1
|
Shankar S, Liu Y, Tulsian NK, Low BC, Lin Q, Sivaraman J. Insights into the regulation of CHIP E3 ligase-mediated ubiquitination of neuronal protein BNIP-H. PNAS NEXUS 2024; 3:pgae536. [PMID: 39703232 PMCID: PMC11658413 DOI: 10.1093/pnasnexus/pgae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
BCL2/adenovirus E1B 19-kDa protein-interacting protein 2 homolog (BNIP-H or Caytaxin), a pivotal adaptor protein that facilitates cerebellar cortex growth and synaptic transmission, is posttranslationally modified to regulate neuronal function. This study reports the ubiquitination of BNIP-H by Carboxyl terminus of Hsc70-Interacting Protein (CHIP), a U-box containing E3 ligase that is also regulated via autoubiquitination. Specifically, it was observed that CHIP autoubiquitinated itself primarily at Lys23 and Lys31 in vitro. Mutation of these residues shows the autoubiquitination of successive lysines of CHIP. In total, nine lysines on CHIP were identified as the autoubiquitination sites, the collective mutation of which almost completely terminated its autoubiquitination. Additionally, CHIP-mediated ubiquitination of BNIP-H is completely inhibited when BNIP-H bears arginine mutations at four key lysine residues. Next, using hydrogen deuterium exchange mass spectrometry, a model of a plausible mechanism was proposed. The model suggests transient N-terminal interactions between the CHIP and BNIP-H which allows for the swinging of U-box domain of CHIP to ubiquitinate BNIP-H. Following complex dissociation, BNIP-H population is regulated via the ubiquitin-proteasome pathway. Collectively, these results aid in our understanding of CHIP-mediated BNIP-H ubiquitination and provide further insight into the roles of these proteins in neuritogenesis and neurotransmission.
Collapse
Affiliation(s)
- Srihari Shankar
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Yaochen Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Nikhil Kumar Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Boon C Low
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- NUS College, National University of Singapore, Singapore 138593
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
2
|
Yadav AS, Ooi CH, An H, Nguyen NT, Kijanka GS. Protein array processing software for automated semiquantitative analysis of serum antibody repertoires. BIOMICROFLUIDICS 2023; 17:054101. [PMID: 37720302 PMCID: PMC10505068 DOI: 10.1063/5.0169421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Effective immunotherapies activate natural antitumor immune responses in patients undergoing treatment. The ability to monitor immune activation in response to immunotherapy is critical in measuring treatment efficacy over time and across patient cohorts. Protein arrays are systematically arranged, large collections of annotated proteins on planar surfaces, which can be used for the characterization of disease-specific and treatment-induced antibody repertoires in individuals undergoing immunotherapy. However, the absence of appropriate image analysis and data processing software presents a substantial hurdle, limiting the uptake of this approach in immunotherapy research. We developed a first, automated semiquantitative open-source software package for the analysis of widely used protein macroarrays. The software allows accurate single array and inter-array comparative studies through the tackling of intra-array inconsistencies arising from experimental disparities. The innovative and automated image analysis process includes adaptive positioning, background identification and subtraction, removal of null signals, robust statistical analysis, and protein pair validation. The normalized values allow a convenient semiquantitative data analysis of different samples or timepoints. Enabling accurate characterization of sample series to identify disease-specific immune profiles or their relative changes in response to treatment may serve as a diagnostic or predictive tool of disease.
Collapse
Affiliation(s)
- Ajeet Singh Yadav
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Hongjie An
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Gregor S. Kijanka
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
3
|
Rasouli M, Khakshournia S, Vakili O, Dastghaib S, Seghatoleslam A, Shafiee SM. The crosstalk between ubiquitin-conjugating enzyme E2Q1 and p53 in colorectal cancer: An in vitro analysis. Med Oncol 2023; 40:199. [PMID: 37294480 DOI: 10.1007/s12032-023-02039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
Colorectal cancer (CRC) is a prevalent gastrointestinal neoplasm that ranks fourth in terms of cancer-related deaths worldwide. In the process of CRC progression, multiple ubiquitin-conjugating enzymes (E2s) are involved; UBE2Q1 is one of those newly identified E2s that is markedly expressed in human colorectal tumors. Since p53 is a well-known tumor suppressor and defined as a key factor to be targeted by the ubiquitin-proteasome system, we hypothesized that UBE2Q1 might contribute to CRC progression through the modulation of p53. Using the lipofection method, the cultured SW480 and LS180 cells were transfected with the UBE2Q1 ORF-containing pCMV6-AN-GFP vector. Then, quantitative RT-PCR was used to assay the mRNA expression levels of p53's target genes, i.e., Mdm2, Bcl2, and Cyclin E. Moreover, Western blot analysis was performed to confirm the cellular overexpression of UBE2Q1 and assess the protein levels of p53, pre- and post-transfection. The expression of p53's target genes were cell line-dependent except for Mdm2 that was consistent with the findings of p53. The results of Western blotting demonstrated that the protein levels of p53 were greatly lower in UBE2Q1-transfected SW480 cells compared to the control SW480 cells. However, the reduced levels of p53 protein were not remarkable in the transfected LS180 cells compared to the control cells. The suppression of p53 is believed to be the result of UBE2Q1-dependent ubiquitination and its subsequent proteasomal degradation. Furthermore, the ubiquitination of p53 can act as a signal for degradation-independent functions, such as nuclear export and suppressing the p53's transcriptional activities. In this context, the decreased Mdm2 levels can moderate the proteasome-independent mono-ubiquitination of p53. The ubiquitinated p53 modulates the transcriptional levels of target genes. Therefore, the up-modulation of UBE2Q1 may influence the transcriptional activities depending on p53, and thereby contributes to CRC progression through regulating the p53.
Collapse
Affiliation(s)
- Maryam Rasouli
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Khakshournia
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71348-14336, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71348-14336, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Seghatoleslam
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71348-14336, Iran.
| |
Collapse
|
4
|
Reinhardt L, Musacchio F, Bichmann M, Behrendt A, Ercan-Herbst E, Stein J, Becher I, Haberkant P, Mader J, Schöndorf DC, Schmitt M, Korffmann J, Reinhardt P, Pohl C, Savitski M, Klein C, Gasparini L, Fuhrmann M, Ehrnhoefer DE. Dual truncation of tau by caspase-2 accelerates its CHIP-mediated degradation. Neurobiol Dis 2023; 182:106126. [PMID: 37086756 DOI: 10.1016/j.nbd.2023.106126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023] Open
Abstract
Intraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2. In addition, we show that the previously described cleavage site at D421 is also efficiently processed by caspase-2, and both sites are cleaved in human brain samples. Caspase-2-generated Tau fragments show increased aggregation potential in vitro, but do not accumulate in vivo after AAV-mediated overexpression in mouse hippocampus. Interestingly, we observe that steady-state protein levels of caspase-2 generated Tau fragments are low in our in vivo model despite strong RNA expression, suggesting efficient clearance. Consistent with this hypothesis, we find that caspase-2 cleavage significantly improves the recognition of Tau by the ubiquitin E3 ligase CHIP, leading to increased ubiquitination and faster degradation of Tau fragments. Taken together our data thus suggest that CHIP-induced ubiquitination is of particular importance for the clearance of caspase-2 generated Tau fragments in vitro and in vivo.
