1
|
Lo Buglio G, Lo Cicero A, Campora S, Ghersi G. The Multifaced Role of Collagen in Cancer Development and Progression. Int J Mol Sci 2024; 25:13523. [PMID: 39769286 PMCID: PMC11678882 DOI: 10.3390/ijms252413523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/05/2025] Open
Abstract
Collagen is a crucial protein in the extracellular matrix (ECM) essential for preserving tissue architecture and supporting crucial cellular functions like proliferation and differentiation. There are twenty-eight identified types of collagen, which are further divided into different subgroups. This protein plays a critical role in regulating tissue homeostasis. However, in solid tumors, the balance can be disrupted, due to an abundance of collagen in the tumor microenvironment, which significantly affects tumor growth, cell invasion, and metastasis. It is important to investigate the specific types of collagens in cancer ECM and their distinct roles in tumor progression to comprehend their unique contribution to tumor behavior. The diverse pathophysiological functions of different collagen types in cancers illustrate collagen's dual roles, offering potential therapeutic options and serving as prognostic markers.
Collapse
Affiliation(s)
- Gabriele Lo Buglio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alessandra Lo Cicero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Abiel srl, 90128 Palermo, Italy
| |
Collapse
|
2
|
Pliego-Arreaga R, Cervantes-Montelongo JA, Silva-Martínez GA, Tristán-Flores FE, Pantoja-Hernández MA, Maldonado-Coronado JR. Joint Hypermobility Syndrome and Membrane Proteins: A Comprehensive Review. Biomolecules 2024; 14:472. [PMID: 38672488 PMCID: PMC11048254 DOI: 10.3390/biom14040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ehlers-Danlos syndromes (EDSs) constitute a heterogeneous group of connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Asymptomatic EDSs, joint hypermobility without associated syndromes, EDSs, and hypermobility spectrum disorders are the commonest phenotypes associated with joint hypermobility. Joint hypermobility syndrome (JHS) is a connective tissue disorder characterized by extreme flexibility of the joints, along with pain and other symptoms. JHS can be a sign of a more serious underlying genetic condition, such as EDS, which affects the cartilage, bone, fat, and blood. The exact cause of JHS could be related to genetic changes in the proteins that add flexibility and strength to the joints, ligaments, and tendons, such as collagen. Membrane proteins are a class of proteins embedded in the cell membrane and play a crucial role in cell signaling, transport, and adhesion. Dysregulated membrane proteins have been implicated in a variety of diseases, including cancer, cardiovascular disease, and neurological disorders; recent studies have suggested that membrane proteins may also play a role in the pathogenesis of JHS. This article presents an exploration of the causative factors contributing to musculoskeletal pain in individuals with hypermobility, based on research findings. It aims to provide an understanding of JHS and its association with membrane proteins, addressing the clinical manifestations, pathogenesis, diagnosis, and management of JHS.
Collapse
Affiliation(s)
- Raquel Pliego-Arreaga
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico; (J.A.C.-M.); (M.A.P.-H.); (J.R.M.-C.)
| | - Juan Antonio Cervantes-Montelongo
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico; (J.A.C.-M.); (M.A.P.-H.); (J.R.M.-C.)
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico;
| | | | | | | | - Juan Raúl Maldonado-Coronado
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico; (J.A.C.-M.); (M.A.P.-H.); (J.R.M.-C.)
| |
Collapse
|
3
|
Hany U, Watson CM, Liu L, Smith CEL, Harfoush A, Poulter JA, Nikolopoulos G, Balmer R, Brown CJ, Patel A, Simmonds J, Charlton R, Acosta de Camargo MG, Rodd HD, Jafri H, Antanaviciute A, Moffat M, Al-Jawad M, Inglehearn CF, Mighell AJ. Heterozygous COL17A1 variants are a frequent cause of amelogenesis imperfecta. J Med Genet 2024; 61:347-355. [PMID: 37979963 PMCID: PMC10982616 DOI: 10.1136/jmg-2023-109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Collagen XVII is most typically associated with human disease when biallelic COL17A1 variants (>230) cause junctional epidermolysis bullosa (JEB), a rare, genetically heterogeneous, mucocutaneous blistering disease with amelogenesis imperfecta (AI), a developmental enamel defect. Despite recognition that heterozygous carriers in JEB families can have AI, and that heterozygous COL17A1 variants also cause dominant corneal epithelial recurrent erosion dystrophy (ERED), the importance of heterozygous COL17A1 variants causing dominant non-syndromic AI is not widely recognised. METHODS Probands from an AI cohort were screened by single molecule molecular inversion probes or targeted hybridisation capture (both a custom panel and whole exome sequencing) for COL17A1 variants. Patient phenotypes were assessed by clinical examination and analyses of affected teeth. RESULTS Nineteen unrelated probands with isolated AI (no co-segregating features) had 17 heterozygous, potentially pathogenic COL17A1 variants, including missense, premature termination codons, frameshift and splice site variants in both the endo-domains and the ecto-domains of the protein. The AI phenotype was consistent with enamel of near normal thickness and variable focal hypoplasia with surface irregularities including pitting. CONCLUSION These results indicate that COL17A1 variants are a frequent cause of dominantly inherited non-syndromic AI. Comparison of variants implicated in AI and JEB identifies similarities in type and distribution, with five identified in both conditions, one of which may also cause ERED. Increased availability of genetic testing means that more individuals will receive reports of heterozygous COL17A1 variants. We propose that patients with isolated AI or ERED, due to COL17A1 variants, should be considered as potential carriers for JEB and counselled accordingly, reflecting the importance of multidisciplinary care.
Collapse
Affiliation(s)
- Ummey Hany
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Christopher M Watson
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | - Lu Liu
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - Claire E L Smith
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Asmaa Harfoush
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - James A Poulter
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Georgios Nikolopoulos
- Institute for Fundamental Biomedical Research, B.S.R.C. 'Alexander Fleming', Vari, Attica, Greece
| | - Richard Balmer
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - Catriona J Brown
- Birmingham Dental Hospital, Mill Pool Way, Edgbaston, Birmingham, UK
| | - Anesha Patel
- LCRN West Midlands Core Team, NIHR Clinical Research Network (CRN), Birmingham Research Park (West Wing), Vincent Drive, Edgbaston, Birmingham, UK
| | - Jenny Simmonds
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | - Ruth Charlton
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | | | - Helen D Rodd
- Academic Unit of Oral Health Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Hussain Jafri
- Fatima Jinnah Medical University, Punjab Thalassaemia and Other Genetic Disorders Prevention and Research Institute, Lahore, Pakistan
| | | | - Michelle Moffat
- Paediatric Dentistry, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Maisoon Al-Jawad
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - Chris F Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Alan J Mighell
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Nolan M, Scott C, Hof PR, Ansorge O. Betz cells of the primary motor cortex. J Comp Neurol 2024; 532:e25567. [PMID: 38289193 PMCID: PMC10952528 DOI: 10.1002/cne.25567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 02/01/2024]
Abstract
Betz cells, named in honor of Volodymyr Betz (1834-1894), who described them as "giant pyramids" in the primary motor cortex of primates and other mammalian species, are layer V extratelencephalic projection (ETP) neurons that directly innervate α-motoneurons of the brainstem and spinal cord. Despite their large volume and circumferential dendritic architecture, to date, no single molecular criterion has been established that unequivocally distinguishes adult Betz cells from other layer V ETP neurons. In primates, transcriptional signatures suggest the presence of at least two ETP neuron clusters that contain mature Betz cells; these are characterized by an abundance of axon guidance and oxidative phosphorylation transcripts. How neurodevelopmental programs drive the distinct positional and morphological features of Betz cells in humans remains unknown. Betz cells display a distinct biphasic firing pattern involving early cessation of firing followed by delayed sustained acceleration in spike frequency and magnitude. Few cell type-specific transcripts and electrophysiological characteristics are conserved between rodent layer V ETP neurons of the motor cortex and primate Betz cells. This has implications for the modeling of disorders that affect the motor cortex in humans, such as amyotrophic lateral sclerosis (ALS). Perhaps vulnerability to ALS is linked to the evolution of neural networks for fine motor control reflected in the distinct morphomolecular architecture of the human motor cortex, including Betz cells. Here, we discuss histological, molecular, and functional data concerning the position of Betz cells in the emerging taxonomy of neurons across diverse species and their role in neurological disorders.
Collapse
Affiliation(s)
- Matthew Nolan
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Connor Scott
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Patrick. R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Merli M, Accorinti M, Romagnuolo M, Marzano A, Di Zenzo G, Moro F, Antiga E, Maglie R, Cozzani E, Parodi A, Gasparini G, Sollena P, De Simone C, Caproni M, Pisano L, Fattore D, Balestri R, Sena P, Vezzoli P, Teoli M, Ardigò M, Vassallo C, Michelerio A, Satta RR, Dika E, Melotti B, Ribero S, Quaglino P. Autoimmune bullous dermatoses in cancer patients treated by immunotherapy: a literature review and Italian multicentric experience. Front Med (Lausanne) 2023; 10:1208418. [PMID: 37547602 PMCID: PMC10400335 DOI: 10.3389/fmed.2023.1208418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Cutaneous immune-related adverse events are frequently associated with immune checkpoint inhibitors (ICIs) administration in cancer patients. In fact, these monoclonal antibodies bind the cytotoxic T-lymphocyte antigen-4 and programmed cell death-1/ligand 1 leading to a non-specific activation of the immune system against both tumoral cells and self-antigens. The skin is the most frequently affected organ system appearing involved especially by inflammatory manifestations such as maculopapular, lichenoid, psoriatic, and eczematous eruptions. Although less common, ICI-induced autoimmune blistering diseases have also been reported, with an estimated overall incidence of less than 5%. Bullous pemphigoid-like eruption is the predominant phenotype, while lichen planus pemphigoides, pemphigus vulgaris, and mucous membrane pemphigoid have been described anecdotally. Overall, they have a wide range of clinical presentations and often overlap with each other leading to a delayed diagnosis. Achieving adequate control of skin toxicity in these cases often requires immunosuppressive systemic therapies and/or interruption of ICI treatment, presenting a therapeutic challenge in the context of cancer management. In this study, we present a case series from Italy based on a multicenter, retrospective, observational study, which included 45 patients treated with ICIs who developed ICI-induced bullous pemphigoid. In addition, we performed a comprehensive review to identify the cases reported in the literature on ICI-induced autoimmune bullous diseases. Several theories seeking their underlying pathogenesis have been reported and this work aims to better understand what is known so far on this issue.
