-6 or primary human renal proximal tubular epithelial cells (RPTEC) were co-transfected with plasmids constitutively expressing agnoprotein, or ICP47, and enhanced green-fluorescent protein (EGFP). EGFP-gated cells were analyzed for HLA-ABC and HLA-DR expression by flow cytometry. HLA-ABC and HLA-DR expression was also analyzed on UTA-6 bearing tetracycline-regulated agnoprotein or ICP47. Effects of agnoprotein on viral peptide-dependent T-cell killing were investigated using 51Cr release. Results. ICP47 downregulated HLA-ABC without affecting HLA-DR, whereas agnoprotein did not affect HLA-ABC or HLA-DR expression. Interferon-γ treatment increased HLA-ABC in a dose-dependent manner, which was antagonized by ICP47, but not by agnoprotein. In UTA-6 cells, agnoprotein expression did neither impair HLA-ABC or -DR expression nor peptide-specific killing impaired by HLA-matched T-cells. Conclusion. Unlike the HSV-1 ICP47, BKV agnoprotein does not contribute to viral immune evasion by down-regulating HLA-ABC, or interfere with HLA-DR expression or peptide-dependent T-cell cytotoxicity.
Collapse
|
29
|
Michalek M, Salnikov ES, Werten S, Bechinger B. Membrane interactions of the amphipathic amino terminus of huntingtin. Biochemistry 2013; 52:847-58. [PMID: 23305455 DOI: 10.1021/bi301325q] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amino-terminal domain of huntingtin (Htt17), located immediately upstream of the decisive polyglutamine tract, strongly influences important properties of this large protein and thereby the development of Huntington's disease. Htt17 markedly increases polyglutamine aggregation rates and the level of huntingtin's interactions with biological membranes. Htt17 adopts a largely helical conformation in the presence of membranes, and this structural transition was used to quantitatively analyze membrane association as a function of lipid composition. The apparent membrane partitioning constants increased in the presence of anionic lipids but decreased with increasing amounts of cholesterol. When membrane permeabilization was tested, a pronounced dye release was observed from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles and 75:25 (molar ratio) POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine vesicles but not across bilayers that better mimic cellular membranes. Solid-state nuclear magnetic resonance structural investigations indicated that the Htt17 α-helix adopts an alignment parallel to the membrane surface, and that the tilt angle (∼75°) was nearly constant in all of the membranes that were investigated. Furthermore, the addition of Htt17 resulted in a decrease in the lipid order parameter in all of the membranes that were investigated. The lipid interactions of Htt17 have pivotal implications for membrane anchoring and functional properties of huntingtin and concomitantly the development of the disease.
Collapse
Affiliation(s)
- Matthias Michalek
- Membrane Biophysics and NMR Chemistry Institute UMR7177, University of Strasbourg/CNRS International Center for Frontier Research in Chemistry, 1 rue Blaise Pascal, Strasbourg, France
| | | | | | | |
Collapse
|
30
|
Corradi V, Singh G, Tieleman DP. The human transporter associated with antigen processing: molecular models to describe peptide binding competent states. J Biol Chem 2012; 287:28099-111. [PMID: 22700967 PMCID: PMC3431710 DOI: 10.1074/jbc.m112.381251] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human transporter associated with antigen processing (TAP) is a member of the ATP binding cassette (ABC) transporter superfamily. TAP plays an essential role in the antigen presentation pathway by translocating cytosolic peptides derived from proteasomal degradation into the endoplasmic reticulum lumen. Here, the peptides are loaded into major histocompatibility class I molecules to be in turn exposed at the cell surface for recognition by T-cells. TAP is a heterodimer formed by the association of two half-transporters, TAP1 and TAP2, with a typical ABC transporter core that consists of two nucleotide binding domains and two transmembrane domains. Despite the availability of biological data, a full understanding of the mechanism of action of TAP is limited by the absence of experimental structures of the full-length transporter. Here, we present homology models of TAP built on the crystal structures of P-glycoprotein, ABCB10, and Sav1866. The models represent the transporter in inward- and outward-facing conformations that could represent initial and final states of the transport cycle, respectively. We described conserved regions in the endoplasmic reticulum-facing loops with a role in the opening and closing of the cavity. We also identified conserved π-stacking interactions in the cytosolic part of the transmembrane domains that could explain the experimental data available for TAP1-Phe-265. Electrostatic potential calculations gave structural insights into the role of residues involved in peptide binding, such as TAP1-Val-288, TAP2-Cys-213, TAP2-Met-218. Moreover, these calculations identified additional residues potentially involved in peptide binding, in turn verified with replica exchange simulations performed on a peptide bound to the inward-facing models.
