1
|
Jayakody T, Budagoda DK, Mendis K, Dilshan WD, Bethmage D, Dissasekara R, Dawe GS. Biased agonism in peptide-GPCRs: A structural perspective. Pharmacol Ther 2025; 269:108806. [PMID: 39889970 DOI: 10.1016/j.pharmthera.2025.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
G protein-coupled receptors (GPCRs) are dynamic membrane receptors that transduce extracellular signals to the cell interior by forming a ligand-receptor-effector (ternary) complex that functions via allosterism. Peptides constitute an important class of ligands that interact with their cognate GPCRs (peptide-GPCRs) to form the ternary complex. "Biased agonism", a therapeutically relevant phenomenon exhibited by GPCRs owing to their allosteric nature, has also been observed in peptide-GPCRs, leading to the development of selective therapeutics with fewer side effects. In this review, we have focused on the structural basis of signalling bias at peptide-GPCRs of classes A and B, and reviewed the therapeutic relevance of bias at peptide-GPCRs, with the hope of contributing to the discovery of novel biased peptide drugs.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Krishan Mendis
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Duvindu Bethmage
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | - Rashmi Dissasekara
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka; The Graduate School, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Sun S, Wang W. Mechanosensitive adhesion G protein-coupled receptors: Insights from health and disease. Genes Dis 2025; 12:101267. [PMID: 39935605 PMCID: PMC11810715 DOI: 10.1016/j.gendis.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 02/13/2025] Open
Abstract
Ontogeny cannot be separated from mechanical forces. Cells are continuously subjected to different types of mechanical stimuli that convert into intracellular signals through mechanotransduction. As a member of the G protein-coupled receptor superfamily, adhesion G protein-coupled receptors (aGPCRs) have attracted extensive attention due to their unique extracellular domain and adhesion properties. In the past few decades, increasing evidence has indicated that sensing mechanical stimuli may be one of the main physiological activities of aGPCRs. Here, we review the general structure and activation mechanisms of these receptors and highlight the lesion manifestations relevant to each mechanosensitive aGPCR.
Collapse
Affiliation(s)
- Shiying Sun
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Wen Wang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
3
|
Olaniru OE, Toczyska K, Guccio N, Giera S, Piao X, King AJF, Jones PM, Persaud SJ. Spatiotemporal profiling of adhesion G protein-coupled receptors in developing mouse and human pancreas reveals a role for GPR56 in islet development. Cell Mol Life Sci 2025; 82:129. [PMID: 40137991 PMCID: PMC11947406 DOI: 10.1007/s00018-025-05659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION G protein-coupled receptors (GPCRs) are cell-surface proteins that are targeted therapeutically for a range of disorders, including diabetes. Adhesion GPCRs (aGPCRs) are the second largest class of the GPCR superfamily and some members of this family have been implicated in appropriate organ development. However, the role of aGPCRs in endocrine pancreas specification is not yet known. METHODS Here, we systematically characterised expression of mRNAs encoding aGPCRs and their ligands in developing mouse and human pancreas using our own and publicly available single-cell RNA sequencing and spatial transcriptomics data, and we conducted qPCR analysis of aGPCR expression in human pancreas at different gestational stages. We then investigated the role of GPR56 (ADGRG1), the most abundant aGPCR in pancreatic endocrine progenitors, in islet development using Gpr56 null mice and their wildtype littermates. RESULTS We demonstrated that aGPCRs are dynamically expressed during mouse and human pancreas development, with specific aGPCR mRNAs expressed in distinct endocrine, endothelial, mesenchymal, acinar, ductal, and immune cell clusters. aGPCR ligand mRNAs were mostly expressed by non-endocrine cells, and the most highly expressed receptor-ligand interacting mRNA pairs were those encoding GPR56 and COL3A1. Deletion of Gpr56 in neonatal mice was associated with an altered α-/β-/δ-cell ratio and reduced β-cell proliferation. CONCLUSION Our data show that aGPCRs are expressed at key stages of human and mouse pancreas endocrine lineage decisions, and analysis of pancreases from Gpr56 knockout mice implicate this aGPCR in the development of a full complement of β-cells.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Klaudia Toczyska
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Nunzio Guccio
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Stefanie Giera
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xianhua Piao
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pediatrics, University of California at San Francisco, San Francisco, CA, USA
| | - Aileen J F King
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter M Jones
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
4
|
Südhof TC. Signaling by latrophilin adhesion-GPCRs in synapse assembly. Neuroscience 2025; 575:150-161. [PMID: 40127755 DOI: 10.1016/j.neuroscience.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Latrophilins are evolutionarily conserved adhesion-GPCRs with diverse roles, including a prominent function in synapse organization. In mammals, the primary transcripts of three latrophilin genes (ADGRL1-3) are extensively alternatively spliced, producing hundreds of isoforms with diverse cytoplasmic sequences. Extracellularly, latrophilins feature N-terminal lectin- and olfactomedin-like domains that bind to Teneurin and FLRT adhesion molecules, respectively, and are followed by an autoproteolytic GAIN domain typical for adhesion-GPCRs. Since Teneurins and FLRTs in turn interact with other ligands, latrophilins form a large trans-cellular protein interaction network. Intracellularly, latrophilins bind to G proteins, arrestins, and postsynaptic scaffold proteins. Latrophilins stimulate all Gα proteins tested, with the Gα isoform preference regulated by alternative splicing. In brain, latrophilins act as essential postsynaptic organizers that functionally require extracellular binding to teneurins and FLRTs, intracellular activation of GαS, and recruitment of postsynaptic scaffolds. Thus, latrophilins are signaling platforms that connect trans-cellular interactions to cellular responses in a manner regulated by alternative splicing.
Collapse
Affiliation(s)
- Thomas C Südhof
- Dept. of Molecular and Cellular Physiology & of Neurosurgery, Stanford University School of Medicine & Howard Hughes Medical Institute, Stanford Institute of Medicine I (SIM1)/Lorry Lokey Stem Cell Building, 265 Campus Drive, Room G1021, Stanford, CA 94305-5453, USA.
| |
Collapse
|
5
|
Lorente JS, Sokolov AV, Ferguson G, Schiöth HB, Hauser AS, Gloriam DE. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2025:10.1038/s41573-025-01139-y. [PMID: 40033110 DOI: 10.1038/s41573-025-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
G protein-coupled receptors (GPCRs) form one of the largest drug target families, reflecting their involvement in numerous pathophysiological processes. In this Review, we analyse drug discovery trends for the GPCR superfamily, covering compounds, targets and indications that have reached regulatory approval or that are being investigated in clinical trials. We find that there are 516 approved drugs targeting GPCRs, making up 36% of all approved drugs. These drugs act on 121 GPCR targets, one-third of all non-sensory GPCRs. Furthermore, 337 agents targeting 133 GPCRs, including 30 novel targets, are being investigated in clinical trials. Notably, 165 of these agents are approved drugs being tested for additional indications and novel agents are increasingly allosteric modulators and biologics. Remarkably, diabetes and obesity drugs targeting GPCRs had sales of nearly US $30 billion in 2023 and the numbers of clinical trials for GPCR modulators in the metabolic diseases, oncology and immunology areas are increasing strongly. Finally, we highlight the potential of untapped target-disease associations and pathway-biased signalling. Overall, this Review provides an up-to-date reference for the drugged and potentially druggable GPCRome to inform future GPCR drug discovery and development.