Collapse
Affiliation(s)
- Martina Merli
- Dermatology Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martina Accorinti
- Dermatology Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maurizio Romagnuolo
- Dermatology Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Angelo Marzano
- Dermatology Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Giovanni Di Zenzo
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Francesco Moro
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Emanuele Cozzani
- Section of Dermatology, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Dermatology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Aurora Parodi
- Section of Dermatology, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Dermatology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Gasparini
- Section of Dermatology, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Dermatology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Sollena
- Dermatology Unit, Department of Surgical and Medical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Clara De Simone
- Dermatology Unit, Department of Surgical and Medical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dermatology Unit, University Department of Medicine and Translational Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marzia Caproni
- Immunopathology and Rare Skin Diseases Unit, Section of Dermatology, Department of Health Sciences, Azienda Unità Sanitaria Locale Toscana Centro, University of Florence, Florence, Italy
| | - Luigi Pisano
- Section of Dermatology, Department of Health Sciences, Azienda Unità Sanitaria Locale Toscana Centro, University of Florence, Florence, Italy
| | - Davide Fattore
- Section of Dermatology, Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Riccardo Balestri
- Division of Dermatology, Outpatient Consultation for Rare Diseases, APSS, Trento, Italy
| | - Paolo Sena
- Dermatology Unit ASST-Papa Giovanni XXIII, Bergamo, Italy
| | - Pamela Vezzoli
- Dermatology Unit ASST-Papa Giovanni XXIII, Bergamo, Italy
| | - Miriam Teoli
- Porphyria and Rare Diseases, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Marco Ardigò
- Porphyria and Rare Diseases, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Camilla Vassallo
- Dermatology Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Michelerio
- Dermatology Unit, Ospedale Cardinal Massaia, Asti, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Rosanna Rita Satta
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Emi Dika
- Melanoma Center, Dermatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Unit of Dermatology, Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Barbara Melotti
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Ribero
- Dermatology Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Dermatology Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
7
|
Ganji R, Mahboubi-Fooladi Z, Shahidi-Dadras M, Tehranchinia Z, Abdollahimajd F, Ghalamkarpour F, Robati RM, Gheisari M, Mozafari N, Dadkhahfar S, Nasiri S. Brain MRI findings in patients with bullous pemphigoid: A case-control study. Exp Dermatol 2023; 32:542-546. [PMID: 36645025 DOI: 10.1111/exd.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
Evidence suggests that bullous pemphigoid (BP) is associated with multiple neurological disorders. We aimed to compare brain magnetic resonance (MRI) findings between BP patients and a control group. This case-control study included patients with BP referred to two dermatology clinics during a two-year period. A group of individuals attending the same clinics for cosmetic procedures were selected as controls. First, participants' general information including age, gender, education, weight and underlying disease was recorded. For BP patients, the drugs and the BP Disease Area Index (BPDAI) were recorded as well. Then, all participants underwent brain MRI without contrast. The Fazekas scale, the general cerebral atrophy (GCA) score, and the Medial Temporal lobe Atrophy (MTA) score were used to assess MRI images. Overall, 24 BP patients and 24 controls were evaluated in this study. Both groups were comparable regarding age, gender and education. However, diabetes and hypertension were more frequent in the control group. The mean BPDAI total score was 51.39 ± 68.92 in BP patients and most of them used rituximab (41.7%). None of the participants had MS or Alzheimer MRI patterns. There was no difference between groups in terms of GCA and MTA scores. Furthermore, the frequency of partially empty sella did not differ significantly between BP patients and controls (p = 0.461); nevertheless, grade-3 Fazekas was significantly higher in BP patients compared to controls (25% vs. 0%, p = 0.019). Of note, one BP patient had an epidermoid cyst and another had moderate enlargement of three ventricles. Also, new infarcts were observed in two and old infarcts in four BP patients. Although the majority of abnormal brain MRI findings were more frequent in BP patients compared to controls, only grade-3 Fazekas was significantly higher and acute infarcts were exclusively observed in BP patients.
Collapse
Affiliation(s)
- Raziyeh Ganji
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zohreh Tehranchinia
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Abdollahimajd
- Department of Dermatology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Ghalamkarpour
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Gheisari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Mozafari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Dadkhahfar
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Nasiri
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Katsura K, Nakano Y, Zhang Y, Shemirani R, Li W, Den Besten P. WDR72 regulates vesicle trafficking in ameloblasts. Sci Rep 2022; 12:2820. [PMID: 35181734 PMCID: PMC8857301 DOI: 10.1038/s41598-022-06751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
As the hardest tissue in the human body, tooth enamel formation is a highly regulated process involving several stages of differentiation and key regulatory genes. One such gene, tryptophan-aspartate repeat domain 72 (WDR72), has been found to cause a tooth enamel defect when deleted or mutated, resulting in a condition called amelogenesis imperfecta. Unlike the canonical genes regulating tooth development, WDR72 remains intracellularly and is not secreted to the enamel matrix space to regulate mineralization, and is found in other major organs of the body, namely the kidney, brain, liver, and heart. To date, a link between intracellular vesicle transport and enamel mineralization has been suggested, however identification of the mechanistic regulators has yet to be elucidated, in part due to the limitations associated with studying highly differentiated ameloblast cells. Here we show compelling evidence that WDR72 regulates endocytosis of proteins, both in vivo and in a novel in vitro ameloblast cell line. We elucidate WDR72's function to be independent of intracellular vesicle acidification while still leading to defective enamel matrix pH extracellularly. We identify a vesicle function associated with microtubule assembly and propose that WDR72 directs microtubule assembly necessary for membrane mobilization and subsequent vesicle transport. Understanding WDR72 function provides a mechanistic basis for determining physiologic and pathologic tissue mineralization.
Collapse
Affiliation(s)
- Kaitlin Katsura
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Yan Zhang
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Rozana Shemirani
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Wu Li
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Pamela Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA.
| |
Collapse
|
9
|
Immunohistochemistry of nodular dermatofibrosis in a German Shepherd – a case report. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This case report describes nodular dermatofibrosis in an 11-year-old female dog of the German Shepherd breed. Previously, at the age of 6 years (initial stage), a sample from a tumorous nodule on her back was removed. Histological examination of the sample from this period showed hyperplasia of cells with a lobular structure. Immunohistochemistry staining demonstrated focal positivity to pancytokeratin. In the terminal stage (at 11 years of age), clinical examination revealed apathy, uncoordinated movement of the hind limbs, obstipation, anorexia and occasional vomiting with progressive weight loss. Skin inspection found multiple skin ulcerating tumorous lesions localized in the sacral region of the back and intercostally, partly fluctuating around the size 4 cm in diameter. Necropsy revealed an intraabdominal tumour localized among intestinal loops. Nodular lesions were found also in the lung parenchyma, on the dorsal surface of the epiglottis, in the myocardium, the cortex and the medulla of the kidneys, the adrenal gland, and in the intestinal wall. Histological analysis showed systemic production of fibrous nodules and formation of fibrous tissue with atrophy of parenchyma tissue. However, no connection between dermatofibrosis and adenocarcinoma of the kidney was found in this case, which was supplemented with pancytokeratin antibody. CD3 + lymphocytes were observed mainly in the zone of cell proliferation and in the interface towards the fibrous layer. Macrophages were seen mainly in the transitional zone between cellular and fibrous part. This indicated participation of monitored immunocompetent cells in fibroblast degradation.
Collapse
|
10
|
Yang Z, Yang D, Tan F, Wong CW, Yang JY, Zhou D, Cai Z, Lin SH. Multi-Omics Comparison of the Spontaneous Diabetes Mellitus and Diet-Induced Prediabetic Macaque Models. Front Pharmacol 2021; 12:784231. [PMID: 34880765 PMCID: PMC8645867 DOI: 10.3389/fphar.2021.784231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of diabetes mellitus has been increasing for decades worldwide. To develop safe and potent therapeutics, animal models contribute a lot to the studies of the mechanisms underlying its pathogenesis. Dietary induction using is a well-accepted protocol in generating insulin resistance and diabetes models. In the present study, we reported the multi-omics profiling of the liver and sera from both peripheral blood and hepatic portal vein blood from Macaca fascicularis that spontaneously developed Type-2 diabetes mellitus with a chow diet (sDM). The other two groups of the monkeys fed with chow diet and high-fat high-sugar (HFHS) diet, respectively, were included for comparison. Analyses of various omics datasets revealed the alterations of high consistency. Between the sDM and HFHS monkeys, both the similar and unique alterations in the lipid metabolism have been demonstrated from metabolomic, transcriptomic, and proteomic data repeatedly. The comparison of the proteome and transcriptome confirmed the involvement of fatty acid binding protein 4 (FABP4) in the diet-induced pathogenesis of diabetes in macaques. Furthermore, the commonly changed genes between spontaneous diabetes and HFHS diet-induced prediabetes suggested that the alterations in the intra- and extracellular structural proteins and cell migration in the liver might mediate the HFHS diet induction of diabetes mellitus.
