1
|
Gopakumar G, Coppo MJ, Diaz-Méndez A, Hartley CA, Devlin JM. Host-virus interactions during infection with a wild-type ILTV strain or a glycoprotein G deletion mutant ILTV vaccine strain in an ex vivo system. Microbiol Spectr 2025; 13:e0118324. [PMID: 39804092 PMCID: PMC11792554 DOI: 10.1128/spectrum.01183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/22/2024] [Indexed: 02/05/2025] Open
Abstract
Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other. Although no viral genes (except for gG) were differentially regulated between the two ILTV-infected TOCs, pair-wise comparison of the transcriptomes of the ∆gG-ILTV or the CSW-1 ILTV-infected TOCs (each compared with mock-infected TOCs) identified the similarities and differences in host gene transcription between them. Several immune checkpoint inhibitors with likely roles in ILTV-mediated immune augmentation, and gene ontologies indicating cytokine response, and cytokine signaling were upregulated in both TOCs. Additionally, several other biological processes, molecular functions, and cellular components were enriched uniquely in the ∆gG-ILTV-infected TOCs, including those that indicated modifications to tracheal extracellular matrix (ECM) structural components, which may have a role in immune modulation in vivo. This study has revealed that the modifications of transcription of host genes during the early stages of ILTV infection are not limited to changes in cytokine or chemokine gene transcription, but several other immune-related genes and ECM components. Moreover, their differential regulation in the ex vivo system appears to be influenced by gG expression, potentially affecting the outcome of ILTV infection in vivo.IMPORTANCEInfectious laryngotracheitis virus (ILTV) remains a serious threat to poultry industries worldwide, causing significant economic losses. The glycoprotein G (gG) of ILTV is a virulence factor and a chemokine-binding protein with immunoregulatory functions. The influence of gG on the transcription of select host chemokine and cytokine genes has been demonstrated previously. This study extends our understanding of the early and localized host-ILTV interactions using genome-wide transcriptome analysis of ILTV-infected chicken tracheal organ cultures, and the role of gG during the process. Differential regulation of genes encoding immune checkpoint inhibitors observed in this study may have a role in ILTV-induced inhibition of type I interferon response, or negative regulation of T cell responses, bringing clarity to these ILTV immune-evasion mechanisms. Furthermore, differential regulation of genes encoding certain structural components and receptors with roles in cell migration, in the absence of gG, is consistent with the immunomodulatory role of ILTV gG.
Collapse
Affiliation(s)
- Gayathri Gopakumar
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Mauricio J.C. Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
- Escuela de Medicina Veterinaria, Universidad Andrés Bello, Concepción, Biobío, Chile
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Carol A. Hartley
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Liu Y, Song Y, Cheng X, Guo X, Yun S, Lu Y, Li M, Wang J, Zou J. A cytokine-like factor 1 homolog acts as a macrophage chemoattractant in grass carp. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109722. [PMID: 38925447 DOI: 10.1016/j.fsi.2024.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Cytokine-like factor 1 (CYTL1) is a small cytokine and has diverse biological functions in mammals. However, whether CYTL1 exists in lower vertebrates is not clear. In this study, we identified cytl homologs in fish and characterized the immune functions in a teleost species, grass carp (Ctenopharyngodon idella). Fish CYTL1 homologs share conserved molecular features with their mammalian counterparts, including 6 cysteine residues in the mature peptide, genomic organization and synteny. Gene expression analysis revealed that cytl1 was constitutively expressed in tissues of grass carp, with the highest expression detected in the heart. Upon infection with Aeromonas hydrophila (A. hydrophila), cytl1 was downregulated in the hindgut, head kidney, skin, and spleen. In the primary head kidney leukocytes (HKLs), stimulation with inactivated A. hydrophila, LPS, poly(I:C), IL-22, IFN-a or IFN-γrel resulted in downregulation of cytl1 expression. Recombinant grass carp CYTL1 protein produced in the HEK293-F cells was potent to induce il-10 expression, but had little effect on the expression of il-1β and il-6. In vivo experiments revealed that CYTL1 was effective to recruit macrophages to the muscle injected with cytl expression plasmids. Taken together, our results indicate that CYTL1 is a potent chemokine for recruitment of macrophages in fish.
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunjie Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xingxing Cheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xu Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shengran Yun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanan Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingjie Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
| |
Collapse
|
3
|
Shen J, Ye D, Jin H, Wu Y, Peng L, Liang Y. Porcine nasal septum cartilage-derived decellularized matrix promotes chondrogenic differentiation of human umbilical mesenchymal stem cells without exogenous growth factors. J Mater Chem B 2024; 12:5513-5524. [PMID: 38745541 DOI: 10.1039/d3tb03077f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS Compared to the TGF-β3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.
Collapse
Affiliation(s)
- Jinpeng Shen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
- Department of Plastic Surgery, Taizhou Enze Medical Center, Zhejiang, P. R. China
| | - Danyan Ye
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Hao Jin
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Yongxuan Wu
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Lihong Peng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Yan Liang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
| |
Collapse
|
4
|
Mosquera JV, Auguste G, Wong D, Turner AW, Hodonsky CJ, Alvarez-Yela AC, Song Y, Cheng Q, Lino Cardenas CL, Theofilatos K, Bos M, Kavousi M, Peyser PA, Mayr M, Kovacic JC, Björkegren JLM, Malhotra R, Stukenberg PT, Finn AV, van der Laan SW, Zang C, Sheffield NC, Miller CL. Integrative single-cell meta-analysis reveals disease-relevant vascular cell states and markers in human atherosclerosis. Cell Rep 2023; 42:113380. [PMID: 37950869 DOI: 10.1016/j.celrep.2023.113380] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD progression involves complex interactions and phenotypic plasticity among vascular and immune cell lineages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures, but human cell phenotypes remain controversial. Here, we perform an integrated meta-analysis of 22 scRNA-seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides characterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into smooth muscle cell (SMC) modulation. We integrate genome-wide association study data and uncover a critical role for modulated SMC phenotypes in CAD, myocardial infarction, and coronary calcification. Finally, we identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardiovascular diseases.
Collapse
Affiliation(s)
- Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Computer Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Qi Cheng
- CVPath Institute, Gaithersburg, MD 20878, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | - Maxime Bos
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48019, USA
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London WC2R 2LS, UK; National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Nathan C Sheffield
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
Han X, Yuan T, Zhang J, Shi Y, Li D, Dong Y, Fan S. FOXO4 peptide targets myofibroblast ameliorates bleomycin-induced pulmonary fibrosis in mice through ECM-receptor interaction pathway. J Cell Mol Med 2022; 26:3269-3280. [PMID: 35510614 PMCID: PMC9170815 DOI: 10.1111/jcmm.17333] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 01/10/2023] Open
Abstract
Pulmonary fibrosis (PF) is a progressive interstitial lung disease with limited treatment options. The incidence and prevalence of PF is increasing with age, cell senescence has been proposed as a pathogenic driver, the clearance of senescent cells could improve lung function in PF. FOXO4-D-Retro-Inverso (FOXO4-DRI), a synthesis peptide, has been reported to selectively kill senescent cells in aged mice. However, it remains unknown if FOXO4-DRI could clear senescent cells in PF and reverse this disease. In this study, we explored the effect of FOXO4-DRI on bleomycin (BLM)-induced PF mouse model. We found that similar as the approved medication Pirfenidone, FOXO4-DRI decreased senescent cells, downregulated the expression of senescence-associated secretory phenotype (SASP) and attenuated BLM-induced morphological changes and collagen deposition. Furthermore, FOXO4-DRI could increase the percentage of type 2 alveolar epithelial cells (AEC2) and fibroblasts, and decrease the myofibroblasts in bleomycin (BLM)-induced PF mouse model. Compared with mouse and human lung fibroblast cell lines, FOXO4-DRI is inclined to kill TGF-β-induced myofibroblast in vitro. The inhibited effect of FOXO4-DRI on myofibroblast lead to a downregulation of extracellular matrix (ECM) receptor interaction pathway in BLM-induced PF. Above all, FOXO4-DRI ameliorates BLM-induced PF in mouse and may be served as a viable therapeutic option for PF.
Collapse
Affiliation(s)
- Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
- Department of Radiation Oncologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tong Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Yonggang Shi
- Department of Radiation Oncologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| |
Collapse
|
6
|
Rios‐Arce ND, Murugesh DK, Hum NR, Sebastian A, Jbeily EH, Christiansen BA, Loots GG. Pre‐existing Type 1 Diabetes Mellitus Blunts the Development of
Post‐Traumatic
Osteoarthritis. JBMR Plus 2022; 6:e10625. [PMID: 35509635 PMCID: PMC9059474 DOI: 10.1002/jbm4.10625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Naiomy D. Rios‐Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
| | - Elias H. Jbeily
- Department of Orthopedic Surgery UC Davis Medical Center Sacramento CA USA
| | | | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories Livermore CA USA
- Molecular and Cell Biology School of Natural Sciences, UC Merced Merced CA USA
| |
Collapse
|
7
|
Sun JS, Wang WW, Lian HK. The Clinical Significance of Changes in Serum New Cytokine CYTL1 in Patients with Knee Osteoarthritis. Int J Gen Med 2021; 14:5105-5109. [PMID: 34511992 PMCID: PMC8420777 DOI: 10.2147/ijgm.s322370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 01/28/2023] Open
Abstract
Objective The present study aims to investigate the clinical significance of changes in the expression of new cytokine-like 1 (CYTL1) in the serum of patients with knee osteoarthritis (KOA). Methods A total of 182 patients with KOA, including 84 males and 98 females aged 39–86 with an average age of 66.4 ± 9.7 and an average body mass index (BMI) of 24.9 ± 2.4 kg/m2, were enrolled in the study. The patients were divided into three subgroups: the grade II subgroup (n = 23), grade III subgroup (n = 63), and grade IV subgroup (n = 96) based on severity, as calculated by the Kellgren and Lawrence (K&L) classification system. In addition, 152 volunteers from our health center who came in for physical examination were selected as the control group, including 70 males and 82 females aged 37–82 with an average age of 63.4 ± 9.5 and an average BMI of 24.8 ± 2.2 kg/m2. An enzyme-linked immunosorbent assay was adopted to detect the serum CYTL1 levels, and the correlation between CYTL1 and the severity of KOA was analyzed. Results The serum level of CYTL1 was significantly lower in the KOA group than in the control group (P < 0.05). In the KOA group, the difference in the serum level of CYTL1 was statistically significant between the subgroups and decreased significantly with an increase in the severity of the disease (F = 54.826, P < 0.001). Therefore, the serum level of CYTL1 was correlated with the severity of the disease, as determined by the K&L classification system (r = −0.613, P < 0.001). Conclusion The serum levels of CYTL1 are strongly correlated with the severity of the disease in patients with KOA and could be a new therapeutic target for KOA.
