1
|
Dwyer MB, Luo J, Todd TD, Blumer KJ, Tall GG, Wedegaertner PB. The guanine nucleotide exchange factor Ric-8A regulates the sensitivity of constitutively active Gαq to the inhibitor YM-254890. J Biol Chem 2025; 301:108426. [PMID: 40118458 DOI: 10.1016/j.jbc.2025.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/28/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025] Open
Abstract
Heterotrimeric G proteins are stimulated under normal circumstances by G protein-coupled receptors to promote downstream intracellular signaling. Mutations can occur in αq at glutamine 209 (Q209) that cause constitutive, G protein-coupled receptor independent signaling due to disruption of GTPase activity. Specifically, Q209L/P mutations are oncogenic drivers of uveal melanoma. YM-254890 (YM) has been shown to selectively inhibit both WT and constitutively active (CA) αqQ209L/P by preventing the release of GDP and exchange for GTP, thereby halting downstream signaling. Because αqQL/P are thought to be primarily GTP-bound and GTPase deficient, the current mechanistic understanding of YM inhibition needs further investigation to clarify how a GDP-dissociation inhibitor could potently inhibit these oncogenic mutants. Here, we expand on the current knowledge of CA αq cellular regulation by demonstrating a direct role for the αq chaperone and guanine nucleotide exchange factor Ric-8A in YM sensitivity. Through signaling assays in RIC-8A KO cells, we found that myristoylated αqQL/P mutants (αqAG-QL/P), previously demonstrated to be YM-resistant, became YM-sensitive, and this was reversed by reintroduction of Ric-8A. Additionally, αqQL demonstrated increased YM sensitivity in the absence of Ric-8A, which was directly altered by the reintroduction of Ric-8A. Pull-down and BRET assays with the RGS-homology domain of GRK2, which can only bind activated αq, further demonstrated that Ric-8A expression enhances activation of αq, its ability to bind effectors, and therefore its ability to signal. With the understanding of YM acting as a GDP-dissociation inhibitor, we propose that Ric-8A hinders YM inhibitory effects by promoting GTP-bound, activated αqQL/P.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jiansong Luo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tyson D Todd
- Department of Cell Biology and Physiology, Washington University, Saint Louis, Missouri, USA
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University, Saint Louis, Missouri, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Pakkhesal S, Shakouri M, Mosaddeghi-Heris R, Kiani Nasab S, Salehi N, Sharafi A, Ahmadalipour A. Bridging the gap: The endocannabinoid system as a functional fulcrum for benzodiazepines in a novel frontier of anxiety pharmacotherapy. Pharmacol Ther 2025; 267:108799. [PMID: 39862927 DOI: 10.1016/j.pharmthera.2025.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses. Moreover, studies have provided evidence of interactions between the eCB system and benzodiazepines in anxiety modulation. For instance, the attenuation of benzodiazepine-induced anxiolysis by cannabinoid receptor antagonism or genetic variations in the eCB system components in animal studies, have been associated with variations in benzodiazepine response and susceptibility to anxiety disorders. The combined use of cannabinoid-based medications, such as cannabinoid receptor agonists and benzodiazepine co-administration, has shown promise in augmenting anxiolytic effects and reducing benzodiazepine dosage requirements. This article aims to comprehensively review and discuss the current evidence on the involvement of the eCB system as a key modulator of benzodiazepine-related anxiolytic effects, and further, the possible mechanisms by which the region-specific eCB system-GABAergic connectivity modulates the neuro-endocrine/behavioral stress response, providing an inclusive understanding of the complex interplay between the eCB system and benzodiazepines in the context of anxiety regulation, to inform future research and clinical practice.
Collapse
Affiliation(s)
- Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Shakouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Kiani Nasab
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Salehi
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
3
|
Pujicic A, Popescu I, Dascalu D, Petreuș DE, Isvoran A. Predictions of the Biological Effects of the Main Components of Tarragon Essential Oil. Int J Mol Sci 2025; 26:1860. [PMID: 40076487 PMCID: PMC11899843 DOI: 10.3390/ijms26051860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Artemisia dracunculus/(tarragon) is a perennial plant used in traditional medicine and the food industry. The plant is known to have beneficial effects on health, such as antibacterial, antifungal, antiseptic, carminative, anti-inflammatory, antipyretic, anthelmintic, etc. In this study, the compounds present in the highest concentrations in the essential oils obtained by different extraction methods from tarragon found on the Romanian market were identified by gas chromatography-mass spectrometry. The biological activity of these compounds was predicted using the computational tools ADMETlab3.0, admetSAR3.0, CLC-Pred2.0, and AntiBac-Pred. Also, the main molecular target of these compounds was predicted and the interactions with this protein were evaluated using molecular docking. The compounds identified in high concentrations in the obtained essential oils are estragole, cis-β-ocimene, trans-β-ocimene, limonene, eugenol methyl ether, eugenol acetate, eugenol, caryophyllene oxide, and α-pinene. The absorption, distribution, metabolism, excretion, and toxicity profiles of these compounds show that they are generally safe, but some of them can cause skin sensitization and respiratory toxicity and are potential inhibitors of the organic anion transporters OATP1 and OATP2. Several of these compounds exert antibacterial activity against some species of Staphylococcus, Streptococcus, and Prevotella. All compounds reveal potential cytotoxicity for several types of cancer cells. These findings may guide further experimental studies to identify medical and pharmacological applications of tarragon extracts or specific compounds that can be isolated from these extracts.
Collapse
Affiliation(s)
- Andrijana Pujicic
- Department of Biology, West University of Timisoara, 16 Pestalozzi, 300115 Timișoara, Romania;
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timișoara, Romania;
| | - Daniela Dascalu
- Department of Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timișoara, Romania (D.E.P.)
| | - David Emanuel Petreuș
- Department of Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timișoara, Romania (D.E.P.)
| | - Adriana Isvoran
- Department of Biology, West University of Timisoara, 16 Pestalozzi, 300115 Timișoara, Romania;
| |
Collapse
|
4
|
Ma Y, Patterson B, Zhu L. Biased signaling in GPCRs: Structural insights and implications for drug development. Pharmacol Ther 2025; 266:108786. [PMID: 39719175 DOI: 10.1016/j.pharmthera.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans, playing a crucial role in regulating diverse cellular processes and serving as primary drug targets. Traditional drug design has primarily focused on ligands that uniformly activate or inhibit GPCRs. However, the concept of biased agonism-where ligands selectively stabilize distinct receptor conformations, leading to unique signaling outcomes-has introduced a paradigm shift in therapeutic development. Despite the promise of biased agonists to enhance drug efficacy and minimize side effects, a comprehensive understanding of the structural and biophysical mechanisms underlying biased signaling is essential. Recent advancements in GPCR structural biology have provided unprecedented insights into ligand binding, conformational dynamics, and the molecular basis of biased signaling. These insights, combined with improved techniques for characterizing ligand efficacy, have driven the development of biased ligands for several GPCRs, including opioid, angiotensin, and adrenergic receptors. This review synthesizes these developments, from mechanisms to drug discovery in biased signaling, emphasizing the role of structural insights in the rational design of next-generation biased agonists with superior therapeutic profiles. Ultimately, these advances hold the potential to revolutionize GPCR-targeted drug discovery, paving the way for more precise and effective treatments.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brandon Patterson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| |
Collapse
|
5
|
Wu L, Chen Y, Yan Y, Wang H, Guy CD, Carney J, Moreno CL, Quintanilla-Arteaga A, Monsivais F, Zheng Z, Zeng M. Identification of Potential Therapeutic Targets Against Anthrax-Toxin-Induced Liver and Heart Damage. Toxins (Basel) 2025; 17:54. [PMID: 39998071 PMCID: PMC11861023 DOI: 10.3390/toxins17020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/26/2025] Open
Abstract
Anthrax represents a disease resulting from infection by toxin-secreting bacteria, Bacillus anthracis. This research aimed to identify new therapeutic targets to combat anthrax. We performed assays to assess cell viability, apoptosis, glycogen consumption, and compound uptake and release in hepatocytes and cardiomyocytes responding to anthrax toxins. Microarray analysis was carried out to identify the genes potentially involved in toxin-induced toxicity. Knockdown experiments were performed to validate the contributions of the identified genes. Our study showed that anthrax edema toxin (EdTx) and lethal toxin (LeTx) induced lethal damage in mouse liver and heart, respectively. Microarray assays showed that 218 genes were potentially involved in EdTx-mediated toxicity, and 18 genes were potentially associated with LeTx-mediated toxicity. Among these genes, the knockdown of Rgs1, Hcar2, Fosl2, Hcar2, Cxcl2, and Cxcl3 protected primary hepatocytes from EdTx-induced cytotoxicity. Plasminogen activator inhibitor 1 (PAI-1)-encoding Serpine1 constituted the most significantly upregulated gene in response to LeTx treatment in mouse liver. PAI-1 knockout mouse models had a higher tolerance to LeTx compared with wild-type counterparts, suggesting that PAI-1 is essential for LeTx-induced toxicity and might represent a therapeutic target in LeTx-induced tissue damage. These results provide potential therapeutic targets for combating anthrax-toxin-induced liver and heart damage.