Collapse
Affiliation(s)
- Zhu Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Fancheng Tan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chi Wai Wong
- Guangzhou Huazhen Biosciences Co., Ltd., Guangzhou, China
| | - James Y. Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Tuusa J, Kokkonen N, Tasanen K. BP180/Collagen XVII: A Molecular View. Int J Mol Sci 2021; 22:12233. [PMID: 34830116 PMCID: PMC8623354 DOI: 10.3390/ijms222212233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
BP180 is a type II collagenous transmembrane protein and is best known as the major autoantigen in the blistering skin disease bullous pemphigoid (BP). The BP180 trimer is a central component in type I hemidesmosomes (HD), which cause the adhesion between epidermal keratinocytes and the basal lamina, but BP180 is also expressed in several non-HD locations, where its functions are poorly characterized. The immunological roles of intact and proteolytically processed BP180, relevant in BP, have been subject to intensive research, but novel functions in cell proliferation, differentiation, and aging have also recently been described. To better understand the multiple physiological functions of BP180, the focus should return to the protein itself. Here, we comprehensively review the properties of the BP180 molecule, present new data on the biochemical features of its intracellular domain, and discuss their significance with regard to BP180 folding and protein-protein interactions.
Collapse
Affiliation(s)
| | | | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; (J.T.); (N.K.)
| |
Collapse
|
12
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
13
|
Khegay II. Vasopressin Receptors in Blood Vessels and Proliferation of Endotheliocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Egli J, Esposito C, Müri M, Riniker S, Wennemers H. Influence of Lipidation on the Folding and Stability of Collagen Triple Helices-An Experimental and Theoretical Study. J Am Chem Soc 2021; 143:5937-5942. [PMID: 33830753 DOI: 10.1021/jacs.1c01512] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folding of triple-helical collagen, the most abundant protein in nature, relies on the nucleation and propagation along the strands. Hydrophobic moieties are crucial for the folding and stability of numerous proteins. Instead, nature uses for collagen a trimerization domain and cis-trans prolyl isomerases to facilitate and accelerate triple helix formation. Yet, pendant hydrophobic moieties endow triple-helical collagen with hyperstability and accelerate the cis-trans isomerization to an extent that thermally induced unfolding and folding of collagen triple helices take place at the same speed. Here, we systematically explored the effect of pendant fatty acids on the folding and stability of collagen triple helices. Thermal denaturation and kinetic studies with a series of collagen mimetic peptides (CMPs) bearing saturated and unsaturated fatty acids with different lengths revealed that longer and more flexible fatty acid appendages increase the stability and the folding rate of collagen triple helices. Molecular dynamics simulations combined with experimental data indicate that the hydrophobic appendages stabilize the triple helix by interaction with the grooves of the collagen triple helix and accelerate the folding and unfolding process by creating a molten globule-like intermediate.
Collapse
Affiliation(s)
- Jasmine Egli
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Carmen Esposito
- Laboratory of Physical Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Mike Müri
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal 2021; 77:109824. [PMID: 33144186 PMCID: PMC7718345 DOI: 10.1016/j.cellsig.2020.109824] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
The heart can respond to increased pathophysiological demand through alterations in tissue structure and function 1 . This process, called cardiac remodeling, is particularly evident following myocardial infarction (MI), where the blockage of a coronary artery leads to widespread death of cardiac muscle. Following MI, necrotic tissue is replaced with extracellular matrix (ECM), and the remaining viable cardiomyocytes (CMs) undergo hypertrophic growth. ECM deposition and cardiac hypertrophy are thought to represent an adaptive response to increase structural integrity and prevent cardiac rupture. However, sustained ECM deposition leads to the formation of a fibrotic scar that impedes cardiac compliance and can induce lethal arrhythmias. Resident cardiac fibroblasts (CFs) are considered the primary source of ECM molecules such as collagens and fibronectin, particularly after becoming activated by pathologic signals. CFs contribute to multiple phases of post-MI heart repair and remodeling, including the initial response to CM death, immune cell (IC) recruitment, and fibrotic scar formation. The goal of this review is to describe how resident fibroblasts contribute to the healing and remodeling that occurs after MI, with an emphasis on how fibroblasts communicate with other cell types in the healing infarct scar 1 –6 .
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America
| | - Kimberly N Burgos Villar
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
16
|
Honda Igarashi M, da Silva SG, Mercuri M, Zuardi FMDON, Facchini G, da Silva GH, Lucia Tabarini Alves Pinheiro A, Eberlin S. Novel complex of cosmetic ingredients with promising action in preventing hair loss and follicular aging through mechanism involving enrichment of WNT/signaling, mitochondrial activity, and stem cells maintenance. J Cosmet Dermatol 2020; 20:2179-2189. [PMID: 33179848 DOI: 10.1111/jocd.13815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mechanisms involved in hair metabolism are diverse, and the availability of ingredients that normalize dysfunctions or mitigate the effects of extrinsic stress suffered daily is greatly desired by consumers to improve the aesthetic appearance of hair. AIMS In this work, we carried out a preclinical exploratory approach to evaluate the effects of a complex of nanoencapsulated active ingredients (AcPi), as well as a cosmetic formulation containing AcPi (ShPi and HtPi) in mechanisms involving hair loss and follicular aging. METHODS Human hair follicle dermal papilla cells and human scalp culture were treated with AcPi, ShPi, or HtPi and stimulated with UV radiation or testosterone for further measurement of mitochondrial biogenesis, reactive oxygen species (ROS), β-catenin, dyhidrotestosterone (DHT), collagen XVIIα1 (COL17A1), and cutaneous permeation. RESULTS Our results demonstrated that AcPi prevents oxidative stress and balances mitochondial activity disturbed by exposure to UV radiation. AcPi also promoted an enrichment of WNT/β-catenin signaling pathway, stimulating hair growth, and lengthening the anagen phase of hair cycle. ShPi and HtPi were able to prevent hair aging, minimizing the excessive degradation of COL17A1 in hair follicle exposed to UV radiation, in addition to controlling androgenic metabolism by reducing DHT production. CONCLUSION The integral effects of AcPi have not been completely elucidated; however, these results, associated with clinical evidences, allow us to infer that this ingredient prevents follicular aging, miniaturization, and consequently hair loss by mechanisms involving energetic homeostasis maintenance, antioxidant, and anti-androgenic actions.
Collapse
Affiliation(s)
- Mamy Honda Igarashi
- Hypera Pharma - Mantecorp Skincare, Hynova, Alphaville, São Paulo-SP, Brazil
| | | | - Maurizio Mercuri
- Hypera Pharma - Mantecorp Skincare, Hynova, Alphaville, São Paulo-SP, Brazil
| | | | | | | | | | - Samara Eberlin
- Kosmoscience Group, Rua Sandoval Meirelles, Campinas-SP, Brazil
| |
Collapse
|
17
|
Senadheera TR, Dave D, Shahidi F. Sea Cucumber Derived Type I Collagen: A Comprehensive Review. Mar Drugs 2020; 18:E471. [PMID: 32961970 PMCID: PMC7551324 DOI: 10.3390/md18090471] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/31/2023] Open
Abstract
Collagen is the major fibrillar protein in most living organisms. Among the different types of collagen, type I collagen is the most abundant one in tissues of marine invertebrates. Due to the health-related risk factors and religious constraints, use of mammalian derived collagen has been limited. This triggers the search for alternative sources of collagen for both food and non-food applications. In this regard, numerous studies have been conducted on maximizing the utilization of seafood processing by-products and address the need for collagen. However, less attention has been given to marine invertebrates and their by-products. The present review has focused on identifying sea cucumber as a potential source of collagen and discusses the general scope of collagen extraction, isolation, characterization, and physicochemical properties along with opportunities and challenges for utilizing marine-derived collagen.
Collapse
Affiliation(s)
- Tharindu R.L. Senadheera
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| |
Collapse
|
18
|
Villesen IF, Daniels SJ, Leeming DJ, Karsdal MA, Nielsen MJ. Review article: the signalling and functional role of the extracellular matrix in the development of liver fibrosis. Aliment Pharmacol Ther 2020; 52:85-97. [PMID: 32419162 DOI: 10.1111/apt.15773] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with liver fibrosis show a large heterogeneity, and for that reason effective treatments are still lacking. Emerging data suggest that there is more to fibrosis than previously understood. Opposed to earlier belief of being a passive scaffold for cells to reside in, the extracellular matrix (ECM) is now known to hold both signalling and functional properties important for the development of fibrosis. The interaction between the ECM and the collagen-producing cells determines the course of the disease but is still poorly understood. Exploring the dynamics of this interplay will aid in the development of effective treatments. AIM To summarise and discuss the latest advances in the pathogenesis of liver fibrosis as well as key mediators of early disease progression. METHODS Through literature search using databases including PubMed and Google Scholar, manuscripts published between 1961 and 2019 were included to assess both well-established and recent theories of fibrosis development. Both pre-clinical and clinical studies were included. RESULTS Fibrosis alters the structure of the ECM releasing signalling fragments with the potential to escalate disease severity. In a diseased liver, hepatic stellate cells and other fibroblasts, together with hepatocytes and sinusoidal cells, produce an excessive amount of collagens. The cell-to-collagen interactions are unique in the different liver aetiologies, generating ECM profiles with considerable patient-monitoring potential. CONCLUSIONS The local milieu in the injured area affects the course of fibrosis development in a site-specific manner. Future research should focus on the dissimilarities in the ECM profile between different aetiologies of liver fibrosis.