Collapse
Affiliation(s)
- Jian-Sheng Sun
- Department of Orthopedics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Wei-Wei Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Hong-Kai Lian
- Department of Orthopedics, Zhengzhou Central Hospital, Zhengzhou, 450000, Henan, People's Republic of China
| |
Collapse
|
8
|
Freitag-Wolf S, Munz M, Junge O, Graetz C, Jockel-Schneider Y, Staufenbiel I, Bruckmann C, Lieb W, Franke A, Loos BG, Jepsen S, Dommisch H, Schaefer AS. Sex-specific genetic factors affect the risk of early-onset periodontitis in Europeans. J Clin Periodontol 2021; 48:1404-1413. [PMID: 34409643 DOI: 10.1111/jcpe.13538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/21/2022]
Abstract
AIMS Various studies have reported that young European women are more likely to develop early-onset periodontitis compared to men. A potential explanation for the observed variations in sex and age of disease onset is the natural genetic variation within the autosomal genomes. We hypothesized that genotype-by-sex (G × S) interactions contribute to the increased prevalence and severity. MATERIALS AND METHODS Using the case-only design, we tested for differences in genetic effects between men and women in 896 North-West European early-onset cases, using imputed genotypes from the OmniExpress genotyping array. Population-representative 6823 controls were used to verify that the interacting variables G and S were uncorrelated in the general population. RESULTS In total, 20 loci indicated G × S associations (P < 0.0005), 3 of which were previously suggested as risk genes for periodontitis (ABLIM2, CDH13, and NELL1). We also found independent G × S interactions of the related gene paralogs MACROD1/FLRT1 (chr11) and MACROD2/FLRT3 (chr20). G × S-associated SNPs at CPEB4, CDH13, MACROD1, and MECOM were genome-wide-associated with heel bone mineral density (CPEB4, MECOM), waist-to-hip ratio (CPEB4, MACROD1), and blood pressure (CPEB4, CDH13). CONCLUSIONS Our results indicate that natural genetic variation affects the different heritability of periodontitis among sexes and suggest genes that contribute to inter-sex phenotypic variation in early-onset periodontitis.
Collapse
Affiliation(s)
- Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Munz
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - University Medicine Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Berlin, Germany
| | - Olaf Junge
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christian Graetz
- Department of Conservative Dentistry, Unit of Periodontology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Yvonne Jockel-Schneider
- Department of Periodontology, Clinic of Preventive Dentistry and Periodontology, University Medical Center of the Julius-Maximilians-University, Würzburg, Germany
| | - Ingmar Staufenbiel
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover, Germany
| | - Corinna Bruckmann
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University Vienna, Vienna, Austria
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Bruno G Loos
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Henrik Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - University Medicine Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Berlin, Germany
| | - Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - University Medicine Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Berlin, Germany
| |
Collapse
|
9
|
Cytokine-like protein 1-induced survival of monocytes suggests a combined strategy targeting MCL1 and MAPK in CMML. Blood 2021; 137:3390-3402. [PMID: 33690800 DOI: 10.1182/blood.2020008729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
Mouse models of chronic myeloid malignancies suggest that targeting mature cells of the malignant clone disrupts feedback loops that promote disease expansion. Here, we show that in chronic myelomonocytic leukemia (CMML), monocytes that accumulate in the peripheral blood show a decreased propensity to die by apoptosis. BH3 profiling demonstrates their addiction to myeloid cell leukemia-1 (MCL1), which can be targeted with the small molecule inhibitor S63845. RNA sequencing and DNA methylation pattern analysis both point to the implication of the mitogen-activated protein kinase (MAPK) pathway in the resistance of CMML monocytes to death and reveal an autocrine pathway in which the secreted cytokine-like protein 1 (CYTL1) promotes extracellular signal-regulated kinase (ERK) activation through C-C chemokine receptor type 2 (CCR2). Combined MAPK and MCL1 inhibition restores apoptosis of monocytes from patients with CMML and reduces the expansion of patient-derived xenografts in mice. These results show that the combined inhibition of MCL1 and MAPK is a promising approach to slow down CMML progression by inducing leukemic monocyte apoptosis.
Collapse
|
10
|
Chiesa-Estomba CM, Aiastui A, González-Fernández I, Hernáez-Moya R, Rodiño C, Delgado A, Garces JP, Paredes-Puente J, Aldazabal J, Altuna X, Izeta A. Three-Dimensional Bioprinting Scaffolding for Nasal Cartilage Defects: A Systematic Review. Tissue Eng Regen Med 2021; 18:343-353. [PMID: 33864626 PMCID: PMC8169726 DOI: 10.1007/s13770-021-00331-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, three-dimensional (3D)-printing of tissue-engineered cartilaginous scaffolds is intended to close the surgical gap and provide bio-printed tissue designed to fit the specific geometric and functional requirements of each cartilage defect, avoiding donor site morbidity and offering a personalizing therapy. METHODS To investigate the role of 3D-bioprinting scaffolding for nasal cartilage defects repair a systematic review of the electronic databases for 3D-Bioprinting articles pertaining to nasal cartilage bio-modelling was performed. The primary focus was to investigate cellular source, type of scaffold utilization, biochemical evaluation, histological analysis, in-vitro study, in-vivo study, animal model used, length of research, and placement of experimental construct and translational investigation. RESULTS From 1011 publications, 16 studies were kept for analysis. About cellular sources described, most studies used primary chondrocyte cultures. The cartilage used for cell isolation was mostly nasal septum. The most common biomaterial used for scaffold creation was polycaprolactone alone or in combination. About mechanical evaluation, we found a high heterogeneity, making it difficult to extract any solid conclusion. Regarding biological and histological characteristics of each scaffold, we found that the expression of collagen type I, collagen Type II and other ECM components were the most common patterns evaluated through immunohistochemistry on in-vitro and in-vivo studies. Only two studies made an orthotopic placement of the scaffolds. However, in none of the studies analyzed, the scaffold was placed in a subperichondrial pocket to rigorously simulate the cartilage environment. In contrast, scaffolds were implanted in a subcutaneous plane in almost all of the studies included. CONCLUSION The role of 3D-bioprinting scaffolding for nasal cartilage defects repair is growing field. Despite the amount of information collected in the last years and the first surgical applications described recently in humans. Further investigations are needed due to the heterogeneity on mechanical evaluation parameters, the high level of heterotopic scaffold implantation and the need for quantitative histological data.
Collapse
Affiliation(s)
- Carlos M Chiesa-Estomba
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain.
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | | | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Claudia Rodiño
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Alba Delgado
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Juan P Garces
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Department of Pathology, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Jacobo Paredes-Puente
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Javier Aldazabal
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Xabier Altuna
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| |
Collapse
|
11
|
Minicircles for Investigating and Treating Arthritic Diseases. Pharmaceutics 2021; 13:pharmaceutics13050736. [PMID: 34067675 PMCID: PMC8156692 DOI: 10.3390/pharmaceutics13050736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 01/22/2023] Open
Abstract
Gene delivery systems have become an essential component of research and the development of therapeutics for various diseases. Minicircles are non-viral vectors with promising characteristics for application in a variety of fields. With their minimal size, minicircles exhibit relatively high safety and efficient delivery of genes of interest into cells. Cartilage tissue lacks the natural ability to heal, making it difficult to treat osteoarthritis (OA) and rheumatoid arthritis (RA), which are the two main types of joint-related disease. Although both OA and RA affect the joint, RA is an autoimmune disease, while OA is a degenerative joint condition. Gene transfer using minicircles has also been used in many studies regarding cartilage and its diseased conditions. In this review, we summarize the cartilage-, OA-, and RA-based studies that have used minicircles as the gene delivery system.
Collapse
|
12
|
Zhu W, Yang X, Liu S, Wang M, Ye S, Luo H, Cui S. The involvement of cytokine-like 1 (Cytl1) in chondrogenesis and cartilage metabolism. Biochem Biophys Res Commun 2020; 529:608-614. [PMID: 32736681 DOI: 10.1016/j.bbrc.2020.06.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
The Cytokine-like 1 (Cytl1) is first identified in bone marrow cells and preferentially expressed in cartilaginous tissue, and showed chondrogenic effects in mesenchymal cells, not essential for cartilage or bone development as in Cytl1 knock-out mice but associated with cartilage inflammatory and destruction. Here, we show the involvement of Cytl1 in chondrogenesis. Using specified chondrogenic embryonic skeleton and adult cartilage, the Cytl1 gene expression was investigated with associated chondrogenic factors by quantitative RT-PCR. The effect of Cytl1 protein (rCytl1) on cultured chondrocytes to regulate expression of key factors and phenotypic markers was studied. The results revealed that Cytl1 was highly expressed in chondrogenic process in embryos and adult cartilage. The rCytl1 increased the expression of Sox9 and Col2α1 with stabilized Col1α1 in cultured chondrocytes (redifferentiation). The Cytl1 was expressed and involved at all stages of cartilage development. Furthermore, Cytl1 expression shared similar patterns as other chondrogenic factors, implying interactions with other factors in chondrogenic process. Cytl1 is involved in cartilage development and matrix homeostasis, which defines the dedifferentiation phenotype of chondrocytes, essential to forming of functional cartilage in both physiologic remodeling and pathologic regeneration.
Collapse
Affiliation(s)
- Weicong Zhu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Xiaohong Yang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China.
| | - Shaojie Liu
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Min Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Suihui Ye
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Huixing Luo
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Shuliang Cui
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China; School of BioSciences, University of Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Sebastian A, Murugesh DK, Mendez ME, Hum NR, Rios-Arce ND, McCool JL, Christiansen BA, Loots GG. Global Gene Expression Analysis Identifies Age-Related Differences in Knee Joint Transcriptome during the Development of Post-Traumatic Osteoarthritis in Mice. Int J Mol Sci 2020; 21:ijms21010364. [PMID: 31935848 PMCID: PMC6982134 DOI: 10.3390/ijms21010364] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
Aging and injury are two major risk factors for osteoarthritis (OA). Yet, very little is known about how aging and injury interact and contribute to OA pathogenesis. In the present study, we examined age- and injury-related molecular changes in mouse knee joints that could contribute to OA. Using RNA-seq, first we profiled the knee joint transcriptome of 10-week-old, 62-week-old, and 95-week-old mice and found that the expression of several inflammatory-response related genes increased as a result of aging, whereas the expression of several genes involved in cartilage metabolism decreased with age. To determine how aging impacts post-traumatic arthritis (PTOA) development, the right knee joints of 10-week-old and 62-week-old mice were injured using a non-invasive tibial compression injury model and injury-induced structural and molecular changes were assessed. At six-week post-injury, 62-week-old mice displayed significantly more cartilage degeneration and osteophyte formation compared with young mice. Although both age groups elicited similar transcriptional responses to injury, 62-week-old mice had higher activation of inflammatory cytokines than 10-week-old mice, whereas cartilage/bone metabolism genes had higher expression in 10-week-old mice, suggesting that the differential expression of these genes might contribute to the differences in PTOA severity observed between these age groups.