Collapse
Affiliation(s)
- Lydia Reinhardt
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Fabrizio Musacchio
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Maria Bichmann
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Annika Behrendt
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Ebru Ercan-Herbst
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Juliane Stein
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Isabelle Becher
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Per Haberkant
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Julia Mader
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - David C Schöndorf
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Melanie Schmitt
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Jürgen Korffmann
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Peter Reinhardt
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Christian Pohl
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Mikhail Savitski
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Corinna Klein
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Laura Gasparini
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Dagmar E Ehrnhoefer
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany.
| |
Collapse
|
5
|
Roney MSI, Lanagan C, Sheng YH, Lawler K, Schmidt C, Nguyen N, Begun J, Kijanka GS. IgM and IgA augmented autoantibody signatures improve early-stage detection of colorectal cancer prior to nodal and distant spread. Clin Transl Immunology 2021; 10:e1330. [PMID: 34603722 PMCID: PMC8473921 DOI: 10.1002/cti2.1330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Tumor-associated autoantibodies (AAbs) in individuals with cancer can precede clinical diagnosis by several months to years. The objective of this study was to determine whether the primary immune response in form of IgM and gut mucosa-associated IgA can aid IgG AAbs in the detection of early-stage colorectal cancer (CRC). METHODS We developed a novel protein array comprising 492 antigens seropositive in CRC. The array was used to profile IgG, IgM and IgA antibody signatures in 99 CRC patients and 99 sex- and age-matched non-cancer controls. A receiver operating curve (ROC), Kaplan-Meier survival analysis and univariate and multivariate Cox regression analyses were conducted. RESULTS We identified a panel of 16 multi-isotype AAbs with a cumulative sensitivity of 91% and specificity of 74% (AUC 0.90, 95% CI: 0.850-0.940) across all CRC stages. IgM and IgG isotypes were conversely associated with disease stage with IgM contributing significantly to improved stage I and II sensitivity of 96% at 78% specificity (AUC 0.928, 95% CI: 0.884-0.973). A single identified IgA AAb reached an overall sensitivity of 5% at 99% specificity (AUC 0.520, 95% CI: 0.440-0.601) balanced across all CRC stages. Kaplan-Meier analysis revealed that se33-1 (ZNF638) IgG AAbs were associated with reduced 5-year overall survival (log-rank test, P = 0.012), whereas cumulative IgM isotype signatures were associated with improved 5-year overall survival (log-rank test, P = 0.024). CONCLUSION IgM AAbs are associated with early-stage colorectal cancer. Combining IgG, IgM and IgA AAbs is a novel strategy to improve early diagnosis of cancers.
Collapse
Affiliation(s)
- Md Saiful Islam Roney
- Immune Profiling and Cancer GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
| | - Catharine Lanagan
- Immune Profiling and Cancer GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
| | - Yong Hua Sheng
- Inflammatory Bowel Diseases GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
| | - Karen Lawler
- Pathology QueenslandQueensland HealthBrisbaneQLDAustralia
| | - Christopher Schmidt
- Immune Profiling and Cancer GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
| | - Nam‐Trung Nguyen
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQLDAustralia
| | - Jakob Begun
- Inflammatory Bowel Diseases GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
- School of Clinical MedicineFaculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Gregor Stefan Kijanka
- Immune Profiling and Cancer GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQLDAustralia
| |
Collapse
|
6
|
Sinsky J, Majerova P, Kovac A, Kotlyar M, Jurisica I, Hanes J. Physiological Tau Interactome in Brain and Its Link to Tauopathies. J Proteome Res 2020; 19:2429-2442. [PMID: 32357304 DOI: 10.1021/acs.jproteome.0c00137] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) and most of the other tauopathies are incurable neurodegenerative diseases with unpleasant symptoms and consequences. The common hallmark of all of these diseases is tau pathology, but its connection with disease progress has not been completely understood so far. Therefore, uncovering novel tau-interacting partners and pathology affected molecular pathways can reveal the causes of diseases as well as potential targets for the development of AD treatment. Despite the large number of known tau-interacting partners, a limited number of studies focused on in vivo tau interactions in disease or healthy conditions are available. Here, we applied an in vivo cross-linking approach, capable of capturing weak and transient protein-protein interactions, to a unique transgenic rat model of progressive tau pathology similar to human AD. We have identified 175 potential novel and known tau-interacting proteins by MALDI-TOF mass spectrometry. Several of the most promising candidates for possible drug development were selected for validation by coimmunoprecipitation and colocalization experiments in animal and cellular models. Three proteins, Baiap2, Gpr37l1, and Nptx1, were confirmed as novel tau-interacting partners, and on the basis of their known functions and implications in neurodegenerative or psychiatric disorders, we proposed their potential role in tau pathology.
Collapse
Affiliation(s)
- Jakub Sinsky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, Bratislava 811 02, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, Bratislava 811 02, Slovakia
| | - Max Kotlyar
- Krembil Research Institute, UHN, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada
| | - Igor Jurisica
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,Krembil Research Institute, UHN, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, 27 King's College Circle, Toronto, Ontario ON M5S, Canada
| | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, Bratislava 811 02, Slovakia
| |
Collapse
|
7
|
Fahmidehkar MA, Shafiee SM, Eftekhar E, Mahbudi L, Seghatoleslam A. Induction of cell proliferation, clonogenicity and cell accumulation in S phase as a consequence of human UBE2Q1 overexpression. Oncol Lett 2016; 12:2169-2174. [PMID: 27602158 DOI: 10.3892/ol.2016.4860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
Ubiquitination is an important cellular mechanism with a pivotal role in the degradation of abnormal or short-lived proteins and the regulation of cell cycle and cell growth. The ubiquitin-proteasome pathway is altered in multiple types of human malignancies, including colorectal cancer (CRC). The alteration in the expression of the novel human gene ubiquitin-conjugating enzyme E2 Q1 (UBE2Q1), as a putative member of the E2 ubiquitin-conjugating enzyme family, has been reported in several malignancies, including carcinoma of the breast, hepatocellular and colorectal cancer, and pediatric acute lymphoblastic leukemia. In the present study, the effect of UBE2Q1 overexpression on cell growth, clonogenicity, motility and cell cycle was investigated in a CRC cell line. The UBE2Q1 gene was cloned in the pCMV6-AN-GFP expression vector. A series of stable transfectants of SW1116 cells overexpressing UBE2Q1 protein were established and confirmed by fluorescence microscopy and western blotting. Using these cells, MTT assay was performed to evaluate cell growth and proliferation, while crystal violet staining was used for clonogenicity assay. Cell cycle analysis was also performed to survey the ratio of cells accumulated in different phases of the cell cycle upon transfection. The motility of these cells was also studied using wound healing assay. UBE2Q1 transfectants exhibited a faster growth in cell culture, increased colony formation capacity and enhanced motility compared with control non-transfected cells and cells transfected with empty vector (mock-transfected cells). UBE2Q1 overexpression also resulted in a significant decrease in the number of cells accumulated in the G0/G1 phase of the cell cycle. The present findings suggest that UBE2Q1 may function as an oncogene that induces proliferation of cancer cells, and could be a novel diagnostic tool and a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Mohammad Ali Fahmidehkar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Ebrahim Eftekhar
- Food and Cosmetic Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas 79158-73665, Iran
| | - Laleh Mahbudi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Atefeh Seghatoleslam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
8
|
LeDoux MS. Murine Models of Caytaxin Deficiency. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Chang R, Wei L, Lu Y, Cui X, Lu C, Liu L, Jiang D, Xiong Y, Wang G, Wan C, Qian H. Upregulated expression of ubiquitin-conjugating enzyme E2Q1 (UBE2Q1) is associated with enhanced cell proliferation and poor prognosis in human hapatocellular carcinoma. J Mol Histol 2014; 46:45-56. [PMID: 25311764 DOI: 10.1007/s10735-014-9596-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. Ubiquitin-proteasome system has been shown to play a pivotal role in the pathophysiology of HCC and other malignancies. UBE2Q1 is a putative E2 ubiquitin conjugating enzyme, and may be involved in the regulation of cancer-related proteins. In this study, we investigated the expression pattern of UBE2Q1 in HCC cell lines and human HCC specimens, and its potential clinical and biological significance in HCC. Western blot and immunohistochemical analyses revealed that UBE2Q1 was significantly upregulated in HCC tumorous tissues compared with the adjacent noncancerous ones. Next, univariate and multivariate survival analyses were performed to determine the prognostic significance of UBE2Q1 in HCC. The results showed that upregulated expression of UBE2Q1 was positively correlated with high histological grades of HCC and predicted poor prognosis. In addition, the expression of UBE2Q1 was progressively increased in serum-refed HCC cells. UBE2Q1 depletion by small interfering RNA inhibited cell proliferation and led to G1 phase arrest in HepG2 and BEL-7404 cells. Furthermore, we showed that cells transfected with UBE2Q1-targeting siRNA resulted in significant increase in the levels of p53, p21 in HepG2 and BEL-7404 cells. These data imply that UBE2Q1 is upregulated in liver cancer cell lines and tumorous samples and may play a role in the development of HCC.