Collapse
Affiliation(s)
- Javier Sánchez Lorente
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Gavin Ferguson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- ALPX S.A.S., Grenoble, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Nishimura A, Nishiyama K, Ito T, Mi X, Kato Y, Inoue A, Aoki J, Nishida M. Ligand-Independent Spontaneous Activation of Purinergic P2Y 6 Receptor Under Cell Culture Soft Substrate. Cells 2025; 14:216. [PMID: 39937007 PMCID: PMC11817550 DOI: 10.3390/cells14030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
G protein-coupled receptors (GPCRs) exist in the conformational equilibrium between inactive state and active state, where the proportion of active state in the absence of a ligand determines the basal activity of GPCRs. Although many GPCRs have different basal activity, it is still unclear whether physiological stresses such as substrate stiffness affect the basal activity of GPCRs. In this study, we identified that purinergic P2Y6 receptor (P2Y6R) induced spontaneous Ca2+ oscillation without a nucleotide ligand when cells were cultured in a silicon chamber. This P2Y6R-dependent Ca2+ oscillation was absent in cells cultured in glass dishes. Coating substrates, including collagen, laminin, and fibronectin, did not affect the P2Y6R spontaneous activity. Mutation of the extracellular Arg-Gly-Asp (RGD) motif of P2Y6R inhibited spontaneous activity. Additionally, extracellular Ca2+ was required for P2Y6R-dependent spontaneous Ca2+ oscillation. The GPCR screening assay identified cells expressing 10 GPCRs, including purinergic P2Y1R, P2Y2R, and P2Y6R, that exhibited spontaneous Ca2+ oscillation under cell culture soft substrate. Our results suggest that stiffness of the cell adhesion surface modulates spontaneous activities of several GPCRs, including P2Y6R, through a ligand-independent mechanism.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Kazuhiro Nishiyama
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
- Laboratory of Prophylactic Pharmacology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka 598-8531, Japan
| | - Tomoya Ito
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
| | - Xinya Mi
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.I.); (X.M.); (Y.K.)
| |
Collapse
|
7
|
Perry-Hauser NA, Du Rand JR, Lee KH, Shi L, Javitch JA. N-terminal fragment shedding contributes to signaling of the full-length adhesion receptor ADGRL3. J Biol Chem 2025; 301:108174. [PMID: 39798870 PMCID: PMC11849108 DOI: 10.1016/j.jbc.2025.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025] Open
Abstract
Most adhesion G protein-coupled receptors (GPCRs) undergo autoproteolytic cleavage during receptor biosynthesis, resulting in noncovalently bound N-terminal fragments (NTFs) and C-terminal fragments (CTFs) that remain associated during receptor trafficking to the plasma membrane. While substantial evidence supports increased G protein signaling when just the CTF is expressed, there is an ongoing debate about whether NTF removal is required to initiate signaling in the context of the WT receptor. Here, we use adhesion GPCR latrophilin-3 (ADGRL3) as a model receptor to investigate tethered agonist (TA)-mediated activation. First, we show that extending the N terminus of the TA in ADGRL3 CTF disrupts G protein signaling. This suggests that if the TA is not fully exposed, it is unlikely to interact with the orthosteric pocket in an optimal manner for G protein activation. Second, we show that when full-length ADGRL3 is expressed in heterologous cells, approximately 5% of the receptor population spontaneously sheds its NTF. We hypothesized that the signaling activity observed for full-length ADGRL3 is largely because of this shedding, which exposes the native TA. To test this hypothesis, we used a full-length cleavage-deficient ADGRL3 mutant. Compared with WT receptor, this mutant lost ∼80% of its signaling through Gα13 and showed a much lower level of spontaneous NTF shedding, approximately 20% of that observed for WT receptor. This loss of spontaneous NTF shedding likely explains its diminished signaling activity. These findings suggest that TA-mediated signal transduction by full-length ADGRL3 requires removal of its NTF.
Collapse
Affiliation(s)
- Nicole A Perry-Hauser
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Jonathan R Du Rand
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA.
| |
Collapse
|
8
|
Lin HH. An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs. Int J Mol Sci 2025; 26:552. [PMID: 39859266 PMCID: PMC11765499 DOI: 10.3390/ijms26020552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
G protein-coupled receptors (GPCRs), critical for cellular communication and signaling, represent the largest cell surface protein family and play important roles in numerous pathophysiological processes. Consequently, GPCRs have become a primary focus in drug discovery efforts. Beyond their traditional G protein-dependent signaling pathways, GPCRs are also capable of activating alternative signaling mechanisms, including G protein-independent signaling, biased signaling, and signaling crosstalk. A particularly novel signaling mode employed by these receptors is GPCR transactivation, which enables cross-communication between GPCRs and other receptor types. Intriguingly, GPCR transactivation by distinct GPCRs has also been identified. In this review, I provide an overview of the known GPCR transactivation mechanisms and explore recently uncovered GPCR transactivation mediated by adhesion-class GPCRs (aGPCRs). These aGPCR-GPCR transactivation processes regulate unique cell type-specific functions, offering an exciting opportunity to develop therapies that precisely modulate specific GPCR-mediated biological effects.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-03-2118800-3321
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
| |
Collapse
|
9
|
Zhang C, Zhang R, Qi Y, Wen X, Sun J, Xiao P. Exploring the Binding Mechanism of ADGRG2 Through Metadynamics and Biochemical Analysis. Int J Mol Sci 2024; 26:167. [PMID: 39796025 PMCID: PMC11719512 DOI: 10.3390/ijms26010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
G protein-coupled receptors (GPCRs) play essential roles in numerous physiological processes and are key targets for drug development. Among them, adhesion GPCRs (aGPCRs) stand out for their unique domain structures and diverse functions. ADGRG2 is a member of the aGPCR family and is involved in the regulation of various systems in the human body, including reproductive, nervous, cardiovascular, and endocrine systems. Investigating ADGRG2 antagonists enhances our understanding of its regulatory roles in diverse physiological processes, yet their precise mechanisms of action remain unclear. To address this, we investigated the antagonistic mechanism of ADGRG2 by examining its interactions with various antagonists, including short peptides (F601D, F601E) and small molecules (deoxycorticosterone, DOC). Using advanced metadynamics simulation, ligand binding assay and cAMP assay, we elucidated the binding modes of these antagonists. We identified five distinct F601D-ADGRG2 complex states, four F601E-ADGRG2 complex states, and three DOC-ADGRG2 complex states, which were each characterized by specific hydrogen bonds or polar interactions with their respective ligands. Although the ADGRG2 binding pocket consists of both polar and hydrophobic residues, our biochemical experiments revealed that mutations in polar amino acids significantly reduce the efficacy of the antagonists. Our results show that F601D, F601E, and DOC induce the formation of Y758ECL2-N7755.32-N8607.46 polar networks within ADGRG2, effectively stabilizing its inactive state. Additionally, we compared the active and inactive states of ADGRG2, highlighting the structural changes induced by antagonist-stabilized polar networks and their impact on receptor conformation. These findings provide important insights into the biology of aGPCRs and provide theoretical support for the rational design of therapeutic drugs targeting ADGRG2.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (C.Z.); (R.Z.); (Y.Q.); (X.W.)
| | - Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (C.Z.); (R.Z.); (Y.Q.); (X.W.)
| | - Yuanyuan Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (C.Z.); (R.Z.); (Y.Q.); (X.W.)
| | - Xin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (C.Z.); (R.Z.); (Y.Q.); (X.W.)
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinpeng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (C.Z.); (R.Z.); (Y.Q.); (X.W.)
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (C.Z.); (R.Z.); (Y.Q.); (X.W.)
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
10
|
Zhao Z, Hu L, Song B, Jiang T, Wu Q, Lin J, Li X, Cai Y, Li J, Qian B, Liu S, Lang J, Yang Z. Constitutively active receptor ADGRA3 signaling induces adipose thermogenesis. eLife 2024; 13:RP100205. [PMID: 39718208 DOI: 10.7554/elife.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.
Collapse
Affiliation(s)
- Zewei Zhao
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Longyun Hu
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Bigui Song
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Tao Jiang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Qian Wu
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Jiejing Lin
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Xiaoxiao Li
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Yi Cai
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Jin Li
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Bingxiu Qian
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Siqi Liu
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Jilu Lang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhonghan Yang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
11
|
Garbett K, Tosun B, Lopez JM, Smith CM, Honkanen K, Sando RC. Synaptic Gα12/13 signaling establishes hippocampal PV inhibitory circuits. Proc Natl Acad Sci U S A 2024; 121:e2407828121. [PMID: 39693341 PMCID: PMC11670215 DOI: 10.1073/pnas.2407828121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Combinatorial networks of cell adhesion molecules and cell surface receptors drive fundamental aspects of neural circuit establishment and function. However, the intracellular signals orchestrated by these cell surface complexes remain less understood. Here, we report that the Gα12/13 pathway lies downstream of several GPCRs with critical synaptic functions. Impairment of the Gα12/13 pathway in postnatal hippocampal neurons diminishes inhibitory inputs without altering neuronal morphology or excitatory transmission. Gα12/13 signaling in hippocampal CA1 neurons in vivo selectively regulates PV interneuron synaptic connectivity, supporting an inhibitory synapse subtype-specific function of this pathway. Our studies establish Gα12/13 as a signaling node that shapes inhibitory hippocampal circuitry.