Collapse
Affiliation(s)
- Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
| | - Melanie E. Mendez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
- Molecular and Cell Biology, School of Natural Sciences, UC Merced, Merced, CA 95343, USA
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
- Molecular and Cell Biology, School of Natural Sciences, UC Merced, Merced, CA 95343, USA
| | - Naiomy D. Rios-Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
| | - Jillian L. McCool
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
- Molecular and Cell Biology, School of Natural Sciences, UC Merced, Merced, CA 95343, USA
| | | | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, USA; (A.S.); (D.K.M.); (M.E.M.); (N.R.H.); (N.D.R.-A.); (J.L.M.)
- Molecular and Cell Biology, School of Natural Sciences, UC Merced, Merced, CA 95343, USA
- Correspondence: ; Tel.: +1-925-423-0923
| |
Collapse
|
14
|
Schneller D, Hofer-Warbinek R, Sturtzel C, Lipnik K, Gencelli B, Seltenhammer M, Wen M, Testori J, Bilban M, Borowski A, Windwarder M, Kapel SS, Besemfelder E, Cejka P, Habertheuer A, Schlechta B, Majdic O, Altmann F, Kocher A, Augustin HG, Luttmann W, Hofer E. Cytokine-Like 1 Is a Novel Proangiogenic Factor Secreted by and Mediating Functions of Endothelial Progenitor Cells. Circ Res 2019; 124:243-255. [PMID: 30582450 DOI: 10.1161/circresaha.118.313645] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Endothelial colony forming cells (ECFCs) or late blood outgrowth endothelial cells can be isolated from human cord or peripheral blood, display properties of endothelial progenitors, home into ischemic tissues and support neovascularization in ischemic disease models. OBJECTIVE To assess the functions of CYTL1 (cytokine-like 1), a factor we found preferentially produced by ECFCs, in regard of vessel formation. METHODS AND RESULTS We show by transcriptomic analysis that ECFCs are distinguished from endothelial cells of the vessel wall by production of high amounts of CYTL1. Modulation of expression demonstrates that the factor confers increased angiogenic sprouting capabilities to ECFCs and can also trigger sprouting of mature endothelial cells. The data further display that CYTL1 can be induced by hypoxia and that it functions largely independent of VEGF-A (vascular endothelial growth factor-A). By recombinant production of CYTL1 we confirm that the peptide is indeed a strong proangiogenic factor and induces sprouting in cellular assays and functional vessel formation in animal models comparable to VEGF-A. Mass spectroscopy corroborates that CYTL1 is specifically O-glycosylated on 2 neighboring threonines in the C-terminal part and this modification is important for its proangiogenic bioactivity. Further analyses show that the factor does not upregulate proinflammatory genes and strongly induces several metallothionein genes encoding anti-inflammatory and antiapoptotic proteins. CONCLUSIONS We conclude that CYTL1 can mediate proangiogenic functions ascribed to endothelial progenitors such as ECFCs in vivo and may be a candidate to support vessel formation and tissue regeneration in ischemic pathologies.
Collapse
Affiliation(s)
- Doris Schneller
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria.,Division Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg (D.S.)
| | - Renate Hofer-Warbinek
- Clinical Department for Heart Surgery (R.H.-W., A.H., A.K.), Medical University of Vienna, Austria
| | - Caterina Sturtzel
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Karoline Lipnik
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Burcu Gencelli
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Monika Seltenhammer
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Mingjie Wen
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Julia Testori
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine (M.B.), Medical University of Vienna, Austria
| | | | - Markus Windwarder
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria (M. Windwarder, F.A.)
| | - Stephanie S Kapel
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (S.S.K., E.B., H.G.A.).,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Germany (S.S.K., H.G.A.)
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (S.S.K., E.B., H.G.A.)
| | - Petra Cejka
- Department of Immunology (P.C., O.M.), Medical University of Vienna, Austria
| | - Andreas Habertheuer
- Clinical Department for Heart Surgery (R.H.-W., A.H., A.K.), Medical University of Vienna, Austria
| | - Bernhard Schlechta
- Department of Gynecology and Obstetrics (B.S.), Medical University of Vienna, Austria
| | - Otto Majdic
- Department of Immunology (P.C., O.M.), Medical University of Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria (M. Windwarder, F.A.)
| | - Alfred Kocher
- Clinical Department for Heart Surgery (R.H.-W., A.H., A.K.), Medical University of Vienna, Austria
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (S.S.K., E.B., H.G.A.).,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Germany (S.S.K., H.G.A.)
| | | | - Erhard Hofer
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| |
Collapse
|
15
|
Zhu S, Kuek V, Bennett S, Xu H, Rosen V, Xu J. Protein Cytl1: its role in chondrogenesis, cartilage homeostasis, and disease. Cell Mol Life Sci 2019; 76:3515-3523. [PMID: 31089746 PMCID: PMC6697716 DOI: 10.1007/s00018-019-03137-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Cytokine-like protein 1 (Cytl1), also named Protein C17 or C4orf4 is located on human chromosome 4p15-p16 and encodes a polypeptide of 126 amino acid residues that displays characteristics of a secretory protein. Cytl1 is expressed by a sub-population of CD34+ human mononuclear cells from bone marrow and cord blood, and by chondrocytes (cartilage-forming cells). In this review, we explore evidence suggesting that Cytl1 may be involved in the regulation of chondrogenesis, cartilage homeostasis and osteoarthritis progression, accompanied by the modulation of Sox9 and insulin-like growth factor 1 expression. In addition, Cytl1 exhibits chemotactic and pro-angiogenic biological effects. Interestingly, CCR2 (C-C chemokine receptor type 2) has been identified as a likely receptor for Cytl1, which mediates the ERK signalling pathway. Cytl1 also appears to mediate the TGF-beta-Smad signalling pathway, which is hypothetically independent of the CCR2 receptor. More recently, studies have also potentially linked Cytl1 with a variety of conditions including cardiac fibrosis, smoking, alcohol dependence risk, and tumours such as benign prostatic hypertrophy, lung squamous cell carcinoma, neuroblastoma and familial colorectal cancer. Defining the molecular structure of Cytl1 and its role in disease pathogenesis will help us to design therapeutic approaches for Cytl1-associated pathological conditions.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Vincent Kuek
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Samuel Bennett
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Vicki Rosen
- Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
16
|
Articular cartilage and sternal fibrocartilage respond differently to extended microgravity. NPJ Microgravity 2019; 5:3. [PMID: 30793021 PMCID: PMC6379395 DOI: 10.1038/s41526-019-0063-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/31/2019] [Indexed: 12/01/2022] Open
Abstract
The effects of spaceflight on cartilaginous structure are largely unknown. To address this deficiency, articular cartilage (AC) and sternal cartilage (SC) from mice exposed to 30 days of microgravity on the BION-M1 craft were investigated for pathological changes. The flight AC showed some evidence of degradation at the tissue level with loss of proteoglycan staining and a reduction in mRNA expression of mechano-responsive and structural cartilage matrix proteins compared to non-flight controls. These data suggest that degradative changes are underway in the AC extracellular matrix exposed to microgravity. In contrast, there was no evidence of cartilage breakdown in SC flight samples and the gene expression profile was distinct from that of AC with a reduction in metalloproteinase gene transcription. Since the two cartilages respond differently to microgravity we propose that each is tuned to the biomechanical environments in which they are normally maintained. That is, the differences between magnitude of normal terrestrial loading and the unloading of microgravity dictates the tissue response. Weight-bearing articular cartilage, but not minimally loaded sternal fibrocartilage, is negatively affected by the unloading of microgravity. We speculate that the maintenance of physiological loading on AC during spaceflight will minimize AC damage.
Collapse
|
17
|
Wang X, Li T, Cheng Y, Wang P, Yuan W, Liu Q, Yang F, Liu Q, Ma D, Ding S, Wang J, Han W. CYTL1 inhibits tumor metastasis with decreasing STAT3 phosphorylation. Oncoimmunology 2019; 8:e1577126. [PMID: 31069137 DOI: 10.1080/2162402x.2019.1577126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/16/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022] Open
Abstract
CYTL1 is a novel cytokine that was first identified in CD34+ hematopoietic cells. We previously prepared recombinant CYTL1 and verified that it chemoattracted human monocytes via the CCR2/ERK pathway. It has been reported that CYTL1 plays contradictory roles in neuroblastoma and lung cancer. We found that the expression level of CYTL1 was notably decreased and it was hypermethylated in various tumors, including breast and lung cancer, by bioinformatics analyses. After validating the expression of CYTL1 in lung cancer, we identified that CYTL1 exerted no obvious effect on tumor cell proliferation but inhibited their migration and invasion, and these effects were accompanied by decreasing STAT3 phosphorylation, using recombinant CYTL1 and CYTL1-overexpressing tumor cell lines. Furthermore, we constructed experimental and spontaneous metastasis models of breast cancer in BALB/c mice and found that CYTL1 significantly inhibited tumor metastasis in vivo. In summary, CYTL1 is a cytokine with tumor-suppressing characteristics that inhibits tumor metastasis and STAT3 phosphorylation in multiple types of tumors.