Collapse
Affiliation(s)
- Renan Chang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Amphiphysin 2 (BIN1) in physiology and diseases. J Mol Med (Berl) 2014; 92:453-63. [DOI: 10.1007/s00109-014-1138-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/15/2022]
|
11
|
α-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett 2013; 24:717-24. [PMID: 24433858 DOI: 10.1016/j.bmcl.2013.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/23/2013] [Accepted: 12/01/2013] [Indexed: 01/28/2023]
Abstract
α-Helices are common secondary structural elements forming key parts of the large, generally featureless interfacial regions of many therapeutically-relevant protein-protein interactions (PPIs). The rational design of helix mimetics is an appealing small-molecule strategy for the mediation of aberrant PPIs, however the first generation of scaffolds presented a relatively small number of residues on a single recognition surface. Increasingly, helices involved in PPIs are found to have more complex binding modes, utilizing two or three recognition surfaces, or binding with extended points of contact. To address these unmet needs the design and synthesis of new generations of multi-sided, extended, and supersecondary structures are underway.
Collapse
|
12
|
Grzmil P, Altmann ME, Adham IM, Engel U, Jarry H, Schweyer S, Wolf S, Mänz J, Engel W. Embryo implantation failure and other reproductive defects in Ube2q1-deficient female mice. Reproduction 2013; 145:45-56. [PMID: 23108111 DOI: 10.1530/rep-12-0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ubiquitination process is indispensable for proteome regulation. Three classes of ubiquitin (Ub)-related proteins can be distinguished: E1, E2 and E3. Proteins from the E2 class are responsible for the transfer of Ubls from E1 to the target protein. For this activity, interaction with class E3 ligases is usually required. Ub-conjugating enzyme E2Q 1 (UBE2Q1) belongs to the E2 class of Ub-related enzymes and is demonstrated to be involved in the regulation of membrane B4GALT1 protein. Here, we demonstrate that human UBE2Q1 and mouse Ube2q1 are widely expressed and highly conserved genes. To elucidate the function of UBE2Q1 protein, we generated knockout mouse model. No overt phenotype was detected in UBE2Q1-deficient males, but in mutant females, pleiotropic reproductive defects were observed including altered oestrus cycle, abnormal sexual behaviour and reduced offspring care. Moreover, in the uterus of mutant females, significantly increased embryonic lethality and decreased implantation capacity of homozygous mutant embryos were noticed. We found that Ube2q1 is not expressed in the uterus of non-pregnant females but its expression is up-regulated during pregnancy. Taken together, Ube2q1 is involved in different aspects of female fertility.
Collapse
Affiliation(s)
- Pawel Grzmil
- Institute of Human Genetics, University of Göttingen, Heinrich Düker Weg 12, 37073 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sikora KM, Nosavanh LM, Kantheti P, Burmeister M, Hortsch M. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity. PLoS One 2012; 7:e50570. [PMID: 23226316 PMCID: PMC3511541 DOI: 10.1371/journal.pone.0050570] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023] Open
Abstract
Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt) rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcayjit (jittery) and Atcayswd (sidewinder) mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcayji-hes (hesitant) line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin’s physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin’s role in maintaining normal neuronal function.
Collapse
Affiliation(s)
- Kristine M. Sikora
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - LaGina M. Nosavanh
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Prameela Kantheti
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margit Burmeister
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychiatry and Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael Hortsch
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
14
|
Chang MY, Boulden J, Valenzano MC, Soler AP, Muller AJ, Mullin JM, Prendergast GC. Bin1 attenuation suppresses experimental colitis by enforcing intestinal barrier function. Dig Dis Sci 2012; 57:1813-21. [PMID: 22526583 PMCID: PMC3677578 DOI: 10.1007/s10620-012-2147-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/16/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is associated with defects in intestinal barriers that rely upon cellular tight junctions. Thus, identifying genes that could be targeted to enforce tight junctions and improve barrier function may lead to new treatment strategies for IBD. AIMS This preclinical study aimed to evaluate an hypothesized role for the tumor suppressor gene Bin1 as a modifier of the severity of experimental colitis. METHODS We ablated the Bin1 gene in a mosaic mouse model to evaluate its effects on experimental colitis and intestinal barrier function. Gross pathology, histology and inflammatory cytokine expression patterns were characterized and ex vivo physiology determinations were conducted to evaluate barrier function in intact colon tissue. RESULTS Bin1 attenuation limited experimental colitis in a sexually dimorphic manner with stronger protection in female subjects. Colitis suppression was associated with an increase in basal transepithelial electrical resistance (TER) and a decrease in paracellular transepithelial flux, compared to control wild-type animals. In contrast, Bin1 attenuation did not affect short circuit current, nor did it alter the epithelial barrier response to non-inflammatory permeability enhancers in the absence of inflammatory stimuli. CONCLUSIONS Bin1 is a genetic modifier of experimental colitis that controls the paracellular pathway of transcellular ion transport regulated by cellular tight junctions. Our findings offer a preclinical validation of Bin1 as a novel therapeutic target for IBD treatment.
Collapse
Affiliation(s)
| | | | | | - Alejandro P. Soler
- Lankenau Institute for Medical Research, Wynnewood PA USA,Richfield Laboratory of Dermatopathology, Cincinnati OH USA
| | | | | | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood PA USA,Department of Pathology, Anatomy & Cell Biology, Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA USA
| |
Collapse
|
15
|
Pan CQ, Low BC. Functional plasticity of the BNIP-2 and Cdc42GAP Homology (BCH) domain in cell signaling and cell dynamics. FEBS Lett 2012; 586:2674-91. [DOI: 10.1016/j.febslet.2012.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
16
|
Worseck JM, Grossmann A, Weimann M, Hegele A, Stelzl U. A stringent yeast two-hybrid matrix screening approach for protein-protein interaction discovery. Methods Mol Biol 2012; 812:63-87. [PMID: 22218854 DOI: 10.1007/978-1-61779-455-1_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The yeast two-hybrid (Y2H) system is currently one of the most important techniques for protein-protein interaction (PPI) discovery. Here, we describe a stringent three-step Y2H matrix interaction approach that is suitable for systematic PPI screening on a proteome scale. We start with the identification and elimination of autoactivating strains that would lead to false-positive signals and prevent the identification of interactions. Nonautoactivating strains are used for the primary PPI screen that is carried out in quadruplicate with arrayed preys. Interacting pairs of baits and preys are identified in a pairwise retest step. Only PPI pairs that pass the retest step are regarded as potentially biologically relevant interactions and are considered for further analysis.