Collapse
Affiliation(s)
- Krassimira Garbett
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Baris Tosun
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Jaybree M. Lopez
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Cassandra M. Smith
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Kelly Honkanen
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Richard C. Sando
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
12
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
13
|
Kordon SP, Cechova K, Bandekar SJ, Leon K, Dutka P, Siffer G, Kossiakoff AA, Vafabakhsh R, Araç D. Conformational coupling between extracellular and transmembrane domains modulates holo-adhesion GPCR function. Nat Commun 2024; 15:10545. [PMID: 39627215 PMCID: PMC11615224 DOI: 10.1038/s41467-024-54836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECRs) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the transmembrane region and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the transmembrane region within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism for aGPCR activation.
Collapse
Affiliation(s)
- Szymon P Kordon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA
| | - Kristina Cechova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sumit J Bandekar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Przemysław Dutka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Gracie Siffer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Kang M, Lee CS, Son H, Lee J, Lee J, Seo HJ, Kim MK, Choi M, Cho HJ, Kim HS. Latrophilin-2 Deletion in Cardiomyocyte Disrupts Cell Junction, Leading to D-CMP. Circ Res 2024; 135:1098-1115. [PMID: 39421931 DOI: 10.1161/circresaha.124.324670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Latrophilin-2 (Lphn2), an adhesive GPCR (G protein-coupled receptor), was found to be a specific marker of cardiac progenitors during the differentiation of pluripotent stem cells into cardiomyocytes or during embryonic heart development in our previous studies. Its role in adult heart physiology, however, remains unclear. METHODS The embryonic lethality resulting from Lphn2 deletion necessitates the establishment of cardiomyocyte-specific, tamoxifen-inducible Lphn2 knockout mice, which was achieved by crossing Lphn2 flox/flox mice with mice having MerCreMer (tamoxifen-inducible Cre [Cyclization recombinase] recombinase) under the α-myosin heavy chain promoter. RESULTS Tamoxifen treatment for several days completely suppressed Lphn2 expression, specifically in the myocardium, and induced the dilated cardiomyopathy (D-CMP) phenotype with serious arrhythmia and sudden death in a short period of time. Transmission electron microscopy showed mitochondrial abnormalities, blurred Z-discs, and dehiscent myofibrils. The D-CMP phenotype, or heart failure, worsened during myocardial infarction. In a mechanistic study of D-CMP, Lphn2 knockout suppressed PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and mitochondrial dysfunction, leading to the accumulation of reactive oxygen species and the global suppression of junctional molecules, such as N-cadherin (adherens junction), DSC-2 (desmocollin-2; desmosome), and connexin-43 (gap junction), leading to the dehiscence of cardiac myofibers and serious arrhythmia. In an experimental therapeutic trial, activators of p38-MAPK (p38 mitogen-activated protein kinases), which is a downstream signaling molecule of Lphn2, remarkably rescued the D-CMP phenotype of Lphn2 knockout in the heart by restoring PGC-1α and mitochondrial function and recovering global junctional proteins. CONCLUSIONS Lphn2 is a critical regulator of heart integrity by controlling mitochondrial functions and cell-to-cell junctions in cardiomyocytes. Its deficiency leads to D-CMP, which can be rescued by activators of the p38-MAPK pathway.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Mice
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Intercellular Junctions/metabolism
- Intercellular Junctions/drug effects
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Mice, Inbred C57BL
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/deficiency
- Tamoxifen/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Gene Deletion
- Male
- Cells, Cultured
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
Collapse
Affiliation(s)
- Minjun Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Choon-Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - HyunJu Son
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Jeongha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, South Korea (Jeongha Lee, M.C.)
| | - Jaewon Lee
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Hyun Ju Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Moo-Kang Kim
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, South Korea (Jeongha Lee, M.C.)
| | - Hyun-Jai Cho
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
| | - Hyo-Soo Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| |
Collapse
|
15
|
Adhikary K, Banerjee P, Barman S, Banerjee A, Sarkar A, Bag S, Chatterjee S, Bandyopadhyay B, Panja AS. Larvicidal activity of β-Citral: An In-vitro and In-silico study to understand its potential against mosquito. Acta Trop 2024; 258:107356. [PMID: 39128617 DOI: 10.1016/j.actatropica.2024.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Tropical and subtropical regions face millions of deaths from mosquito-borne illnesses yearly. Insecticides prevent transmission but pose health risks like dermatitis and allergies. The primary objective was to mitigate the recurring dependence on synthetic insecticides, thereby curbing the development of mosquito resistance. Leaves of Cymbopogon flexuosus (lemongrass) was collected from Mayurbhanj, India, processed, then extracted by steam distillation for essential oils & analyzed spectroscopically. Larvicidal assays were performed across varying concentrations, revealing the significant mortality induced by the Cymbopogon flexuosus extract against Anopheles stephensi larvae. 3D structure was modelled by using G protein-coupled receptors (GPCR) sequence and structural stability was also validated. After docking the binding free energy was determined from GPCR protein with β-citral complex. Molecular dynamics (MD) study was conducted on the docked pose that displayed an optimal interactome profile. The larvicidal assay at the 12th and 24th hour revealed the highest LC50 (lethal concentration) of 23.493 ppm and 19.664 ppm . β-Citral has a high binding affinity and an identifiable binding site, which suggests that it may play a larvicidal role in regulating the receptor's function by creating stable complexes with it. β-Citral from lemongrass oils has potential larvicidal activity and effective against GPCR family 1 of mosquito and highly effective repellents against mosquito-borne diseases.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Odisha 761211, India
| | - Pradipta Banerjee
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, IN 46202, Indianapolis, United State
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology & Management, Odisha 761211, India.
| | - Arundhati Banerjee
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, West Bengal 713212, India
| | - Aniket Sarkar
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Souvik Bag
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, 713104 West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, 713104 West Bengal, India
| | - Bidyut Bandyopadhyay
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Anindya Sundar Panja
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal 721102, India.
| |
Collapse
|
16
|
Einspahr J, Xu H, Roy R, Dietz N, Melchior J, Raja J, Carter R, Piao X, Tilley D. Loss of cardiomyocyte-specific adhesion G-protein-coupled receptor G1 (ADGRG1/GPR56) promotes pressure overload-induced heart failure. Biosci Rep 2024; 44:BSR20240826. [PMID: 39264336 PMCID: PMC11427730 DOI: 10.1042/bsr20240826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/13/2024] Open
Abstract
Adhesion G-protein-coupled receptors (AGPCRs), containing large N-terminal ligand-binding domains for environmental mechano-sensing, have been increasingly recognized to play important roles in numerous physiologic and pathologic processes. However, their impact on the heart, which undergoes dynamic mechanical alterations in healthy and failing states, remains understudied. ADGRG1 (formerly known as GPR56) is widely expressed, including in skeletal muscle where it was previously shown to mediate mechanical overload-induced muscle hypertrophy; thus, we hypothesized that it could impact the development of cardiac dysfunction and remodeling in response to pressure overload. In this study, we generated a cardiomyocyte (CM)-specific ADGRG1 knockout mouse model, which, although not initially displaying features of cardiac dysfunction, does develop increased systolic and diastolic LV volumes and internal diameters over time. Notably, when challenged with chronic pressure overload, CM-specific ADGRG1 deletion accelerates cardiac dysfunction, concurrent with blunted CM hypertrophy, enhanced cardiac inflammation and increased mortality, suggesting that ADGRG1 plays an important role in the early adaptation to chronic cardiac stress. Altogether, the present study provides an important proof-of-concept that targeting CM-expressed AGPCRs may offer a new avenue for regulating the development of heart failure.
Collapse
Affiliation(s)
- Jeanette Einspahr
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Heli Xu
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Rajika Roy
- Department of Surgery, Duke University Medical Center, Durham, NC, U.S.A
| | - Nikki Dietz
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Jacob Melchior
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Jhansi Raja
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Rhonda Carter
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Xianhua Piao
- Weill Institute for Neuroscience, University of California at San Francisco, San Francisco, CA, U.S.A
| | - Douglas G. Tilley
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
17
|
Dates AN, Jones DTD, Smith JS, Skiba MA, Rich MF, Burruss MM, Kruse AC, Blacklow SC. Heterogeneity of tethered agonist signaling in adhesion G protein-coupled receptors. Cell Chem Biol 2024; 31:1542-1553.e4. [PMID: 38608683 PMCID: PMC11330365 DOI: 10.1016/j.chembiol.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Adhesion G protein-coupled receptor (aGPCR) signaling influences development and homeostasis in a wide range of tissues. In the current model for aGPCR signaling, ligand binding liberates a conserved sequence that acts as an intramolecular, tethered agonist (TA), yet this model has not been evaluated systematically for all aGPCRs. Here, we assessed the TA-dependent activities of all 33 aGPCRs in a suite of transcriptional reporter, G protein activation, and β-arrestin recruitment assays using a new fusion protein platform. Strikingly, only ∼50% of aGPCRs exhibited robust TA-dependent activation, and unlike other GPCR families, aGPCRs showed a notable preference for G12/13 signaling. AlphaFold2 predictions assessing TA engagement in the predicted intramolecular binding pocket aligned with the TA dependence of the cellular responses. This dataset provides a comprehensive resource to inform the investigation of all human aGPCRs and for targeting aGPCRs therapeutically.