Collapse
Affiliation(s)
- Xiaolin Wang
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ting Li
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yingying Cheng
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Pingzhang Wang
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wanqiong Yuan
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiyao Liu
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Qiang Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Dalong Ma
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Wenling Han
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Shin Y, Won Y, Yang JI, Chun JS. CYTL1 regulates bone homeostasis in mice by modulating osteogenesis of mesenchymal stem cells and osteoclastogenesis of bone marrow-derived macrophages. Cell Death Dis 2019; 10:47. [PMID: 30718470 PMCID: PMC6362050 DOI: 10.1038/s41419-018-1284-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 01/26/2023]
Abstract
We previously showed that mice with knockout of Cytl1, a functionally uncharacterized cytokine candidate, exhibit normal endochondral ossification and long-bone development. Here, we investigated the potential functions of CYTL1 in bone homeostasis. We found that Cytl1−/− mice exhibited higher bone mass than wild-type littermates and resisted ovariectomy-induced bone resorption. This led us to investigate the functions of CYTL1 in the osteogenesis and osteoclastogenesis of bone marrow-derived stem cells. CYTL1 was down-regulated during the osteogenesis of human mesenchymal stem cells (hMSCs). The osteogenesis of hMSCs was inhibited by overexpression or exogenous treatment of CYTL1, but enhanced by CYTL1 knockdown. CYTL1 decreased osteogenesis by inhibiting RUNX2 and promoted proliferation among undifferentiated hMSCs, but stimulated apoptosis among osteogenically differentiating cells. Finally, Cytl1−/− mice exhibited inhibition of osteoclast activity and the osteoclastogenesis of bone marrow-derived macrophages. Our results collectively suggest that CYTL1 negatively regulates the osteogenesis of MSCs and positively regulates osteoclastogenesis to modulate bone mass in mice.
Collapse
Affiliation(s)
- Youngnim Shin
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Yoonkyung Won
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Jeong-In Yang
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
19
|
Morrison RJ, Nasser HB, Kashlan KN, Zopf DA, Milner DJ, Flanangan CL, Wheeler MB, Green GE, Hollister SJ. Co-culture of adipose-derived stem cells and chondrocytes on three-dimensionally printed bioscaffolds for craniofacial cartilage engineering. Laryngoscope 2018; 128:E251-E257. [PMID: 29668079 PMCID: PMC6105552 DOI: 10.1002/lary.27200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Reconstruction of craniofacial cartilagenous defects are among the most challenging surgical procedures in facial plastic surgery. Bioengineered craniofacial cartilage holds immense potential to surpass current reconstructive options, but limitations to clinical translation exist. We endeavored to determine the viability of utilizing adipose-derived stem cell-chondrocyte co-culture and three-dimensional (3D) printing to produce 3D bioscaffolds for cartilage tissue engineering. We describe a feasibility study revealing a novel approach for cartilage tissue engineering with in vitro and in vivo animal data. METHODS Porcine adipose-derived stem cells and chondrocytes were isolated and co-seeded at 1:1, 2:1, 5:1, 10:1, and 0:1 experimental ratios in a hyaluronic acid/collagen hydrogel in the pores of 3D-printed polycaprolactone scaffolds to form 3D bioscaffolds for cartilage tissue engineering. Bioscaffolds were cultured in vitro without growth factors for 4 weeks and then implanted into the subcutaneous tissue of athymic rats for an additional 4 weeks before sacrifice. Bioscaffolds were subjected to histologic, immunohistochemical, and biochemical analysis. RESULTS Successful production of cartilage was achieved using a co-culture model of adipose-derived stem cells and chondrocytes without the use of exogenous growth factors. Histology demonstrated cartilage growth for all experimental ratios at the post-in vivo time point confirmed with type II collagen immunohistochemistry. There was no difference in sulfated-glycosaminoglycan production between experimental groups. CONCLUSION Tissue-engineered cartilage was successfully produced on 3D-printed bioresorbable scaffolds using an adipose-derived stem cell and chondrocyte co-culture technique. This potentiates co-culture as a solution for several key barriers to a clinically translatable cartilage tissue engineering process. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E251-E257, 2018.
Collapse
Affiliation(s)
- Robert J. Morrison
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University, Nashville, TN, USA
| | - Hassan B. Nasser
- Department of Otolaryngology-Head & Neck Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Khaled N. Kashlan
- Department of Otolaryngology-Head & Neck Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - David A. Zopf
- Department of Otolaryngology-Head & Neck Surgery, Division of Pediatric Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J. Milner
- Carel R. Woese Institute for Genomic Biology, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Colleen L. Flanangan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew B. Wheeler
- Carel R. Woese Institute for Genomic Biology, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Glenn E. Green
- Department of Otolaryngology-Head & Neck Surgery, Division of Pediatric Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Scott J. Hollister
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Wallace A. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
20
|
Zhang K, Shi S, Han W. Research progress in cytokines with chemokine-like function. Cell Mol Immunol 2018; 15:660-662. [PMID: 29176740 PMCID: PMC6123495 DOI: 10.1038/cmi.2017.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Kai Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), 100191, Beijing, China
- Peking, University Center for Human Disease Genomics, 100191, Beijing, China
| | - Shuang Shi
- Peking, University Center for Human Disease Genomics, 100191, Beijing, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), 100191, Beijing, China.
- Peking, University Center for Human Disease Genomics, 100191, Beijing, China.
| |
Collapse
|
21
|
Yao Y, Huang Y, Qian D, Zhang S, Chen Y, Bai B. Effect of Various Ratios of Co‐Cultured ATDC5 Cells and Chondrocytes on the Expression of Cartilaginous Phenotype in Microcavitary Alginate Hydrogel. J Cell Biochem 2017; 118:3607-3615. [DOI: 10.1002/jcb.26218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Yongchang Yao
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Yuyang Huang
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Dongyang Qian
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Shujiang Zhang
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Yi Chen
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Bo Bai
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| |
Collapse
|
22
|
Tomczak A, Singh K, Gittis AG, Lee J, Garboczi DN, Murphy PM. Biochemical and biophysical characterization of cytokine-like protein 1 (CYTL1). Cytokine 2017; 96:238-246. [PMID: 28478073 DOI: 10.1016/j.cyto.2017.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
Cytokine-like protein 1 (CYTL1) is a small widely expressed secreted protein lacking significant primary sequence homology to any other known protein. CYTL1 expression appears to be highest in the hematopoietic system and in chondrocytes; however, maintenance of cartilage in mouse models of arthritis is its only reported function in vivo. Despite lacking sequence homology to chemokines, CYTL1 is predicted by computational methods to fold like a chemokine, and has been reported to function as a chemotactic agonist at the chemokine receptor CCR2 in mouse monocyte/macrophages. Nevertheless, since chemokines are defined by structure and chemokine receptors are able to bind many non-chemokine ligands, direct determination of the CYTL1 tertiary structure will ultimately be required to know whether it actually folds as a chemokine and therefore is a chemokine. Towards this goal, we have developed a method for producing functional recombinant human CYTL1 in bacteria, and we provide new evidence about the biophysical and biochemical properties of recombinant CYTL1. Circular dichroism analysis showed that, like chemokines, CYTL1has a higher content of beta-sheet than alpha-helix secondary structure. Furthermore, recombinant CYTL1 promoted calcium flux in chondrocytes. Nevertheless, unlike chemokines, CYTL1 had limited affinity to proteoglycans. Together, these properties further support cytokine-like properties for CYTL1 with some overlap with the chemokines.
Collapse
Affiliation(s)
- Aurelie Tomczak
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA
| | - Kavita Singh
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Joohee Lee
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA.
| |
Collapse
|
23
|
Li D, Zhu L, Liu Y, Yin Z, Liu Y, Liu F, He A, Feng S, Zhang Y, Zhang Z, Zhang W, Liu W, Cao Y, Zhou G. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet. Acta Biomater 2017; 54:321-332. [PMID: 28342879 DOI: 10.1016/j.actbio.2017.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/16/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. STATEMENT OF SIGNIFICANCE In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by high-density culture of chondrocytes in vitro could cearte a chondrogenic niche in subcutaneous environment and efficiently retain the chondrogenic phenotype of in vitro BMSC engineered cartilage (vitro-BEC). Furthermore, cell tracing results revealed that the regenerated cartilage mainly derived from the implanted vitro-BEC. The current study not only proposes a novel research model for microenvironment simulation but also provides a useful strategy for stable ectopic cartilage regeneration of stem cells.
Collapse
Affiliation(s)
- Dan Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Yu Liu
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Zongqi Yin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Fangjun Liu
- Research Institute of Plastic Surgery, Plastic Surgery Hospital, Wei Fang Medical College, Weifang, Shandong, PR China
| | - Aijuan He
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Zhiyong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China; Research Institute of Plastic Surgery, Plastic Surgery Hospital, Wei Fang Medical College, Weifang, Shandong, PR China.
| |
Collapse
|
24
|
Yang X, Liu S, Li S, Wang P, Zhu W, Liang P, Tan J, Cui S. Salvianolic acid B regulates gene expression and promotes cell viability in chondrocytes. J Cell Mol Med 2017; 21:1835-1847. [PMID: 28244648 PMCID: PMC5571559 DOI: 10.1111/jcmm.13104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/28/2016] [Indexed: 11/27/2022] Open
Abstract
Articular chondrocytes reside in lacunae distributed in cartilage responsible for the remodelling of the tissue with limited ability of damage repairing. The in vitro expanded chondrocytes enhanced by factors/agents to obtain large numbers of cells with strengthened phenotype are essential for successful repair of cartilage lesions by clinical cell implantation therapies. Because the salvianolic acid B (Sal B), a major hydrophilic therapeutic agent isolated from Salvia miltiorrhiza, has been widely used to treat diseases and able to stimulate activity of cells, this study examines the effects of Sal B on passaged chondrocytes. Chondrocytes were treated with various concentrations of Sal B in monolayer culture, their morphological properties and changes, and mitochondrial membrane potential were analysed using microscopic analyses, including cellular biochemical staining and confocal laser scanning microscopy. The proteins were quantified by BCA and Western blotting, and the transcription of genes was detected by qRT‐PCR. The passaged chondrocytes treated with Sal B showed strengthened cellular synthesis and stabilized mitochondrial membrane potential with upregulated expression of the marker genes for chondrocyte phenotype, Col2‐α1, Acan and Sox9, the key Wnt signalling molecule β‐catenin and paracrine cytokine Cytl‐1. The treatments using CYTL‐1 protein significantly increased expression of Col2‐α1 and Acan with no effect on Sox9, indicating the paracrine cytokine acts on chondrocytes independent of SOX9. Sal B has ultimately promoted cell growth and enhanced chondrocyte phenotype. The chondrocytes treated with pharmaceutical agent and cytokine in the formulated medium for generating large number of differentiated chondrocytes would facilitate the cell‐based therapies for cartilage repair.