Collapse
Affiliation(s)
- Valentina Corradi
- Department of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
31
|
Abstract
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.
Collapse
Affiliation(s)
- Andreas Hinz
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/M., Germany
| | | |
Collapse
|
32
|
Equine herpesvirus type 4 UL56 and UL49.5 proteins downregulate cell surface major histocompatibility complex class I expression independently of each other. J Virol 2012; 86:8059-71. [PMID: 22623773 DOI: 10.1128/jvi.00891-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER.
Collapse
|
33
|
Bechinger B, Salnikov ES. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids 2012; 165:282-301. [DOI: 10.1016/j.chemphyslip.2012.01.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
|
34
|
Raafat N, Sadowski-Cron C, Mengus C, Heberer M, Spagnoli GC, Zajac P. Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope. Int J Cancer 2012; 131:E659-69. [PMID: 22116674 DOI: 10.1002/ijc.27362] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 11/08/2011] [Indexed: 11/06/2022]
Abstract
Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness.
Collapse
Affiliation(s)
- Nermin Raafat
- Department of Biomedicine, Oncology group, Institute of Surgical Research and Hospital Management, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Aisenbrey C, Pendem N, Guichard G, Bechinger B. Solid state NMR studies of oligourea foldamers: Interaction of 15N-labelled amphiphilic helices with oriented lipid membranes. Org Biomol Chem 2012; 10:1440-7. [DOI: 10.1039/c1ob06278f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Wycisk AI, Lin J, Loch S, Hobohm K, Funke J, Wieneke R, Koch J, Skach WR, Mayerhofer PU, Tampé R. Epstein-Barr viral BNLF2a protein hijacks the tail-anchored protein insertion machinery to block antigen processing by the transport complex TAP. J Biol Chem 2011; 286:41402-41412. [PMID: 21984826 DOI: 10.1074/jbc.m111.237784] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Virus-infected cells are eliminated by cytotoxic T lymphocytes, which recognize viral epitopes displayed on major histocompatibility complex class I molecules at the cell surface. Herpesviruses have evolved sophisticated strategies to escape this immune surveillance. During the lytic phase of EBV infection, the viral factor BNLF2a interferes with antigen processing by preventing peptide loading of major histocompatibility complex class I molecules. Here we reveal details of the inhibition mechanism of this EBV protein. We demonstrate that BNLF2a acts as a tail-anchored protein, exploiting the mammalian Asna-1/WRB (Get3/Get1) machinery for posttranslational insertion into the endoplasmic reticulum membrane, where it subsequently blocks antigen translocation by the transporter associated with antigen processing (TAP). BNLF2a binds directly to the core TAP complex arresting the ATP-binding cassette transporter in a transport-incompetent conformation. The inhibition mechanism of EBV BNLF2a is distinct and mutually exclusive of other viral TAP inhibitors.