Collapse
Affiliation(s)
- Andrew N Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel T D Jones
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey S Smith
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maria F Rich
- University of Cincinnati School of Medicine, Department of Molecular Genetics, Biochemistry, and Microbiology, Cincinnati, OH 45267, USA
| | - Maggie M Burruss
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Chen J, Fang M, Li Y, Ding H, Zhang X, Jiang X, Zhang J, Zhang C, Lu Z, Luo M. Cell surface protein-protein interaction profiling for biological network analysis and novel target discovery. LIFE MEDICINE 2024; 3:lnae031. [PMID: 39872863 PMCID: PMC11749001 DOI: 10.1093/lifemedi/lnae031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 01/30/2025]
Abstract
The secretome is composed of cell surface membrane proteins and extracellular secreted proteins that are synthesized via secretory machinery, accounting for approximately one-third of human protein-encoding genes and playing central roles in cellular communication with the external environment. Secretome protein-protein interactions (SPPIs) mediate cell proliferation, apoptosis, and differentiation, as well as stimulus- or cell-specific responses that regulate a diverse range of biological processes. Aberrant SPPIs are associated with diseases including cancer, immune disorders, and illness caused by infectious pathogens. Identifying the receptor/ligand for a secretome protein or pathogen can be a challenging task, and many SPPIs remain obscure, with a large number of orphan receptors and ligands, as well as viruses with unknown host receptors, populating the SPPI network. In addition, proteins with known receptors/ligands may also interact with alternative uncharacterized partners and exert context-dependent effects. In the past few decades, multiple varied approaches have been developed to identify SPPIs, and these methods have broad applications in both basic and translational research. Here, we review and discuss the technologies for SPPI profiling and the application of these technologies in identifying novel targets for immunotherapy and anti-infectious agents.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Maoxin Fang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuwei Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haodong Ding
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyi Jiang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinlan Zhang
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhigang Lu
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. EMBO J 2024; 43:3175-3191. [PMID: 38886581 PMCID: PMC11294477 DOI: 10.1038/s44318-024-00142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function, and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs), and Plexin D1 located at cell-cell junctions mediates many of these events. However, available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial-specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology, and disease.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Minghao Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Andrew Prendergast
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Zhenwu Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Anthony Koleske
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT, USA
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Zhang W, Zhang Q, Liu Y, Pei J, Feng N. Novel roles of κ-opioid receptor in myocardial ischemia-reperfusion injury. PeerJ 2024; 12:e17333. [PMID: 38948204 PMCID: PMC11212630 DOI: 10.7717/peerj.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 07/02/2024] Open
Abstract
Acute heart attack is the primary cause of cardiovascular-related death worldwide. A common treatment is reperfusion of ischemic tissue, which can cause irreversible damage to the myocardium. The number of mitochondria in cardiomyocytes is large, which generate adenosine triphosphate (ATP) to sustain proper cardiac contractile function, and mitochondrial dysfunction plays a crucial role in cell death during myocardial ischemia-reperfusion, leading to an increasing number of studies investigating the impact of mitochondria on ischemia-reperfusion injury. The disarray of mitochondrial dynamics, excessive Ca2+ accumulation, activation of mitochondrial permeable transition pores, swelling of mitochondria, ultimately the death of cardiomyocyte are the consequences of ischemia-reperfusion injury. κ-opioid receptors can alleviate mitochondrial dysfunction, regulate mitochondrial dynamics, mitigate myocardial ischemia-reperfusion injury, exert protective effects on myocardium. The mechanism of κ-OR activation during myocardial ischemia-reperfusion to regulate mitochondrial dynamics and reduce myocardial ischemia-reperfusion injury will be discussed, so as to provide theoretical basis for the protection of ischemic myocardium.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Physiology and Pathophysiology, Fouth Military Medical University, Xi’an, Shaanxi, China
- School of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Qi Zhang
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, Fouth Military Medical University, Xi’an, Shaanxi, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, Fouth Military Medical University, Xi’an, Shaanxi, China
| | - Na Feng
- Department of Physiology and Pathophysiology, Fouth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
21
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598386. [PMID: 38915515 PMCID: PMC11195282 DOI: 10.1101/2024.06.13.598386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs) and PlexinD1 located at cell-cell junctions mediates many of these events. But available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn-2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology and disease.
Collapse
|
22
|
Matúš D, Lopez JM, Sando RC, Südhof TC. Essential Role of Latrophilin-1 Adhesion GPCR Nanoclusters in Inhibitory Synapses. J Neurosci 2024; 44:e1978232024. [PMID: 38684366 PMCID: PMC11154861 DOI: 10.1523/jneurosci.1978-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Latrophilin-1 (Lphn1, aka CIRL1 and CL1; gene symbol Adgrl1) is an adhesion GPCR that has been implicated in excitatory synaptic transmission as a candidate receptor for α-latrotoxin. Here we analyzed conditional knock-in/knock-out mice for Lphn1 that contain an extracellular myc epitope tag. Mice of both sexes were used in all experiments. Surprisingly, we found that Lphn1 is localized in cultured neurons to synaptic nanoclusters that are present in both excitatory and inhibitory synapses. Conditional deletion of Lphn1 in cultured neurons failed to elicit a detectable impairment in excitatory synapses but produced a decrease in inhibitory synapse numbers and synaptic transmission that was most pronounced for synapses close to the neuronal soma. No changes in axonal or dendritic outgrowth or branching were observed. Our data indicate that Lphn1 is among the few postsynaptic adhesion molecules that are present in both excitatory and inhibitory synapses and that Lphn1 by itself is not essential for excitatory synaptic transmission but is required for some inhibitory synaptic connections.
Collapse
Affiliation(s)
- Daniel Matúš
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Jaybree M Lopez
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| | - Richard C Sando
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
- Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
23
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
24
|
Yuki K, Vallon M, Ding J, Rada CC, Tang AT, Vilches-Moure JG, McCormick AK, Henao Echeverri MF, Alwahabi S, Braunger BM, Ergün S, Kahn ML, Kuo CJ. GPR124 regulates murine brain embryonic angiogenesis and BBB formation by an intracellular domain-independent mechanism. Development 2024; 151:dev202794. [PMID: 38682276 PMCID: PMC11213517 DOI: 10.1242/dev.202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion seven-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7 that is transferred to frizzled (FZD) to initiate canonical β-catenin signaling. GPR124 remains enigmatic: although its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears to be variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124 and FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function using the mouse deletion mutant Gpr124ΔC. Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, in comparison with Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Furthermore, Gpr124ΔC and the recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function are exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion seven-pass transmembrane receptors.
Collapse
Affiliation(s)
- Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mario Vallon
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, 97070 Wuerzburg, Germany
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cara C. Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan T. Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - José G. Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron K. McCormick
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria F. Henao Echeverri
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, 97070 Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, 97070 Wuerzburg, Germany
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Tamilselvan E, Sotomayor M. CELSR1, a core planar cell polarity protein, features a weakly adhesive and flexible cadherin ectodomain. Structure 2024; 32:476-491.e5. [PMID: 38307021 DOI: 10.1016/j.str.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/30/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Planar cell polarity (PCP), essential to multicellular developmental processes, arises when cells polarize and align across tissues. Central to PCP is CELSR1, an atypical cadherin featuring a long ectodomain with nine extracellular cadherin (EC) repeats, a membrane adjacent domain (MAD10), and several characteristic adhesion GPCR domains. Cell-based aggregation assays have demonstrated CELSR1's homophilic adhesive nature, but mechanistic details are missing. Here, we investigate the possible adhesive properties and structures of CELSR1 EC repeats. Our bead aggregation assays do not support strong adhesion by EC repeats alone. Consistently, EC1-4 only dimerizes at high concentration in solution. Crystal structures of human CELSR1 EC1-4 and EC4-7 reveal typical folds and a non-canonical linker between EC5 and EC6. Simulations and experiments using EC4-7 indicate flexibility at EC5-6, and solution experiments show EC7-MAD10-mediated dimerization. Our results suggest weak homophilic adhesion by CELSR1 cadherin repeats and provide mechanistic insights into the structural determinants of CELSR1 function.