Collapse
|
17
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
18
|
Guo Q, Bedford MT, Fast W. Discovery of peptidylarginine deiminase-4 substrates by protein array: antagonistic citrullination and methylation of human ribosomal protein S2. MOLECULAR BIOSYSTEMS 2011; 7:2286-95. [PMID: 21584310 PMCID: PMC3251905 DOI: 10.1039/c1mb05089c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peptidylarginine deiminase (PAD) catalyzes the posttranslational citrullination of selected proteins in a calcium dependent manner. The PAD4 isoform has been implicated in multiple sclerosis, rheumatoid arthritis, some types of cancer, and plays a role in gene regulation. However, the substrate selectivity of PAD4 is not well defined, nor is the impact of citrullination on many other pathways. Here, a high-density protein array is used as a primary screen to identify 40 previously unreported PAD4 substrates, 10 of which are selected and verified in a cell lysate-based secondary assay. One of the most prominent hits, human 40S ribosomal protein S2 (RPS2), is characterized in detail. PAD4 citrullinates the Arg-Gly repeat region of RPS2, which is also an established site for Arg methylation by protein arginine methyltransferase 3 (PRMT3). As in other systems, crosstalk is observed; citrullination and methylation modifications are found to be antagonistic to each other, suggesting a conserved posttranslational regulatory strategy. Both PAD4 and PRMT3 are found to co-sediment with the free 40S ribosomal subunit fraction from cell extracts. These findings are consistent with participation of citrullination in the regulation of RPS2 and ribosome assembly. This application of protein arrays to reveal new PAD4 substrates suggests a role for citrullination in a number of different cellular pathways.
Collapse
Affiliation(s)
- Qin Guo
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Mark T. Bedford
- Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
19
|
LeDoux MS. Animal models of dystonia: Lessons from a mutant rat. Neurobiol Dis 2011; 42:152-61. [PMID: 21081162 PMCID: PMC3171987 DOI: 10.1016/j.nbd.2010.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 01/25/2023] Open
Abstract
Dystonia is a motor sign characterized by involuntary muscle contractions which produce abnormal postures. Genetic factors contribute significantly to primary dystonia. In comparison, secondary dystonia can be caused by a wide variety of metabolic, structural, infectious, toxic and inflammatory insults to the nervous system. Although classically ascribed to dysfunction of the basal ganglia, studies of diverse animal models have pointed out that dystonia is a network disorder with important contributions from abnormal olivocerebellar signaling. In particular, work with the dystonic (dt) rat has engendered dramatic paradigm shifts in dystonia research. The dt rat manifests generalized dystonia caused by deficiency of the neuronally restricted protein caytaxin. Electrophysiological and biochemical studies have shown that defects at the climbing fiber-Purkinje cell synapse in the dt rat lead to abnormal bursting firing patterns in the cerebellar nuclei, which increases linearly with postnatal age. In a general sense, the dt rat has shown the scientific and clinical communities that dystonia can arise from dysfunctional cerebellar cortex. Furthermore, work with the dt rat has provided evidence that dystonia (1) is a neurodevelopmental network disorder and (2) can be driven by abnormal cerebellar output. In large part, work with other animal models has expanded upon studies in the dt rat and shown that primary dystonia is a multi-nodal network disorder associated with defective sensorimotor integration. In addition, experiments in genetically engineered models have been used to examine the underlying cellular pathologies that drive primary dystonia. This article is part of a Special Issue entitled "Advances in dystonia".
Collapse
Affiliation(s)
- Mark S LeDoux
- University of Tennessee Health Science Center, Department of Neurology, 855 Monroe Avenue, Link Building, Suite 415, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Belleannee C, Belghazi M, Labas V, Teixeira-Gomes AP, Gatti JL, Dacheux JL, Dacheux F. Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics 2011; 11:1952-64. [DOI: 10.1002/pmic.201000662] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/29/2010] [Accepted: 02/01/2011] [Indexed: 11/10/2022]
|
21
|
Pyndiah S, Tanida S, Ahmed KM, Cassimere EK, Choe C, Sakamuro D. c-MYC suppresses BIN1 to release poly(ADP-ribose) polymerase 1: a mechanism by which cancer cells acquire cisplatin resistance. Sci Signal 2011; 4:ra19. [PMID: 21447800 DOI: 10.1126/scisignal.2001556] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer cells acquire resistance to DNA-damaging therapeutic agents, such as cisplatin, but the genetic mechanisms through which this occurs remain unclear. We show that the c-MYC oncoprotein increases cisplatin resistance by decreasing production of the c-MYC inhibitor BIN1 (bridging integrator 1). The sensitivity of cancer cells to cisplatin depended on BIN1 abundance, regardless of the p53 gene status. BIN1 bound to the automodification domain of and suppressed the catalytic activity of poly(ADP-ribose) polymerase 1 (PARP1, EC 2.4.2.30), an enzyme essential for DNA repair, thereby reducing the stability of the genome. The inhibition of PARP1 activity was sufficient for BIN1 to suppress c-MYC-mediated transactivation, the G(2)-M transition, and cisplatin resistance. Conversely, overexpressed c-MYC repressed BIN1 expression by blocking its activation by the MYC-interacting zinc finger transcription factor 1 (MIZ1) and thereby released PARP1 activity. Thus, a c-MYC-mediated positive feedback loop may contribute to cancer cell resistance to cisplatin.
Collapse
Affiliation(s)
- Slovénie Pyndiah
- Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
22
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
23
|
Dolan PJ, Johnson GVW. A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J Biol Chem 2010; 285:21978-87. [PMID: 20466727 DOI: 10.1074/jbc.m110.110940] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The microtubule-associated protein tau plays a central role in the pathogenesis of Alzheimer disease (AD) and abnormally accumulates as neurofibrillary tangles; therefore, the pathways by which tau is degraded have been examined extensively. In AD brain tau is abnormally truncated at Asp(421) (tauDeltaC), which increases its fibrillogenic properties and results in compromised neuronal function. Given the fact that the accumulation of tauDeltaC is a pathogenic process in AD, in this study we examined whether full-length tau and tauDeltaC are degraded through similar or different mechanisms. To this end a tetracycline-inducible model was used to show that tauDeltaC was degraded significantly faster than full-length tau (FL-tau). Pharmacological inhibition of the proteasome or autophagy pathways demonstrated that although FL-tau is degraded by the proteasome, tauDeltaC is cleared predominantly by macroautophagy. We also found that tauDeltaC binds C terminus of Hsp70-interacting protein more efficiently than tau. This interaction leads to an increased ubiquitylation of tauDeltaC in a reconstituted in vitro assay, but surprisingly, tau (full-length or truncated) was not ubiquitylated in situ. The finding that tauDeltaC and FL-tau are differentially processed by these degradation systems provides important insights for the development of therapeutic strategies, which are focused on modulating degradation systems to preferentially clear pathological forms of the proteins.