Collapse
Affiliation(s)
- Xiaohong Yang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Shaojie Liu
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Siming Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Weicong Zhu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Peihong Liang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Jianrong Tan
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Shuliang Cui
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China.,Department of Zoology, Faculty of Science, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Aizawa S, Higaki Y, Dudaui A, Nagasaka M, Takahashi S, Sakata I, Sakai T. Identification of marker genes for pars tuberalis morphogenesis in chick embryo: expression of Cytokine-like 1 and Gap junction protein alpha 5 in pars tuberalis. Cell Tissue Res 2016; 366:721-731. [PMID: 27590887 DOI: 10.1007/s00441-016-2484-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
The adenohypophysis is formed from the oral ectoderm and consists of the pars distalis (PD), pars intermedia, and pars tuberalis (PT). The mechanisms of PD development have been extensively studied, and the cellular differentiation of the PD is well understood. However, the morphogenesis and differentiation of the PT are still unclear, and the genes expressed during PT development remain largely unknown. We have explored genes specifically expressed in the PT during embryonic development and analyzed their spatiotemporal expression patterns. Microarray analysis of laser-captured PT and PD tissues obtained from chick embryos on embryonic day 10 (E10.0) has shown high expression of Cytokine-like 1 (CYTL1) and Gap junction protein alpha 5 (GJA5) genes in the PT. Detailed analysis of these spatiotemporal expression patterns during chick embryo development by in situ hybridization has revealed that CYTL1 mRNA first appears in the lateral head ectoderm and ventral head ectoderm at E1.5. The expression of CYTL1 moves into Rathke's pouch at E2.5 and is then localized in the PT primordium where it is continuously expressed until E12.0. GJA5 mRNA is transiently detected in the PT primordium from E6.0 to E12.0, whereas its expression is not detected in the PD during development. Thus, these genes might be involved in the regulation mechanisms of PT development and could be useful markers for PT development.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.
| | - Yuriko Higaki
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Amrita Dudaui
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Mai Nagasaka
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Sumio Takahashi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Ichiro Sakata
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| |
Collapse
|
26
|
Kim J, Kim J, Lee SH, Kepreotis SV, Yoo J, Chun JS, Hajjar RJ, Jeong D, Park WJ. Cytokine-Like 1 Regulates Cardiac Fibrosis via Modulation of TGF-β Signaling. PLoS One 2016; 11:e0166480. [PMID: 27835665 PMCID: PMC5105950 DOI: 10.1371/journal.pone.0166480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022] Open
Abstract
Cytokine-like 1 (Cytl1) is a secreted protein that is involved in diverse biological processes. A comparative modeling study indicated that Cytl1 is structurally and functionally similar to monocyte chemoattractant protein 1 (MCP-1). As MCP-1 plays an important role in cardiac fibrosis (CF) and heart failure (HF), we investigated the role of Cytl1 in a mouse model of CF and HF. Cytl1 was upregulated in the failing mouse heart. Pressure overload-induced CF was significantly attenuated in cytl1 knock-out (KO) mice compared to that from wild-type (WT) mice. By contrast, adeno-associated virus (AAV)-mediated overexpression of cytl1 alone led to the development of CF in vivo. The endothelial-mesenchymal transition (EndMT) and the transdifferentiation of fibroblasts (FBs) to myofibroblasts (MFBs) have been suggested to contribute considerably to CF. Adenovirus-mediated overexpression of cytl1 was sufficient to induce these two critical CF-related processes in vitro, which were completely abrogated by co-treatment with SB-431542, an antagonist of TGF-β receptor 1. Cytl1 induced the expression of TGF-β2 both in vivo and in vitro. Antagonizing the receptor for MCP-1, C-C chemokine receptor type 2 (CCR2), with CAS 445479-97-0 did not block the pro-fibrotic activity of Cytl1 in vitro. Collectively, our data suggest that Cytl1 plays an essential role in CF likely through activating the TGF-β-SMAD signaling pathway. Although the receptor for Cyt1l remains to be identified, Cytl1 provides a novel platform for the development of anti-CF therapies.
Collapse
MESH Headings
- Animals
- Aorta/surgery
- Benzamides/pharmacology
- Cell Transdifferentiation/drug effects
- Constriction, Pathologic/surgery
- Dioxoles/pharmacology
- Disease Models, Animal
- Endomyocardial Fibrosis/genetics
- Endomyocardial Fibrosis/metabolism
- Endomyocardial Fibrosis/pathology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression Regulation
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Humans
- Male
- Mice
- Mice, Knockout
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myofibroblasts/drug effects
- Myofibroblasts/metabolism
- Myofibroblasts/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Smad Proteins/genetics
- Smad Proteins/metabolism
- Transforming Growth Factor beta2/genetics
- Transforming Growth Factor beta2/metabolism
Collapse
Affiliation(s)
- Jooyeon Kim
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jihwa Kim
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Seung Hee Lee
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sacha V. Kepreotis
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York 10029, United States of America
| | - Jimeen Yoo
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York 10029, United States of America
| | - Jang-Soo Chun
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Roger J. Hajjar
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York 10029, United States of America
| | - Dongtak Jeong
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York 10029, United States of America
- * E-mail: (WJP); (DJ)
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- * E-mail: (WJP); (DJ)
| |
Collapse
|
27
|
Wang X, Li T, Wang W, Yuan W, Liu H, Cheng Y, Wang P, Zhang Y, Han W. Cytokine-like 1 Chemoattracts Monocytes/Macrophages via CCR2. THE JOURNAL OF IMMUNOLOGY 2016; 196:4090-9. [DOI: 10.4049/jimmunol.1501908] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
|
28
|
Nazempour A, Van Wie BJ. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine. Ann Biomed Eng 2016; 44:1325-54. [PMID: 26987846 DOI: 10.1007/s10439-016-1575-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies.
Collapse
Affiliation(s)
- A Nazempour
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA
| | - B J Van Wie
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| |
Collapse
|
29
|
Pereira RC, Costa-Pinto AR, Frias AM, Neves NM, Azevedo HS, Reis RL. In vitro chondrogenic commitment of human Wharton's jelly stem cells by co-culture with human articular chondrocytes. J Tissue Eng Regen Med 2015; 11:1876-1887. [PMID: 27035732 DOI: 10.1002/term.2085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/11/2015] [Indexed: 11/09/2022]
Abstract
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- R C Pereira
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimarães, Portugal.,ICVS/3Bs PT Government-associated Laboratory, Braga/Guimarães, Portugal
| | - A R Costa-Pinto
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimarães, Portugal.,ICVS/3Bs PT Government-associated Laboratory, Braga/Guimarães, Portugal
| | - A M Frias
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimarães, Portugal.,ICVS/3Bs PT Government-associated Laboratory, Braga/Guimarães, Portugal
| | - N M Neves
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimarães, Portugal.,ICVS/3Bs PT Government-associated Laboratory, Braga/Guimarães, Portugal
| | - H S Azevedo
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimarães, Portugal.,ICVS/3Bs PT Government-associated Laboratory, Braga/Guimarães, Portugal
| | - R L Reis
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimarães, Portugal.,ICVS/3Bs PT Government-associated Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
30
|
Hor H, Francescatto L, Bartesaghi L, Ortega-Cubero S, Kousi M, Lorenzo-Betancor O, Jiménez-Jiménez FJ, Gironell A, Clarimón J, Drechsel O, Agúndez JAG, Kenzelmann Broz D, Chiquet-Ehrismann R, Lleó A, Coria F, García-Martin E, Alonso-Navarro H, Martí MJ, Kulisevsky J, Hor CN, Ossowski S, Chrast R, Katsanis N, Pastor P, Estivill X. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor. Hum Mol Genet 2015; 24:5677-86. [PMID: 26188006 DOI: 10.1093/hmg/ddv281] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022] Open
Abstract
Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder.
Collapse
Affiliation(s)
- Hyun Hor
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, CRG CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia 08003, Spain,
| | - Ludmila Francescatto
- Center for Human Disease Modeling, Duke University, Duke University Medical Center, Durham NC 27710, USA
| | - Luca Bartesaghi
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland, Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Sara Ortega-Cubero
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), and Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Pamplona, Navarra 31008, Spain
| | - Maria Kousi
- Center for Human Disease Modeling, Duke University, Duke University Medical Center, Durham NC 27710, USA
| | - Oswaldo Lorenzo-Betancor
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), and Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Pamplona, Navarra 31008, Spain
| | - Felix J Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Madrid 28030, Spain
| | - Alexandre Gironell
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain, Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Jordi Clarimón
- Sant Pau Biomedical Research Institute, Barcelona, Spain, Universitat Autònoma de Barcelona and CIBERNED, Barcelona, Catalonia 08026, Spain
| | - Oliver Drechsel
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Daniela Kenzelmann Broz
- Faculty of Sciences and Department of Biomedicine, Friedrich Miescher Institute of Biomedical Research, Novartis Research Foundation and University of Basel, Basel 4058, Switzerland
| | - Ruth Chiquet-Ehrismann
- Faculty of Sciences and Department of Biomedicine, Friedrich Miescher Institute of Biomedical Research, Novartis Research Foundation and University of Basel, Basel 4058, Switzerland
| | - Alberto Lleó
- Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Francisco Coria
- Clinic for Nervous Disorders, Service of Neurology, Son Espases University Hospital, Palma de Mallorca 07120, Spain
| | - Elena García-Martin
- Department of Biochemistry and Molecular Biology, University of Extremadura, Cáceres 10071, Spain
| | | | - Maria J Martí
- Movement Disorders Unit, Neurology Service, Hospital Clinic, CIBERNED and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia 08036, Spain and
| | - Jaume Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain, Universitat Autònoma de Barcelona and CIBERNED, Barcelona, Catalonia 08026, Spain
| | - Charlotte N Hor
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, CRG CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia 08003, Spain
| | - Stephan Ossowski
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland, Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Duke University Medical Center, Durham NC 27710, USA
| | - Pau Pastor
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), and Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Pamplona, Navarra 31008, Spain,
| | - Xavier Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, CRG CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia 08003, Spain, Dexeus Women's Health, University Hospital Quiron-Dexeus, Barcelona, Catalonia 08028, Spain
| |
Collapse
|
31
|
Kirkegaard K, Villesen P, Jensen JM, Hindkjær JJ, Kølvraa S, Ingerslev HJ, Lykke-Hartmann K. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth. Gene 2015; 571:212-20. [PMID: 26117173 DOI: 10.1016/j.gene.2015.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Results from animal models points towards the existence of a gene expression profile that is distinguishably different in viable embryos compared with non-viable embryos. Knowledge of human embryo transcripts is however limited, in particular with regard to how gene expression is related to clinical outcome. The purpose of the present study was therefore to determine the global gene expression profiles of human blastocysts. Next Generation Sequencing was used to identify genes that were differentially expressed in non-implanted embryos and embryos resulting in live birth. Three trophectoderm biopsies were obtained from morphologically high quality blastocysts resulting in live birth and three biopsies were obtained from non-implanting blastocysts of a comparable morphology. Total RNA was extracted from all samples followed by complete transcriptome sequencing. Using a set of filtering criteria, we obtained a list of 181 genes that were differentially expressed between trophectoderm biopsies from embryos resulting in either live birth or no implantation (negative hCG), respectively. We found that 37 of the 181 genes displayed significantly differential expression (p<0.05), e.g. EFNB1, CYTL1 and TEX26 and TESK1, MSL1 and EVI5 in trophectoderm biopsies associated with live birth and non-implanting, respectively. Out of the 181 genes, almost 80% (145 genes) were up-regulated in biopsies from un-implanted embryos, whereas only 20% (36 genes) showed an up-regulation in the samples from embryos resulting in live birth. Our findings suggest the presence of molecular differences visually undetectable between implanted and non-implanted embryos, and represent a proof of principle study.