Collapse
Affiliation(s)
- Lihong Wu
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Yanping Chen
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Yongyong Yan
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Haiyan Wang
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Cynthia D. Guy
- Liver and GI Pathology Section, Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - John Carney
- Liver and GI Pathology Section, Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carla L. Moreno
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Anaisa Quintanilla-Arteaga
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Fernando Monsivais
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Zhichao Zheng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
6
|
Zhang L, Li Y, Xu Y, Wang W, Guo G. Machine learning-driven identification of critical gene programs and key transcription factors in migraine. J Headache Pain 2025; 26:14. [PMID: 39833696 PMCID: PMC11745026 DOI: 10.1186/s10194-025-01950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Migraine is a complex neurological disorder characterized by recurrent episodes of severe headaches. Although genetic factors have been implicated, the precise molecular mechanisms, particularly gene expression patterns in migraine-associated brain regions, remain unclear. This study applies machine learning techniques to explore region-specific gene expression profiles and identify critical gene programs and transcription factors linked to migraine pathogenesis. METHODS We utilized single-nucleus RNA sequencing (snRNA-seq) data from 43 brain regions, along with genome-wide association study (GWAS) data, to investigate susceptibility to migraine. The cell-type-specific expression (CELLEX) algorithm was employed to calculate specific expression profiles for each region, while non-negative matrix factorization (NMF) was applied to decompose gene programs within the single-cell data from these regions. Following the annotation of brain region expression profiles and gene programs to the genome, we employed stratified linkage disequilibrium score regression (S-LDSC) to assess the associations between brain regions, gene programs, and migraine-related SNPs. Key transcription factors regulating critical gene programs were identified using a random forest model based on regulatory networks derived from the GTEx consortium. RESULTS Our analysis revealed significant enrichment of migraine-associated single nucleotide polymorphisms (SNPs) in the posterior nuclear complex-medial geniculate nuclei (PoN_MG) of the thalamus, highlighting this region's crucial role in migraine pathogenesis. Gene program 1, identified through NMF, was enriched in the calcium signaling pathway, a known contributor to migraine pathophysiology. Random forest analysis predicted ARID3A as the top transcription factor regulating gene program 1, suggesting its potential role in modulating calcium-related genes involved in migraine. CONCLUSION This study provides new insights into the molecular mechanisms underlying migraine, emphasizing the importance of the PoN_MG thalamic region, calcium signaling pathways, and key transcription factors like ARID3A. These findings offer potential avenues for developing targeted therapeutic strategies for migraine treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujie Li
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yunhao Xu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Headache Center, Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Guangyu Guo
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, Zhengzhou, China.
| |
Collapse
|
7
|
Yang Y, Shao Y, Gao X, Hu Z, Wang Y, Ma C, Jin G, Zhu F, Dong G, Zhou G. RGS10 Deficiency Alleviated Intestinal Mucosal Inflammation Through Suppression of Th1/Th17 Cell Immune Responses in Ulcerative Colitis. Immunology 2025; 174:139-152. [PMID: 39428350 DOI: 10.1111/imm.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Regulator of G-protein signalling (RGS) 10 plays critical roles in several immune related diseases. However, whether RGS10 is involved in colonic inflammation of ulcerative colitis (UC) is still obscure. This study aimed to investigate the role of RGS10 in UC. In this study, RGS10 expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and immunofluorescent analysis. Single-cell RNA sequencing of intestinal mucosa was performed to identify key immune cells with differentially expressed RGS10. RGS10 knockout mice were generated and established dextran sulphate sodium (DSS)-induced colitis. Expression of inflammatory cytokines on mRNA and protein levels was detected by qRT-PCR, enzyme-linked immunosorbent assay, and flow cytometry. We found that RGS10 expression was significantly elevated in UC patients, especially in CD4+ T cells, compared with healthy subjects. Intriguingly, RGS10 deficiency markedly alleviated DSS-induced colitis and decreased the proportion of Th1 and Th17 cells in lamina propria mononuclear cells (LPMCs), peripheral blood (PB), spleens, and mesenteric lymph nodes (mLNs). Mechanistically, RGS10 deficiency blocked the differentiation of Th1 and Th17 cells by inhibiting the phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3. The co-immunoprecipitation analysis further showed that RGS10 could interact with protein tyrosine phosphatase non-receptor type 2 (PTPN2), and further regulated Th1 and Th17 cells differentiation of CD4+ T cells. In conclusion, RGS10 deficiency alleviated intestinal mucosal inflammation through inhibition of Th1/Th17 cell-mediated immune responses via interaction with PTPN2 in CD4+ T cells. Therefore, targeting RGS10 may represent a novel therapeutic approach for UC treatment.
Collapse
Affiliation(s)
- Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xizhuang Gao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Zongjing Hu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Cuimei Ma
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
8
|
Qiu C, Tang C, Tang Y, Su K, Chai X, Zhan Z, Niu X, Li J. RGS5 + lymphatic endothelial cells facilitate metastasis and acquired drug resistance of breast cancer through oxidative stress-sensing mechanism. Drug Resist Updat 2024; 77:101149. [PMID: 39306871 DOI: 10.1016/j.drup.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 11/12/2024]
Abstract
AIMS Oxidative stress reflected by elevated reactive oxygen species (ROS) in the tumor ecosystem, is a hallmark of human cancers. The mechanisms by which oxidative stress regulate the metastatic ecosystem and resistance remain elusive. This study aimed to dissect the oxidative stress-sensing machinery during the evolvement of early dissemination and acquired drug resistance in breast cancer. METHODS Here, we constructed single-cell landscape of primary breast tumors and metastatic lymph nodes, and focused on RGS5+ endothelial cell subpopulation in breast cancer metastasis and resistance. RESULTS We reported on RGS5 as a master in endothelial cells sensing oxidative stress. RGS5+ endothelial cells facilitated tumor-endothelial adhesion and transendothelial migration of breast cancer cells. Antioxidant suppressed oxidative stress-induced RGS5 expression in endothelial cells, and prevented adhesion and transendothelial migration of cancer cells. RGS5-overexpressed HLECs displayed attenuated glycolysis and oxidative phosphorylation. Drug-resistant HLECs with RGS5 overexpression conferred acquired drug resistance of breast cancer cells. Importantly, genetic knockdown of RGS5 prevented tumor growth and lymph node metastasis. CONCLUSIONS Our work demonstrates that RGS5 in lymphatic endothelial cells senses oxidative stress to promote breast cancer lymph node metastasis and resistance, providing a novel insight into a potentially targetable oxidative stress-sensing machinery in breast cancer treatment.
Collapse
Affiliation(s)
- Caixin Qiu
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chaoyi Tang
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yujun Tang
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ka Su
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiao Chai
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zexu Zhan
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xing Niu
- China Medical University Shenyang 110122, China; Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China.
| | - Jiehua Li
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
9
|
Bair A, Printy N, Choi SH, Wilkinson J, O'Brien J, Myers B, Roman D, Mahfouz TM. In Silico Design of Novel RGS2-G alpha-q Interaction Inhibitors with Anticancer Activity. J Chem Inf Model 2024; 64:8052-8062. [PMID: 39401155 DOI: 10.1021/acs.jcim.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Regulators of G-protein signaling (RGS) are a family of approximately 30 proteins that bind to and deactivate the alpha subunits of G-proteins (Gα) by accelerating their GTP hydrolysis rates, which terminates G-protein coupled receptor (GPCR) signaling. Thus, RGS proteins are essential in regulating GPCR signaling, and most members are implicated as critical nodes in human diseases such as hypertension, depression, and others. Regulator of G-protein signaling 2 (RGS2), a member of the R4 family of RGS proteins, is overexpressed in many solid breast cancers, and its levels in prostate cancer significantly correlate with the metastatic stage and poor prognosis. We sought to develop RGS2 inhibitors as potential chemotherapeutic agents utilizing structure-based drug design approaches. Available structures of the RGS2-Gα complex were used to extract a pharmacophore model for searching chemical databases. Docking of identified hits to RGS2 as well as other RGS structures was used to screen the hits for potent and selective RGS2 inhibitors. Whole cell assays showed the top 10 ranking compounds, AJ-1-AJ-10, to inhibit RGS2-Gαq interactions. Differential scanning fluorimetry showed AJ-3 to bind RGS2 but not Gαq. All 10 compounds inhibited the growth of several RGS2 expressing cancers in cell culture assays. In addition, AJ-3 inhibited the migration of LNCaP prostate cancer cells in wound healing assays. This is the first group of RGS2 inhibitors identified by structure-based approaches and that show anticancer activity. These results highlight the potential RGS2 inhibitors have to be a new class of chemotherapeutic agents.
Collapse
Affiliation(s)
- Adam Bair
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| | - Natalie Printy
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| | - So Hee Choi
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| | - Joshua Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Joseph O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brian Myers
- Department of Chemistry and Biochemistry, Getty College of Arts and Sciences, Ohio Northern University, Ada, Ohio 45817, United States
| | - David Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Tarek M Mahfouz
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| |
Collapse
|
10
|
Xun J, Ma Y, Wang B, Jiang X, Liu B, Gao R, Zhai Q, Cheng R, Wu X, Wu Y, Zhang Q. RGS1 targeted by miR-191-3p inhibited the stemness properties of esophageal cancer cells by suppressing CXCR4/PI3K/AKT signaling. Acta Histochem 2024; 126:152190. [PMID: 39173233 DOI: 10.1016/j.acthis.2024.152190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Esophageal cancer is one of the most common malignant tumors in the world. It is urgent to prevent the development and progression of esophageal cancer. Cancer stem cells (CSCs) were reported to have the ability to initiate tumorigenesis, and reducing the stem cell-like characteristics of tumors is an important strategy to inhibit the occurrence and development of tumors. miRNAs are key regulators of the stemness of cancer. Here, we aimed to investigate the role and regulatory mechanism of miR-191-3p in the stemness properties of esophageal cancer cells. METHODS Esophageal cancer cells with stable expression of miR-191-3p were established by lentivirus system. CCK-8 assay, transwell assay, wound healing assay were used to evaluate the effect of miR-191-3p on proliferation and metastasis of esophageal cancer cells. The expression of stemness-related markers (NANOG, OCT4, SOX2), ALDH activity, sphere-forming assay and subcutaneous tumor model in nude mice were performed to evaluate the stemness properties of esophageal cancer cells in vitro and in vivo. Dual-luciferase reporter assay was used to verify the molecular mechanism. RESULT Here we found that overexpression of miR-191-3p promoted the stemness properties of esophageal cancer cells in vitro and in vivo, including increasing esophageal cancer cell proliferation and metastasis ability, the expression of stemness-related markers NANOG, OCT4, and SOX2, ALDH activity, the number of spheres formed and tumor growth. Bioinformatic analysis and dual-luciferase assay demonstrated that regulator of G protein signaling 1 (RGS1) was the directed target gene of miR-191-3p and attenuated the promotion effect of miR-191-3p on the stemness of esophageal cancer cells. Furthermore, we found that RGS1 knockdown activated the PI3K/AKT pathway by negatively regulating CXCR4 to promote the stemness of esophageal cancer cells. CONCLUSIONS Our findings revealed that RGS1 targeted by miR-191-3p inhibited the stemness of esophageal cancer cells by suppressing the CXCR4/PI3K/AKT pathway, which provide potential prognostic markers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Jing Xun
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Yuan Ma
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Botao Wang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Xiaolin Jiang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Bin Liu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Ruifang Gao
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Qiongli Zhai
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital,Tianjin 300060, China
| | - Runfen Cheng
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital,Tianjin 300060, China
| | - Xueliang Wu
- The First Affiliated Hospital of Hebei North University, Hebei 075000, China
| | - Yu Wu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China.