Collapse
Affiliation(s)
- Ida Falk Villesen
- Nordic Bioscience A/S, Herlev, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
19
|
Eberlin S, Silva MSD, Facchini G, Silva GHD, Pinheiro ALTA, Eberlin S, Pinheiro ADS. The Ex Vivo Skin Model as an Alternative Tool for the Efficacy and Safety Evaluation of Topical Products. Altern Lab Anim 2020; 48:10-22. [DOI: 10.1177/0261192920914193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of alternative approaches for safety and efficacy testing that avoid the use of animals is a worldwide trend, which relies on the improvement of current models and tools so that they better reproduce human biology. Human skin from elective plastic surgery is a promising experimental model to test the effects of topically applied products. As the structure of native skin is maintained, including cell population (keratinocytes, melanocytes, Langerhans cells and fibroblasts) and dermal matrix (containing collagen, elastin, glycosaminoglycans, etc.), it most closely matches the effects of substances on in vivo human skin. In this review, we present a collection of results that our group has generated over the last years, involving the use of human skin and scalp explants, demonstrating the feasibility of this model. The development of a test system with ex vivo skin explants, of standard size and thickness, and cultured at the air–liquid interface, can provide an important tool for understanding the mechanisms involved in several cutaneous disorders.
Collapse
|
20
|
Tuusa J, Koski MK, Ruskamo S, Tasanen K. The intracellular domain of BP180/collagen XVII is intrinsically disordered and partially folds in an anionic membrane lipid-mimicking environment. Amino Acids 2020; 52:619-627. [PMID: 32219587 DOI: 10.1007/s00726-020-02840-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
The trimeric transmembrane collagen BP180, also known as collagen XVII, is an essential component of hemidesmosomes at the dermal-epidermal junction and connects the cytoplasmic keratin network to the extracellular basement membrane. Dysfunction of BP180 caused by mutations in patients with junctional epidermolysis bullosa or autoantibodies in those with bullous pemphigoid leads to severe skin blistering. The extracellular collagenous domain of BP180 participates in the protein's triple-helical folding, but the structure and functional importance of the intracellular domain (ICD) of BP180 are largely unknown. In the present study, we purified and characterized human BP180 ICD. When expressed in Escherichia coli as glutathione-S-transferase or 6 × histidine tagged fusion protein, the BP180 ICD was found to exist as a monomer. Analysis of the secondary structure content by circular dichroism spectroscopy revealed that the domain is intrinsically disordered. This finding aligned with that of a bioinformatic analysis, which predicted a disordered structure. Interestingly, both anionic detergent micelles and lipid vesicles induced partial folding of the BP180 ICD, suggesting that in its natural environment, the domain's folding and unfolding may be regulated by interaction with the cell membrane or accompanying proteins. We hypothesize that the intrinsically disordered structure of the ICD of BP180 contributes to the mechanism that allows the remodeling of hemidesmosome assembly.
Collapse
Affiliation(s)
- Jussi Tuusa
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - M Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Salla Ruskamo
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Cudic M, Fields GB. Modulation of receptor binding to collagen by glycosylated 5-hydroxylysine: Chemical biology approaches made feasible by Carpino's Fmoc group. Pept Sci (Hoboken) 2020; 112. [PMID: 33073165 DOI: 10.1002/pep2.24156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The creation of the 9-fluorenylmethoxycarbonyl (Fmoc) group by the Carpino laboratory facilitated the synthesis of peptides containing acid-sensitive groups, such as O-linked glycosides. To fully investigative collagen biochemistry, one needs to assemble peptides that possess glycosylated 5-hydroxylysine (Hyl). A convenient method for the synthesis of Fmoc-Hyl(ε-tert-butyloxycarbonyl (Boc),O-tert-butyldimethylsilyl (TBDMS)) and efficient methods for the synthesis of Fmoc-Hyl[ε-Boc,O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)] have been developed. Glycosylated Fmoc-Hyl derivatives were used to construct a series of types I-IV collagen-model triple-helical peptides (THPs) that incorporated known or proposed receptor binding sites. Glycosylation of Hyl was found to strongly down-regulate the binding of CD44 and the α3β1 integrin to collagen, while the impact on α2β1 integrin binding was more modest. Molecular modeling of integrin binding indicated that Hyl glycosylation directly impacted the association between the α3β1 integrin metal ion-dependent adhesion site (MIDAS) and the receptor binding site within type IV collagen. The Fmoc solid-phase strategy ultimately allowed for chemical biology approaches to be utilized to study tumor cell interactions with glycosylated collagen sequences and document the modulation of receptor interactions by Hyl posttranslational modification.
Collapse
Affiliation(s)
- Maré Cudic
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| |
Collapse
|
22
|
Papakonstantinou E, Limberg MM, Gehring M, Kotnik N, Kapp A, Gibbs BF, Raap U. Neurological disorders are associated with bullous pemphigoid. J Eur Acad Dermatol Venereol 2019; 33:925-929. [PMID: 30663128 DOI: 10.1111/jdv.15444] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bullous pemphigoid (BP) is the most common subepidermal autoimmune blistering disease with an increased incidence particularly among the elderly. Several studies have recently reported an association between BP and neurological disorders. OBJECTIVE To evaluate the association between BP and neurological disorders in a single centre in Germany. METHODS We retrospectively assessed 183 patients with BP (diagnosed between 2011 and 2015) and 348 age- and sex-matched controls for neurological disorders. The latter were confirmed either by a neurologist or psychiatrist. RESULTS Overall, there was a highly statistically significant association between BP and neurological disorders (P < 0.0001). These included dementia (P < 0.0001), Parkinson`s disease (P = 0.0434), stroke (P = 0.0015) and other neurological disorders but not Alzheimer's diseases, which was more common among patients in the control group. CONCLUSION Our cohort of bullous pemphigoid and neurological disorders demonstrates a significant association between bullous pemphigoid and neurological disorders, including dementia, Parkinson's disease and stroke. These observations support the need for future studies in order to elucidate the immunological mechanisms responsible for these comorbidities.
Collapse
Affiliation(s)
- E Papakonstantinou
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - M M Limberg
- Division of Experimental Allergology and Immunodermatology, Department of Medicine, University of Oldenburg, Oldenburg, Germany
| | - M Gehring
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - N Kotnik
- Division of Experimental Allergology and Immunodermatology, Department of Medicine, University of Oldenburg, Oldenburg, Germany
| | - A Kapp
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - B F Gibbs
- Division of Experimental Allergology and Immunodermatology, Department of Medicine, University of Oldenburg, Oldenburg, Germany
| | - U Raap
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Division of Experimental Allergology and Immunodermatology, Department of Medicine, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
23
|
Tie D, Da X, Natsuga K, Yamada N, Yamamoto O, Morita E. Bullous Pemphigoid IgG Induces Cell Dysfunction and Enhances the Motility of Epidermal Keratinocytes via Rac1/Proteasome Activation. Front Immunol 2019; 10:200. [PMID: 30809225 PMCID: PMC6379344 DOI: 10.3389/fimmu.2019.00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/23/2019] [Indexed: 02/03/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease characterized by the formation of blisters, in which autoantibodies mainly target type XVII collagen (ColXVII) expressed in basal keratinocytes. BP IgG is known to induce the internalization of ColXVII from the plasma membrane of keratinocytes through macropinocytosis. However, the cellular dynamics following ColXVII internalization have not been completely elucidated. BP IgG exerts a precise effect on cultured keratinocytes, and the morphological/functional changes in BP IgG-stimulated cells lead to the subepidermal blistering associated with BP pathogenesis. Based on the electron microscopy examination, BP IgG-stimulated cells exhibit alterations in the cell membrane structure and the accumulation of intracellular vesicles. These morphological changes in the BP IgG-stimulated cells are accompanied by dysfunctional mitochondria, increased production of reactive oxygen species, increased motility, and detachment. BP IgG triggers the cascade leading to metabolic impairments and stimulates cell migration in the treated keratinocytes. These cellular alterations are reversed by pharmacological inhibitors of Rac1 or the proteasome pathway, suggesting that Rac1 and proteasome activation are involved in the effects of BP IgG on cultured keratinocytes. Our study highlights the role of keratinocyte kinetics in the direct functions of IgG in patients with BP.
Collapse
Affiliation(s)
- Duerna Tie
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Xia Da
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nanako Yamada
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Osamu Yamamoto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Eishin Morita
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan,*Correspondence: Eishin Morita
| |
Collapse
|
24
|
Mikhailov OV. Electrophilic substitution in the d-metal hexacyanoferrate(II) gelatin-immobilized matrix systems. REV INORG CHEM 2018. [DOI: 10.1515/revic-2018-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractData of electrophilic substitution processes proceeding into the d-metal hexacyanoferrate(II) gelatin-immobilized matrix systems when they are in contact with aqueous solutions of chlorides of d-elements have been systematized and generalized. The bibliography includes 94 references.