Collapse
Affiliation(s)
- Agnes I Wycisk
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jiacheng Lin
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Sandra Loch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Kathleen Hobohm
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jessica Funke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Joachim Koch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - William R Skach
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Peter U Mayerhofer
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
37
|
Verweij MC, Lipińska AD, Koppers-Lalic D, Quinten E, Funke J, van Leeuwen HC, Bieńkowska-Szewczyk K, Koch J, Ressing ME, Wiertz EJHJ. Structural and functional analysis of the TAP-inhibiting UL49.5 proteins of varicelloviruses. Mol Immunol 2011; 48:2038-51. [PMID: 21764135 DOI: 10.1016/j.molimm.2011.06.438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 01/06/2023]
Abstract
Viral infections are counteracted by virus-specific cytotoxic T cells that recognize the infected cell via MHC class I (MHC I) molecules presenting virus-derived peptides. The loading of the peptides onto MHC I molecules occurs in the endoplasmic reticulum (ER) and is facilitated by the peptide loading complex. A key player in this complex is the transporter associated with antigen processing (TAP), which translocates the viral peptides from the cytosol into the ER. Herpesviruses have developed many strategies to evade cytotoxic T cells. Several members of the genus Varicellovirus encode a UL49.5 protein that prevents peptide transport through TAP. These include bovine herpesvirus (BoHV) 1, BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, pseudorabies virus, felid herpesvirus 1, and equine herpesvirus 1 and 4. BoHV-1 UL49.5 inhibits TAP by preventing conformational changes essential for peptide transport and by inducing degradation of the TAP complex. UL49.5 consists of an ER luminal N-terminal domain, a transmembrane domain and a cytosolic C-terminal tail domain. In this study, the following features of UL49.5 were deciphered: (1) chimeric constructs of BoHV-1 and VZV UL49.5 attribute the lack of TAP inhibition by VZV UL49.5 to its ER-luminal domain, (2) the ER-luminal and TM domains of UL49.5 are required for efficient interaction with and inhibition of TAP, (3) the C-terminal RXRX sequence is essential for TAP degradation by BoHV-1 UL49.5, and (4) in addition to the RXRX sequence, the cytoplasmic tail of BoHV-1 UL49.5 carries a motif that is required for efficient TAP inhibition by the protein. A model is presented depicting how the different domains of UL49.5 may block the translocation of peptides by TAP and target TAP for proteasomal degradation.
Collapse
Affiliation(s)
- Marieke C Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Salnikov ES, Aisenbrey C, Balandin SV, Zhmak MN, Ovchinnikova TV, Bechinger B. Structure and alignment of the membrane-associated antimicrobial peptide arenicin by oriented solid-state NMR spectroscopy. Biochemistry 2011; 50:3784-95. [PMID: 21456583 DOI: 10.1021/bi1018732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The antimicrobial arenicin peptides are cationic amphipathic sequences that strongly interact with membranes. Through a cystine ring closure a cyclic β-sheet structure is formed in aqueous solution, which persists when interacting with model membranes. In order to investigate the conformation, interactions, dynamics, and topology of their bilayer-associated states, arenicin 1 and 2 were prepared by chemical solid-phase peptide synthesis or by bacterial overexpression, labeled selectively or uniformly with (15)N, reconstituted into oriented membranes, and investigated by proton-decoupled (31)P and (15)N solid-state NMR spectroscopy. Whereas the (31)P NMR spectra indicate that the peptide induces orientational disorder at the level of the phospholipid head groups, the (15)N chemical shift spectra agree well with a regular β-sheet conformation such as the one observed in micellar environments. In contrast, the data do not fit the twisted β-sheet structure found in aqueous buffer. Furthermore, the chemical shift distribution is indicative of considerable conformational and/or topological heterogeneity when at the same time the (15)N NMR spectra exclude alignments of the peptide where the β-sheet lies side ways on the membrane surface. The ensemble of experimental constraints, the amphipathic character of the peptide, and in particular the distribution of the six arginine residues are in agreement with a boatlike dimer structure, similar or related to the one observed in micellar solution, that floats on the membrane surface with the possibility to oligomerize into higher order structures and/or to insert in a transmembrane fashion.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- UMR7177, Institut de Chimie, Université de Strasbourg/CNRS, 4, rue Blaise Pascal, 67070 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
39
|