| | - Qi Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China.
| |
Collapse
|
11
|
Li ZJ, He B, Domenichini A, Satiaputra J, Wood KH, Lakhiani DD, Bashaw AA, Nilsson LM, Li J, Bastow ER, Johansson-Percival A, Denisenko E, Forrest AR, Sakaram S, Carretero R, Hämmerling GJ, Nilsson JA, Lee GY, Ganss R. Pericyte phenotype switching alleviates immunosuppression and sensitizes vascularized tumors to immunotherapy in preclinical models. J Clin Invest 2024; 134:e179860. [PMID: 39286984 PMCID: PMC11405053 DOI: 10.1172/jci179860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/23/2024] [Indexed: 09/19/2024] Open
Abstract
T cell-based immunotherapies are a promising therapeutic approach for multiple malignancies, but their efficacy is limited by tumor hypoxia arising from dysfunctional blood vessels. Here, we report that cell-intrinsic properties of a single vascular component, namely the pericyte, contribute to the control of tumor oxygenation, macrophage polarization, vessel inflammation, and T cell infiltration. Switching pericyte phenotype from a synthetic to a differentiated state reverses immune suppression and sensitizes tumors to adoptive T cell therapy, leading to regression of melanoma in mice. In melanoma patients, improved survival is correlated with enhanced pericyte maturity. Importantly, pericyte plasticity is regulated by signaling pathways converging on Rho kinase activity, with pericyte maturity being inducible by selective low-dose therapeutics that suppress pericyte MEK, AKT, or notch signaling. We also show that low-dose targeted anticancer therapy can durably change the tumor microenvironment without inducing adaptive resistance, creating a highly translatable pathway for redosing anticancer targeted therapies in combination with immunotherapy to improve outcome.
Collapse
Affiliation(s)
- Zhi-Jie Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Bo He
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Alice Domenichini
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiulia Satiaputra
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Kira H Wood
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Devina D Lakhiani
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Abate A Bashaw
- Melanoma Discovery Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Lisa M Nilsson
- Melanoma Discovery Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ji Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Edward R Bastow
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Anna Johansson-Percival
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Elena Denisenko
- Systems Biology and Genomics Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Alistair Rr Forrest
- Systems Biology and Genomics Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Rafael Carretero
- DKFZ-Bayer Immunotherapeutic Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Jonas A Nilsson
- Melanoma Discovery Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gabriel Yf Lee
- St. John of God Subiaco Hospital and School of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Ruth Ganss
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Horimoto AR, Sun Q, Lash JP, Daviglus ML, Cai J, Haack K, Cole SA, Thornton TA, Browning SR, Franceschini N. Admixture Mapping of Chronic Kidney Disease and Risk Factors in Hispanic/Latino Individuals From Central America Country of Origin. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004314. [PMID: 38950085 PMCID: PMC11394365 DOI: 10.1161/circgen.123.004314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) is highly prevalent in Central America, and genetic factors may contribute to CKD risk. To understand the influences of genetic admixture on CKD susceptibility, we conducted an admixture mapping screening of CKD traits and risk factors in US Hispanic and Latino individuals from Central America country of origin. METHODS We analyzed 1023 participants of HCHS/SOL (Hispanic Community Health Study/Study of Latinos) who reported 4 grandparents originating from the same Central America country. Ancestry admixture findings were validated on 8191 African Americans from WHI (Women's Health Initiative), 3141 American Indians from SHS (Strong Heart Study), and over 1.1 million European individuals from a multistudy meta-analysis. RESULTS We identified 3 novel genomic regions for albuminuria (chromosome 14q24.2), CKD (chromosome 6q25.3), and type 2 diabetes (chromosome 3q22.2). The 14q24.2 locus driven by a Native American ancestry had a protective effect on albuminuria and consisted of 2 nearby regions spanning the RGS6 gene. Variants at this locus were validated in American Indians. The 6q25.3 African ancestry-derived locus, encompassing the ARID1B gene, was associated with increased risk for CKD and replicated in African Americans through admixture mapping. The European ancestry type 2 diabetes locus at 3q22.2, encompassing the EPHB1 and KY genes, was validated in European individuals through variant association. CONCLUSIONS US Hispanic/Latino populations are culturally and genetically diverse. This study focusing on Central America grandparent country of origin provides new loci discovery and insights into the ancestry-of-origin influences on CKD and risk factors in US Hispanic and Latino individuals.
Collapse
Affiliation(s)
| | - Quan Sun
- Dept of Biostatistics, Univ of North Carolina, Chapel Hill, NC
| | - James P. Lash
- Dept of Medicine, Univ of Illinois at Chicago, Chicago, IL
| | - Martha L. Daviglus
- Institute for Minority Health Research, Univ of Illinois at Chicago, Chicago, IL
| | - Jianwen Cai
- Dept of Biostatistics, Univ of North Carolina, Chapel Hill, NC
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, TX
| | | | - Timothy A. Thornton
- Dept of Biostatistics, Univ of Washington, Seattle, WA
- Dept of Statistics, Univ of Washington, Seattle, WA
| | | | | |
Collapse
|
13
|
Shen H, Liu J, Chen Y, Ren B, Zhou Z, Jin M, Wang L, He Y, Li F, Li B, Du M. The whole blood DNA methylation of RAB8A and RAP1A in autoimmune thyroiditis: evidence and validation of iodine exposure in a population from different water iodine areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2923-2935. [PMID: 37963255 DOI: 10.1080/09603123.2023.2280148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Our study aimed to identify and verify G protein-related methylated genes in AIT patients, while also investigate those genes in AIT patients exposed to iodine in different water iodine areas. Different areas were classified by median water iodine (MWI) concentrations: Iodine-Fortified Areas (IFA, MWI<10µg/L), Iodine-Adequate Areas (IAA, 40≤MWI≤100 µg/L), and Iodine-Excessive Areas (IEA, MWI>100 µg/L). We studied 176 AIT cases and 176 controls, with 89, 40, and 47 pairs in IFA, IAA, and IEA, respectively. Using the Illumina Human Methylation 850k BeadChip, we identified candidate methylated genes. MethylTargetTM and QRT-PCR validated DNA methylation and mRNA expression. Results showed hypomethylation and high expression of RAB8A and RAP1A in all 176 AIT cases. RAB8A's CpG sites were mainly hypomethylated in IFA and IEA, while RAP1A's sites were primarily hypomethylated in IEA. This study underscores how water iodine exposure may influence RAB8A and RAP1A methylation in AIT.
Collapse
Affiliation(s)
- Hongmei Shen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Jinjin Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Yun Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Bingxuan Ren
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Zheng Zhou
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Meihui Jin
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Lingbo Wang
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Yanhong He
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Fan Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Baoxiang Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Mengxue Du
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Pu Y, Yang J, Pan Q, Li C, Wang L, Xie X, Chen X, Xiao F, Chen G. MGST3 regulates BACE1 protein translation and amyloidogenesis by controlling the RGS4-mediated AKT signaling pathway. J Biol Chem 2024; 300:107530. [PMID: 38971310 PMCID: PMC11332907 DOI: 10.1016/j.jbc.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024] Open
Abstract
Microsomal glutathione transferase 3 (MGST3) regulates eicosanoid and glutathione metabolism. These processes are associated with oxidative stress and apoptosis, suggesting that MGST3 might play a role in the pathophysiology of Alzheimer's disease. Here, we report that knockdown (KD) of MGST3 in cell lines reduced the protein level of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the resulting amyloidogenesis. Interestingly, MGST3 KD did not alter intracellular reactive oxygen species level but selectively reduced the expression of apoptosis indicators which could be associated with the receptor of cysteinyl leukotrienes, the downstream metabolites of MGST3 in arachidonic acid pathway. We then showed that the effect of MGST3 on BACE1 was independent of cysteinyl leukotrienes but involved a translational mechanism. Further RNA-seq analysis identified that regulator of G-protein signaling 4 (RGS4) was a target gene of MGST3. Silencing of RGS4 inhibited BACE1 translation and prevented MGST3 KD-mediated reduction of BACE1. The potential mechanism was related to AKT activity, as the protein level of phosphorylated AKT was significantly reduced by silencing of MGST3 and RGS4, and the AKT inhibitor abolished the effect of MGST3/RGS4 on phosphorylated AKT and BACE1. Together, MGST3 regulated amyloidogenesis by controlling BACE1 protein expression, which was mediated by RGS4 and downstream AKT signaling pathway.
Collapse
Affiliation(s)
- Yalan Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Department of Neurology, Langzhong People's Hospital, Nanchong, Sichuan, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, China
| | - Qiuling Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Chenlu Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.
| |
Collapse
|
15
|
Ma S, Li R, Li G, Wei M, Li B, Li Y, Ha C. Identification of a G-protein coupled receptor-related gene signature through bioinformatics analysis to construct a risk model for ovarian cancer prognosis. Comput Biol Med 2024; 178:108747. [PMID: 38897150 DOI: 10.1016/j.compbiomed.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Ovarian cancer (OV) is a common malignant tumor of the female reproductive system with a 5-year survival rate of ∼30 %. Inefficient early diagnosis and prognosis leads to poor survival in most patients. G protein-coupled receptors (GPCRs, the largest family of human cell surface receptors) are associated with OV. We aimed to identify GPCR-related gene (GPCRRG) signatures and develop a novel model to predict OV prognosis. METHOD We downloaded data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Prognostic GPCRRGs were screened using least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and a prognostic model was constructed. The predictive ability of the model was evaluated by Kaplan-Meier (K-M) survival analysis. The levels of GPCRRGs were examined in normal and OV cell lines using quantitative reverse-Etranscription polymerase chain reaction. The immunological characteristics of the high- and low-risk groups were analyzed using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. RESULTS Based on the risks scores, 17 GPCRRGs were associated with OV prognosis. CXCR4, GPR34, LGR6, LPAR3, and RGS2 were significantly expressed in three OV datasets and enabled accurate OV diagnosis. K-M analysis of the prognostic model showed that it could differentiate high- and low-risk patients, which correspond to poorer and better prognoses, respectively. GPCRRG expression was correlated with immune infiltration rates. CONCLUSIONS Our prognostic model elaborates on the roles of GPCRRGs in OV and provides a new tool for prognosis and immune response prediction in patients with OV.