Collapse
Affiliation(s)
- Oleg V. Mikhailov
- Department of Analytical Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
25
|
Russo V, Klein T, Lim DJ, Solis N, Machado Y, Hiroyasu S, Nabai L, Shen Y, Zeglinski MR, Zhao H, Oram CP, Lennox PA, Van Laeken N, Carr NJ, Crawford RI, Franzke CW, Overall CM, Granville DJ. Granzyme B is elevated in autoimmune blistering diseases and cleaves key anchoring proteins of the dermal-epidermal junction. Sci Rep 2018; 8:9690. [PMID: 29946113 PMCID: PMC6018769 DOI: 10.1038/s41598-018-28070-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023] Open
Abstract
In healthy skin, epidermis and dermis are anchored together at the dermal-epidermal junction (DEJ), a specialized basement membrane pivotal for skin integrity and function. However, increased inflammation in the DEJ is associated with the disruption and separation of this junction and sub-epidermal blistering. Granzyme B (GzmB) is a serine protease secreted by immune cells. Dysregulated inflammation may lead to increased GzmB accumulation and proteolysis in the extracellular milieu. Although elevated GzmB is observed at the level of the DEJ in inflammatory and blistering skin conditions, the present study is the first to explore GzmB in the context of DEJ degradation in autoimmune sub-epidermal blistering. In the present study, GzmB induced separation of the DEJ in healthy human skin. Subsequently, α6/β4 integrin, collagen VII, and collagen XVII were identified as extracellular substrates for GzmB through western blot, and specific cleavage sites were identified by mass spectrometry. In human bullous pemphigoid, dermatitis herpetiformis, and epidermolysis bullosa acquisita, GzmB was elevated at the DEJ when compared to healthy samples, while α6/β4 integrin, collagen VII, and collagen XVII were reduced or absent in the area of blistering. In summary, our results suggest that regardless of the initial causation of sub-epidermal blistering, GzmB activity is a common final pathway that could be amenable to a single targeted treatment approach.
Collapse
Affiliation(s)
- Valerio Russo
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Theo Klein
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Darielle J Lim
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
| | - Nestor Solis
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Layla Nabai
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Yue Shen
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Matthew R Zeglinski
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Hongyan Zhao
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Cameron P Oram
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Peter A Lennox
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nancy Van Laeken
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nick J Carr
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Richard I Crawford
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, V5Z 4E8, Canada
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center and Faculty of Medicine - University of Freiburg, 79104, Freiburg, Germany
| | - Christopher M Overall
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
26
|
The transmembrane collagen COL-99 guides longitudinally extending axons in C. elegans. Mol Cell Neurosci 2018; 89:9-19. [DOI: 10.1016/j.mcn.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 11/23/2022] Open
|
27
|
Galiger C, Löffek S, Stemmler MP, Kroeger JK, Mittapalli VR, Fauth L, Esser PR, Kern JS, Meiss F, Laßmann S, Bruckner-Tuderman L, Franzke CW. Targeting of Cell Surface Proteolysis of Collagen XVII Impedes Squamous Cell Carcinoma Progression. Mol Ther 2018; 26:17-30. [PMID: 29055623 PMCID: PMC5763164 DOI: 10.1016/j.ymthe.2017.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Squamous cell carcinoma (SCC) is one of the most common skin cancers and causes significant morbidity. Although the expression of the epithelial adhesion molecule collagen XVII (ColXVII) has been linked to SCC invasion, only little is known about its mechanistic contribution. Here, we demonstrate that ColXVII expression is essential for SCC cell proliferation and motility. Moreover, it revealed that particularly the post-translational modification of ColXVII by ectodomain shedding is the major driver of SCC progression, because ectodomain-selective immunostaining was mainly localized at the invasive front of human cutaneous SCCs, and exclusive expression of a non-sheddable ColXVII mutant in SCC-25 cells inhibits their matrix-independent growth and invasiveness. This cell surface proteolysis, which is strongly elevated during SCC invasion and metastasis, releases soluble ectodomains and membrane-anchored endodomains. Both released ColXVII domains play distinct roles in tumor progression: the endodomain induces proliferation and survival, whereas the ectodomain accelerates invasiveness. Furthermore, specific blockage of shedding by monoclonal ColXVII antibodies repressed matrix-independent growth and invasion of SCC cells in organotypic co-cultures. Thus, selective inhibition of ColXVII shedding may offer a promising therapeutic strategy to prevent SCC progression.
Collapse
Affiliation(s)
- Célimène Galiger
- Department of Dermatology, Medical Center and Faculty of Medicine-University of Freiburg, 79104 Freiburg, Germany
| | - Stefanie Löffek
- Department of Dermatology, Medical Center and Faculty of Medicine-University of Freiburg, 79104 Freiburg, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jasmin K Kroeger
- Department of Dermatology, Medical Center and Faculty of Medicine-University of Freiburg, 79104 Freiburg, Germany
| | - Venugopal R Mittapalli
- Department of Dermatology, Medical Center and Faculty of Medicine-University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Fauth
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Philipp R Esser
- Department of Dermatology, Medical Center and Faculty of Medicine-University of Freiburg, 79104 Freiburg, Germany
| | - Johannes S Kern
- Department of Dermatology, Medical Center and Faculty of Medicine-University of Freiburg, 79104 Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology, Medical Center and Faculty of Medicine-University of Freiburg, 79104 Freiburg, Germany
| | - Silke Laßmann
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Centre for Biological Signalling Studies BIOSS, ALU Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center and Faculty of Medicine-University of Freiburg, 79104 Freiburg, Germany; Centre for Biological Signalling Studies BIOSS, ALU Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center and Faculty of Medicine-University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
28
|
Försti AK, Huilaja L, Schmidt E, Tasanen K. Neurological and psychiatric associations in bullous pemphigoid-more than skin deep? Exp Dermatol 2017; 26:1228-1234. [PMID: 28677172 DOI: 10.1111/exd.13401] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 12/28/2022]
Abstract
In elderly patients, bullous pemphigoid (BP) is associated with several comorbidities; the strongest association occurs between BP and neurological diseases. Different types of dementia, Parkinson's disease, cerebrovascular disorders and epilepsy all have a significant association with BP, but patients with multiple sclerosis have the highest risk of BP. An existing neurological disorder appears to increase the risk for subsequent BP, but an increased risk for developing some neurological diseases has also been reported following BP diagnosis. BP seems to be associated with several psychiatric diseases such as schizophrenia, uni- and bipolar disorder, schizotypal and delusional disorders, and personality disorders, but the risk ratios are usually lower than with neurological diseases. In addition to the skin, the BP autoantigens BP180 and BP230 are expressed in the central nervous system. This finding together with the strong epidemiological association between neurological disorders and BP has led to an assumption that neurodegeneration or neuroinflammation could lead to a cross-reactive immunoresponse between neural and cutaneous antigens and the failure of self-tolerance. A subpopulation of patients with Alzheimer's disease or Parkinson's disease have circulating IgG autoantibodies against BP180, but currently their significance for the development of BP is unclear, because these antineural BP180 antibodies neither bind to the cutaneous basement membrane nor cause BP-like symptoms. Further studies analysing large and well-characterized populations of neurological and psychiatric patients are required to understand better the role of autoimmunization against neural BP autoantigens in the pathogenesis of BP.
Collapse
Affiliation(s)
- Anna-Kaisa Försti
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu University Hospital, Oulu, Finland
| | - Laura Huilaja
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu University Hospital, Oulu, Finland
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Kaisa Tasanen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
29
|
Toyonaga E, Nishie W, Izumi K, Natsuga K, Ujiie H, Iwata H, Yamagami J, Hirako Y, Sawamura D, Fujimoto W, Shimizu H. C-Terminal Processing of Collagen XVII Induces Neoepitopes for Linear IgA Dermatosis Autoantibodies. J Invest Dermatol 2017; 137:2552-2559. [PMID: 28842325 DOI: 10.1016/j.jid.2017.07.831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 11/23/2022]
Abstract
Transmembrane collagen XVII (COL17) is a hemidesmosomal component of basal keratinocytes that can be targeted by autoantibodies in autoimmune blistering disorders, including linear IgA dermatosis (LAD). COL17 can be physiologically cleaved within the juxtamembranous extracellular NC16A domain, and LAD autoantibodies preferentially react with the processed ectodomains, indicating that the processing induces neoepitopes. However, the details of how neoepitopes develop have not been elucidated. In this study, we show that C-terminal processing of COL17 also plays a role in inducing neoepitopes for LAD autoantibodies. First, the mAb hC17-ect15 targeting the 15th collagenous domain of COL17 was produced, which showed characteristics similar to LAD autoantibodies. The mAbs preferentially reacted with C-terminally deleted (up to 682 amino acids) recombinant COL17, suggesting that C-terminal processing shows neoepitopes on the 15th collagenous domain. The LAD autoantibodies also react with C-terminal deleted COL17. Therefore, neoepitopes for LAD autoantibodies also develop after C-terminal processing. Finally, the passive transfer of the mAb hC17-ect15 into human COL17-expressing transgenic mice failed to induce blistering disease, suggesting that neoepitope-targeting antibodies are not always pathogenic. In summary, this study shows that C-terminal processing induces dynamic structural changes and neoepitopes for LAD autoantibodies on COL17.