Collapse
Affiliation(s)
- Philip J Dolan
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
24
|
Abstract
Imbalanced protein load within cells is a critical aspect for most diseases of aging. In particular, the accumulation of proteins into neurotoxic aggregates is a common thread for a host of neurodegenerative diseases. Our previous work demonstrated that age-related changes to the cellular chaperone repertoire contributes to abnormal buildup of the microtubule-associated protein tau that accumulates in a group of diseases termed tauopathies, the most common being Alzheimer's disease. Here, we show that the Hsp90 cochaperone, FK506-binding protein 51 (FKBP51), which possesses both an Hsp90-interacting tetratricopeptide domain and a peptidyl-prolyl cis-trans isomerase (PPIase) domain, prevents tau clearance and regulates its phosphorylation status. Regulation of the latter is dependent on the PPIase activity of FKBP51. FKB51 enhances the association of tau with Hsp90, but the FKBP51/tau interaction is not dependent on Hsp90. In vitro FKBP51 stabilizes microtubules with tau in a reaction depending on the PPIase activity of FKBP51. Based on these new findings, we propose that FKBP51 can use the Hsp90 complex to isomerize tau, altering its phosphorylation pattern and stabilizing microtubules.
Collapse
|
25
|
Aoyama T, Hata S, Nakao T, Tanigawa Y, Oka C, Kawaichi M. Cayman ataxia protein caytaxin is transported by kinesin along neurites through binding to kinesin light chains. J Cell Sci 2009; 122:4177-85. [DOI: 10.1242/jcs.048579] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Deficiency of caytaxin results in hereditary ataxia or dystonia in humans, mice and rats. Our yeast two-hybrid screen identified kinesin light chains (KLCs) as caytaxin-binding proteins. The tetratricopeptide-repeat region of KLC1 recognizes the ELEWED sequence (amino acids 115-120) of caytaxin. This motif is conserved among BNIP-2 family members and other KLC-interacting kinesin cargo proteins such as calsyntenins. Caytaxin associates with kinesin heavy chains (KHCs) indirectly by binding to KLCs, suggesting that caytaxin binds to the tetrameric kinesin molecule. In cultured hippocampal neurons, we found that caytaxin is distributed in both axons and dendrites in punctate patterns, and it colocalizes with microtubules and KHC. GFP-caytaxin expressed in hippocampal neurons is transported at a speed (∼1 μm/second) compatible with kinesin movement. Inhibition of kinesin-1 by dominant-negative KHC decreases the accumulation of caytaxin in the growth cone. Caytaxin puncta do not coincide with vesicles containing known kinesin cargos such as APP or JIP-1. A part of caytaxin, however, colocalizes with mitochondria and suppression of caytaxin expression by RNAi redistributes mitochondria away from the distal ends of neurites. These data indicate that caytaxin binds to kinesin-1 and functions as an adaptor that mediates intracellular transport of specific cargos, one of which is the mitochondrion.
Collapse
Affiliation(s)
- Takane Aoyama
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Suguru Hata
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takeshi Nakao
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yuka Tanigawa
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Chio Oka
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masashi Kawaichi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
26
|
Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze W, Walther D, Rakwal R. Plant phosphoproteomics: an update. Proteomics 2009; 9:964-88. [PMID: 19212952 DOI: 10.1002/pmic.200800548] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphoproteomics involves identification of phosphoproteins, precise mapping, and quantification of phosphorylation sites, and eventually, revealing their biological function. In plants, several systematic phosphoproteomic analyses have recently been performed to optimize in vitro and in vivo technologies to reveal components of the phosphoproteome. The discovery of novel substrates for specific protein kinases is also an important issue. Development of a new tool has enabled rapid identification of potential kinase substrates such as kinase assays using plant protein microarrays. Progress has also been made in quantitative and dynamic analysis of mapped phosphorylation sites. Increased quantity of experimentally verified phosphorylation sites in plants has prompted the creation of dedicated web-resources for plant-specific phosphoproteomics data. This resulted in development of computational prediction methods yielding significantly improved sensitivity and specificity for the detection of phosphorylation sites in plants when compared to methods trained on less plant-specific data. In this review, we present an update on phosphoproteomic studies in plants and summarize the recent progress in the computational prediction of plant phosphorylation sites. The application of the experimental and computed results in understanding the phosphoproteomic networks of cellular and metabolic processes in plants is discussed. This is a continuation of our comprehensive review series on plant phosphoproteomics.
Collapse
Affiliation(s)
- Birgit Kersten
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Fenner BJ, Scannell M, Prehn JH. Identification of polyubiquitin binding proteins involved in NF-κB signaling using protein arrays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1010-6. [DOI: 10.1016/j.bbapap.2009.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
|
28
|
Morreale G, Conforti L, Coadwell J, Wilbrey AL, Coleman MP. Evolutionary divergence of valosin-containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum-associated degradation proteins. FEBS J 2009; 276:1208-20. [PMID: 19175675 DOI: 10.1111/j.1742-4658.2008.06858.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a cell-autonomous process that eliminates large quantities of misfolded, newly synthesized protein, and is thus essential for the survival of any basic eukaryotic cell. Accordingly, the proteins involved and their interaction partners are well conserved from yeast to mammals, and Saccharomyces cerevisiae is widely used as a model system with which to investigate this fundamental cellular process. For example, valosin-containing protein (VCP) and its yeast homologue cell division cycle protein 48 (Cdc48p), which help to direct polyubiquitinated proteins for proteasome-mediated degradation, interact with an equivalent group of ubiquitin ligases in mouse and in S. cerevisiae. A conserved structural motif for cofactor binding would therefore be expected. We report a VCP-binding motif (VBM) shared by mammalian ubiquitin ligase E4b (Ube4b)-ubiquitin fusion degradation protein 2a (Ufd2a), hydroxymethylglutaryl reductase degradation protein 1 (Hrd1)-synoviolin and ataxin 3, and a related sequence in M(r) 78,000 glycoprotein-Amfr with slightly different binding properties, and show that Ube4b and Hrd1 compete for binding to the N-terminal domain of VCP. Each of these proteins is involved in ERAD, but none has an S. cerevisiae homologue containing the VBM. Some other invertebrate model organisms also lack the VBM in one or more of these proteins, in contrast to vertebrates, where the VBM is widely conserved. Thus, consistent with their importance in ERAD, evolution has developed at least two ways to bring these proteins together with VCP-Cdc48p. However, the differing molecular architecture of VCP-Cdc48p complexes indicates a key point of divergence in the molecular details of ERAD mechanisms.
Collapse
Affiliation(s)
- Giacomo Morreale
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge, UK.
| | | | | | | | | |
Collapse
|
29
|
Rutledge AC, Qiu W, Zhang R, Kohen-Avramoglu R, Nemat-Gorgani N, Adeli K. Mechanisms Targeting Apolipoprotein B100 to Proteasomal Degradation. Arterioscler Thromb Vasc Biol 2009; 29:579-85. [DOI: 10.1161/atvbaha.108.181859] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives—
In lipid-poor states, the ubiquitin-proteasomal pathway rapidly degrades misfolded apolipoprotein B100 (apoB) cotranslationally, although the mechanism of delivery from the ER to cytosolic proteasomes is poorly understood. Here we demonstrate key roles of BiP, an ER luminal chaperone, and p97, a cytosolic ATPase anchored to the ER membrane, in the targeting of apoB for proteasomal degradation.