Verweij MC, Lipińska AD, Koppers-Lalic D, van Leeuwen WF, Cohen JI, Kinchington PR, Messaoudi I, Bieńkowska-Szewczyk K, Ressing ME, Rijsewijk FAM, Wiertz EJHJ. The capacity of UL49.5 proteins to inhibit TAP is widely distributed among members of the genus Varicellovirus. J Virol 2011; 85:2351-63. [PMID: 21159875 PMCID: PMC3067808 DOI: 10.1128/jvi.01621-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/19/2010] [Indexed: 11/20/2022] Open
Abstract
The lifelong infection by varicelloviruses is characterized by a fine balance between the host immune response and immune evasion strategies used by these viruses. Virus-derived peptides are presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules. The transporter associated with antigen processing (TAP) transports the peptides from the cytosol into the endoplasmic reticulum, where the loading of MHC-I molecules occurs. The varicelloviruses bovine herpesvirus 1 (BoHV-1), pseudorabies virus, and equid herpesviruses 1 and 4 have been found to encode a UL49.5 protein that inhibits TAP-mediated peptide transport. To investigate to what extent UL49.5-mediated TAP inhibition is conserved within the family of Alphaherpesvirinae, the homologs of another five varicelloviruses, one mardivirus, and one iltovirus were studied. The UL49.5 proteins of BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, and felid herpesvirus 1 were identified as potent TAP inhibitors. The varicella-zoster virus and simian varicellovirus UL49.5 proteins fail to block TAP; this is not due to the absence of viral cofactors that might assist in this process, since cells infected with these viruses did not show reduced TAP function either. The UL49.5 homologs of the mardivirus Marek's disease virus 1 and the iltovirus infectious laryngotracheitis virus did not block TAP, suggesting that the capacity to inhibit TAP via UL49.5 has been acquired by varicelloviruses only. A phylogenetic analysis of viruses that inhibit TAP through their UL49.5 proteins reveals an interesting hereditary pattern, pointing toward the presence of this capacity in defined clades within the genus Varicellovirus.
Collapse
Affiliation(s)
- Marieke C. Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea D. Lipińska
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Danijela Koppers-Lalic
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Wouter F. van Leeuwen
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeffrey I. Cohen
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paul R. Kinchington
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ilhem Messaoudi
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Krystyna Bieńkowska-Szewczyk
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maaike E. Ressing
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Frans A. M. Rijsewijk
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
40
|
Verweij MC, Ressing ME, Knetsch W, Quinten E, Halenius A, van Bel N, Hengel H, Drijfhout JW, van Hall T, Wiertz EJHJ. Inhibition of mouse TAP by immune evasion molecules encoded by non-murine herpesviruses. Mol Immunol 2011; 48:835-45. [PMID: 21292324 DOI: 10.1016/j.molimm.2010.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 12/26/2022]
Abstract
Herpesviruses escape elimination by cytotoxic T lymphocytes through specific interference with the antigen-presenting function of MHC class I (MHC I) molecules. The transporter associated with antigen processing (TAP) forms a bottleneck in the MHC I antigen presentation pathway. The fact that multiple viruses, especially herpesviruses, encode molecules blocking TAP function is a case in point. The action of these viral immuno evasins is usually potent and very specific, making these proteins valuable tools for studying the cell biology of antigen presentation, including alternative antigen processing pathways. Yet, no dedicated TAP inhibitor has been described for any of the mouse herpesviruses. To permit the use of immuno evasins derived from non-mouse herpesviruses in mouse models, we assessed the cross-species activity of four TAP inhibitors and one tapasin inhibitor in the context of three different mouse haplotypes, H-2(b), H-2(d), and H-2(k). Two of the four TAP inhibitors, the bovine herpesvirus 1-encoded UL49.5 and the human cytomegalovirus (HCMV)-encoded US6 protein, potently inhibited mouse TAP. ICP47 and BNLF2a, encoded by herpes simplexvirus 1 and Epstein-Barr virus, respectively, failed to inhibit TAP in all mouse cells tested. Previous work, however, demonstrated that US6 did not cross the mouse species barrier. We now show that substitution of the cysteine residue at position 108 was responsible for this lack of activity. The HCMV-encoded tapasin inhibitor US3 efficiently downregulated H-2(d) molecules on 3T3 cells, but not in other cell lines tested. Finally, we show that synthetic peptides comprising the functional domain of US6 can be exploited as a versatile TAP inhibitor. In conclusion, a complete overview is presented of the applicability of herpesvirus-encoded TAP and tapasin inhibitors in mouse cells of different genetic background.