Collapse
Affiliation(s)
- Ellen Toyonaga
- Department of Dermatology, Hokkaido University, Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University, Graduate School of Medicine, Sapporo, Japan.
| | - Kentaro Izumi
- Department of Dermatology, Hokkaido University, Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University, Graduate School of Medicine, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University, Graduate School of Medicine, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University, Graduate School of Medicine, Sapporo, Japan
| | - Jun Yamagami
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiaki Hirako
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University, Graduate School of Medicine, Aomori, Japan
| | - Wataru Fujimoto
- Department of Dermatology, Kawasaki Medical School, Okayama, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University, Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
30
|
Mikhailov OV. Polycyclic 3d-metalchelates formed owing to inner-sphere transmutations in the gelatin matrix: synthesis and structures. REV INORG CHEM 2017. [DOI: 10.1515/revic-2017-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractProcesses of synthesis of polycyclic compounds containing various 3d-elements, proceeding in gelatin matrix in the systems M(II) ion – (N,S)- or (N,O,S)-containing organic compound A – mono- or dicarbonyl-containing organic compound B, resulting in one of a variety of inner-sphere transmutations, namely “self-assembly”, have been considered and discussed. The chemical nature of the final products of such a synthesis formed under these specific conditions have been compared with the chemical nature of the final products formed by similar synthesis in solutions. It has been noted that in many cases, the nature and chemical composition of these products differ substantially. Specific features of the density functional theory calculated molecular structures of the metal macrocyclic compounds that can be formed due to such a synthesis in the systems indicated above have been discussed, too. The review covers the period 1990–2016.
Collapse
Affiliation(s)
- Oleg V. Mikhailov
- Department of Analytical Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
31
|
Kroeger JK, Hofmann SC, Leppert J, Has C, Franzke CW. Amino acid duplication in the coiled-coil structure of collagen XVII alters its maturation and trimerization causing mild junctional epidermolysis bullosa. Hum Mol Genet 2017; 26:479-488. [PMID: 28365758 DOI: 10.1093/hmg/ddw404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2023] Open
Abstract
The function and stability of collagens depend on the accurate triple helix formation of three distinct polypeptide chains. Disruption of this triple-helical structure can result in connective-tissue disorders. Triple helix formation is thought to depend on three-stranded coiled-coil oligomerization sites within non-collagenous domains. However, only little is known about the physiological relevance of these coiled-coil structures. Transmembrane collagen XVII, also known as 180 kDa bullous pemphigoid antigen provides mechanical stability through the anchorage of epithelial cells to the basement membrane. Mutations in the collagen XVII gene, COL17A1, cause junctional epidermolysis bullosa (JEB), characterized by chronic trauma-induced skin blistering. Here we exploited a novel naturally occurring COL17A1 mutation, leading to an in-frame lysine duplication within the coiled-coil structure of the juxtamembranous NC16A domain of collagen XVII, which resulted in a mild phenotype of JEB due to reduced membrane-anchored collagen XVII molecules. This mutation causes structural changes in the mutant molecule and interferes with its maturation. The destabilized coiled-coil structure of the mutant collagen XVII unmasks a furin cleavage site that results in excessive and non-physiological ectodomain shedding during its maturation. Furthermore, it decreases its triple-helical stability due to defective coiled-coil oligomerization, which makes it highly susceptible to proteolytic degradation. As a consequence of altered maturation and decreased stability of collagen XVII trimers, reduced collagen XVII is incorporated into the cell membrane, resulting in compromised dermal-epidermal adhesion. Taken together, using this genetic model, we provide the first proof that alteration of the coiled-coil structure destabilizes oligomerization and impairs physiological shedding of collagen XVII in vivo.
Collapse
Affiliation(s)
- Jasmin K Kroeger
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Silke C Hofmann
- Center for Dermatology, Allergy and Dermatosurgery, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Germany
| | - Juna Leppert
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Kokkonen N, Herukka SK, Huilaja L, Kokki M, Koivisto AM, Hartikainen P, Remes AM, Tasanen K. Increased Levels of the Bullous Pemphigoid BP180 Autoantibody Are Associated with More Severe Dementia in Alzheimer's Disease. J Invest Dermatol 2017; 137:71-76. [PMID: 27650606 DOI: 10.1016/j.jid.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/12/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023]
Abstract
Bullous pemphigoid (BP) is a subepidermal blistering skin disease, which has shown a strong association with neurological diseases in epidemiological studies. The BP autoantigens BP180 and BP230 are expressed in the cutaneous basement membrane and the central nervous system. Using BP180 and BP230 ELISA assays and immunoblotting against BP180, we analyzed the IgG reactivity in the sera of 115 patients with Alzheimer's disease (AD) and 40 neurologically healthy controls. BP180 autoantibodies were found in 18% of patients with AD, whereas only 3% of controls had positive results (P = 0.019). BP230 values were higher and more often elevated in patients with AD than controls, but not significantly. None of the positive AD sera that recognized the full-length human BP180 in immunoblotting reacted with the cutaneous basement membrane in indirect immunofluorescence analysis. Moreover, a retrospective evaluation of the hospital records of the patients with AD revealed neither BP diagnosis nor BP-like symptoms. Interestingly, increased BP180-NC16A autoantibody values correlated with cognitive decline measured by mini-mental state examination scores, but not with the concentration of AD biomarkers in cerebrospinal fluid. Our findings further the understanding of the role of BP180 as a shared autoantigen in neurodermatological interactions and the association between BP and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina Kokkonen
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Laura Huilaja
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Merja Kokki
- Department of Anesthesia and Operative Service, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Koivisto
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Päivi Hartikainen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Kaisa Tasanen
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
33
|
Mikhailov OV. Molecular structure design and soft template synthesis of aza-, oxaaza- and thiaazamacrocyclic metal chelates in the gelatin matrix. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Thangavelu PU, Krenács T, Dray E, Duijf PHG. In epithelial cancers, aberrant COL17A1 promoter methylation predicts its misexpression and increased invasion. Clin Epigenetics 2016; 8:120. [PMID: 27891193 PMCID: PMC5116176 DOI: 10.1186/s13148-016-0290-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastasis is a leading cause of death among cancer patients. In the tumor microenvironment, altered levels of extracellular matrix proteins, such as collagens, can facilitate the first steps of cancer cell metastasis, including invasion into surrounding tissue and intravasation into the blood stream. However, the degree of misexpression of collagen genes in tumors remains understudied, even though this knowledge could greatly facilitate the development of cancer treatment options aimed at preventing metastasis. METHODS We systematically evaluate the expression of all 44 collagen genes in breast cancer and assess whether their misexpression provides clinical prognostic significance. We use immunohistochemistry on 150 ductal breast cancers and 361 cervical cancers and study DNA methylation in various epithelial cancers. RESULTS In breast cancer, various tests show that COL4A1 and COL4A2 overexpression and COL17A1 (BP180, BPAG2) underexpression provide independent prognostic strength (HR = 1.25, 95% CI = 1.17-1.34, p = 3.03 × 10-10; HR = 1.18, 95% CI = 1.11-1.25, p = 8.11 × 10-10; HR = 0.86, 95% CI = 0.81-0.92, p = 4.57 × 10-6; respectively). Immunohistochemistry on ductal breast cancers confirmed that the COL17A1 protein product, collagen XVII, is underexpressed. This strongly correlates with advanced stage, increased invasion, and postmenopausal status. In contrast, immunohistochemistry on cervical tumors showed that collagen XVII is overexpressed in cervical cancer and this is associated with increased local dissemination. Interestingly, consistent with the opposed direction of misexpression in these cancers, the COL17A1 promoter is hypermethylated in breast cancer and hypomethylated in cervical cancer. We also find that the COL17A1 promoter is hypomethylated in head and neck squamous cell carcinoma, lung squamous cell carcinoma, and lung adenocarcinoma, in all of which collagen XVII overexpression has previously been shown. CONCLUSIONS Paradoxically, collagen XVII is underexpressed in breast cancer and overexpressed in cervical and other epithelial cancers. However, the COL17A1 promoter methylation status accurately predicts both the direction of misexpression and the increased invasive nature for five out of five epithelial cancers. This implies that aberrant epigenetic control is a key driver of COL17A1 gene misexpression and tumor cell invasion. These findings have significant clinical implications, suggesting that the COL17A1 promoter methylation status can be used to predict patient outcome. Moreover, epigenetic targeting of COL17A1 could represent a novel strategy to prevent metastasis in patients.
Collapse
Affiliation(s)
- Pulari U. Thangavelu
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102 Australia
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University and MTA-SE Cancer Progression Research Group, Budapest, Hungary
| | - Eloise Dray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102 Australia
| | - Pascal H. G. Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102 Australia
| |
Collapse
|
35
|
Januchowski R, Świerczewska M, Sterzyńska K, Wojtowicz K, Nowicki M, Zabel M. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines. J Cancer 2016; 7:1295-310. [PMID: 27390605 PMCID: PMC4934038 DOI: 10.7150/jca.15371] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in cytostatic drug resistance of cancer cells. The exact role of these COL genes in drug resistance requires further investigation.
Collapse
Affiliation(s)
- Radosław Januchowski
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Monika Świerczewska
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Karolina Sterzyńska
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Karolina Wojtowicz
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Michał Nowicki
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Maciej Zabel
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland;; 2. Department of Histology and Embryology, Wroclaw Medical University, Poland
| |
Collapse
|
36
|
Jacków J, Löffek S, Nyström A, Bruckner-Tuderman L, Franzke CW. Collagen XVII Shedding Suppresses Re-Epithelialization by Directing Keratinocyte Migration and Dampening mTOR Signaling. J Invest Dermatol 2016; 136:1031-1041. [PMID: 26827763 DOI: 10.1016/j.jid.2016.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
Transmembrane collagen XVII is traditionally viewed as an important hemidesmosomal attachment component that promotes stable dermal-epidermal adhesion in the skin. However, its expression is highly elevated at the leading edges of cutaneous wounds or invasive carcinomas, suggesting alternative functions in cell migration. The collagenous ectodomain of collagen XVII is constitutively shed from the cell surface by a disintegrin and metalloproteinases, and this shedding is strongly induced during wound healing. Recently, we investigated the physiological relevance of collagen XVII shedding by generating knock-in mice, which exclusively express a functional non-sheddable collagen XVII mutant. Prevention of ectodomain shedding in these mice caused no spontaneous phenotype in resting skin, but accelerated re-epithelialization on skin wounding. Here, we investigated the mechanistic function of shedding during wound healing. Using the non-shedding collagen XVII mice as a model, we uncovered ectodomain shedding as a highly dynamic modulator of in vivo proliferation and motility of activated keratinocytes through tight coordination of α6β4 integrin-laminin-332 interactions and dampening of mechanistic target of rapamycin signaling at the wound edges. Thus, our studies identify ectodomain shedding of collagen XVII as an interactive platform that translates shedding into a signal for directed cell growth and motility during skin regeneration.