Collapse
Affiliation(s)
- Shaohan Ma
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ruyue Li
- Gynecology Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guangqi Li
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Meng Wei
- Gynecology Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bowei Li
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yongmei Li
- Gynecology Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chunfang Ha
- Gynecology Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Fertility Preservation & Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, 750000, China.
| |
Collapse
|
16
|
McNeill SM, Zhao P. The roles of RGS proteins in cardiometabolic disease. Br J Pharmacol 2024; 181:2319-2337. [PMID: 36964984 DOI: 10.1111/bph.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most prominent receptors on the surface of the cell and play a central role in the regulation of cardiac and metabolic functions. GPCRs transmit extracellular stimuli to the interior of the cells by activating one or more heterotrimeric G proteins. The duration and intensity of G protein-mediated signalling are tightly controlled by a large array of intracellular mediators, including the regulator of G protein signalling (RGS) proteins. RGS proteins selectively promote the GTPase activity of a subset of Gα subunits, thus serving as negative regulators in a pathway-dependent manner. In the current review, we summarise the involvement of RGS proteins in cardiometabolic function with a focus on their tissue distribution, mechanisms of action and dysregulation under various disease conditions. We also discuss the potential therapeutic applications for targeting RGS proteins in treating cardiometabolic conditions and current progress in developing RGS modulators. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Yamada C, Okada K, Odaira K, Tokoro M, Iwamoto E, Sanada M, Noura M, Okamoto S, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. RGS1 and CREB5 are direct and common transcriptional targets of ZNF384-fusion proteins. Cancer Med 2024; 13:e7471. [PMID: 39015025 PMCID: PMC11252495 DOI: 10.1002/cam4.7471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND ZNF384-fusion (Z-fusion) genes were recently identified in B-cell acute lymphoblastic leukemia (B-ALL) and are frequent in Japanese adult patients. The frequency is about 20% in those with Philadelphia chromosome-negative B-ALL. ZNF384 is a transcription factor and Z-fusion proteins have increased transcriptional activity; however, the detailed mechanisms of leukemogenesis of Z-fusion proteins have yet to be clarified. METHODS We established three transfectants of cell lines expressing different types of Z-fusion proteins, and analyzed their gene expression profile (GEP) by RNA-seq. We also analyzed the GEP of clinical ALL samples using our previous RNA-seq data of 323 Japanese ALL patients. We selected upregulated genes in both Z-fusion gene-expressing transfectants and Z-fusion gene-positive ALL samples, and investigated the binding of Z-fusion proteins to regulatory regions of the candidate genes by ChIP-qPCR. RESULTS We selected six commonly upregulated genes. After the investigation by ChIP-qPCR, we finally identified CREB5 and RGS1 as direct and common target genes. RGS1 is an inhibitor of CXCL12-CXCR4 signaling that is required for the homing of hematopoietic progenitor cells to the bone marrow microenvironment and development of B cells. Consistent with this, Z-fusion gene transfectants showed impaired migration toward CXCL12. CONCLUSIONS We identified CREB5 and RGS1 as direct and common transcriptional targets of Z-fusion proteins. The present results provide novel insight into the aberrant transcriptional regulation by Z-fusion proteins.
Collapse
Affiliation(s)
- Chiharu Yamada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Kentaro Okada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Mahiru Tokoro
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Eisuke Iwamoto
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Syuichi Okamoto
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
18
|
Shen H, Yuan J, Tong D, Chen B, Yu E, Chen G, Peng C, Chang W, E J, Cao F. Regulator of G protein signaling 16 restrains apoptosis in colorectal cancer through disrupting TRAF6-TAB2-TAK1-JNK/p38 MAPK signaling. Cell Death Dis 2024; 15:438. [PMID: 38906869 PMCID: PMC11192724 DOI: 10.1038/s41419-024-06803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Colorectal cancer (CRC) remains a major global cause of cancer-related mortality, lacking effective biomarkers and therapeutic targets. Revealing the critical pathogenic factors of CRC and the underlying mechanisms would offer potential therapeutic strategies for clinical application. G protein signaling (RGS) protein family modulators play essential role within regulating downstream signaling of GPCR receptors, with function in cancers unclear. Our study focused on the expression patterns of RGS proteins in CRC, identifying Regulator of G protein signaling 16 (RGS16) as a prospective diagnostic and therapeutic target. Analyzing 899 CRC tissues revealed elevated RGS16 levels, correlating with clinicopathological features and CRC prognosis by immunohistochemistry (IHC) combined with microarray. We confirmed the elevated RGS16 protein level in CRC, and found that patients with RGS16-high tumors exhibited decreased disease-specific survival (DSS) and disease-free survival (DFS) compared to those with low RGS16 expression. Functional assays demonstrated that RGS16 promoted the CRC progression, knockdown of RGS16 led to significantly increased apoptosis rates of CRC in vitro and in vivo. Notably, we also confirmed these phenotypes of RGS16 in organoids originated from resected primary human CRC tissues. Mechanistically, RGS16 restrained JNK/P38-mediated apoptosis in CRC cells through disrupting the recruitment of TAB2/TAK1 to TRAF6. This study provides insights into addressing the challenges posed by CRC, offering avenues for clinical translation.
Collapse
Affiliation(s)
- Hao Shen
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Environmental and Occupational Health, Naval Medical University, Shanghai, China
| | - Jie Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Health Management, Beidaihe Rest and Recuperation Center of PLA Joint Logistics Support Force, Qinhuangdao, China
| | - Dafeng Tong
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bingchen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Enda Yu
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guanglei Chen
- Department of Health Management, Beidaihe Rest and Recuperation Center of PLA Joint Logistics Support Force, Qinhuangdao, China
| | - Cheng Peng
- Department of Health Management, Beidaihe Rest and Recuperation Center of PLA Joint Logistics Support Force, Qinhuangdao, China
| | - Wenjun Chang
- Department of Environmental and Occupational Health, Naval Medical University, Shanghai, China.
| | - Jifu E
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Fuao Cao
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China.
| |
Collapse
|
19
|
Boomer SH, Liu X, Zheng H. Effects of regulator of G protein signaling 2 (RGS2) overexpression in the paraventricular nucleus on blood pressure in rats with angiotensin II-induced hypertension. Front Physiol 2024; 15:1401768. [PMID: 38974519 PMCID: PMC11224644 DOI: 10.3389/fphys.2024.1401768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) regulates sympathetic activity and blood pressure. The regulator of G protein signaling 2 (RGS2) is a negative G protein regulator, which selectively regulates G⍺q signaling, a potential cause of hypertension. This study aimed to examine angiotensin II (ANG II)-G protein-RGS2 signaling on the central mechanisms of blood pressure control, sympathetic activation, and kidney function. The Sprague Dawley rats were infused with ANG II (200 ng/kg/min) via osmotic mini pump to induce hypertension. Adenovirus (AV) vectors encoding RGS2 was transfected into the PVN in vivo. By radio telemetry measurements, we found AV-RGS2 transfection to the PVN significantly attenuated the increase of mean arterial pressure in ANG II infusion rats from days 2-7 of the 2-week experiment (Day 7: ANG II + AV-RGS2 141.3 ± 10.0 mmHg vs. ANG II 166.9 ± 9.3 mmHg, p < 0.05). AV-RGS2 transfection significantly reduced the serum norepinephrine level and acute volume reflex and increased daily urine volume and sodium excretion in ANG II-infused hypertensive rats. AV-RGS2 transfection significantly reduced G⍺q and PKC protein expressions within the PVN in ANG II infusion rats. In cultured mouse hypothalamic cells, real-time PCR study showed ANG II treatment increased mRNA expression of G⍺q, G⍺s, and RGS2, and AV-RGS2 treatment decreased ANG II-induced mRNA expression of G⍺q and G⍺s. Using confocal imagery, we found that AV-RGS2 attenuated the increase of calcium influx in ANG II-treated cells. Our results suggest that central overexpression of RGS2 in the PVN attenuated the increase of blood pressure and sympathetic outflow, and improves kidney excretory function in hypertensive rats. This may be via the alteration of ANG II-G-protein-RGS2 signaling in the central nervous system.
Collapse
Affiliation(s)
| | | | - Hong Zheng
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
20
|
Lteif C, Huang Y, Guerra LA, Gawronski BE, Duarte JD. Using Omics to Identify Novel Therapeutic Targets in Heart Failure. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004398. [PMID: 38766848 PMCID: PMC11187651 DOI: 10.1161/circgen.123.004398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Omics refers to the measurement and analysis of the totality of molecules or biological processes involved within an organism. Examples of omics data include genomics, transcriptomics, epigenomics, proteomics, metabolomics, and more. In this review, we present the available literature reporting omics data on heart failure that can inform the development of novel treatments or innovative treatment strategies for this disease. This includes polygenic risk scores to improve prediction of genomic data and the potential of multiomics to more efficiently identify potential treatment targets for further study. We also discuss the limitations of omic analyses and the barriers that must be overcome to maximize the utility of these types of studies. Finally, we address the current state of the field and future opportunities for using multiomics to better personalize heart failure treatment strategies.
Collapse
Affiliation(s)
- Christelle Lteif
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Yimei Huang
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Leonardo A Guerra
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Brian E Gawronski
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| |
Collapse
|
21
|
Caldiran F, Deveci K, Cacan E. Epigenetic insights into Familial Mediterranean Fever: Increased RGS10 expression and histone modifications accompanies inflammation in familial Mediterranean fever disease. Gene 2024; 906:148222. [PMID: 38331118 DOI: 10.1016/j.gene.2024.148222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disease characterized by recurring fever, erythema, joint pain, and abdominal discomfort during acute episodes. While FMF patients typically share MEFV gene mutations, they display varying clinical manifestations, suggesting the involvement of modifying genes, epigenetic mechanisms, or environmental factors. G protein regulator signal 10 (RGS10), a member of the RGS protein family, exhibits anti-inflammatory effects in autoinflammatory diseases. There are no studies on the role of plays in FMF pathogenesis or histone modification in FMF. AIMS This study aimed to shed light on the epigenetic regulation of FMF from several perspectives. The relationship between RGS10 DNA hypermethylation in FMF clinical parameters and the regulation of 22 histone modifications were examined in FMF attack patients and the control group. METHODS Sixty FMF (remission/attack) and thirty healthy individuals were included in the study. First, RNA was isolated from the blood of patients/controls, and the expression of RGS10 was examined. Then, DNA was isolated from the patients, and gene-specific hypermethylation was investigated using the bisulfite conversion method. Finally, histone extraction was performed for FMF patients and controls and 22 histone H3 modifications were determined. In addition, using ADEX bioinformatics tools, RGS10 expression and methylation profiles were detected in different autoinflammatory diseases. RESULTS This study indicate that RGS10 expression decreased in attack-free/attack patients than control, attributed to DNA methylation. In addition, there were a positive correlation between FMF patients and attack, WBC, neutrophil, MCHC and MPV. Moreover, higher H3K4 me3, H3K9 me2, and H3K14ac levels were observed in patients with FMF attacks. This research also showed a consistent decrease in RGS10 expression in patients with SjS, SSc, and T1D compared with controls. I also obtained five prognosis-related CpGs (cg17527393, cg19653161, cg20445950, cg18938673 and cg13975098) of RGS10 in patients with SjS, RA, SSc, SLE and T1D. CONCLUSION The present study provides insights into the complex relationship between RGS10, epigenetic modifications, and immune responses in FMF. While RGS10 may initially enhance immune responses, genetic mutations and epigenetic changes associated with FMF acute episode may override this regulatory effect, resulting in increased inflammation and clinical symptoms. Moreover, our study revealed elevated levels of specific histone modifications in the context of FMF, suggesting significant epigenetic changes that could contribute to the disease pathogenesis. Understanding these associations opens new avenues for research and potential therapeutic interventions, potentially involving epigenetic therapies targeting histone modifications.