Collapse
Affiliation(s)
- Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
26
|
Kordon SP, Cechova K, Bandekar SJ, Leon K, Dutka P, Siffer G, Kossiakoff AA, Vafabakhsh R, Araç D. Structural analysis and conformational dynamics of a holo-adhesion GPCR reveal interplay between extracellular and transmembrane domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581807. [PMID: 38464178 PMCID: PMC10925191 DOI: 10.1101/2024.02.25.581807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECR) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the membrane and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the 7TM within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism of aGPCR activation.
Collapse
|
27
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Mao C, Zhao RJ, Dong YJ, Gao M, Chen LN, Zhang C, Xiao P, Guo J, Qin J, Shen DD, Ji SY, Zang SK, Zhang H, Wang WW, Shen Q, Sun JP, Zhang Y. Conformational transitions and activation of the adhesion receptor CD97. Mol Cell 2024; 84:570-583.e7. [PMID: 38215752 DOI: 10.1016/j.molcel.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are evolutionarily ancient receptors involved in a variety of physiological and pathophysiological processes. Modulators of aGPCR, particularly antagonists, hold therapeutic promise for diseases like cancer and immune and neurological disorders. Hindered by the inactive state structural information, our understanding of antagonist development and aGPCR activation faces challenges. Here, we report the cryo-electron microscopy structures of human CD97, a prototypical aGPCR that plays crucial roles in immune system, in its inactive apo and G13-bound fully active states. Compared with other family GPCRs, CD97 adopts a compact inactive conformation with a constrained ligand pocket. Activation induces significant conformational changes for both extracellular and intracellular sides, creating larger cavities for Stachel sequence binding and G13 engagement. Integrated with functional and metadynamics analyses, our study provides significant mechanistic insights into the activation and signaling of aGPCRs, paving the way for future drug discovery efforts.
Collapse
Affiliation(s)
- Chunyou Mao
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Ru-Jia Zhao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying-Jun Dong
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingxin Gao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jia Guo
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Su-Yu Ji
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shao-Kun Zang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wei-Wei Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Yan Zhang
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
29
|
Bandekar SJ, Garbett K, Kordon SP, Dintzner E, Shearer T, Sando RC, Araç D. Structure of the extracellular region of the adhesion GPCR CELSR1 reveals a compact module which regulates G protein-coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577439. [PMID: 38328199 PMCID: PMC10849658 DOI: 10.1101/2024.01.26.577439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cadherin EGF Laminin G seven-pass G-type receptors (CELSRs or ADGRCs) are conserved adhesion G protein-coupled receptors which are essential for animal development. CELSRs have extracellular regions (ECRs) containing 23 adhesion domains which couple adhesion to intracellular signaling. However, molecular-level insight into CELSR function is sparsely available. We report the 4.3 Å cryo-EM reconstruction of the mCELSR1 ECR with 13 domains resolved in the structure. These domains form a compact module mediated by interdomain interactions with contact between the N- and C-terminal domains. We show the mCELSR1 ECR forms an extended species in the presence of Ca 2+ , which we propose represents the antiparallel cadherin repeat dimer. Using assays for adhesion and G protein-coupling, we assign the N-terminal CADH1-8 module as necessary for cell adhesion and we show the C-terminal CAHD9-GAIN module regulates signaling. Our work provides important molecular context to the literature on CELSR function and opens the door towards further mechanistic studies.
Collapse
|
30
|
Vieira Contreras F, Auger GM, Müller L, Richter V, Huetteroth W, Seufert F, Hildebrand PW, Scholz N, Thum AS, Ljaschenko D, Blanco-Redondo B, Langenhan T. The adhesion G-protein-coupled receptor mayo/CG11318 controls midgut development in Drosophila. Cell Rep 2024; 43:113640. [PMID: 38180839 DOI: 10.1016/j.celrep.2023.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/14/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024] Open
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) form a large family of cell surface molecules with versatile tasks in organ development. Many aGPCRs still await their functional and pharmacological deorphanization. Here, we characterized the orphan aGPCR CG11318/mayo of Drosophila melanogaster and found it expressed in specific regions of the gastrointestinal canal and anal plates, epithelial specializations that control ion homeostasis. Genetic removal of mayo results in tachycardia, which is caused by hyperkalemia of the larval hemolymph. The hyperkalemic effect can be mimicked by a raise in ambient potassium concentration, while normal potassium levels in mayoKO mutants can be restored by pharmacological inhibition of potassium channels. Intriguingly, hyperkalemia and tachycardia are caused non-cell autonomously through mayo-dependent control of enterocyte proliferation in the larval midgut, which is the primary function of this aGPCR. These findings characterize the ancestral aGPCR Mayo as a homeostatic regulator of gut development.
Collapse
Affiliation(s)
- Fernando Vieira Contreras
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Genevieve M Auger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Lena Müller
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Vincent Richter
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Wolf Huetteroth
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Florian Seufert
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Andreas S Thum
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Germany.
| |
Collapse
|
31
|
Pándy-Szekeres G, Taracena Herrera LP, Caroli J, Kermani AA, Kulkarni Y, Keserű GM, Gloriam DE. GproteinDb in 2024: new G protein-GPCR couplings, AlphaFold2-multimer models and interface interactions. Nucleic Acids Res 2024; 52:D466-D475. [PMID: 38000391 PMCID: PMC10767870 DOI: 10.1093/nar/gkad1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
G proteins are the major signal proteins of ∼800 receptors for medicines, hormones, neurotransmitters, tastants and odorants. GproteinDb offers integrated genomic, structural, and pharmacological data and tools for analysis, visualization and experiment design. Here, we present the first major update of GproteinDb greatly expanding its coupling data and structural templates, adding AlphaFold2 structure models of GPCR-G protein complexes and advancing the interactive analysis tools for their interfaces underlying coupling selectivity. We present insights on coupling agreement across datasets and parameters, including constitutive activity, agonist-induced activity and kinetics. GproteinDb is accessible at https://gproteindb.org.
Collapse
Affiliation(s)
- Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Budapest H-1117, Hungary
| | - Luis P Taracena Herrera
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jimmy Caroli
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ali A Kermani
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yashraj Kulkarni
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Budapest H-1117, Hungary
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
32
|
Li Q, Huo A, Li M, Wang J, Yin Q, Chen L, Chu X, Qin Y, Qi Y, Li Y, Cui H, Cong Q. Structure, ligands, and roles of GPR126/ADGRG6 in the development and diseases. Genes Dis 2024; 11:294-305. [PMID: 37588228 PMCID: PMC10425801 DOI: 10.1016/j.gendis.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are the second largest diverse group within the GPCR superfamily, which play critical roles in many physiological and pathological processes through cell-cell and cell-extracellular matrix interactions. The adhesion GPCR Adgrg6, also known as GPR126, is one of the better-characterized aGPCRs. GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals. Current studies have extended our understanding of GPR126-mediated roles during development and in human diseases. In this review, we highlighted these recent advances in GPR126 in expression profile, molecular structure, ligand-receptor interactions, and associated physiological and pathological functions in development and diseases.