Collapse
Affiliation(s)
- Marieke C Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bechinger B, Resende JM, Aisenbrey C. The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments. Biophys Chem 2010; 153:115-25. [PMID: 21145159 DOI: 10.1016/j.bpc.2010.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with lipids, and a variety of conceptually different approaches have been developed for their study. The technique is unique in allowing for the high-resolution investigation of liquid disordered lipid bilayers representing well the characteristics of natural membranes. Whereas magic angle solid-state NMR spectroscopy follows approaches that are related to those developed for solution NMR spectroscopy the use of static uniaxially oriented samples results in angular constraints which also provide information for the detailed analysis of polypeptide structures. This review introduces this latter concept theoretically and provides a number of examples. Furthermore, ongoing developments combining solid-state NMR spectroscopy with information from solution NMR spectroscopy and molecular modelling as well as exploratory studies using dynamic nuclear polarization solid-state NMR will be presented.
Collapse
Affiliation(s)
- Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | | | | |
Collapse
|
42
|
Abstract
How ABC transporters work is a key issue because of their important roles in multidrug resistance of pathogenic bacteria, reduced efficacy of antitumor drugs, cholesterol metabolism, cell homeostasis and immune response. In the past few years, significant progress has been made in crystallization and structure determination of (mostly) bacterial ABC transporters, as well as in functional studies on ABC systems involved in human pathology. In this review, we use the transporter associated with antigen processing (TAP) to illustrate what is known regarding the mechanism of substrate transport. We also discuss the chemical basis of substrate recognition by TAP and the allosteric cross-talk between the binding of substrate, the release of chemical energy by ATP hydrolysis and cross-membrane translocation. Finally, we detail the role of TAP in a large macromolecular assembly, which optimally loads MHC class I molecules, and the interference with this machinery by TAP-targeted viral factors. Because of structural and probable mechanistic similarities, the understanding of the detailed structure and mechanism of TAP will be applicable to all ABC systems, including those of medical relevance.
Collapse
|
43
|
Abstract
How ABC transporters work is a key issue because of their important roles in multidrug resistance of pathogenic bacteria, reduced efficacy of antitumor drugs, cholesterol metabolism, cell homeostasis and immune response. In the past few years, significant progress has been made in crystallization and structure determination of (mostly) bacterial ABC transporters, as well as in functional studies on ABC systems involved in human pathology. In this review, we use the transporter associated with antigen processing (TAP) to illustrate what is known regarding the mechanism of substrate transport. We also discuss the chemical basis of substrate recognition by TAP and the allosteric cross-talk between the binding of substrate, the release of chemical energy by ATP hydrolysis and cross-membrane translocation. Finally, we detail the role of TAP in a large macromolecular assembly, which optimally loads MHC class I molecules, and the interference with this machinery by TAP-targeted viral factors. Because of structural and probable mechanistic similarities, the understanding of the detailed structure and mechanism of TAP will be applicable to all ABC systems, including those of medical relevance.
Collapse
Affiliation(s)
- David Parcej
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
44
|
Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys J 2010; 96:86-100. [PMID: 18835909 DOI: 10.1529/biophysj.108.136242] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/03/2008] [Indexed: 11/18/2022] Open
Abstract
Ampullosporin A and alamethicin are two members of the peptaibol family of antimicrobial peptides. These compounds are produced by fungi and are characterized by a high content of hydrophobic amino acids, and in particular the alpha-tetrasubstituted amino acid residue ?-aminoisobutyric acid. Here ampullosporin A and alamethicin were uniformly labeled with (15)N, purified and reconstituted into oriented phophatidylcholine lipid bilayers and investigated by proton-decoupled (15)N and (31)P solid-state NMR spectroscopy. Whereas alamethicin (20 amino acid residues) adopts transmembrane alignments in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes the much shorter ampullosporin A (15 residues) exhibits comparable configurations only in thin membranes. In contrast the latter compound is oriented parallel to the membrane surface in 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine and POPC bilayers indicating that hydrophobic mismatch has a decisive effect on the membrane topology of these peptides. Two-dimensional (15)N chemical shift -(1)H-(15)N dipolar coupling solid-state NMR correlation spectroscopy suggests that in their transmembrane configuration both peptides adopt mixed alpha-/3(10)-helical structures which can be explained by the restraints imposed by the membranes and the bulky alpha-aminoisobutyric acid residues. The (15)N solid-state NMR spectra also provide detailed information on the helical tilt angles. The results are discussed with regard to the antimicrobial activities of the peptides.