Collapse
Affiliation(s)
- Kirstine Kirkegaard
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark.
| | - Palle Villesen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Jacob Malte Jensen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Johnny Juhl Hindkjær
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Steen Kølvraa
- Department of Clinical Genetics, Vejle Hospital, DK-7100 Vejle, Denmark; Institute of Regional Health Services Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Hans Jakob Ingerslev
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
32
|
Pennings JLA, Jennen DGJ, Nygaard UC, Namork E, Haug LS, van Loveren H, Granum B. Cord blood gene expression supports that prenatal exposure to perfluoroalkyl substances causes depressed immune functionality in early childhood. J Immunotoxicol 2015; 13:173-80. [PMID: 25812627 DOI: 10.3109/1547691x.2015.1029147] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds that have widespread use in consumer and industrial applications. PFAS are considered environmental pollutants that have various toxic properties, including effects on the immune system. Recent human studies indicate that prenatal exposure to PFAS leads to suppressed immune responses in early childhood. In this study, data from the Norwegian BraMat cohort was used to investigate transcriptomics profiles in neonatal cord blood and their association with maternal PFAS exposure, anti-rubella antibody levels at 3 years of age and the number of common cold episodes until 3 years. Genes associated with PFAS exposure showed enrichment for immunological and developmental functions. The analyses identified a toxicogenomics profile of 52 PFAS exposure-associated genes that were in common with genes associated with rubella titers and/or common cold episodes. This gene set contains several immunomodulatory genes (CYTL1, IL27) as well as other immune-associated genes (e.g. EMR4P, SHC4, ADORA2A). In addition, this study identified PPARD as a PFAS toxicogenomics marker. These markers can serve as the basis for further mechanistic or epidemiological studies. This study provides a transcriptomics connection between prenatal PFAS exposure and impaired immune function in early childhood and supports current views on PPAR- and NF-κB-mediated modes of action. The findings add to the available evidence that PFAS exposure is immunotoxic in humans and support regulatory policies to phase out these substances.
Collapse
Affiliation(s)
- Jeroen L A Pennings
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Danyel G J Jennen
- b Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands , and
| | - Unni C Nygaard
- c Division of Environmental Medicine , Norwegian Institute of Public Health (NIPH) , Oslo , Norway
| | - Ellen Namork
- c Division of Environmental Medicine , Norwegian Institute of Public Health (NIPH) , Oslo , Norway
| | - Line S Haug
- c Division of Environmental Medicine , Norwegian Institute of Public Health (NIPH) , Oslo , Norway
| | - Henk van Loveren
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands .,b Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands , and
| | - Berit Granum
- c Division of Environmental Medicine , Norwegian Institute of Public Health (NIPH) , Oslo , Norway
| |
Collapse
|
33
|
Kim JS, Kim SY, Lee M, Kim SH, Kim SM, Kim EJ. Radioresistance in a human laryngeal squamous cell carcinoma cell line is associated with DNA methylation changes and topoisomerase II α. Cancer Biol Ther 2015; 16:558-66. [PMID: 25719218 DOI: 10.1080/15384047.2015.1017154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that changes in methylation patterns may help mediate the sensitivity or resistance of cancer cells to ionizing radiation. The present study provides evidence for the involvement of radioresistance-induced DNA methylation changes in tumor radioresistance. We established radioresistant laryngeal cancer cells via long-term fractionated irradiation, and examined differences in DNA methylation between control and radioresistant laryngeal cancer cells. Interestingly, we found that the promoter-CpG islands of 5 previously identified radioresistance-related genes (TOPO2A, PLXDC2, ETNK2, GFI1, and IL12B) were significantly altered in the radioresistant laryngeal cancer cells. Furthermore, the demethylation of these gene promoters with a DNA methyltransferase inhibitor (5-aza-2'-deoxycytidine) increased their transcription levels. Treatment with 5-aza-2'-deoxycytidine also sensitized the radioresistant laryngeal cancer cells to irradiation, indicating that changes in DNA methylation contributed to their radioresistance. Of the tested genes, the expression and activity levels of TOPO2A were tightly associated with the radioresistant phenotype in our system, suggesting that the hypermethylation of TOPO2A might be involved in this radioresistance. Collectively, our data suggest that radiation-induced epigenetic changes can modulate the radioresistance of laryngeal cancer cells, and thus may prove useful as prognostic indicators for radiotherapy.
Collapse
Affiliation(s)
- Jae-Sung Kim
- a Division of Radiation Cancer Research; Korea Institute of Radiological & Medical Sciences ; Seoul , Korea
| | | | | | | | | | | |
Collapse
|
34
|
Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, Zambrowicz B, Powell DR, Vogel P. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res 2014; 2:14034. [PMID: 26273529 PMCID: PMC4472125 DOI: 10.1038/boneres.2014.34] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.
Collapse
Affiliation(s)
| | - Jeff Liu
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| | | | | | | | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| |
Collapse
|
35
|
Doublecortin may play a role in defining chondrocyte phenotype. Int J Mol Sci 2014; 15:6941-60. [PMID: 24758934 PMCID: PMC4013671 DOI: 10.3390/ijms15046941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 01/01/2023] Open
Abstract
Embryonic development of articular cartilage has not been well understood and the role of doublecortin (DCX) in determination of chondrocyte phenotype is unknown. Here, we use a DCX promoter-driven eGFP reporter mouse model to study the dynamic gene expression profiles in mouse embryonic handplates at E12.5 to E13.5 when the condensed mesenchymal cells differentiate into either endochondral chondrocytes or joint interzone cells. Illumina microarray analysis identified a variety of genes that were expressed differentially in the different regions of mouse handplate. The unique expression patterns of many genes were revealed. Cytl1 and 3110032G18RIK were highly expressed in the proximal region of E12.5 handplate and the carpal region of E13.5 handplate, whereas Olfr538, Kctd15, and Cited1 were highly expressed in the distal region of E12.5 and the metacarpal region of E13.5 handplates. There was an increasing gradient of Hrc expression in the proximal to distal direction in E13.5 handplate. Furthermore, when human DCX protein was expressed in human adipose stem cells, collagen II was decreased while aggrecan, matrilin 2, and GDF5 were increased during the 14-day pellet culture. These findings suggest that DCX may play a role in defining chondrocyte phenotype.
Collapse
|
36
|
Stenberg J, Rüetschi U, Skiöldebrand E, Kärrholm J, Lindahl A. Quantitative proteomics reveals regulatory differences in the chondrocyte secretome from human medial and lateral femoral condyles in osteoarthritic patients. Proteome Sci 2013; 11:43. [PMID: 24090399 PMCID: PMC3851248 DOI: 10.1186/1477-5956-11-43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/26/2013] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is a destructive joint disease and there are no known biomarkers available for an early diagnosis. To identify potential disease biomarkers and gain further insight into the disease mechanisms of OA we applied quantitative proteomics with SILAC technology on the secretomes from chondrocytes of OA knees, designated as high Mankin (HM) scored secretome. A quantitative comparison was made between the secretomes of the medial and lateral femur condyle chondrocytes in the same knee since the medial femur condyle is usually more affected in OA than the lateral condyle, which was confirmed by Mankin scoring. The medial/lateral comparison was also made on the secretomes from chondrocytes taken from one individual with no clinically apparent joint-disease, designated as low Mankin (LM) scored secretome. Results We identified 825 proteins in the HM secretome and 69 of these showed differential expression when comparing the medial and lateral femoral compartment. The LM scored femoral condyle showed early signs of OA in the medial compartment as assessed by Mankin score. We here report the identification and relative quantification of several proteins of interest for the OA disease mechanism e.g. CYTL1, DMD and STAB1 together with putative early disease markers e.g. TIMP1, PPP2CA and B2M. Conclusions The present study reveals differences in protein abundance between medial/lateral femur condyles in OA patients. These regulatory differences expand the knowledge regarding OA disease markers and mechanisms.
Collapse
Affiliation(s)
- Johan Stenberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Ulla Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Box 7028, SLUS-75007 Uppsala, Sweden
| | - Johan Kärrholm
- Institute of Clinical Sciences, Department of Orthopaedic Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden.,Clinical Chemistry at Sahlgrenska University Hospital, Bruna Stråket 16, SE-41345 Gothenburg, Sweden
| |
Collapse
|
37
|
Lee YS, Krishnan A, Zhu Q, Troyanskaya OG. Ontology-aware classification of tissue and cell-type signals in gene expression profiles across platforms and technologies. ACTA ACUST UNITED AC 2013; 29:3036-44. [PMID: 24037214 PMCID: PMC3834796 DOI: 10.1093/bioinformatics/btt529] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Motivation: Leveraging gene expression data through large-scale integrative analyses for multicellular organisms is challenging because most samples are not fully annotated to their tissue/cell-type of origin. A computational method to classify samples using their entire gene expression profiles is needed. Such a method must be applicable across thousands of independent studies, hundreds of gene expression technologies and hundreds of diverse human tissues and cell-types. Results: We present Unveiling RNA Sample Annotation (URSA) that leverages the complex tissue/cell-type relationships and simultaneously estimates the probabilities associated with hundreds of tissues/cell-types for any given gene expression profile. URSA provides accurate and intuitive probability values for expression profiles across independent studies and outperforms other methods, irrespective of data preprocessing techniques. Moreover, without re-training, URSA can be used to classify samples from diverse microarray platforms and even from next-generation sequencing technology. Finally, we provide a molecular interpretation for the tissue and cell-type models as the biological basis for URSA’s classifications. Availability and implementation: An interactive web interface for using URSA for gene expression analysis is available at: ursa.princeton.edu. The source code is available at https://bitbucket.org/youngl/ursa_backend. Contact:ogt@cs.princeton.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Young-suk Lee
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | | | | | | |
Collapse
|
38
|
Loeser RF, Olex AL, McNulty MA, Carlson CS, Callahan M, Ferguson C, Fetrow JS. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS One 2013; 8:e54633. [PMID: 23382930 PMCID: PMC3557277 DOI: 10.1371/journal.pone.0054633] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and has multiple risk factors including joint injury. The purpose of this study was to characterize the histologic development of OA in a mouse model where OA is induced by destabilization of the medial meniscus (DMM model) and to identify genes regulated during different stages of the disease, using RNA isolated from the joint “organ” and analyzed using microarrays. Histologic changes seen in OA, including articular cartilage lesions and osteophytes, were present in the medial tibial plateaus of the DMM knees beginning at the earliest (2 week) time point and became progressively more severe by 16 weeks. 427 probe sets (371 genes) from the microarrays passed consistency and significance filters. There was an initial up-regulation at 2 and 4 weeks of genes involved in morphogenesis, differentiation, and development, including growth factor and matrix genes, as well as transcription factors including Atf2, Creb3l1, and Erg. Most genes were off or down-regulated at 8 weeks with the most highly down-regulated genes involved in cell division and the cytoskeleton. Gene expression increased at 16 weeks, in particular extracellular matrix genes including Prelp, Col3a1 and fibromodulin. Immunostaining revealed the presence of these three proteins in cartilage and soft tissues including ligaments as well as in the fibrocartilage covering osteophytes. The results support a phasic development of OA with early matrix remodeling and transcriptional activity followed by a more quiescent period that is not maintained. This implies that the response to an OA intervention will depend on the timing of the intervention. The quiescent period at 8 weeks may be due to the maturation of the osteophytes which are thought to temporarily stabilize the joint.