Collapse
Affiliation(s)
- Qi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anran Huo
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengqi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiali Wang
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Lumiao Chen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xin Chu
- Department of Emergency Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuan Qin
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuwan Qi
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Li
- Department of Neurology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Hengxiang Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
33
|
Liu D, Winer BY, Chou MY, Tam H, Xu Y, An J, Gardner JM, Cyster JG. Dynamic encounters with red blood cells trigger splenic marginal zone B cell retention and function. Nat Immunol 2024; 25:142-154. [PMID: 38049580 PMCID: PMC10761324 DOI: 10.1038/s41590-023-01690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2023]
Abstract
Spleen marginal zone (MZ) B cells are important for antibody responses against blood-borne antigens. The signals they use to detect exposure to blood are not well defined. Here, using intravital two-photon microscopy in mice, we observe transient contacts between MZ B cells and red blood cells that are in flow. We show that MZ B cells use adhesion G-protein-coupled receptor ADGRE5 (CD97) for retention in the spleen. CD97 function in MZ B cells depends on its ability to undergo autoproteolytic cleavage and signaling via Gα13 and ARHGEF1. Red blood cell expression of the CD97 ligand CD55 is required for MZ B cell homeostasis. Applying a pulling force on CD97-transfected cells using an optical C-trap and CD55+ beads leads to accumulation of active RhoA and membrane retraction. Finally, we show that CD97 deficiency leads to a reduced T cell-independent IgM response. Thus, our studies provide evidence that MZ B cells use mechanosensing to position in a manner that enhances antibody responses against blood-borne antigens.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University School of Life Sciences, Institute of Basic Medical Sciences and Westlake Institute for Advanced Study, Hangzhou, China.
| | - Benjamin Y Winer
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marissa Y Chou
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Hanson Tam
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jinping An
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - James M Gardner
- Diabetes Center and Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Abstract
Skeletal muscle stem cells (MuSCs, also called satellite cells) are the source of the robust regenerative capability of this tissue. The hallmark property of MuSCs at homeostasis is quiescence, a reversible state of cell cycle arrest required for long-term preservation of the stem cell population. MuSCs reside between an individual myofiber and an enwrapping basal lamina, defining the immediate MuSC niche. Additional cell types outside the basal lamina, in the interstitial space, also contribute to niche function. Quiescence is actively maintained by multiple niche-derived signals, including adhesion molecules presented from the myofiber surface and basal lamina, as well as soluble signaling factors produced by myofibers and interstitial cell types. In this Cell Science at a Glance article and accompanying poster, we present the most recent information on how niche signals promote MuSC quiescence and provide perspectives for further research.
Collapse
Affiliation(s)
- Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Grace E. L. Jones
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
35
|
Krumm BE, Roth BL. CryoEM structures of adhesion in GPCR CD97: Filling in some of the gaps. Cell Chem Biol 2023; 30:1327-1329. [PMID: 37977125 DOI: 10.1016/j.chembiol.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
CD97 (ADGRE5) is an adhesion GPCR (aGPCR) that plays crucial roles in the immune system and cancer. In this issue of Cell Chemical Biology, Wang et al.1 present the cryoEM structures of CD97 in complex with G13, Gq, and Gs G protein subtypes, revealing in-depth insight into aGPCR activation and G protein selectivity.
Collapse
Affiliation(s)
- Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA.
| |
Collapse
|
36
|
Sun B, Ji WD, Wang WC, Chen L, Ma JY, Tang EJ, Lin MB, Zhang XF. Circulating tumor cells participate in the formation of microvascular invasion and impact on clinical outcomes in hepatocellular carcinoma. Front Genet 2023; 14:1265866. [PMID: 38028589 PMCID: PMC10652898 DOI: 10.3389/fgene.2023.1265866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide. Although the treatment strategies have been improved in recent years, the long-term prognosis of HCC is far from satisfactory mainly due to high postoperative recurrence and metastasis rate. Vascular tumor thrombus, including microvascular invasion (MVI) and portal vein tumor thrombus (PVTT), affects the outcome of hepatectomy and liver transplantation. If vascular invasion could be found preoperatively, especially the risk of MVI, more reasonable surgical selection will be chosen to reduce the risk of postoperative recurrence and metastasis. However, there is a lack of reliable prediction methods, and the formation mechanism of MVI/PVTT is still unclear. At present, there is no study to explore the possibility of tumor thrombus formation from a single circulating tumor cell (CTC) of HCC, nor any related study to describe the possible leading role and molecular mechanism of HCC CTCs as an important component of MVI/PVTT. In this study, we review the current understanding of MVI and possible mechanisms, discuss the function of CTCs in the formation of MVI and interaction with immune cells in the circulation. In conclusion, we discuss implications for potential therapeutic targets and the prospect of clinical treatment of HCC.
Collapse
Affiliation(s)
- Bin Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Dan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| | - Wen-Chao Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun-Yong Ma
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, China
| | - Er-Jiang Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mou-Bin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Feng Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, China
| |
Collapse
|
37
|
Zhang Y, Li J, Chu P, Shang R, Yin S, Wang T. Construction of a high-density genetic linkage map and QTL mapping of growth and cold tolerance traits in Takifugu fasciatus. BMC Genomics 2023; 24:645. [PMID: 37891474 PMCID: PMC10604518 DOI: 10.1186/s12864-023-09740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Takifugu fasciatus is an aquaculture species with high economic value. In recent years, problems such as environmental pollution and inbreeding have caused a serious decline in T. fasciatus germplasm resources. In this study, a high-density genetic linkage map was constructed by whole-genome resequencing. The map consists of 4891 bin markers distributed across 22 linkage groups (LGs), with a total genetic coverage of 2381.353 cM and a mean density of 0.535 cM. Quantitative trait locus (QTL) localization analysis showed that a total of 19 QTLs associated with growth traits of T. fasciatus in the genome-wide significance threshold range, distributed on 11 LGs. In addition, 11 QTLs associated with cold tolerance traits were identified, each scattered on a different LG. Furthermore, we used QTL localization analysis to screen out three candidate genes (IGF1, IGF2, ADGRB) related to growth in T. fasciatus. Meanwhile, we screened three candidate genes (HSP90, HSP70, and HMGB1) related to T. fasciatus cold tolerance. Our study can provide a theoretical basis for the selection and breeding of cold-tolerant or fast-growing T. fasciatus.
Collapse
Affiliation(s)
- Ying Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Peng Chu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ruhua Shang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
38
|
Fu C, Huang W, Tang Q, Niu M, Guo S, Langenhan T, Song G, Yan J. Unveiling Mechanical Activation: GAIN Domain Unfolding and Dissociation in Adhesion GPCRs. NANO LETTERS 2023; 23:9179-9186. [PMID: 37831892 PMCID: PMC10607210 DOI: 10.1021/acs.nanolett.3c01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Indexed: 10/15/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have extracellular regions (ECRs) containing GPCR autoproteolysis-inducing (GAIN) domains. The GAIN domain enables the ECR to self-cleave into N- and C-terminal fragments. However, the impact of force on the GAIN domain's conformation, critical for mechanosensitive aGPCR activation, remains unclear. Our study investigated the mechanical stability of GAIN domains in three aGPCRs (B, G, and L subfamilies) at a loading rate of 1 pN/s. We discovered that forces of a few piconewtons can destabilize the GAIN domains. In autocleaved aGPCRs ADGRG1/GPR56 and ADGRL1/LPHN1, these forces cause the GAIN domain detachment from the membrane-proximal Stachel sequence, preceded by partial unfolding. In noncleavable aGPCR ADGRB3/BAI3 and cleavage-deficient mutant ADGRG1/GPR56-T383G, complex mechanical unfolding of the GAIN domain occurs. Additionally, GAIN domain detachment happens during cell migration. Our findings support the mechanical activation hypothesis of aGPCRs, emphasizing the sensitivity of the GAIN domain structure and detachment to physiological force ranges.
Collapse
Affiliation(s)
- Chaoyu Fu
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Qingnan Tang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Minghui Niu
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shiwen Guo
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Tobias Langenhan
- Rudolf
Schönheimer Institute of Biochemistry, Division of General
Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Gaojie Song
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yan
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, Singapore 117557, Singapore
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
39
|
Zhong BL, Lee CE, Vachharajani VT, Bauer MS, Südhof TC, Dunn AR. Piconewton Forces Mediate GAIN Domain Dissociation of the Latrophilin-3 Adhesion GPCR. NANO LETTERS 2023; 23:9187-9194. [PMID: 37831891 PMCID: PMC11801148 DOI: 10.1021/acs.nanolett.3c03171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Latrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. Most aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-autoproteolysis inducing (GAIN) domain, but the two resulting fragments remain noncovalently associated on the cell surface. Force-mediated dissociation of the fragments is thought to activate G-protein signaling, but how this mechanosensitivity arises is poorly understood. Here, we use magnetic tweezer assays to show that physiologically relevant forces in the 1-10 pN range lead to dissociation of the latrophilin-3 GAIN domain on the seconds-to-minutes time scale, compared to days in the absence of force. In addition, we find that the GAIN domain undergoes large changes in length in response to increasing mechanical load. These data are consistent with a model in which a force-sensitive equilibrium between compact and extended GAIN domain states precedes dissociation, suggesting a mechanism by which latrophilins and other aGPCRs may mediate mechanically induced signal transduction.