Methods and Results—
Using coimmunoprecipitations, we observed associations of apoB with BiP, p97, Derlin-1, VIMP, and the E3 ubiquitin ligase Hrd1 in HepG2 cells. BiP and p97 were found to bind apoB cotranslationally. Expression of C-terminal truncated apoB molecules in COS-7 cells showed an N-terminal region outside apoB15 and a C-terminal region found in apoB72 were required for BiP and p97 binding, respectively. Interestingly, overexpression of dominant negative p97 demonstrated that the ATPase activity of p97 was essential for proteasomal degradation of apoB but not for apoB binding. However, p97 activity did not appear to affect the N terminus of apoB, which may be cleaved before degradation.
Conclusions—
These data suggest that p97 and BiP play critical roles in the cotranslational delivery of apoB to proteasomes and formation of a degradative complex. Proteasomal degradation appears to selectively target apoB molecules with large C-terminal domains.
Collapse
Affiliation(s)
- Angela C. Rutledge
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Wei Qiu
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Rianna Zhang
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Rita Kohen-Avramoglu
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Nina Nemat-Gorgani
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Khosrow Adeli
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| |
Collapse
|
30
|
Kijanka G, Murphy D. Protein arrays as tools for serum autoantibody marker discovery in cancer. J Proteomics 2009; 72:936-44. [PMID: 19258055 DOI: 10.1016/j.jprot.2009.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 11/17/2022]
Abstract
Protein array technology has begun to play a significant role in the study of protein-protein interactions and in the identification of antigenic targets of serum autoantibodies in a variety of autoimmune disorders. More recently, this technology has been applied to the identification of autoantibody signatures in cancer. The identification of tumour-associated antigens (TAAs) recognised by the patient's immune response represents an exciting approach to identify novel diagnostic cancer biomarkers and may contribute towards a better understanding of the molecular mechanisms involved. Circulating autoantibodies have not only been used to identify TAAs as diagnostic/prognostic markers and potential therapeutic targets, they also represent excellent biomarkers for the early detection of tumours and potential markers for monitoring the efficacy of treatment. Protein array technology offers the ability to screen the humoral immune response in cancer against thousands of proteins in a high throughput technique, thus readily identifying new panels of TAAs. Such an approach should not only aid in improved diagnostics, but has already contributed to the identification of complex autoantibody signatures that may represent disease subgroups, early diagnostics and facilitated the analysis of vaccine trials.
Collapse
Affiliation(s)
- Gregor Kijanka
- Centre for Human Proteomics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | |
Collapse
|
31
|
Abstract
p97/VCP (valosin-containing protein) is a cytosolic AAA (ATPase associated with various cellular activities) essential for retrotranslocation of misfolded proteins during ERAD [ER (endoplasmic reticulum)-associated degradation]. gp78, an ERAD ubiquitin ligase, is one of the p97/VCP recruitment proteins localized to the ER membrane. A newly identified VIM (p97/VCP-interacting motif) in gp78 has brought about novel insights into mechanisms of ERAD, such as the presence of a p97/VCP-dependent but Ufd1-independent retrotranslocation during gp78-mediated ERAD. Additionally, SVIP (small p97/VCP-interacting protein), which contains a VIM in its N-terminal region, negatively regulates ERAD by uncoupling p97/VCP and Derlin1 from gp78. Thus SVIP may protect cells from damage by extravagant ERAD.
Collapse
|
32
|
Buschdorf JP, Chew LL, Soh UJK, Liou YC, Low BC. Nerve growth factor stimulates interaction of Cayman ataxia protein BNIP-H/Caytaxin with peptidyl-prolyl isomerase Pin1 in differentiating neurons. PLoS One 2008; 3:e2686. [PMID: 18628984 PMCID: PMC2442193 DOI: 10.1371/journal.pone.0002686] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 06/08/2008] [Indexed: 11/18/2022] Open
Abstract
Mutations in ATCAY that encodes the brain-specific protein BNIP-H (or Caytaxin) lead to Cayman cerebellar ataxia. BNIP-H binds to glutaminase, a neurotransmitter-producing enzyme, and affects its activity and intracellular localization. Here we describe the identification and characterization of the binding between BNIP-H and Pin1, a peptidyl-prolyl cis/trans isomerase. BNIP-H interacted with Pin1 after nerve growth factor-stimulation and they co-localized in the neurites and cytosol of differentiating pheochromocytoma PC12 cells and the embryonic carcinoma P19 cells. Deletional mutagenesis revealed two cryptic binding sites within the C-terminus of BNIP-H such that single point mutants affecting the WW domain of Pin1 completely abolished their binding. Although these two sites do not contain any of the canonical Pin1-binding motifs they showed differential binding profiles to Pin1 WW domain mutants S16E, S16A and W34A, and the catalytically inert C113A of its isomerase domain. Furthermore, their direct interaction would occur only upon disrupting the ability of BNIP-H to form an intramolecular interaction by two similar regions. Furthermore, expression of Pin1 disrupted the BNIP-H/glutaminase complex formation in PC12 cells under nerve growth factor-stimulation. These results indicate that nerve growth factor may stimulate the interaction of BNIP-H with Pin1 by releasing its intramolecular inhibition. Such a mechanism could provide a post-translational regulation on the cellular activity of BNIP-H during neuronal differentiation.
Collapse
Affiliation(s)
- Jan Paul Buschdorf
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
33
|
Adachi H, Waza M, Tokui K, Katsuno M, Minamiyama M, Tanaka F, Doyu M, Sobue G. CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. J Neurosci 2007; 27:5115-26. [PMID: 17494697 PMCID: PMC6672370 DOI: 10.1523/jneurosci.1242-07.2007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine tract within the androgen receptor (AR). The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of the mutant AR in the residual motor neurons and certain visceral organs. Many components of the ubiquitin-proteasome and molecular chaperones are also sequestered in the inclusions, suggesting that they may be actively engaged in an attempt to degrade or refold the mutant AR. C terminus of Hsc70 (heat shock cognate protein 70)-interacting protein (CHIP), a U-box type E3 ubiquitin ligase, has been shown to interact with heat shock protein 90 (Hsp90) or Hsp70 and ubiquitylates unfolded proteins trapped by molecular chaperones and degrades them. Here, we demonstrate that transient overexpression of CHIP in a neuronal cell model reduces the monomeric mutant AR more effectively than it does the wild type, suggesting that the mutant AR is more sensitive to CHIP than is the wild type. High expression of CHIP in an SBMA transgenic mouse model also ameliorated motor symptoms and inhibited neuronal nuclear accumulation of the mutant AR. When CHIP was overexpressed in transgenic SBMA mice, mutant AR was also preferentially degraded over wild-type AR. These findings suggest that CHIP overexpression ameliorates SBMA phenotypes in mice by reducing nuclear-localized mutant AR via enhanced mutant AR degradation. Thus, CHIP overexpression would provide a potential therapeutic avenue for SBMA.
Collapse
Affiliation(s)
- Hiroaki Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan, and
| | - Masahiro Waza
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan, and
| | - Keisuke Tokui
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan, and
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan, and
- Institute for Advanced Research, Nagoya University, Showa-ku, Nagoya 466-8550, Japan
| | - Makoto Minamiyama
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan, and
| | - Fumiaki Tanaka
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan, and
| | - Manabu Doyu
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan, and
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan, and
| |
Collapse
|
34
|
Scheich C, Kümmel D, Soumailakakis D, Heinemann U, Büssow K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res 2007; 35:e43. [PMID: 17311810 PMCID: PMC1874614 DOI: 10.1093/nar/gkm067] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells.