Collapse
Affiliation(s)
- Richard F Loeser
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Zuo Q, Cui W, Liu F, Wang Q, Chen Z, Fan W. Co-cultivated mesenchymal stem cells support chondrocytic differentiation of articular chondrocytes. INTERNATIONAL ORTHOPAEDICS 2013; 37:747-52. [PMID: 23354690 PMCID: PMC3609966 DOI: 10.1007/s00264-013-1782-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/07/2013] [Indexed: 11/23/2022]
Abstract
Purpose This study investigated which of the reciprocal stimuli between articular chondrocytes (ACs) and mesenchymal stem cells (MSCs) played the more important role in enhancing cartilage matrix formation, and examined the relative importance of physical contact and soluble factors in the co-culture system. Methods Rat ACs and bone marrow MSCs with green fluorescent protein (GFP-BMSCs) were co-cultured in vitro with or without direct cell–cell contact at the ratio of 2:1. After co-culturing in direct cell–cell contact, ACs and GFP-BMSCs were separated by flow cytometry. The effects of different co-culture methods were analysed by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. Results SOX-9, COL2 and aggrecan mRNA levels and protein expression in ACs co-cultured with direct cell–cell contact were significantly higher than in ACs co-cultured without direct cell–cell contact; and similar results were found in GFP-BMSCs. After co-culture either with or without direct cell–cell contact, mRNA levels and protein expression of SOX-9, COL2 and aggrecan in GFP-BMSCs were significantly lower than in ACs in the equivalent co-culture systems. Though the expression of chondrocyte-specific proteins in GFP-BMSCs was enhanced, the protein expression was still much lower than in ACs cultured alone. Conclusions Reciprocal interactions exist between ACs and BMSCs in co-culture. The stimulating and supporting effects of BMSCs on ACs were more important in enhancing cartilage-matrix formation than the reciprocal effect of ACs on BMSCs. Both soluble factors and direct physical contact occur in AC/BMSC co-cultures, with physical contact playing a predominant, or at least very important role.
Collapse
Affiliation(s)
- Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | | | | | | | | | | |
Collapse
|
40
|
Oh H, Chun CH, Chun JS. Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. ACTA ACUST UNITED AC 2012; 64:2568-78. [PMID: 22488261 DOI: 10.1002/art.34481] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Dkk is a family of canonical Wnt antagonists with 4 members (Dkk-1, Dkk-2, Dkk-3, and Dkk-4). We undertook this study to explore the roles of Dkk-1 and Dkk-2 in osteoarthritic (OA) cartilage destruction in mice. METHODS Expression of Dkk and other catabolic factors was determined at the messenger RNA and protein levels in human and mouse OA cartilage. Experimental OA in mice was induced by destabilization of the medial meniscus (DMM) or by intraarticular injection of Epas1 adenovirus (AdEPAS-1). The role of Dkk in OA pathogenesis was examined by intraarticular injection of AdDkk-1 or by using chondrocyte-specific Dkk1 (Col2a1-Dkk1)-transgenic mice and Dkk2 (Col2a1-Dkk2)-transgenic mice. Primary culture mouse chondrocytes were also treated with recombinant Dkk proteins. RESULTS We found opposite patterns of Dkk1 and Dkk2 expression in human and mouse experimental OA cartilage: Dkk1 was up-regulated and Dkk2 was down-regulated. Overexpression of Dkk1 by intraarticular injection of AdDkk-1 significantly inhibited DMM-induced experimental OA. DMM-induced OA was also significantly inhibited in Col2a1-Dkk1-transgenic mice compared with their wild-type littermates. However, Col2a1-Dkk2-transgenic mice showed no significant difference in OA pathogenesis. Wnt-3a, which activates the canonical Wnt pathway, induced Mmp13 and Adamts4 expression in primary culture chondrocytes, an effect that was significantly inhibited by Dkk-1 pretreatment or Dkk1 overexpression. CONCLUSION Our findings indicate that expression of Dkk1, but not Dkk2, in chondrocytes inhibits OA cartilage destruction. The protective effect of Dkk-1 appears to be associated with its capacity to inhibit Wnt-mediated expression of catabolic factors, such as Mmp13, providing evidence that Dkk-1 might serve as a therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Hwanhee Oh
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | |
Collapse
|
41
|
Henry SP, Liang S, Akdemir KC, de Crombrugghe B. The postnatal role of Sox9 in cartilage. J Bone Miner Res 2012; 27:2511-25. [PMID: 22777888 PMCID: PMC3502666 DOI: 10.1002/jbmr.1696] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/05/2012] [Accepted: 06/22/2012] [Indexed: 11/09/2022]
Abstract
Sox9 is an essential transcription factor for the differentiation of the chondrocytic lineage during embryonic development. To test whether Sox9 continues to play a critical role in cartilaginous tissues in the adult mice, we used an inducible, genetic strategy to disrupt the Sox9 gene postnatally in these tissues. The postnatal inactivation of Sox9 led to stunted growth characterized by decreased proliferation, increased cell death, and dedifferentiation of growth plate chondrocytes. Upon postnatal Sox9 inactivation in the articular cartilage, the sulfated proteoglycan and aggrecan content of the uncalcified cartilage were rapidly depleted and the degradation of aggrecan was accompanied by higher ADAMTS5 immunostaining and increased detection of the aggrecan neoepitope, NITEGE. In spite of the severe loss of Collagen 2a1 mRNA, the Collagen II protein persisted in the articular cartilage, and no histopathological signs of osteoarthritis were observed. The homeostasis of the intervertebral disk (IVD) was dramatically altered upon Sox9 depletion, resulting in disk compression and subsequent degeneration. Inactivation of Sox9 in the IVD markedly reduced the expression of several genes encoding extracellular matrix proteins, as well as some of the enzymes responsible for their posttranslational modification. Furthermore, the loss of Sox9 in the IVD decreased the expression of cytokines, cell-surface receptors, and ion channels, suggesting that Sox9 coordinates a large genetic program that is instrumental for the proper homeostasis of the cells contained in the IVD postnatally. Our results indicate that Sox9 has an essential role in the physiological control of cartilaginous tissues in adult mice. © 2012 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stephen P Henry
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center; Houston, TX, USA.
| | | | | | | |
Collapse
|
42
|
Gao X, Usas A, Lu A, Tang Y, Wang B, Chen CW, Li H, Tebbets JC, Cummins JH, Huard J. BMP2 is superior to BMP4 for promoting human muscle-derived stem cell-mediated bone regeneration in a critical-sized calvarial defect model. Cell Transplant 2012; 22:2393-408. [PMID: 23244588 DOI: 10.3727/096368912x658854] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscle-derived cells have been successfully isolated using a variety of different methods and have been shown to possess multilineage differentiation capacities, including an ability to differentiate into articular cartilage and bone in vivo; however, the characterization of human muscle-derived stem cells (hMDSCs) and their bone regenerative capacities have not been fully investigated. Genetic modification of these cells may enhance their osteogenic capacity, which could potentially be applied to bone regenerative therapies. We found that hMDSCs, isolated by the preplate technique, consistently expressed the myogenic marker CD56, the pericyte/endothelial cell marker CD146, and the mesenchymal stem cell markers CD73, CD90, CD105, and CD44 but did not express the hematopoietic stem cell marker CD45, and they could undergo osteogenic, chondrogenic, adipogenic, and myogenic differentiation in vitro. In order to investigate the osteoinductive potential of hMDSCs, we constructed a retroviral vector expressing BMP4 and GFP and a lentiviral vector expressing BMP2. The BMP4-expressing hMDSCs were able to undergo osteogenic differentiation in vitro and exhibited enhanced mineralization compared to nontransduced cells; however, when transplanted into a calvarial defect, they failed to regenerate bone. Local administration of BMP4 protein and cell pretreatment with N-acetylcysteine (NAC), which improves cell survival, did not enhance the osteogenic capacity of the retro-BMP4-transduced cells. In contrast, lenti-BMP2-transduced hMDSCs not only exhibited enhanced in vitro osteogenic differentiation but also induced robust bone formation and nearly completely healed a critical-sized calvarial defect in CD-1 nude mice 6 weeks following transplantation. Herovici's staining of the regenerated bone demonstrated that the bone matrix contained a large amount of type I collagen. Our findings indicated that the hMDSCs are likely mesenchymal stem cells of muscle origin and that BMP2 is more efficient than BMP4 in promoting the bone regenerative capacity of the hMDSCs in vivo.
Collapse
Affiliation(s)
- Xueqin Gao
- Stem Cell Research Center, Growth and Developmental Laboratory, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ogawa H, Hatano S, Sugiura N, Nagai N, Sato T, Shimizu K, Kimata K, Narimatsu H, Watanabe H. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development. PLoS One 2012; 7:e43806. [PMID: 22952769 PMCID: PMC3429490 DOI: 10.1371/journal.pone.0043806] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/26/2012] [Indexed: 12/13/2022] Open
Abstract
Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2−/− mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2−/− chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.