Collapse
Affiliation(s)
- Brian L. Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Christina E. Lee
- Graduate Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | | | - Magnus S. Bauer
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Brogan AP, Habib C, Hobbs SJ, Kranzusch PJ, Rudner DZ. Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis. Proc Natl Acad Sci U S A 2023; 120:e2310862120. [PMID: 37756332 PMCID: PMC10556640 DOI: 10.1073/pnas.2310862120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis, this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted β-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI-SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways.
Collapse
Affiliation(s)
- Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Cameron Habib
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Samuel J. Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
41
|
Ojeda-Muñiz EY, Rodríguez-Hernández B, Correoso-Braña KG, Segura-Landa PL, Boucard AA. Biased signalling is structurally encoded as an autoproteolysis event in adhesion G protein-coupled receptor Latrophilin-3/ADGRL3. Basic Clin Pharmacol Toxicol 2023; 133:342-352. [PMID: 37464463 DOI: 10.1111/bcpt.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) possess a unique topology, including the presence of a GPCR proteolysis site (GPS), which, upon autoproteolysis, generates two functionally distinct fragments that remain non-covalently associated at the plasma membrane. A proposed activation mechanism for aGPCRs involves the exposure of a tethered agonist, which depends on cleavage at the GPS. However, this hypothesis has been challenged by the observation that non-cleavable aGPCRs exhibit constitutive activity, thus making the function of GPS cleavage widely enigmatic. In this study, we sought to elucidate the function of GPS-mediated cleavage through the study of G protein coupling with Latrophilin-3/ADGRL3, a prototypical aGPCR involved in synapse formation and function. Using BRET-based G protein biosensors, we reveal that an autoproteolysis-deficient mutant of ADGRL3 retains constitutive activity. Surprisingly, we uncover that cleavage deficiency leads to a signalling bias directed at potentiating the activity of select G proteins such as Gi2 and G12/13. These data unveil the underpinnings of biased signalling for aGPCRs defined by GPS autoproteolysis.
Collapse
Affiliation(s)
- Estefania Y Ojeda-Muñiz
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| | - Brenda Rodríguez-Hernández
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| | - Kerlys G Correoso-Braña
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| | - Petra L Segura-Landa
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| | - Antony A Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| |
Collapse
|
42
|
Bernadyn TF, Vizurraga A, Adhikari R, Kwarcinski F, Tall GG. GPR114/ADGRG5 is activated by its tethered peptide agonist because it is a cleaved adhesion GPCR. J Biol Chem 2023; 299:105223. [PMID: 37673336 PMCID: PMC10622838 DOI: 10.1016/j.jbc.2023.105223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Family B2 or adhesion G protein-coupled receptors (AGPCRs) are distinguished by variable extracellular regions that contain a modular protease, termed the GPCR autoproteolysis-inducing domain that self-cleaves the receptor into an N-terminal fragment (NTF) and a C-terminal fragment (CTF), or seven transmembrane domain (7TM). The NTF and CTF remain bound after cleavage through noncovalent interactions. NTF binding to a ligand(s) presented by nearby cells, or the extracellular matrix anchors the NTF, such that cell movement generates force to induce NTF/CTF dissociation and expose the AGPCR tethered peptide agonist. The released tethered agonist (TA) binds rapidly to the 7TM orthosteric site to activate signaling. The orphan AGPCR, GPR114 was reported to be uncleaved, yet paradoxically capable of activation by its TA. GPR114 has an identical cleavage site and TA to efficiently cleave GPR56. Here, we used immunoblotting and biochemical assays to demonstrate that GPR114 is a cleaved receptor, and the self-cleavage is required for GPR114 TA-activation of Gs and no other classes of G proteins. Mutagenesis studies defined features of the GPR114 and GPR56 GAINA subdomains that influenced self-cleavage efficiency. Thrombin treatment of protease-activated receptor 1 leader/AGPCR fusion proteins demonstrated that acute decryption of the GPR114/56 TAs activated signaling. GPR114 was found to be expressed in an eosinophilic-like cancer cell line (EoL-1 cells) and endogenous GPR114 was efficiently self-cleaved. Application of GPR114 TA peptidomimetics to EoL-1 cells stimulated cAMP production. Our findings may aid future delineation of GPR114 function in eosinophil cAMP signaling related to migration, chemotaxis, or degranulation.
Collapse
Affiliation(s)
- Tyler F Bernadyn
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexander Vizurraga
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rashmi Adhikari
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Frank Kwarcinski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
43
|
Gupta C, Bernadyn TF, Tall GG. Structural clarity is brought to adhesion G protein-coupled receptor tethered agonism. Basic Clin Pharmacol Toxicol 2023; 133:295-300. [PMID: 36585032 PMCID: PMC10310886 DOI: 10.1111/bcpt.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
An elusive problem in the adhesion G protein-coupled receptor (AGPCR) field is full understanding of the activation mechanisms of the 33-member receptor class. With the recent solution of active-state structures of nearly one quarter of AGPCRs, clarity has been brought to how AGPCRs are activated in response to endogenous full agonists. AGPCRs are self-activated via a tethered peptide agonist (TA) that transitions from a concealed or encrypted location to a decrypted state that binds to a typical GPCR orthosteric binding pocket. Here, we summarize the key milestones that led to the discovery of the AGPCR TA activation mechanism and discuss how extracellular shear forces may initiate TA decryption in physiological contexts. We compare the new active-state AGPCR structures and note that the orthosteric site-engaged TAs adopt a remarkably similar partial α-helical hook-like conformation, despite divergence of overall receptor similarity. Further, we contrast the TA-bound AGPCR structures to a partially active AGPCR structure to highlight the transitions AGPCRs may undergo during activation. Finally, we provide commentary on the validity of alternative AGPCR activation mechanisms.
Collapse
Affiliation(s)
- Charu Gupta
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Tyler F Bernadyn
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
44
|
Slepak TI, Guyot M, Walters W, Eichberg DG, Ivan ME. Dual role of the adhesion G-protein coupled receptor ADRGE5/CD97 in glioblastoma invasion and proliferation. J Biol Chem 2023; 299:105105. [PMID: 37517698 PMCID: PMC10481366 DOI: 10.1016/j.jbc.2023.105105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
CD97, an adhesion G-protein coupled receptor highly expressed in glioblastoma (GBM), consists of two noncovalently bound domains: the N-terminal fragment (NTF) and C-terminal fragment. The C-terminal fragment contains a GPCR domain that couples to Gα12/13, while the NTF interacts with extracellular matrix components and other receptors. We investigated the effects of changing CD97 levels and its function on primary patient-derived GBM stem cells (pdGSCs) in vitro and in vivo. We created two functional mutants: a constitutively active ΔNTF and the noncleavable dominant-negative H436A mutant. The CD97 knockdown in pdGSCs decreased, while overexpression of CD97 increased tumor size. Unlike other constructs, the ΔNTF mutant promoted tumor cell proliferation, but the tumors were comparable in size to those with CD97 overexpression. As expected, the GBM tumors overexpressing CD97 were very invasive, but surprisingly, the knockdown did not inhibit invasiveness and even induced it in noninvasive U87 tumors. Importantly, our results indicate that NTF was present in the tumor core cells but absent in the pdGSCs invading the brain. Furthermore, the expression of noncleavable H436A mutant led to large tumors that invade by sending massive protrusions, but the invasion of individual tumor cells was substantially reduced. These data suggest that NTF association with CD97 GPCR domain inhibits individual cell dissemination but not overall tumor invasion. However, NTF dissociation facilitates pdGSCs brain infiltration and may promote tumor proliferation. Thus, the interplay between two functional domains regulates CD97 activity resulting in either enhanced cell adhesion or stimulation of tumor cell invasion and proliferation.