Collapse
Affiliation(s)
- Feyzanur Caldiran
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkey.
| | - Koksal Deveci
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, Tokat, Turkey
| | - Ercan Cacan
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkey
| |
Collapse
|
22
|
Leclerc NR, Dunne TM, Shrestha S, Johnson CP, Kelley JB. TOR signaling regulates GPCR levels on the plasma membrane and suppresses the Saccharomyces cerevisiae mating pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593412. [PMID: 38798445 PMCID: PMC11118302 DOI: 10.1101/2024.05.09.593412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Saccharomyces cerevisiae respond to mating pheromone through the GPCRs Ste2 and Ste3, which promote growth of a mating projection in response to ligand binding. This commitment to mating is nutritionally and energetically taxing, and so we hypothesized that the cell may suppress mating signaling during starvation. We set out to investigate negative regulators of the mating pathway in nutritionally depleted environments. Here, we report that nutrient deprivation led to loss of Ste2 from the plasma membrane. Recapitulating this effect with nitrogen starvation led us to hypothesize that it was due to TORC1 signaling. Rapamycin inhibition of TORC1 impacted membrane levels of all yeast GPCRs. Inhibition of TORC1 also dampened mating pathway output. Deletion analysis revealed that TORC1 repression leads to α-arrestin-directed CME through TORC2-Ypk1 signaling. We then set out to determine whether major downstream effectors of the TOR complexes also downregulate pathway output during mating. We found that autophagy contributes to pathway downregulation through analysis of strains lacking ATG8 . We also show that Ypk1 significantly reduced pathway output. Thus, both autophagy machinery and TORC2-Ypk1 signaling serve as attenuators of pheromone signaling during mating. Altogether, we demonstrate that the stress-responsive TOR complexes coordinate GPCR endocytosis and reduce the magnitude of pheromone signaling, in ligand-independent and ligand-dependent contexts. One Sentence Summary TOR signaling regulates the localization of all Saccharomyces cerevisiae GPCRs during starvation and suppress the mating pathway in the presence and absence of ligand.
Collapse
|
23
|
Pratiwi E, Raya I, Natsir H, Irfandi R, Taba P, Arfah R, Rasyid H, Hala Y, Kasim S, Khaerunnisa AB, Ilham B, Mazaya M, Tanzil Y, Luthfiana D. Investigations of Ni(II)Cysteine-Tyrosine Dithiocarbamate Complex: Synthesis, Characterization, Molecular Docking, Molecular Dynamic, and Anticancer Activity on MCF-7 Breast Cancer Cell Line. Asian Pac J Cancer Prev 2024; 25:1301-1313. [PMID: 38679991 PMCID: PMC11162741 DOI: 10.31557/apjcp.2024.25.4.1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVE Breast cancer ranks second in terms of the highest number of cancer deaths for women worldwide and is one of the leading causes of death from cancer in women. The drug that is often used for chemotherapy is cisplatin. However, cisplatin drugs have a number of problems, including lack of selectivity, unwanted side effects, resistance, and toxicity in the body. In this work, we investigated Ni(II) cysteine-tyrosine dithiocarbamate complex against breast cancer. METHODS Research on the new complex compound Ni(II) cysteine-tyrosine dithiocarbamate have several stages including synthesis, characterization, in-silico and in-vitro testing of MCF-7 cells for anticancer drugs. The synthesis involved reacting cysteine, CS2, KOH and tyrosine with Mn metal. The new complex compound Ni(II) cysteine-tyrosine dithiocarbamate has been synthesized, characterized, and tested in vitro MCF-7 cells for anticancer drugs. Characterization tests such as melting point, conductivity, SEM-EDS, UV Vis, XRD, and FT-IR spectroscopy have been carried out. RESULT The synthesis yielded a 60,16%, conversion with a melting point of 216-218 oC and a conductivity value of 0.4 mS/cm. In vitro test results showed morphological changes (apoptosis) in MCF-7 cancer cells starting at a sample concentration of 250 µg/mL and an IC50 value of 618.40 µg/mL. Molecular docking study of Ni(II) cysteine-tyrosine dithiocarbamate complex identified with 4,4',4''-[(2R)-butane-1,1,2-triyl]triphenol - Estrogen α showing active site with acidic residue amino E323, M388, L387, G390 and I389. Hydrophobic and hydrophobic bonds are seen in Ni(II) cysteine-tyrosine dithiocarbamate - Estrogen α has a binding energy of -80.9429 kJ /mol. CONCLUSION there were 5 residues responsible for maintaining the ligand binding stable. The compound had significant Hbond contact intensity, however, it was not strong enough to make a significant anticancer effect. Though the synthesized compound shows low bioactivity, this research is expected to give valuable insight into the effect of molecular structure on anticancer activity.
Collapse
Affiliation(s)
- Eka Pratiwi
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.
| | - Indah Raya
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.
| | - Hasnah Natsir
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.
| | - Rizal Irfandi
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar, Jalan Daeng Tata Raya Makassar, 90244, Indonesia.
| | - Paulina Taba
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.
| | - Rugaiyah Arfah
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.
| | - Herlina Rasyid
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.
| | - Yusafir Hala
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.
| | - Syahruddin Kasim
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.
| | - Andi Besse Khaerunnisa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.
| | - Baso Ilham
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo-60115, Surabaya, Indonesia.
| | - Maulida Mazaya
- Research Center for Computing, Research Organization for Electronics and Informatics, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, West Java, Indonesia.
| | - Yosua Tanzil
- Department of Chemistry, Faculty of Mathematics and Natural Science, Gadjah Mada University, Yogyakarta 55281, Indonesia.
| | - Dewi Luthfiana
- Master Pogram, Graduate School of Bioagricultural Sciences, Department of Applied Biosciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang 65162, Indonesia.
| |
Collapse
|
24
|
Ang DA, Carter JM, Deka K, Tan JHL, Zhou J, Chen Q, Chng WJ, Harmston N, Li Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat Commun 2024; 15:2513. [PMID: 38514625 PMCID: PMC10957915 DOI: 10.1038/s41467-024-46728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.
Collapse
Affiliation(s)
- Daniel A Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
25
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
26
|
Miller WE, O'Connor CM. CMV-encoded GPCRs in infection, disease, and pathogenesis. Adv Virus Res 2024; 118:1-75. [PMID: 38461029 DOI: 10.1016/bs.aivir.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.
Collapse
Affiliation(s)
- William E Miller
- Department of Molecular and Cellular Bioscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christine M O'Connor
- Infection Biology, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
27
|
Beckers P, Doyen PJ, Hermans E. Modulation of Type 5 Metabotropic Glutamate Receptor-Mediated Intracellular Calcium Mobilization by Regulator of G Protein Signaling 4 (RGS4) in Cultured Astrocytes. Cells 2024; 13:291. [PMID: 38391904 PMCID: PMC10886878 DOI: 10.3390/cells13040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Acting as GTPase activating proteins promoting the silencing of activated G-proteins, regulators of G protein signaling (RGSs) are generally considered negative modulators of cell signaling. In the CNS, the expression of RGS4 is altered in diverse pathologies and its upregulation was reported in astrocytes exposed to an inflammatory environment. In a model of cultured cortical astrocytes, we herein investigate the influence of RGS4 on intracellular calcium signaling mediated by type 5 metabotropic glutamate receptor (mGluR5), which is known to support the bidirectional communication between neurons and glial cells. RGS4 activity was manipulated by exposure to the inhibitor CCG 63802 or by infecting the cells with lentiviruses designed to achieve the silencing or overexpression of RGS4. The pharmacological inhibition or silencing of RGS4 resulted in a decrease in the percentage of cells responding to the mGluR5 agonist DHPG and in the proportion of cells showing typical calcium oscillations. Conversely, RGS4-lentivirus infection increased the percentage of cells showing calcium oscillations. While the physiological implication of cytosolic calcium oscillations in astrocytes is still under investigation, the fine-tuning of calcium signaling likely determines the coding of diverse biological events. Indirect signaling modulators such as RGS4 inhibitors, used in combination with receptor ligands, could pave the way for new therapeutic approaches for diverse neurological disorders with improved efficacy and selectivity.