Collapse
|
45
|
Salnikov E, Aisenbrey C, Vidovic V, Bechinger B. Solid-state NMR approaches to measure topological equilibria and dynamics of membrane polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:258-65. [DOI: 10.1016/j.bbamem.2009.06.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/12/2009] [Accepted: 06/29/2009] [Indexed: 01/20/2023]
|
46
|
Aisenbrey C, Bertani P, Bechinger B. Solid-state NMR investigations of membrane-associated antimicrobial peptides. Methods Mol Biol 2010; 618:209-33. [PMID: 20094867 DOI: 10.1007/978-1-60761-594-1_14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid-state NMR and other biophysical investigations have revealed many mechanistic details about the interactions of antimicrobial peptides with membranes. These studies have shaped our view on how these peptides cause the killing of bacteria, fungi, or tumour cells and how they permeabilize model membranes. As a result, we better understand the biological activities of these peptides and we are now able to design new and better sequences. Here we present some of the tools that have allowed these solid-state NMR investigations, including detailed protocols on how to reconstitute the peptides into oriented or non-oriented membranes as well as simple set-up procedures for (2)H as well as proton-decoupled (31)P or (15)N solid-state NMR measurements. Static and magic angle spinning experiments are described. Where adequate, the special requirements for or limitations of some of the measurements are discussed. Solid-state NMR spectra of both lipids and peptides have been recorded, and through the ensemble of measurements a detailed picture of these complex peptide-lipid supramolecular systems has finally emerged.
Collapse
|
47
|
Salnikov E, Bertani P, Raap J, Bechinger B. Analysis of the amide (15)N chemical shift tensor of the C(alpha) tetrasubstituted constituent of membrane-active peptaibols, the alpha-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues. JOURNAL OF BIOMOLECULAR NMR 2009; 45:373-387. [PMID: 19823773 DOI: 10.1007/s10858-009-9380-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 09/11/2009] [Indexed: 05/28/2023]
Abstract
In protein NMR spectroscopy the chemical shift provides important information for the assignment of residues and a first structural evaluation of dihedral angles. Furthermore, angular restraints are obtained from oriented samples by solution and solid-state NMR spectroscopic approaches. Whereas the anisotropy of chemical shifts, quadrupolar couplings and dipolar interactions have been used to determine the structure, dynamics and topology of oriented membrane polypeptides using solid-state NMR spectroscopy similar concepts have been introduced to solution NMR through the measurements of residual dipolar couplings. The analysis of (15)N chemical shift spectra depends on the accuracy of the chemical shift tensors. When investigating alamethicin and other peptaibols, i.e. polypeptides rich in alpha-aminoisobutyric acid (Aib), the (15)N chemical shift tensor of this C(alpha)-tetrasubstituted amino acid exhibits pronounced differences when compared to glycine, alanine and other proteinogenic residues. Here we present an experimental investigation on the (15)N amide Aib tensor of N-acetyl-Aib-OH and for the Aib residues within peptaibols. Furthermore, a statistical analysis of the tensors published for di- (glycine) and tri-substituted residues has been performed, where for the first time the published data sets are compiled using a common reference. The size of the isotropic chemical shift and main tensor elements follows the order di- < tri- < tetra-substituted amino acids. A (15)N chemical shift-(1)H-(15)N dipolar coupling correlation NMR spectrum of alamethicin is used to evaluate the consequences of variations in the main tensor elements for the structural analysis of this membrane peptide.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, Strasbourg, France
| | | | | | | |
Collapse
|
48
|
Herget M, Kreissig N, Kolbe C, Schölz C, Tampé R, Abele R. Purification and reconstitution of the antigen transport complex TAP: a prerequisite for determination of peptide stoichiometry and ATP hydrolysis. J Biol Chem 2009; 284:33740-9. [PMID: 19808685 DOI: 10.1074/jbc.m109.047779] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is an essential machine of the adaptive immune system that translocates antigenic peptides from the cytosol into the endoplasmic reticulum lumen for loading of major histocompatibility class I molecules. To examine this ABC transport complex in mechanistic detail, we have established, after extensive screening and optimization, the solubilization, purification, and reconstitution for TAP to preserve its function in each step. This allowed us to determine the substrate-binding stoichiometry of the TAP complex by fluorescence cross-correlation spectroscopy. In addition, the TAP complex shows strict coupling between peptide binding and ATP hydrolysis, revealing no basal ATPase activity in the absence of peptides. These results represent an optimal starting point for detailed mechanistic studies of the transport cycle of TAP by single molecule experiments to analyze single steps of peptide translocation and the stoichiometry between peptide transport and ATP hydrolysis.