Collapse
Affiliation(s)
- Tatiana I Slepak
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA
| | - Manuela Guyot
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA
| | - Winston Walters
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA
| | - Daniel G Eichberg
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA
| | - Michael E Ivan
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA.
| |
Collapse
|
45
|
Seufert F, Chung YK, Hildebrand PW, Langenhan T. 7TM domain structures of adhesion GPCRs: what's new and what's missing? Trends Biochem Sci 2023; 48:726-739. [PMID: 37349240 DOI: 10.1016/j.tibs.2023.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Adhesion-type G protein-coupled receptors (aGPCRs) have long resisted approaches to resolve the structural details of their heptahelical transmembrane (7TM) domains. Single-particle cryogenic electron microscopy (cryo-EM) has recently produced aGPCR 7TM domain structures for ADGRD1, ADGRG1, ADGRG2, ADGRG3, ADGRG4, ADGRG5, ADGRF1, and ADGRL3. We review the unique properties, including the position and conformation of their activating tethered agonist (TA) and signaling motifs within the 7TM bundle, that the novel structures have helped to identify. We also discuss questions that the kaleidoscope of novel aGPCR 7TM domain structures have left unanswered. These concern the relative positions, orientations, and interactions of the 7TM and GPCR autoproteolysis-inducing (GAIN) domains with one another. Clarifying their interplay remains an important goal of future structural studies on aGPCRs.
Collapse
Affiliation(s)
- Florian Seufert
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Yin Kwan Chung
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
46
|
Frenster JD, Erdjument-Bromage H, Stephan G, Ravn-Boess N, Wang S, Liu W, Bready D, Wilcox J, Kieslich B, Jankovic M, Wilde C, Horn S, Sträter N, Liebscher I, Schöneberg T, Fenyo D, Neubert TA, Placantonakis DG. PTK7 is a positive allosteric modulator of GPR133 signaling in glioblastoma. Cell Rep 2023; 42:112679. [PMID: 37354459 PMCID: PMC10445595 DOI: 10.1016/j.celrep.2023.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/26/2023] Open
Abstract
The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.
Collapse
Affiliation(s)
- Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Wilcox
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Björn Kieslich
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany; Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Manuel Jankovic
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Caroline Wilde
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
47
|
Patil DN, Pantalone S, Cao Y, Laboute T, Novick SJ, Singh S, Savino S, Faravelli S, Magnani F, Griffin PR, Singh AK, Forneris F, Martemyanov KA. Structure of the photoreceptor synaptic assembly of the extracellular matrix protein pikachurin with the orphan receptor GPR179. Sci Signal 2023; 16:eadd9539. [PMID: 37490546 PMCID: PMC10561654 DOI: 10.1126/scisignal.add9539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Precise synapse formation is essential for normal functioning of the nervous system. Retinal photoreceptors establish selective contacts with bipolar cells, aligning the neurotransmitter release apparatus with postsynaptic signaling cascades. This involves transsynaptic assembly between the dystroglycan-dystrophin complex on the photoreceptor and the orphan receptor GPR179 on the bipolar cell, which is mediated by the extracellular matrix protein pikachurin (also known as EGFLAM). This complex plays a critical role in the synaptic organization of photoreceptors and signal transmission, and mutations affecting its components cause blinding disorders in humans. Here, we investigated the structural organization and molecular mechanisms by which pikachurin orchestrates transsynaptic assembly and solved structures of the human pikachurin domains by x-ray crystallography and of the GPR179-pikachurin complex by single-particle, cryo-electron microscopy. The structures reveal molecular recognition principles of pikachurin by the Cache domains of GPR179 and show how the interaction is involved in the transsynaptic alignment of the signaling machinery. Together, these data provide a structural basis for understanding the synaptic organization of photoreceptors and ocular pathology.
Collapse
Affiliation(s)
- Dipak N. Patil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Serena Pantalone
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Yan Cao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Scott J. Novick
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Shikha Singh
- Department of Biological Sciences, Columbia University New York, NY 10027, USA
| | - Simone Savino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Francesca Magnani
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Appu K. Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
48
|
Winnik WM, Padgett W, Pitzer EM, Herr DW. Proteome Profiling of Rat Brain Cortical Changes during Early Postnatal Brain Development. J Proteome Res 2023; 22:2460-2476. [PMID: 37326657 PMCID: PMC10851773 DOI: 10.1021/acs.jproteome.3c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Label-free quantitation (LFQ) was applied to proteome profiling of rat brain cortical development during the early postnatal period. Male and female rat brain extracts were prepared using a convenient, detergent-free sample preparation technique at postnatal days (PND) 2, 8, 15, and 22. The PND protein ratios were calculated using Proteome Discoverer, and the PND protein change profiles were constructed separately for male and female animals for key presynaptic, postsynaptic, and adhesion brain proteins. The profiles were compared to the analogous profiles assembled from the published mouse and rat cortex proteomic data, including the fractionated-synaptosome data. The PND protein-change trendlines, Pearson correlation coefficient (PCC), and linear regression analysis of the statistically significant PND protein changes were used in the comparative analysis of the datasets. The analysis identified similarities and differences between the datasets. Importantly, there were significant similarities in the comparison of the rat cortex PND (current work) vs mouse (previously published) PND profiles, although in general, a lower abundance of synaptic proteins in mice than in rats was found. The male and female rat cortex PND profiles were expectedly almost identical (98-99% correlation by PCC), which also substantiated this LFQ nanoflow liquid chromatography-high-resolution mass spectrometry approach.
Collapse
Affiliation(s)
- Witold M Winnik
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - William Padgett
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Emily M Pitzer
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David W Herr
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
49
|
Chen C, Dong S, Yu Z, Qiao Y, Li J, Ding X, Li R, Lin J, Bayer EA, Liu YJ, Cui Q, Feng Y. Essential autoproteolysis of bacterial anti-σ factor RsgI for transmembrane signal transduction. SCIENCE ADVANCES 2023; 9:eadg4846. [PMID: 37418529 PMCID: PMC10328401 DOI: 10.1126/sciadv.adg4846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
Autoproteolysis has been discovered to play key roles in various biological processes, but functional autoproteolysis has been rarely reported for transmembrane signaling in prokaryotes. In this study, an autoproteolytic effect was discovered in the conserved periplasmic domain of anti-σ factor RsgIs from Clostridium thermocellum, which was found to transmit extracellular polysaccharide-sensing signals into cells for regulation of the cellulosome system, a polysaccharide-degrading multienzyme complex. Crystal and NMR structures of periplasmic domains from three RsgIs demonstrated that they are different from all known proteins that undergo autoproteolysis. The RsgI-based autocleavage site was located at a conserved Asn-Pro motif between the β1 and β2 strands in the periplasmic domain. This cleavage was demonstrated to be essential for subsequent regulated intramembrane proteolysis to activate the cognate SigI, in a manner similar to that of autoproteolysis-dependent activation of eukaryotic adhesion G protein-coupled receptors. These results indicate the presence of a unique prevalent type of autoproteolytic phenomenon in bacteria for signal transduction.
Collapse
Affiliation(s)
- Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoli Yu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yichen Qiao
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoke Ding
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renmin Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Edward A. Bayer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Lee JW, Lee CS, Son H, Lee J, Kang M, Chai J, Cho HJ, Kim HS. SOX17-mediated LPAR4 expression plays a pivotal role in cardiac development and regeneration after myocardial infarction. Exp Mol Med 2023; 55:1424-1436. [PMID: 37394586 PMCID: PMC10394006 DOI: 10.1038/s12276-023-01025-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 07/04/2023] Open
Abstract
Lysophosphatidic acid receptor 4 (LPAR4) exhibits transient expression at the cardiac progenitor stage during pluripotent stem cell (PSC)-derived cardiac differentiation. Using RNA sequencing, promoter analyses, and a loss-of-function study in human PSCs, we discovered that SRY-box transcription factor 17 (SOX17) is an essential upstream factor of LPAR4 during cardiac differentiation. We conducted mouse embryo analyses to further verify our human PSC in vitro findings and confirmed the transient and sequential expression of SOX17 and LPAR4 during in vivo cardiac development. In an adult bone marrow transplantation model using LPAR4 promoter-driven GFP cells, we observed two LPAR4+ cell types in the heart following myocardial infarction (MI). Cardiac differentiation potential was shown in heart-resident LPAR4+ cells, which are SOX17+, but not bone marrow-derived infiltrated LPAR4+ cells. Furthermore, we tested various strategies to enhance cardiac repair through the regulation of downstream signals of LPAR4. During the early stages following MI, the downstream inhibition of LPAR4 by a p38 mitogen-activated protein kinase (p38 MAPK) blocker improved cardiac function and reduced fibrotic scarring compared to that observed following LPAR4 stimulation. These findings improve our understanding of heart development and suggest novel therapeutic strategies that enhance repair and regeneration after injury by modulating LPAR4 signaling.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Choon-Soo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - HyunJu Son
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Minjun Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jinho Chai
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyo-Soo Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|