Collapse
Affiliation(s)
- Hiroyasu Ogawa
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Orthopaedic Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan
| | - Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Takashi Sato
- Research Center for Medical Glycoscience, Advanced Industrial Science and Technology, Nagakute, Japan
| | - Katsuji Shimizu
- Department of Orthopaedic Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan
| | - Koji Kimata
- Research Complex for Medicine Frontiers, Aichi Medical University, Nagakute, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, Advanced Industrial Science and Technology, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
- * E-mail:
| |
Collapse
|
44
|
Kim JS, Yun HS, Um HD, Park JK, Lee KH, Kang CM, Lee SJ, Hwang SG. Identification of inositol polyphosphate 4-phosphatase type II as a novel tumor resistance biomarker in human laryngeal cancer HEp-2 cells. Cancer Biol Ther 2012; 13:1307-18. [PMID: 22895072 PMCID: PMC3493439 DOI: 10.4161/cbt.21788] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although tumor resistance remains a significant impediment to successful radiotherapy, associated regulatory markers and detailed molecular mechanisms underlying this phenomenon are not well defined. In this study, we identified inositol polyphosphate 4-phosphatase type II (INPP4B) as a novel marker of radioresistance by systematically analyzing Unigene libraries of laryngeal cancer. INPP4B was highly expressed in radioresistant laryngeal cancer cells and was induced by treatment with either radiation or anticancer drugs in various types of cancer cells. Ectopic INPP4B overexpression increased radioresistance and anticancer drug resistance by suppressing apoptosis in HEp-2 cells. Conversely, INPP4B depletion with small interfering RNA resensitized HEp-2 as well as A549 and H1299 cells to radiation- and anticancer drug-induced apoptosis. Furthermore, radiation-induced INPP4B expression was blocked by inhibition of extracellular signal-regulated kinase (ERK). INPP4B depletion significantly attenuated radiation-induced increases in Akt phosphorylation, indicating an association of INPP4B-mediated radioresistance with Akt survival signaling. Taken together, our data suggest that ERK-dependent induction of INPP4B triggers the development of a tumor-resistance phenotype via Akt signaling and identify INPP4B as a potentially important target molecule for resolving the radioresistance of cancer cells.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
WEN MINGJIE, WANG HUANMIN, ZHANG XULONG, LONG JUN, LV ZHE, KONG QINGLI, AN YUNQING. Cytokine-like 1 is involved in the growth and metastasis of neuroblastoma cells. Int J Oncol 2012; 41:1419-24. [DOI: 10.3892/ijo.2012.1552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/15/2012] [Indexed: 11/06/2022] Open
|
46
|
Oh H, Ryu JH, Jeon J, Yang S, Chun CH, Park H, Kim HJ, Kim WS, Kim HH, Kwon YG, Chun JS. Misexpression of Dickkopf-1 in endothelial cells, but not in chondrocytes or hypertrophic chondrocytes, causes defects in endochondral ossification. J Bone Miner Res 2012; 27:1335-44. [PMID: 22407773 DOI: 10.1002/jbmr.1583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Developing cartilage serves as a template for long-bone development during endochondral ossification. Although the coupling of cartilage and bone development with angiogenesis is an important regulatory step for endochondral ossification, the molecular mechanisms are poorly understood. One possible mechanism involves the action of Dickkopf (DKK), which is a family of soluble canonical Wnt antagonists with four members (DKK1-4). We initially observed opposite expression patterns of Dkk1 and Dkk2 during angiogenesis and chondrocyte differentiation: downregulation of Dkk1 and upregulation of Dkk2. We examined the in vivo role of Dkk1 and Dkk2 in linking cartilage/bone development and angiogenesis by generating transgenic (TG) mice that specifically express Dkk1 or Dkk2 in chondrocytes, hypertrophic chondrocytes, or endothelial cells. Despite specific expression pattern during cartilage development, chondrocyte- and hypertrophic chondrocyte-specific Dkk1 and Dkk2 TG mice showed normal developmental phenotypes. However, Dkk1 misexpression in endothelial cells resulted in defects of endochondral ossification and reduced skeletal size. The defects are caused by the inhibition of angiogenesis in developing bone and subsequent inhibition of apoptosis of hypertrophic chondrocytes and cartilage resorption.
Collapse
Affiliation(s)
- Hwanhee Oh
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
INTRODUCTION The recent DNA methylation studies on cancers have revealed the necessity of profiling an entire human genome and not to restrict the profiling to specific regions of the human genome. It has been suggested that genome-wide DNA methylation analysis enables us to identify the genes that are regulated by DNA methylation in carcinogenesis. METHODS So, we performed whole-genome DNA methylation analysis for human lung squamous cell carcinoma (SCC), which is strongly related with smoking. We also performed microarrays using 21 pairs of normal lung tissues and tumors from patients with SCC. By combining these data, 30 hypermethylated and down-regulated genes, and 22 hypomethylated and up-regulated genes were selected. The gene expression level and DNA methylation pattern were confirmed by semiquantitative reverse-transcriptase polymerase chain reaction and pyrosequencing, respectively. RESULTS By these validations, we selected five hypermethylated and down-regulated genes and one hypomethylated and up-regulated gene. Moreover, these six genes were proven to be actually regulated by DNA methylation by confirming the recovery of their DNA methylation pattern and gene expression level using a demethylating agent. The DNA methylation pattern of the CYTL1 promoter region was significantly different between early and advanced stages of SCC. CONCLUSION In conclusion, by combining the whole-genome DNA methylation pattern and the gene expression profile, we identified the six genes (CCDC37, CYTL1, CDO1, SLIT2, LMO3, and SERPINB5) that are regulated by DNA methylation, and we suggest their value as target molecules for further study of SCC.
Collapse
|
48
|
Rhee J, Ryu JH, Kim JH, Chun CH, Chun JS. α-Catenin inhibits β-catenin-T-cell factor/lymphoid enhancing factor transcriptional activity and collagen type II expression in articular chondrocytes through formation of Gli3R.α-catenin.β-catenin ternary complex. J Biol Chem 2012; 287:11751-60. [PMID: 22298781 DOI: 10.1074/jbc.m111.281014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chondrocytes, a unique cell type in cartilage tissue, are responsible for the regulation of anabolic and catabolic homeostasis in cartilage-specific extracellular matrix synthesis. Activation of Wnt/β-catenin signaling induces dedifferentiation of articular chondrocytes, resulting in suppression of type II collagen expression. We have shown previously that α-catenin inhibits β-catenin-Tcf/Lef (T-cell factor/lymphoid-enhancing factor) transcriptional activity in articular chondrocytes with a concomitant recovery of type II collagen expression. In the current study, we elucidated the mechanism underlying this inhibition of β-catenin-Tcf/Lef transcriptional activity by α-catenin, showing that it requires direct interaction between α-catenin and β-catenin. We further showed that it involves recruitment of Gli3R, the short transcription-repressing form of the transcription factor Gli3, to β-catenin by α-catenin. The resulting inhibition of β-catenin transcriptional activity leads to increased expression of type II collagen. Gli3R and α-catenin actions are co-dependent: both are necessary for the observed inhibitory effects on β-catenin transcriptional activity. Reducing Gli3R expression levels through activation of Indian Hedgehog (Ihh) signaling also is sufficient to activate β-catenin transcriptional activity, suggesting that the ternary complex, Gli3R·α-catenin·β-catenin, mediates Ihh-dependent activation of Wnt/β-catenin signaling in articular chondrocytes. Collectively, this study shows that α-catenin functions as a nuclear factor that recruits the transcriptional repressor Gli3R to β-catenin to inhibit β-catenin transcriptional activity and dedifferentiation of articular chondrocytes. Finally, osteoarthritic cartilage showed elevated levels of β-catenin and decreased levels of α-catenin and Gli3R, suggesting that decreased levels of α-catenin and Gli3R levels contribute to increased β-catenin transcriptional activity during osteoarthritic cartilage destruction.
Collapse
Affiliation(s)
- Jinseol Rhee
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | |
Collapse
|
49
|
Nam J, Perera P, Liu J, Rath B, Deschner J, Gassner R, Butterfield TA, Agarwal S. Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis. PLoS One 2011; 6:e24320. [PMID: 21931681 PMCID: PMC3172226 DOI: 10.1371/journal.pone.0024320] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/05/2011] [Indexed: 11/19/2022] Open
Abstract
Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced arthritis (MIA) of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade 1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to Grade 3-3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression, and the expression of salient genes was confirmed by real-time-PCR. Functional networks generated by Ingenuity Pathways Analysis (IPA) from the microarray data correlated the macroscopic/histologic findings with molecular interactions of genes/gene products. Temporal changes in gene expression during the progression of MIA were categorized into five major gene clusters. IPA revealed that Grade 1 damage was associated with upregulation of acute/innate inflammatory responsive genes (Cluster I) and suppression of genes associated with musculoskeletal development and function (Cluster IV). Grade 2 damage was associated with upregulation of chronic inflammatory and immune trafficking genes (Cluster II) and downregulation of genes associated with musculoskeletal disorders (Cluster IV). The Grade 3 to 3.5 cartilage damage was associated with chronic inflammatory and immune adaptation genes (Cluster III). These findings suggest that temporal regulation of discrete gene clusters involving inflammatory mediators, receptors, and proteases may control the progression of cartilage destruction. In this process, IL-1β, TNF-α, IL-15, IL-12, chemokines, and NF-κB act as central nodes of the inflammatory networks, regulating catabolic processes. Simultaneously, upregulation of asporin, and downregulation of TGF-β complex, SOX-9, IGF and CTGF may be central to suppress matrix synthesis and chondrocytic anabolic activities, collectively contributing to the progression of cartilage destruction in MIA.
Collapse
Affiliation(s)
- Jin Nam
- The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Priyangi Perera
- The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Jie Liu
- The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Bjoern Rath
- Department of Orthopedic Surgery, University of Aachen, Aachen, Germany
| | - James Deschner
- Department of Periodontics, University of Köln, Köln, Germany
| | - Robert Gassner
- Department of Oral and Maxillofacial Surgery, University of Innsbruck College of Medicine, Innsbruck, Austria
| | - Timothy A. Butterfield
- Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sudha Agarwal
- The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
- Department of Orthopedics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
50
|
Ryu JH, Yang S, Shin Y, Rhee J, Chun CH, Chun JS. Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice. ACTA ACUST UNITED AC 2011; 63:2732-43. [DOI: 10.1002/art.30451] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|