Collapse
Affiliation(s)
- Joanna Jacków
- Department of Dermatology, Medical Center, University of Freiburg, Germany.
| | - Stefanie Löffek
- Department of Dermatology, Medical Center, University of Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center, University of Freiburg, Germany
| | | | | |
Collapse
|
37
|
Generation of a Functional Non-Shedding Collagen XVII Mouse Model: Relevance of Collagen XVII Shedding in Wound Healing. J Invest Dermatol 2016; 136:516-525. [DOI: 10.1016/j.jid.2015.10.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/16/2015] [Accepted: 10/09/2015] [Indexed: 01/27/2023]
|
38
|
Differential gene expression levels might explain association of LAIR2 polymorphisms with pemphigus. Hum Genet 2015; 135:233-44. [PMID: 26721477 DOI: 10.1007/s00439-015-1626-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022]
Abstract
The leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) is a collagen-binding inhibitory receptor important for the regulation of immune responses, expressed on the majority of peripheral blood mononuclear cells (PBMC). LAIR-2 is a soluble homolog that antagonizes LAIR-1 inhibitory function by binding the same ligands. We sought to investigate whether LAIR1 and LAIR2 single nucleotide polymorphisms (SNP) are associated with differential mRNA expression levels. We analyzed 14 SNPs of LAIR1 (6) and LAIR2 (8) by mass spectrometry-based genotyping and extracted mRNA from PBMC of 177 healthy subjects, followed by quantitative assays. Four SNPs of LAIR1 and two SNPs of LAIR2 mark differential mRNA levels in healthy individuals. To verify the biological relevance of these findings, we analyzed additional 515 individuals (282 patients and 233 controls) to check if LAIR1 and LAIR2 differential mRNA expression could be related to susceptibility to pemphigus foliaceus (PF), an autoimmune blistering skin disease endemic in Brazil. Two LAIR1 variants (rs56802430 G, OR = 1.52, p = 0.0329; rs11084332 C, OR = 0.57, p = 0.0022) and one LAIR2 (rs2287828 T+, OR = 1.9, p = 0.0097) contribute to differential susceptibility to PF. Furthermore, we demonstrate interactions among four LAIR2 SNPs (rs2042287, rs2287828, rs2277974 and rs114834145). A haplotype harboring these SNPs is strongly associated with higher LAIR2 mRNA levels (4.5-fold, p = 0.0069) and with higher susceptibility to PF (OR = 4.02, p = 0.0008). We suggest that LAIR1 and LAIR2 genetic variants are associated with regulation of gene expression and variable PF susceptibility, and show indirect association of LAIR2 differential mRNA expression with PF pathogenesis. Our data demonstrate how this relatively unknown disease can add invaluable knowledge regarding the role of LAIR1 and LAIR2 in immune responses.
Collapse
|
39
|
Szentkúti G, Dános K, Brauswetter D, Kiszner G, Krenács T, Csákó L, Répássy G, Tamás L. Correlations between prognosis and regional biomarker profiles in head and neck squamous cell carcinomas. Pathol Oncol Res 2015; 21:643-50. [PMID: 25547827 DOI: 10.1007/s12253-014-9869-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) show diverse clinicopathological features and are mostly linked with poor outcome. In this study, we tested if the expression of tumor growth, cell cycle and basement membrane anchorage related biomarkers allow prognostic and clinicopathological stratification of HNSCC. Archived HNSCC samples from 226 patients included into tissue microarrays (TMA) were tested using immunohistochemistry. Histopathological evaluation and the analysis of immunostaining for EGFR, Ki67, p53, p16(ink4) and Collagen XVII proteins were carried out in digital whole slides. Statistical evaluation was carried out using Pearson's Chi-square test and Kaplan-Meier survival analysis. In the tested cohort, hypopharyngeal cancers had the least favorable, and glottic cancers had the most favorable prognosis. High Ki67 positive tumor cell fractions were associated with significantly worse prognosis and elevated rate of lymph node metastasis. Both Ki67 and EGFR expression correlated significantly with the tumor localization. Ki67 index was the highest in the hypopharyngeal region and it proved to be the lowest in the glottic region. EGFR expression was the highest in the oral cavity and the lowest in the glottic region. The survival rate of patients with p16(ink4)-negative cancer was significantly lower than of those with p16(ink4)-positive disease. A significant inverse correlation was found between histological grade and the prognosis of HNSCC. Our data support that elevated Ki67 positive proliferating cell fractions contribute to the unfavorable prognosis of hypopharyngeal cancers, while glottic cancers have the most favorable prognosis because of the lowest Ki67 expression rate.
Collapse
Affiliation(s)
- Gabriella Szentkúti
- Department of Oto-Rhino-Laryngology, Jahn Ferenc South-Pest Hospital, 1st Köves Street, 1204, Budapest, Hungary,
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Has C, Nyström A. Epidermal Basement Membrane in Health and Disease. CURRENT TOPICS IN MEMBRANES 2015; 76:117-70. [PMID: 26610913 DOI: 10.1016/bs.ctm.2015.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skin, as the organ protecting the individual from environmental aggressions, constantly meets external insults and is dependent on mechanical toughness for its preserved function. Accordingly, the epidermal basement membrane (BM) zone has adapted to enforce tissue integrity. It harbors anchoring structures created through unique organization of common BM components and expression of proteins exclusive to the epidermal BM zone. Evidence for the importance of its correct assembly and the nonredundancy of its components for skin integrity is apparent from the multiple skin blistering disorders caused by mutations in genes coding for proteins associated with the epidermal BM and from autoimmune disorders in which autoantibodies target these molecules. However, it has become clear that these proteins not only provide mechanical support but are also critically involved in tissue homeostasis, repair, and regeneration. In this chapter, we provide an overview of the unique organization and components of the epidermal BM. A special focus will be given to its function during regeneration, and in inherited and acquired diseases.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Sherman VR, Yang W, Meyers MA. The materials science of collagen. J Mech Behav Biomed Mater 2015; 52:22-50. [PMID: 26144973 DOI: 10.1016/j.jmbbm.2015.05.023] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 05/23/2015] [Accepted: 05/25/2015] [Indexed: 01/22/2023]
Abstract
Collagen is the principal biopolymer in the extracellular matrix of both vertebrates and invertebrates. It is produced in specialized cells (fibroblasts) and extracted into the body by a series of intra and extracellular steps. It is prevalent in connective tissues, and the arrangement of collagen determines the mechanical response. In biomineralized materials, its fraction and spatial distribution provide the necessary toughness and anisotropy. We review the structure of collagen, with emphasis on its hierarchical arrangement, and present constitutive equations that describe its mechanical response, classified into three groups: hyperelastic macroscopic models based on strain energy in which strain energy functions are developed; macroscopic mathematical fits with a nonlinear constitutive response; structurally and physically based models where a constitutive equation of a linear elastic material is modified by geometric characteristics. Viscoelasticity is incorporated into the existing constitutive models and the effect of hydration is discussed. We illustrate the importance of collagen with descriptions of its organization and properties in skin, fish scales, and bone, focusing on the findings of our group.
Collapse
|
42
|
Yancey KB. Itch, Eosinophils, and Autoimmunity: A Novel Murine Model of Bullous Pemphigoid. J Invest Dermatol 2015; 135:1213-1215. [DOI: 10.1038/jid.2014.537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Hurskainen T, Kokkonen N, Sormunen R, Jackow J, Löffek S, Soininen R, Franzke CW, Bruckner-Tuderman L, Tasanen K. Deletion of the major bullous pemphigoid epitope region of collagen XVII induces blistering, autoimmunization, and itching in mice. J Invest Dermatol 2015; 135:1303-1310. [PMID: 25310407 DOI: 10.1038/jid.2014.443] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 01/08/2023]
Abstract
Bullous pemphigoid (BP) is the most common autoimmune subepidermal blistering skin disease with a characteristic of pruritus and blistering. BP patients carry inflammation-triggering autoantibodies against the collagen XVII (ColXVII, also known as BP180) juxtamembraneous extracellular noncollagenous 16A (NC16A) domain involved in ectodomain shedding. Deletion of the corresponding NC14A region in a genetically modified mouse model (ΔNC14A) decreased the amount of ColXVII in skin, but it did not prevent ectodomain shedding. Newborn ΔNC14A mice had no macroscopic phenotypic changes. However, subepidermal microblisters, rudimentary hemidesmosomes, and loose basement membrane zone were observed by microscopy. ΔNC14A mice grow normally, but at around 3 months of age they start to scratch themselves and develop crusted erosions. Furthermore, perilesional eosinophilic infiltrations in the skin, eosinophilia, and elevated serum IgE levels are detected. Despite the removal of the major BP epitope region, ΔNC14A mice developed IgG and IgA autoantibodies with subepidermal reactivity, indicating autoimmunization against a dermo-epidermal junction component. Moreover, IgG autoantibodies recognized a 180-kDa keratinocyte protein, which was sensitive to collagenase digestion. We show here that ΔNC14A mice provide a highly reproducible BP-related mouse model with spontaneous breakage of self-tolerance and development of autoantibodies.