Collapse
Affiliation(s)
| | | | - Emmanuel Hermans
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (P.B.); (P.J.D.)
| |
Collapse
|
28
|
Lymperopoulos A, Borges JI, Stoicovy RA. RGS proteins and cardiovascular Angiotensin II Signaling: Novel opportunities for therapeutic targeting. Biochem Pharmacol 2023; 218:115904. [PMID: 37922976 PMCID: PMC10841918 DOI: 10.1016/j.bcp.2023.115904] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Angiotensin II (AngII), as an octapeptide hormone normally ionized at physiological pH, cannot cross cell membranes and thus, relies on, two (mainly) G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert its intracellular effects in various organ systems including the cardiovascular one. Although a lot remains to be elucidated about the signaling of the AT2R, AT1R signaling is known to be remarkably versatile, mobilizing a variety of G protein-dependent and independent signal transduction pathways inside cells to produce a biological outcome. Cardiac AT1R signaling leads to hypertrophy, adverse remodeling, fibrosis, while vascular AT1R signaling raises blood pressure via vasoconstriction, but also elicits hypertrophic, vascular growth/proliferation, and pathological remodeling sets of events. In addition, adrenal AT1R is the major physiological stimulus (alongside hyperkalemia) for secretion of aldosterone, a mineralocorticoid hormone that contributes to hypertension, electrolyte abnormalities, and to pathological remodeling of the failing heart. Regulator of G protein Signaling (RGS) proteins, discovered about 25 years ago as GTPase-activating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins, play a central role in silencing G protein signaling from a plethora of GPCRs, including the AngII receptors. Given the importance of AngII and its receptors, but also of several RGS proteins, in cardiovascular homeostasis, the physiological and pathological significance of RGS protein-mediated modulation of cardiovascular AngII signaling comes as no surprise. In the present review, we provide an overview of the current literature on the involvement of RGS proteins in cardiovascular AngII signaling, by discussing their roles in cardiac (cardiomyocyte and cardiofibroblast), vascular (smooth muscle and endothelial cell), and adrenal (medulla and cortex) AngII signaling, separately. Along the way, we also highlight the therapeutic potential of enhancement of, or, in some cases, inhibition of each RGS protein involved in AngII signaling in each one of these cell types.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA.
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Renee A Stoicovy
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
29
|
Yang C, Zhang X, Yang X, Lian F, Sun Z, Huang Y, Shen W. Function and regulation of RGS family members in solid tumours: a comprehensive review. Cell Commun Signal 2023; 21:316. [PMID: 37924113 PMCID: PMC10623796 DOI: 10.1186/s12964-023-01334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 11/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.
Collapse
Affiliation(s)
- Chenglong Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaowen Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Fuming Lian
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Zongrun Sun
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China.
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
30
|
Faber JE, Zhang H, Xenakis JG, Bell TA, Hock P, Pardo-Manuel de Villena F, Ferris MT, Rzechorzek W. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants. J Cereb Blood Flow Metab 2023; 43:1983-2004. [PMID: 37572089 PMCID: PMC10676139 DOI: 10.1177/0271678x231194956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Collateral number in skeletal muscle and intestine of selected high- and low-collateral strains evidenced the same relative abundance as in brain. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. Six additional suggestive QTL (LOD > 4.5) were also identified in CC-wide QTL mapping. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - James G Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Wojciech Rzechorzek
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Zhang Y, Zhu Q, Cao X, Ni B. RGS16 regulates Hippo-YAP activity to promote esophageal cancer cell proliferation and migration. Biochem Biophys Res Commun 2023; 675:122-129. [PMID: 37473526 DOI: 10.1016/j.bbrc.2023.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 07/22/2023]
Abstract
Esophageal Squamous Cell Carcinoma (ESCC) is a common malignant tumor of digestive tract, accounting for 90% of all pathological types of esophageal cancer. Despite the rapid development of multi-disciplinary treatment such as surgery, chemotherapy, radiotherapy and chemoradiotherapy, the prognosis of patients with ESCC is still poor. Regulators of G-protein signaling (RGSs) are involved in the processes of various cancers. The expression levels of its family member RGS16 are abnormally elevated in a variety of tumors, but its role in ESCC is still unclear. We found that RGS16 expression is aberrantly increased in ESCC tissues and correlated with poor prognosis of ESCC patients from The Cancer Genome Atlas (TCGA) database and our collected ESCC tissues. Moreover, knockdown of RGS16 in two ESCC cells could indeed inhibit their proliferation and migration. We further explored the molecular mechanism of RGS16 in ESCC, and the correlation analysis from TCGA database showed that the mRNA levels of RGS16 was positively correlated with that of CTGF and CYR61, two target genes of Hippo-YAP signaling. Consistently, RGS16- knockdown significantly inhibited the expression of CTGF and CYR61 in ESCC cells. We found that the phosphorylation levels of LATS1 and YAP were significantly increased and YAP translocated into the cytoplasm after depletion of RGS16 in ESCC cells. Also, RGS16-knockdown promoted the interaction between LATS1 and upstream kinase MST1. In addition, reintroduction of a constitutive active YAP5A mutant significantly rescued CTGF expression and cell proliferation in RGS16-knockdown cells. Together, our work revealed that RGS16 promoted YAP activity through disrupting the interaction between LATS1 and MST1, thus promoting the proliferation and migration of ESCC cells.
Collapse
Affiliation(s)
- Yanzhou Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Qing Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiufeng Cao
- Department of Cardiothoracic Surgery, Nanjing Yimin Hospital, Nanjing, 211103, Jiangsu, China
| | - Bin Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
32
|
Yin S, Ma XY, Sun YF, Yin YQ, Long Y, Zhao CL, Ma JW, Li S, Hu Y, Li MT, Hu G, Zhou JW. RGS5 augments astrocyte activation and facilitates neuroinflammation via TNF signaling. J Neuroinflammation 2023; 20:203. [PMID: 37674228 PMCID: PMC10481574 DOI: 10.1186/s12974-023-02884-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Astrocytes contribute to chronic neuroinflammation in a variety of neurodegenerative diseases, including Parkinson's disease (PD), the most common movement disorder. However, the precise role of astrocytes in neuroinflammation remains incompletely understood. Herein, we show that regulator of G-protein signaling 5 (RGS5) promotes neurodegenerative process through augmenting astrocytic tumor necrosis factor receptor (TNFR) signaling. We found that selective ablation of Rgs5 in astrocytes caused an inhibition in the production of cytokines resulting in mitigated neuroinflammatory response and neuronal survival in animal models of PD, whereas overexpression of Rgs5 had the opposite effects. Mechanistically, RGS5 switched astrocytes from neuroprotective to pro-inflammatory property via binding to the receptor TNFR2. RGS5 also augmented TNFR signaling-mediated pro-inflammatory response by interacting with the receptor TNFR1. Moreover, interrupting RGS5/TNFR interaction by either RGS5 aa 1-108 or small molecular compounds feshurin and butein, suppressed astrocytic cytokine production. We showed that the transcription of astrocytic RGS5 was controlled by transcription factor early B cell factor 1 whose expression was reciprocally influenced by RGS5-modulated TNF signaling. Thus, our study indicates that beyond its traditional role in G-protein coupled receptor signaling, astrocytic RGS5 is a key modulator of TNF signaling circuit with resultant activation of astrocytes thereby contributing to chronic neuroinflammation. Blockade of the astrocytic RGS5/TNFR interaction is a potential therapeutic strategy for neuroinflammation-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Shu Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xin-Yue Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ying-Feng Sun
- Center for Brain Disorders Research, Center of Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ying Long
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chun-Lai Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jun-Wei Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Sen Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yan Hu
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ming-Tao Li
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science, Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- Co-Innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
33
|
Islam MK, Islam MR, Rahman MH, Islam MZ, Hasan MM, Mamun MMI, Moni MA. Integrated bioinformatics and statistical approach to identify the common molecular mechanisms of obesity that are linked to the development of two psychiatric disorders: Schizophrenia and major depressive disorder. PLoS One 2023; 18:e0276820. [PMID: 37494308 PMCID: PMC10370737 DOI: 10.1371/journal.pone.0276820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/13/2022] [Indexed: 07/28/2023] Open
Abstract
Obesity is a chronic multifactorial disease characterized by the accumulation of body fat and serves as a gateway to a number of metabolic-related diseases. Epidemiologic data indicate that Obesity is acting as a risk factor for neuro-psychiatric disorders such as schizophrenia, major depression disorder and vice versa. However, how obesity may biologically interact with neurodevelopmental or neurological psychiatric conditions influenced by hereditary, environmental, and other factors is entirely unknown. To address this issue, we have developed a pipeline that integrates bioinformatics and statistical approaches such as transcriptomic analysis to identify differentially expressed genes (DEGs) and molecular mechanisms in patients with psychiatric disorders that are also common in obese patients. Biomarker genes expressed in schizophrenia, major depression, and obesity have been used to demonstrate such relationships depending on the previous research studies. The highly expressed genes identify commonly altered signalling pathways, gene ontology pathways, and gene-disease associations across disorders. The proposed method identified 163 significant genes and 134 significant pathways shared between obesity and schizophrenia. Similarly, there are 247 significant genes and 65 significant pathways that are shared by obesity and major depressive disorder. These genes and pathways increase the likelihood that psychiatric disorders and obesity are pathogenic. Thus, this study may help in the development of a restorative approach that will ameliorate the bidirectional relation between obesity and psychiatric disorder. Finally, we also validated our findings using genome-wide association study (GWAS) and whole-genome sequence (WGS) data from SCZ, MDD, and OBE. We confirmed the likely involvement of four significant genes both in transcriptomic and GWAS/WGS data. Moreover, we have performed co-expression cluster analysis of the transcriptomic data and compared it with the results of transcriptomic differential expression analysis and GWAS/WGS.