Collapse
Affiliation(s)
- Christoph Scheich
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestr. 63-73, 14195 Berlin, Germany, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany and Free University of Berlin, Institute of Chemistry and Biochemistry, Takustraße 6, 14195 Berlin, Germany
| | - Daniel Kümmel
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestr. 63-73, 14195 Berlin, Germany, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany and Free University of Berlin, Institute of Chemistry and Biochemistry, Takustraße 6, 14195 Berlin, Germany
| | - Dimitri Soumailakakis
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestr. 63-73, 14195 Berlin, Germany, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany and Free University of Berlin, Institute of Chemistry and Biochemistry, Takustraße 6, 14195 Berlin, Germany
| | - Udo Heinemann
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestr. 63-73, 14195 Berlin, Germany, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany and Free University of Berlin, Institute of Chemistry and Biochemistry, Takustraße 6, 14195 Berlin, Germany
| | - Konrad Büssow
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestr. 63-73, 14195 Berlin, Germany, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany and Free University of Berlin, Institute of Chemistry and Biochemistry, Takustraße 6, 14195 Berlin, Germany
- *To whom correspondence should be addressed. +49 30 9406 2983+49 30 9406 2925
| |
Collapse
|
35
|
Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS, Hutton M, Burrows F, Petrucelli L. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 2007; 117:648-58. [PMID: 17304350 PMCID: PMC1794119 DOI: 10.1172/jci29715] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Accepted: 12/19/2006] [Indexed: 01/15/2023] Open
Abstract
A primary pathologic component of Alzheimer's disease (AD) is the formation of neurofibrillary tangles composed of hyperphosphorylated tau (p-tau). Expediting the removal of these p-tau species may be a relevant therapeutic strategy. Here we report that inhibition of Hsp90 led to decreases in p-tau levels independent of heat shock factor 1 (HSF1) activation. A critical mediator of this mechanism was carboxy terminus of Hsp70-interacting protein (CHIP), a tau ubiquitin ligase. Cochaperones were also involved in Hsp90-mediated removal of p-tau, while those of the mature Hsp90 refolding complex prevented this effect. This is the first demonstration to our knowledge that blockade of the refolding pathway promotes p-tau turnover through degradation. We also show that peripheral administration of a novel Hsp90 inhibitor promoted selective decreases in p-tau species in a mouse model of tauopathy, further suggesting a central role for the Hsp90 complex in the pathogenesis of tauopathies. When taken in the context of known high-affinity Hsp90 complexes in affected regions of the AD brain, these data implicate a central role for Hsp90 in the development of AD and other tauopathies and may provide a rationale for the development of novel Hsp90-based therapeutic strategies.
Collapse
Affiliation(s)
- Chad A. Dickey
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Adeela Kamal
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Karen Lundgren
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Natalia Klosak
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rachel M. Bailey
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Judith Dunmore
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Peter Ash
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sareh Shoraka
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jelena Zlatkovic
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christopher B. Eckman
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Cam Patterson
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - N. Stanley Nahman
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Michael Hutton
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Francis Burrows
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
Biogen Idec Research, Commercial Capabilities, San Diego, California, USA.
School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
Hayakawa Y, Itoh M, Yamada A, Mitsuda T, Nakagawa T. Expression and localization of Cayman ataxia-related protein, Caytaxin, is regulated in a developmental- and spatial-dependent manner. Brain Res 2007; 1129:100-9. [PMID: 17157273 DOI: 10.1016/j.brainres.2006.10.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Revised: 09/23/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Mutation of the gene encoding Caytaxin causes human Cayman ataxia by interfering with normal splicing and, in mutant rodents, by reducing normal transcription, which leads to ataxia, dystonia, and mental retardation: These observations suggest that Caytaxin may be crucial for higher brain functions such as motor learning. We generated antibodies against mouse Caytaxin. Interestingly, we found that the expression of Caytaxin is regulated during brain development while quantitative real time RT-PCR indicated that the mRNA level did not change between postnatal days 7 (P7) and P14 in the cerebellum and hippocampus, implying that the expression of Caytaxin may be controlled by a post-transcriptional mechanism. Immunostaining analyses demonstrated that Caytaxin was localized in many brain areas including the cerebellum and hippocampus. Furthermore, Caytaxin was localized to the presynaptic cytosol by the subcellular fractionation of mouse brain and an observation that was confirmed by co-localization studies with synapsin I and VGLUT1. The above data, disease phenotypes, and mutant animals suggest that Caytaxin may be essential for synaptic function. Thus, identifying the role of Caytaxin in synapse maturation may lead to the development of therapeutic interventions for cerebellar ataxia as well as mental disorders.
Collapse
Affiliation(s)
- Yoshika Hayakawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | | | | | | | | |
Collapse
|
37
|
Dickey CA, Petrucelli L. Commentary on “Cytoskeletal modulators and pleiotropic strategies for Alzheimer drug discovery.” The last stand: The dichotomy of chaperone function in Alzheimer's disease. Alzheimers Dement 2007; 3:3-6. [DOI: 10.1016/j.jalz.2006.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/22/2006] [Indexed: 11/16/2022]
Affiliation(s)
- Chad A. Dickey
- Department of NeuroscienceMayo Clinic Jacksonville4500 San Pablo RoadJacksonvilleFL 32224USA
| | - Leonard Petrucelli
- Department of NeuroscienceMayo Clinic Jacksonville4500 San Pablo RoadJacksonvilleFL 32224USA
| |
Collapse
|
38
|
Sinha A, Singh C, Parmar D, Singh MP. Proteomics in clinical interventions: achievements and limitations in biomarker development. Life Sci 2006; 80:1345-54. [PMID: 17210164 DOI: 10.1016/j.lfs.2006.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/06/2006] [Accepted: 12/12/2006] [Indexed: 02/01/2023]
Abstract
Development of toxicological and clinical biomarkers for disease diagnosis, quantification of toxicant/drug responses and rapid patient care are major concerns in modern biology. Even after human genome sequencing, identification of specific molecular signatures for unambiguous correlation with toxicity and clinical interventions is a challenging task. Differential protein expression patterns and protein-protein interaction studies have started unraveling rigorous molecular explanation of multi-factorial and toxicant borne diseases. Proteome profiling is extensively used to investigate etiology of diseases, develop predictive biomarkers for toxicity and therapeutic interventions and potential strategies for treatment of complex and toxicant mediated diseases. In this review, achievements and limitations of proteomics in developing predictive biomarkers for toxicological and clinical interventions have been discussed.
Collapse
Affiliation(s)
- Ashima Sinha
- Industrial Toxicology Research Centre, Lucknow-226 001, India
| | | | | | | |
Collapse
|
39
|
Dickey CA, Patterson C, Dickson D, Petrucelli L. Brain CHIP: removing the culprits in neurodegenerative disease. Trends Mol Med 2006; 13:32-8. [PMID: 17127096 DOI: 10.1016/j.molmed.2006.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/27/2006] [Accepted: 11/16/2006] [Indexed: 12/21/2022]
Abstract
A factor that is common to the most-frequent neurodegenerative diseases is the accumulation of abnormal proteins that are associated with cellular dysfunction. Contrary to years of speculation, recent evidence suggests that soluble intermediates--not the visible pathological aggregates associated with disease--are the cause of neurotoxicity. These findings suggest that aggregate formation might be an adaptive stress response that is facilitated by neuronal protein triage molecules. In particular, the molecular co-chaperone CHIP (C terminus of HSC70-interacting protein) has been linked to several of these disorders, serving as a crucial catalyst for the ubiquitination of several heat shock protein (HSP)70 client proteins that are involved in neurodegenerative disease. Therefore, understanding the mechanisms that are involved in CHIP-mediated protein trafficking might provide invaluable clues to neuronal function, both in normal and diseased conditions.