Collapse
Affiliation(s)
- Meike Herget
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Resende JM, Moraes CM, Munhoz VHO, Aisenbrey C, Verly RM, Bertani P, Cesar A, Piló-Veloso D, Bechinger B. Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2009; 106:16639-44. [PMID: 19805350 PMCID: PMC2757838 DOI: 10.1073/pnas.0905069106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Indexed: 12/14/2022] Open
Abstract
The heterodimeric antimicrobial peptide distinctin is composed of 2 linear peptide chains of 22- and 25-aa residues that are connected by a single intermolecular S-S bond. This heterodimer has been considered to be a unique example of a previously unrecorded class of bioactive peptides. Here the 2 distinctin chains were prepared by chemical peptide synthesis in quantitative amounts and labeled with (15)N, as well as (15)N and (2)H, at selected residues, respectively, and the heterodimer was formed by oxidation. CD spectroscopy indicates a high content of helical secondary structures when associated with POPC/POPG 3:1 vesicles or in membrane-mimetic environments. The propensity for helix formation follows the order heterodimer >chain 2 >chain 1, suggesting that peptide-peptide and peptide-lipid interactions both help in stabilizing this secondary structure. In a subsequent step the peptides were reconstituted into oriented phospholipid bilayers and investigated by (2)H and proton-decoupled (15)N solid-state NMR spectroscopy. Whereas chain 2 stably inserts into the membrane at orientations close to perfectly parallel to the membrane surface in the presence or absence of chain 1, the latter adopts a more tilted alignment, which further increases in the heterodimer. The data suggest that membrane interactions result in considerable conformational rearrangements of the heterodimer. Therefore, chain 2 stably anchors the heterodimer in the membrane, whereas chain 1 interacts more loosely with the bilayer. These structural observations are consistent with the antimicrobial activities when the individual chains are compared to the dimer.
Collapse
Affiliation(s)
- Jarbas M. Resende
- Université de Strasbourg, Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, 4 rue Blaise Pascal, 67070 Strasbourg, France; and
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Cléria Mendonça Moraes
- Université de Strasbourg, Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, 4 rue Blaise Pascal, 67070 Strasbourg, France; and
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Victor H. O. Munhoz
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Christopher Aisenbrey
- Université de Strasbourg, Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, 4 rue Blaise Pascal, 67070 Strasbourg, France; and
| | - Rodrigo M. Verly
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Philippe Bertani
- Université de Strasbourg, Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, 4 rue Blaise Pascal, 67070 Strasbourg, France; and
| | - Amary Cesar
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Dorila Piló-Veloso
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Burkhard Bechinger
- Université de Strasbourg, Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, 4 rue Blaise Pascal, 67070 Strasbourg, France; and
| |
Collapse
|
50
|
Abele R, Tampé R. Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies. Curr Opin Cell Biol 2009; 21:508-15. [PMID: 19443191 DOI: 10.1016/j.ceb.2009.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 01/03/2023]
Abstract
Cells are metastable per se and a fine-tuned balance of de novo protein synthesis and degradation shapes their proteome. The primary function of peptides is to supply amino acids for de novo protein synthesis or as an energy source during starvation. Peptides are intrinsically short-lived and steadily trimmed by an armada of intra and extracellular peptidases. However, peptides acquired additional, more sophisticated tasks already early in evolution. Here, we summarize current knowledge on intracellular peptide trafficking and translocation mediated by ATP-binding cassette (ABC) transport machineries with a focus on the functions of protein degradation products as important signaling molecules in self-defense mechanisms.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt aM, Germany
| | | |
Collapse
|