Collapse
Affiliation(s)
- Tiina Hurskainen
- Department of Dermatology, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - Nina Kokkonen
- Department of Dermatology, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - Raija Sormunen
- Biocenter Oulu, University of Oulu, Oulu, Finland; Department of Pathology, University of Oulu, Finland and Oulu University Hospital, Oulu, Finland
| | - Joanna Jackow
- Laboratory of Genetic Skin Diseases, Inserm UMR1163 and Imagine Institute of Genetic Diseases, Paris, France
| | - Stefanie Löffek
- Department of Dermatology, University Medical Center Freiburg and Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Raija Soininen
- Biocenter Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Claus-Werner Franzke
- Department of Dermatology, University Medical Center Freiburg and Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Medical Center Freiburg and Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Kaisa Tasanen
- Department of Dermatology, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
44
|
Moilanen JM, Kokkonen N, Löffek S, Väyrynen JP, Syväniemi E, Hurskainen T, Mäkinen M, Klintrup K, Mäkelä J, Sormunen R, Bruckner-Tuderman L, Autio-Harmainen H, Tasanen K. Collagen XVII expression correlates with the invasion and metastasis of colorectal cancer. Hum Pathol 2015; 46:434-42. [PMID: 25623077 DOI: 10.1016/j.humpath.2014.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/05/2014] [Accepted: 11/27/2014] [Indexed: 01/28/2023]
Abstract
Collagen XVII has a well-established role as an adhesion molecule and a cell surface receptor located in the type I hemidesmosome of stratified epithelia. Its ectodomain is constitutively shed from the cell surface and suggested to regulate the adhesion, migration, and signaling of cutaneous epithelial cells. Collagen XVII was not previously thought to be expressed by colon epithelial cells. Immunohistochemical analysis of tissue microarray samples of 141 cases of colorectal carcinoma showed that collagen XVII is expressed in normal human colonic mucosa and colorectal carcinoma. In colorectal carcinoma, increased collagen XVII expression was significantly associated with higher TNM stage. It also correlated with infiltrative growth pattern and tumor budding as well as lymph node and distant metastasis. Increased collagen XVII expression was associated with decreased disease-free and cancer-specific survival. Immunofluorescence staining of collagen XVII and its well-known binding partner laminin γ2 chain demonstrated a partial colocalization in normal and tumor tissue. In vitro, the overexpression of murine collagen XVII promoted the invasion of CaCo-2 colon carcinoma cells through Matrigel (BD Biosciences; Bedford, MA). To conclude, this study reports for the first time the expression of collagen XVII in colon epithelium and the association of increased collagen XVII immunoexpression with poor outcome in colorectal carcinoma.
Collapse
Affiliation(s)
- Jyri M Moilanen
- Department of Dermatology and Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90220, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland
| | - Nina Kokkonen
- Department of Dermatology and Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90220, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland
| | - Stefanie Löffek
- Department of Dermatology, University Medical Center Freiburg and Freiburg Institute of Advanced Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Juha P Väyrynen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland; Department of Pathology, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Erkki Syväniemi
- Department of Pathology, Kainuu Central Hospital, FIN-87140, Kajaani, Finland
| | - Tiina Hurskainen
- Department of Dermatology and Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90220, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland
| | - Markus Mäkinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland; Department of Pathology, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Kai Klintrup
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland; Department of Surgery, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Jyrki Mäkelä
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland; Department of Surgery, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Raija Sormunen
- Department of Pathology, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland; Biocenter Oulu, FIN-90220, Oulu, Finland
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Medical Center Freiburg and Freiburg Institute of Advanced Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Helena Autio-Harmainen
- Department of Pathology, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Kaisa Tasanen
- Department of Dermatology and Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90220, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland.
| |
Collapse
|
45
|
Risteli M, Ruotsalainen H, Bergmann U, Venkatraman Girija U, Wallis R, Myllylä R. Lysyl hydroxylase 3 modifies lysine residues to facilitate oligomerization of mannan-binding lectin. PLoS One 2014; 9:e113498. [PMID: 25419660 PMCID: PMC4242627 DOI: 10.1371/journal.pone.0113498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/24/2014] [Indexed: 01/17/2023] Open
Abstract
Lysyl hydroxylase 3 (LH3) is a multifunctional protein with lysyl hydroxylase, galactosyltransferase and glucosyltransferase activities. The LH3 has been shown to modify the lysine residues both in collagens and also in some collagenous proteins. In this study we show for the first time that LH3 is essential for catalyzing formation of the glucosylgalactosylhydroxylysines of mannan-binding lectin (MBL), the first component of the lectin pathway of complement activation. Furthermore, loss of the terminal glucose units on the derivatized lysine residues in mouse embryonic fibroblasts lacking the LH3 protein leads to defective disulphide bonding and oligomerization of rat MBL-A, with a decrease in the proportion of the larger functional MBL oligomers. The oligomerization could be completely restored with the full length LH3 or the amino-terminal fragment of LH3 that possesses the glycosyltransferase activities. Our results confirm that LH3 is the only enzyme capable of glucosylating the galactosylhydroxylysine residues in proteins with a collagenous domain. In mice lacking the lysyl hydroxylase activity of LH3, but with untouched galactosyltransferase and glucosyltransferase activities, reduced circulating MBL-A levels were observed. Oligomerization was normal, however and residual lysyl hydroxylation was compensated in part by other lysyl hydroxylase isoenzymes. Our data suggest that LH3 is commonly involved in biosynthesis of collagenous proteins and the glucosylation of galactosylhydroxylysines residues by LH3 is crucial for the formation of the functional high-molecular weight MBL oligomers.
Collapse
Affiliation(s)
- Maija Risteli
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- * E-mail:
| | - Heli Ruotsalainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, Mass Spectrometry Core Facility, University of Oulu, Oulu, Finland
| | | | - Russell Wallis
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Raili Myllylä
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
46
|
Chen P, Cescon M, Bonaldo P. The Role of Collagens in Peripheral Nerve Myelination and Function. Mol Neurobiol 2014; 52:216-25. [PMID: 25143238 DOI: 10.1007/s12035-014-8862-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/11/2014] [Indexed: 02/07/2023]
Abstract
In the peripheral nervous system, myelin is formed by Schwann cells, which are surrounded by a basal lamina. Extracellular matrix (ECM) molecules in the basal lamina play an important role in regulating Schwann cell functions, including adhesion, survival, spreading, and myelination, as well as in supporting neurite outgrowth. Collagens are a major component of ECM molecules, which include 28 types that differ in structure and function. A growing body of evidence suggests that collagens are key components of peripheral nerves, where they not only provide a structural support but also affect cell behavior by triggering intracellular signals. In this review, we will summarize the main properties of collagen family, discuss the role of extensively studied collagen types (collagens IV, V, VI, and XV) in Schwann cell function and myelination, and provide a detailed overview of the recent advances with respect to these collagens in peripheral nerve function.
Collapse
Affiliation(s)
- Peiwen Chen
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy,
| | | | | |
Collapse
|
47
|
Molecular and cellular basis of scleroderma. J Mol Med (Berl) 2014; 92:913-24. [DOI: 10.1007/s00109-014-1190-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/11/2023]
|
48
|
Yu Z, An B, Ramshaw JA, Brodsky B. Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 2014; 186:451-61. [DOI: 10.1016/j.jsb.2014.01.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
|
49
|
Abstract
Genetic skin fragility manifests with diminished resistance of the skin and mucous membranes to external mechanical forces and with skin blistering, erosions, and painful wounds as clinical features. Skin fragility disorders, collectively called epidermolysis bullosa, are caused by mutations in 18 distinct genes that encode proteins involved in epidermal integrity and dermal-epidermal adhesion. The genetic spectrum, along with environmental and genetic modifiers, creates a large number of clinical phenotypes, spanning from minor localized lesions to severe generalized blistering, secondary skin cancer, or early demise resulting from extensive loss of the epidermis. Laboratory investigations of skin fragility have greatly augmented our understanding of genotype-phenotype correlations in epidermolysis bullosa and have also advanced skin biology in general. Current translational research concentrates on the development of biologically valid treatments with therapeutic genes, cells, proteins, or small-molecule compounds in preclinical settings or human pilot trials.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg 79104, Germany;
| | | |
Collapse
|
50
|
Has C, Kiritsi D, Mellerio JE, Franzke CW, Wedgeworth E, Tantcheva-Poor I, Kernland-Lang K, Itin P, Simpson MA, Dopping-Hepenstal PJ, Fujimoto W, McGrath JA, Bruckner-Tuderman L. The missense mutation p.R1303Q in type XVII collagen underlies junctional epidermolysis bullosa resembling Kindler syndrome. J Invest Dermatol 2014; 134:845-849. [PMID: 24005051 DOI: 10.1038/jid.2013.367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Jemima E Mellerio
- St John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Claus-Werner Franzke
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Emma Wedgeworth
- St John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | | | | | - Peter Itin
- Department of Dermatology, University of Basel, Basel, Switzerland
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | | | - Wataru Fujimoto
- Department of Dermatology, Kawasaki Medical School, Okayama, Japan
| | - John A McGrath
- St John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|