Collapse
Affiliation(s)
- Chad A Dickey
- Division of Neuroscience, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
40
|
Xiao J, Gong S, LeDoux MS. Caytaxin deficiency disrupts signaling pathways in cerebellar cortex. Neuroscience 2006; 144:439-61. [PMID: 17092653 PMCID: PMC1868412 DOI: 10.1016/j.neuroscience.2006.09.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 09/15/2006] [Accepted: 09/20/2006] [Indexed: 11/28/2022]
Abstract
The genetically dystonic (dt) rat, an autosomal recessive model of generalized dystonia, harbors an insertional mutation in Atcay. As a result, dt rats are deficient in Atcay transcript and the neuronally-restricted protein caytaxin. Previous electrophysiological and biochemical studies have defined olivocerebellar pathways, particularly the climbing fiber projection to Purkinje cells, as sites of significant functional abnormality in dt rats. In normal rats, Atcay transcript is abundantly expressed in the granular and Purkinje cell layers of cerebellar cortex. To better understand the consequences of caytaxin deficiency in cerebellar cortex, differential gene expression was examined in dt rats and their normal littermates. Data from oligonucleotide microarrays and quantitative real-time reverse transcriptase-PCR (QRT-PCR) identified phosphatidylinositol signaling pathways, calcium homeostasis, and extracellular matrix interactions as domains of cellular dysfunction in dt rats. In dt rats, genes encoding the corticotropin-releasing hormone receptor 1 (CRH-R1, Crhr1) and plasma membrane calcium-dependent ATPase 4 (PMCA4, Atp2b4) showed the greatest up-regulation with QRT-PCR. Immunocytochemical experiments demonstrated that CRH-R1, CRH, and PMCA4 were up-regulated in cerebellar cortex of mutant rats. Along with previous electrophysiological and pharmacological studies, our data indicate that caytaxin plays a critical role in the molecular response of Purkinje cells to climbing fiber input. Caytaxin may also contribute to maturational events in cerebellar cortex.
Collapse
Affiliation(s)
| | | | - Mark S. LeDoux
- Address correspondence to: Mark S. LeDoux, M.D., Ph.D., University of Tennessee Health Science Center, Department of Neurology, 855 Monroe Avenue, Link Building-Suite 415, Memphis, Tennessee 38163, Phone: 901-448-1662, FAX: 901-448-7440,
| |
Collapse
|
41
|
Abstract
Phosphoproteomics can be defined as the comprehensive study of protein phosphorylation by identification of the phosphoproteins, exact mapping of the phosphorylation sites, quantification of phosphorylation, and eventually, revealing their biological function. Its place in today's research is vitally important to address the most fundamental question - how the phosphorylation events control most, if not all, of the cellular processes in a given organism? Despite the immense importance of phosphorylation, the analysis of phosphoproteins on a proteome-wide scale remains a formidable challenge. Nevertheless, several technologies have been developed, mostly in yeast and mammals, to conduct a large-scale phosphoproteomic study. Some of these technologies have been successfully applied to plants with a few modifications, resulting in documentation of phosphoproteins, phosphorylation site mapping, identification of protein kinase substrates, etc. at the global level. In this review, we summarize in vitro and in vivo approaches for detection and analysis of phosphoproteins including protein kinases and we discuss the importance of phosphoproteomics in understanding plant biology. These approaches along with bioinformatics will help plant researchers to design and apply suitable phosphoproteomic strategies in helping to find answers to their biological questions.
Collapse
Affiliation(s)
- Birgit Kersten
- RZPD German Resource Center for Genome Research GmbH, Berlin, Germany
| | | | | | | |
Collapse
|
42
|
Dickey CA, Yue M, Lin WL, Dickson DW, Dunmore JH, Lee WC, Zehr C, West G, Cao S, Clark AMK, Caldwell GA, Caldwell KA, Eckman C, Patterson C, Hutton M, Petrucelli L. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 2006; 26:6985-96. [PMID: 16807328 PMCID: PMC6673930 DOI: 10.1523/jneurosci.0746-06.2006] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Accumulation of the microtubule-associated protein tau into neurofibrillary lesions is a pathological consequence of several neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Hereditary mutations in the MAPT gene were shown to promote the formation of structurally distinct tau aggregates in patients that had a parkinsonian-like clinical presentation. Whether tau aggregates themselves or the soluble intermediate species that precede their aggregation are neurotoxic entities in these disorders has yet to be resolved; however, recent in vivo evidence supports the latter. We hypothesized that depletion of CHIP, a tau ubiquitin ligase, would lead to an increase in abnormal tau. Here, we show that deletion of CHIP in mice leads to the accumulation of non-aggregated, ubiquitin-negative, hyperphosphorylated tau species. CHIP-/- mice also have increased neuronal caspase-3 levels and activity, as well as caspase-cleaved tau immunoreactivity. Overexpression of mutant (P301L) human tau in CHIP-/- mice is insufficient to promote either argyrophilic or "pre-tangle" structures, despite marked phospho-tau accumulation throughout the brain. These observations are supported in post-developmental studies using RNA interference for CHIP (chn-1) in Caenorhabditis elegans and cell culture systems. Our results demonstrate that CHIP is a primary component in the ubiquitin-dependent degradation of tau. We also show that hyperphosphorylation and caspase-3 cleavage of tau both occur before aggregate formation. Based on these findings, we propose that polyubiquitination of tau by CHIP may facilitate the formation of insoluble filamentous tau lesions.
Collapse
|
43
|
Li G, Zhao G, Zhou X, Schindelin H, Lennarz WJ. The AAA ATPase p97 links peptide N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. Proc Natl Acad Sci U S A 2006; 103:8348-53. [PMID: 16709668 PMCID: PMC1482497 DOI: 10.1073/pnas.0602747103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mouse peptide N-glycanase (mPNGase) cleaves the N-glycan chain from misfolded glycoproteins and glycopeptides. Previously, several proteins were found to directly interact with mPNGase; among them, both mHR23B and mS4 were found to link mPNGase to the proteasome. In this study, we found that the cytoplasmic protein mp97 participates in the formation of a ternary complex containing mouse autocrine motility factor receptor (mAMFR), mp97, and mPNGase. This assemblage recruits the cytosolic mPNGase close to the endoplasmic reticulum (ER) membrane, where the retrotranslocation of misfolded glycoproteins is thought to occur. In addition to the ER membrane-associated E3 ligase mAMFR, a cytosolic protein mY33K, containing both UBA and UBX domains, was found to also directly interact with mp97. Thus, a complex containing five proteins, mAMFR, mY33K, mp97, mPNGase, and mHR23B, is formed in close proximity to the ER membrane and serves to couple the activities of retrotranslocation, ubiquitination, and deglycosylation and, thereby, route misfolded glycoproteins to the proteasome.
Collapse
Affiliation(s)
- Guangtao Li
- *Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215; and
| | - Gang Zhao
- Department of Biochemistry and Cell Biology and Center for Structural Biology, Centers for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794-5115
| | - Xiaoke Zhou
- Department of Biochemistry and Cell Biology and Center for Structural Biology, Centers for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794-5115
| | - Hermann Schindelin
- Department of Biochemistry and Cell Biology and Center for Structural Biology, Centers for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794-5115
| | - William J. Lennarz
- *Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|