Collapse
Affiliation(s)
- Md Khairul Islam
- Dept. of Information Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Rakibul Islam
- Dept. of Information Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Habibur Rahman
- Dept. of Computer Science Engineering, Islamic University, Kushtia, Bangladesh
| | - Md Zahidul Islam
- Dept. of Information Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Mehedi Hasan
- Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Mainul Islam Mamun
- Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Ali Moni
- Dept. of Computer Science and Engineering, Pabna University of Science and Technology, Pabna, Bangladesh
| |
Collapse
|
34
|
Ottaiano A, Sabbatino F, Perri F, Cascella M, Sirica R, Patrone R, Capuozzo M, Savarese G, Ianniello M, Petrillo N, Circelli L, Granata V, Berretta M, Santorsola M, Nasti G. KRAS p.G12C Mutation in Metastatic Colorectal Cancer: Prognostic Implications and Advancements in Targeted Therapies. Cancers (Basel) 2023; 15:3579. [PMID: 37509241 PMCID: PMC10377118 DOI: 10.3390/cancers15143579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KRAS is frequently mutated in tumors. It is mutated in approximately 30% of all cancer cases and in nearly 50% of cases of metastatic colorectal cancer (CRC), which is the third leading cause of cancer-related deaths worldwide. Recent advancements in understanding CRC biology and genetics have highlighted the significance of KRAS mutations in the progression of CRC. The KRAS gene encodes a small GTPase (Guanosine TriPhosphatases) that plays a key role in signaling pathways associated with important proteins involved in amplifying growth factor and receptor signals. Mutations in KRAS are frequently observed in codons 12 and 13, and these mutations have oncogenic properties. Abnormal activation of KRAS proteins strongly stimulates signals associated with various cancer-related processes in CRC, including cell proliferation, migration and neoangiogenesis. In this review, we explore the distinct prognostic implications of KRAS mutations. Specifically, the KRAS p.G12C mutation is associated with a worse prognosis in metastatic CRC. The correlation between structure, conformation and mutations is visually presented to emphasize how alterations in individual amino acids at the same position in a single protein can unexpectedly exhibit complex involvement in cancer. Last, KRAS p.G12C is discussed as an emerging and promising therapeutic target in metastatic CRC, providing a concise overview of available clinical data regarding the use of new inhibitors.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081 Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Renato Patrone
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | | | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Nadia Petrillo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
35
|
Schalamun M, Molin EM, Schmoll M. RGS4 impacts carbohydrate and siderophore metabolism in Trichoderma reesei. BMC Genomics 2023; 24:372. [PMID: 37400774 PMCID: PMC10316542 DOI: 10.1186/s12864-023-09467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Adaptation to complex, rapidly changing environments is crucial for evolutionary success of fungi. The heterotrimeric G-protein pathway belongs to the most important signaling cascades applied for this task. In Trichoderma reesei, enzyme production, growth and secondary metabolism are among the physiological traits influenced by the G-protein pathway in a light dependent manner. RESULTS Here, we investigated the function of the SNX/H-type regulator of G-protein signaling (RGS) protein RGS4 of T. reesei. We show that RGS4 is involved in regulation of cellulase production, growth, asexual development and oxidative stress response in darkness as well as in osmotic stress response in the presence of sodium chloride, particularly in light. Transcriptome analysis revealed regulation of several ribosomal genes, six genes mutated in RutC30 as well as several genes encoding transcription factors and transporters. Importantly, RGS4 positively regulates the siderophore cluster responsible for fusarinine C biosynthesis in light. The respective deletion mutant shows altered growth on nutrient sources related to siderophore production such as ornithine or proline in a BIOLOG phenotype microarray assay. Additionally, growth on storage carbohydrates as well as several intermediates of the D-galactose and D-arabinose catabolic pathway is decreased, predominantly in light. CONCLUSIONS We conclude that RGS4 mainly operates in light and targets plant cell wall degradation, siderophore production and storage compound metabolism in T. reesei.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Eva Maria Molin
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
- Division of Terrestrial Ecosystem Research, Centre of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
| |
Collapse
|
36
|
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol 2023; 16:623-630. [PMID: 37403791 PMCID: PMC10529896 DOI: 10.1080/17512433.2023.2233891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
37
|
Faber JE, Zhang H, Xenakis JG, Bell TA, Hock P, de Villena FPM, Ferris MT, Rzechorzek W. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542633. [PMID: 37398475 PMCID: PMC10312463 DOI: 10.1101/2023.05.28.542633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.
Collapse
|
38
|
Li L, Xu Q, Tang C. RGS proteins and their roles in cancer: friend or foe? Cancer Cell Int 2023; 23:81. [PMID: 37118788 PMCID: PMC10148553 DOI: 10.1186/s12935-023-02932-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
As negative modulators of G-protein-coupled receptors (GPCRs) signaling, regulators of G protein signaling (RGS) proteins facilitate various downstream cellular signalings through regulating kinds of heterotrimeric G proteins by stimulating the guanosine triphosphatase (GTPase) activity of G-protein α (Gα) subunits. The expression of RGS proteins is dynamically and precisely mediated by several different mechanisms including epigenetic regulation, transcriptional regulation -and post-translational regulation. Emerging evidence has shown that RGS proteins act as important mediators in controlling essential cellular processes including cell proliferation, survival -and death via regulating downstream cellular signaling activities, indicating that RGS proteins are fundamentally involved in sustaining normal physiological functions and dysregulation of RGS proteins (such as aberrant expression of RGS proteins) is closely associated with pathologies of many diseases such as cancer. In this review, we summarize the molecular mechanisms governing the expression of RGS proteins, and further discuss the relationship of RGS proteins and cancer.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
39
|
Borges JI, Suster MS, Lymperopoulos A. Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. Int J Mol Sci 2023; 24:ijms24076136. [PMID: 37047106 PMCID: PMC10147095 DOI: 10.3390/ijms24076136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.
Collapse
Affiliation(s)
- Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
40
|
Montanez-Miranda C, Bramlett SN, Hepler JR. RGS14 expression in CA2 hippocampus, amygdala, and basal ganglia: Implications for human brain physiology and disease. Hippocampus 2023; 33:166-181. [PMID: 36541898 PMCID: PMC9974931 DOI: 10.1002/hipo.23492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
RGS14 is a multifunctional scaffolding protein that is highly expressed within postsynaptic spines of pyramidal neurons in hippocampal area CA2. Known roles of RGS14 in CA2 include regulating G protein, H-Ras/ERK, and calcium signaling pathways to serve as a natural suppressor of synaptic plasticity and postsynaptic signaling. RGS14 also shows marked postsynaptic expression in major structures of the limbic system and basal ganglia, including the amygdala and both the ventral and dorsal subdivisions of the striatum. In this review, we discuss the signaling functions of RGS14 and its role in postsynaptic strength (long-term potentiation) and spine structural plasticity in CA2 hippocampal neurons, and how RGS14 suppression of plasticity impacts linked behaviors such as spatial learning, object memory, and fear conditioning. We also review RGS14 expression in the limbic system and basal ganglia and speculate on its possible roles in regulating plasticity in these regions, with a focus on behaviors related to emotion and motivation. Finally, we explore the functional implications of RGS14 in various brain circuits and speculate on its possible roles in certain disease states such as hippocampal seizures, addiction, and anxiety disorders.
Collapse
Affiliation(s)
| | | | - John R. Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322-3090
| |
Collapse
|
41
|
Heo AJ, Ji CH, Kwon YT. The Cys/N-degron pathway in the ubiquitin-proteasome system and autophagy. Trends Cell Biol 2023; 33:247-259. [PMID: 35945077 DOI: 10.1016/j.tcb.2022.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
The N-degron pathway is a degradative system in which the N-terminal residues of proteins modulate the half-lives of proteins and other cellular materials. The majority of amino acids in the genetic code have the potential to induce cis or trans degradation in diverse processes, which requires selective recognition between N-degrons and cognate N-recognins. Of particular interest is the Cys/N-degron branch, in which the N-terminal cysteine (Nt-Cys) induces proteolysis via either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome pathway (ALP), depending on physiological conditions. Recent studies provided new insights into the central role of Nt-Cys in sensing the fluctuating levels of oxygen and reactive oxygen species (ROS). Here, we discuss the components, regulations, and functions of the Cys/N-degron pathway.
Collapse
Affiliation(s)
- Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Korea.
| |
Collapse
|
42
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
43
|
Del Calvo G, Baggio Lopez T, Lymperopoulos A. The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis 2023; 17:17539447231199350. [PMID: 37724539 PMCID: PMC10510358 DOI: 10.1177/17539447231199350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, HPD (Terry) Building/Room 1350, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
44
|
Shriebman Y, Yitzhaky A, Kosloff M, Hertzberg L. Gene expression meta-analysis in patients with schizophrenia reveals up-regulation of RGS2 and RGS16 in Brodmann Area 10. Eur J Neurosci 2023; 57:360-372. [PMID: 36443250 DOI: 10.1111/ejn.15876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Regulator of G-protein signalling (RGS) proteins inhibit signalling by G-protein-coupled receptors (GPCRs). GPCRs mediate the functions of several important neurotransmitters and serve as targets of many anti-psychotics. RGS2, RGS4, RGS5 and RGS16 are located on chromosome 1q23.3-31, a locus found to be associated with schizophrenia. Although previous gene expression analysis detected down-regulation of RGS4 expression in brain samples of patients with schizophrenia, the results were not consistent. In the present study, we performed a systematic meta-analysis of differential RGS2, RGS4, RGS5 and RGS16 expression in Brodmann Area 10 (BA10) samples of patients with schizophrenia and from healthy controls. Two microarray datasets met the inclusion criteria (overall, 41 schizophrenia samples and 38 controls were analysed). RGS2 and RGS16 were found to be up-regulated in BA10 samples of individuals with schizophrenia, whereas no differential expression of RGS4 and RGS5 was detected. Analysis of dorso-lateral prefrontal cortex samples of the CommonMind Consortium (258 schizophrenia samples vs. 279 controls) further validated the results. Given their central role in inactivating G-protein-coupled signalling pathways, our results suggest that differential gene expression might lead to enhanced inactivation of G-protein signalling in schizophrenia. This, in turn, suggests that additional studies are needed to further explore the consequences of the differential expression we detected, this time at the protein and functional levels.
Collapse
Affiliation(s)
- Yaen Shriebman
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mickey Kosloff
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Libi Hertzberg
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Carbone AM, Del Calvo G, Nagliya D, Sharma K, Lymperopoulos A. Autonomic Nervous System Regulation of Epicardial Adipose Tissue: Potential Roles for Regulator of G Protein Signaling-4. Curr Issues Mol Biol 2022; 44:6093-6103. [PMID: 36547076 PMCID: PMC9776453 DOI: 10.3390/cimb44120415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The epicardial adipose tissue (EAT) or epicardial fat is a visceral fat depot in the heart that contains intrinsic adrenergic and cholinergic nerves, through which it interacts with the cardiac sympathetic (adrenergic) and parasympathetic (cholinergic) nervous systems. These EAT nerves represent a significant source of several adipokines and other bioactive molecules, including norepinephrine, epinephrine, and free fatty acids. The production of these molecules is biologically relevant for the heart, since abnormalities in EAT secretion are implicated in the development of pathological conditions, including coronary atherosclerosis, atrial fibrillation, and heart failure. Sympathetic hyperactivity and parasympathetic (cholinergic) derangement are associated with EAT dysfunction, leading to a variety of adverse cardiac conditions, such as heart failure, diastolic dysfunction, atrial fibrillation, etc.; therefore, several studies have focused on exploring the autonomic regulation of EAT as it pertains to heart disease pathogenesis and progression. In addition, Regulator of G protein Signaling (RGS)-4 is a protein with significant regulatory roles in both adrenergic and muscarinic receptor signaling in the heart. In this review, we provide an overview of the autonomic regulation of EAT, with a specific focus on cardiac RGS4 and the potential roles this protein plays in this regulation.
Collapse
|
46
|
Zhao A, Jin H, Fan G, Li Y, Li C, Li Q, Ma X, Zhao T, Sun S, Liu S, Gao Y, Qi S. Inhibition of the expression of rgs-3 alleviates propofol-induced decline in learning and memory in Caenorhabditis elegans. CNS Neurosci Ther 2022; 29:306-316. [PMID: 36284438 PMCID: PMC9804065 DOI: 10.1111/cns.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exposure to anesthesia leads to extensive neurodegeneration and long-term cognitive deficits in the developing brain. Caenorhabditis elegans also shows persistent behavioral changes during development after exposure to anesthetics. Clinical and rodent studies have confirmed that altered expression of the regulators of G protein signaling (RGS) in the nervous system is a factor contributing to neurodegenerative and psychological diseases. Evidence from preclinical studies has suggested that RGS controls drug-induced plasticity, including morphine tolerance and addiction. This study aimed to observe the effect of propofol exposure in the neurodevelopmental stage on learning and memory in the L4 stage and to study whether this effect is related to changes in rgs-3 expression. METHODS Caenorhabditis elegans were exposed to propofol at the L1 stage, and learning and memory abilities were observed at the L4 stage. The expression of rgs-3 and the nuclear distribution of EGL-4 were determined to study the relevant mechanisms. Finally, RNA interference was performed on rgs-3-expressing cells after propofol exposure. Then, we observed their learning and memory abilities. RESULTS Propofol time- and dose-dependently impaired the learning capacity. Propofol induced a decline in non-associative and associative long-term memory, rgs-3 upregulation, and a failure of nuclear accumulation of EGL-4/PKG in AWC neurons. Inhibition of rgs-3 could alleviate the propofol-induced changes. CONCLUSION Inhibition of the expression of rgs-3 alleviated propofol-induced learning and memory deficits in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Ayang Zhao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hongjiang Jin
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Guibo Fan
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yan Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chenglong Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qi Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaofei Ma
- Department of ICUThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tianyang Zhao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Siqi Sun
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shuai Liu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yueyue Gao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sihua Qi
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
47
|
Ihlow J, Monjé N, Hoffmann I, Bischoff P, Sinn BV, Schmitt WD, Kunze CA, Darb-Esfahani S, Kulbe H, Braicu EI, Sehouli J, Denkert C, Horst D, Taube ET. Low Expression of RGS2 Promotes Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14194620. [PMID: 36230542 PMCID: PMC9561967 DOI: 10.3390/cancers14194620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recent advances in molecular medicine have indicated G-protein coupled receptors (GPCRs) as possible therapeutic targets in ovarian cancer. The cellular effects of GPCRs are determined by regulator of G protein signaling (RGS) proteins. Especially RGS2 has currently moved into focus of cancer therapy. Therefore, we retrospectively analyzed RGS2 and its association with the prognosis of high-grade serous ovarian cancer (HGSOC). Here, we provide in situ and in silico analyses regarding the expression patterns and prognostic value of RGS2. In silico we found that RGS2 is barely detectable in tumor cells on the mRNA level in bulk and single-cell data. Applying immunohistochemistry in 519 HGSOC patients, we detected moderate to strong protein expression of RGS2 in situ in approximately half of the cohort, suggesting regulation by post translational modification. Furthermore, low protein expression of RGS2 was associated with an inferior overall- and progression-free survival. These results warrant further research of its role and related new therapeutic implications in HGSOC. Abstract RGS2 regulates G-protein signaling by accelerating hydrolysis of GTP and has been identified as a potentially druggable target in carcinomas. Since the prognosis of patients with high-grade serous ovarian carcinoma (HGSOC) remains utterly poor, new therapeutic options are urgently needed. Previous in vitro studies have linked RGS2 suppression to chemoresistance in HGSOC, but in situ data are still missing. In this study, we characterized the expression of RGS2 and its relation to prognosis in HGSOC on the protein level by immunohistochemistry in 519 patients treated at Charité, on the mRNA level in 299 cases from TCGA and on the single-cell level in 19 cases from publicly available datasets. We found that RGS2 is barely detectable on the mRNA level in both bulk tissue (median 8.2. normalized mRNA reads) and single-cell data (median 0 normalized counts), but variably present on the protein level (median 34.5% positive tumor cells, moderate/strong expression in approximately 50% of samples). Interestingly, low expression of RGS2 had a negative impact on overall survival (p = 0.037) and progression-free survival (p = 0.058) on the protein level in lower FIGO stages and in the absence of residual tumor burden. A similar trend was detected on the mRNA level. Our results indicated a significant prognostic impact of RGS2 protein suppression in HGSOC. Due to diverging expression patterns of RGS2 on mRNA and protein levels, posttranslational modification of RGS2 is likely. Our findings warrant further research to unravel the functional role of RGS2 in HGSOC, especially in the light of new drug discovery.
Collapse
Affiliation(s)
- Jana Ihlow
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nanna Monjé
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Inga Hoffmann
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bruno Valentin Sinn
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Wolfgang Daniel Schmitt
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Catarina Alisa Kunze
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sylvia Darb-Esfahani
- Institute of Pathology, Berlin-Spandau, Stadtrandstraße 555, 13589 Berlin, Germany
| | - Hagen Kulbe
- Department of Obstetrics and Gynecology with Center of Oncological Surgery, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elena Ioana Braicu
- Department of Obstetrics and Gynecology with Center of Oncological Surgery, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jalid Sehouli
- Department of Obstetrics and Gynecology with Center of Oncological Surgery, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - David Horst
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Eliane Tabea Taube
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-536-033; Fax: +49-30-450-536-900
| |
Collapse
|
48
|
Unravelling biological roles and mechanisms of GABA BR on addiction and depression through mood and memory disorders. Biomed Pharmacother 2022; 155:113700. [PMID: 36152411 DOI: 10.1016/j.biopha.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The metabotropic γ-aminobutyric acid type B receptor (GABABR) remains a hotspot in the recent research area. Being an idiosyncratic G-protein coupled receptor family member, the GABABR manifests adaptively tailored functionality under multifarious modulations by a constellation of agents, pointing to cross-talk between receptors and effectors that converge on the domains of mood and memory. This review systematically summarizes the latest achievements in signal transduction mechanisms of the GABABR-effector-regulator complex and probes how the up-and down-regulation of membrane-delimited GABABRs are associated with manifold intrinsic and extrinsic agents in synaptic strength and plasticity. Neuropsychiatric conditions depression and addiction share the similar pathophysiology of synapse inadaptability underlying negative mood-related processes, memory formations, and impairments. In the attempt to emphasize all convergent discoveries, we hope the insights gained on the GABABR system mechanisms of action are conducive to designing more therapeutic candidates so as to refine the prognosis rate of diseases and minimize side effects.
Collapse
|
49
|
Tian M, Ma Y, Li T, Wu N, Li J, Jia H, Yan M, Wang W, Bian H, Tan X, Qi J. Functions of regulators of G protein signaling 16 in immunity, inflammation, and other diseases. Front Mol Biosci 2022; 9:962321. [PMID: 36120550 PMCID: PMC9478547 DOI: 10.3389/fmolb.2022.962321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) act as guanosine triphosphatase activating proteins to accelerate guanosine triphosphate hydrolysis of the G protein α subunit, leading to the termination of the G protein-coupled receptor (GPCR) downstream signaling pathway. RGS16, which is expressed in a number of cells and tissues, belongs to one of the small B/R4 subfamilies of RGS proteins and consists of a conserved RGS structural domain with short, disordered amino- and carboxy-terminal extensions and an α-helix that classically binds and de-activates heterotrimeric G proteins. However, with the deepening of research, it has been revealed that RGS16 protein not only regulates the classical GPCR pathway, but also affects immune, inflammatory, tumor and metabolic processes through other signaling pathways including the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Ras homolog family member A and stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 pathways. Additionally, the RGS16 protein may be involved in the Hepatitis B Virus -induced inflammatory response. Therefore, given the continuous expansion of knowledge regarding its role and mechanism, the structure, characteristics, regulatory mechanisms and known functions of the small RGS proteinRGS16 are reviewed in this paper to prepare for diagnosis, treatment, and prognostic evaluation of different diseases such as inflammation, tumor, and metabolic disorders and to better study its function in other diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Ma
- Zibo Central Hospital, Zibo, China
| | - Tao Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqi Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenwen Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| |
Collapse
|
50
|
Luo Y, Gou H, Chen X, Li L, Wang X, Xu Y. Lactate inhibits osteogenic differentiation of human periodontal ligament stem cells via autophagy through the MCT1-mTOR signaling pathway. Bone 2022; 162:116444. [PMID: 35589065 DOI: 10.1016/j.bone.2022.116444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) play a crucial role in periodontal bone regeneration. Lactate used to be considered a waste product of glucose metabolism. In recent years, a few pieces of evidence revealed its roles in regulating the osteogenic differentiation of stem cells, but the standpoints were controversial. This study aims to investigate the effects and the mechanisms of lactate on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). METHODS The hPDLSCs were treated with different concentrations of lactic acid and lactate to differentiate the effects of the acidic PH and ion lactate. Proliferation and cytotoxicity were measured by Cell Counting Kit-8 (CCK8) assay and Live/Dead assay. The osteogenic differentiation of hPDLSCs was analyzed by alizarin red staining, alkaline phosphatase (ALP) staining, and then osteogenic proteins and genes were measured by western blot and reverse transcription-quantitative PCR (qRT-PCR). To investigate the potential signaling pathways, MCT1 inhibitor, G-protein inhibitors, and rapamycin were used, and then autophagy-related proteins and osteogenic proteins were measured by western blot. RESULTS The inhibition of lactic acid on the osteogenic differentiation of hPDLSCs was more significant than lactate at the same concentration. Lactate inhibited the expression of ALP which can be rescued by Gα inhibitor. Alizarin red staining, the protein expression levels of osteocalcin (OCN), osteoprotegerin (OPN), osterix (OSX), and beclin1, LC3-II/LC3-I were decreased by lactate and partly rescued by MCT1 inhibitor. Rapamycin restored the protein expression levels of beclin1, LC3-II/LC3-I and OCN, OPN, OSX under the high lactate conditions. CONCLUSIONS Lactate inhibits the expression of ALP via Gα subunit signaling, and inhibits mineralized nodules formation and the expression of osteogenic-related proteins via reducing autophagy through the MCT1-mTOR signaling pathway.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Huiqing Gou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Xu Chen
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Lu Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Xiaoqian Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China.
| |
Collapse
|