1
|
Xu R, Yu H, Wang Y, Li B, Chen Y, Liu X, Xu T. Natural product virtual-interact-phenotypic target characterization: A novel approach demonstrated with Salvia miltiorrhiza extract. J Pharm Anal 2025; 15:101101. [PMID: 39957901 PMCID: PMC11830376 DOI: 10.1016/j.jpha.2024.101101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025] Open
Abstract
Natural products (NPs) have historically been a fundamental source for drug discovery. Yet the complex nature of NPs presents substantial challenges in pinpointing bioactive constituents, and corresponding targets. In the present study, an innovative natural product virtual screening-interaction-phenotype (NP-VIP) strategy that integrates virtual screening, chemical proteomics, and metabolomics to identify and validate the bioactive targets of NPs. This approach reduces false positive results and enhances the efficiency of target identification. Salvia miltiorrhiza (SM), a herb with recognized therapeutic potential against ischemic stroke (IS), was used to illustrate the workflow. Utilizing virtual screening, chemical proteomics, and metabolomics, potential therapeutic targets for SM in the IS treatment were identified, totaling 29, 100, and 78, respectively. Further analysis via the NP-VIP strategy highlighted five high-confidence targets, including poly [ADP-ribose] polymerase 1 (PARP1), signal transducer and activator of transcription 3 (STAT3), amyloid precursor protein (APP), glutamate-ammonia ligase (GLUL), and glutamate decarboxylase 67 (GAD67). These targets were subsequently validated and found to play critical roles in the neuroprotective effects of SM. The study not only underscores the importance of SM in treating IS but also sets a precedent for NP research, proposing a comprehensive approach that could be adapted for broader pharmacological explorations.
Collapse
Affiliation(s)
- Rui Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yichen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China
| | - Boyu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
De Oliveira Campos A, Harrison MD, Marshall DL, Strong PJ. Distributions of Lanostene-Derived Triterpenoids and Glucan Content in the Fruiting Bodies of the Australian Ganoderma Species. J Fungi (Basel) 2024; 10:723. [PMID: 39452675 PMCID: PMC11509325 DOI: 10.3390/jof10100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Lanostene-derived triterpenoids and β-glucans are important metabolites in Ganoderma mushrooms associated with benefits to human health. The medicinal value of the Australian Ganoderma species remains unclear, with no data on triterpenoid distribution or glucan content. In the present study, 22 Australian Ganoderma specimens were analyzed for triterpenoid and glucan contents. Thirty-two triterpenoids were identified in the fruiting bodies of 19 of the specimens. Distinct patterns in triterpenoid distribution between laccate and matte fruiting bodies were observed, leading to the classification of four groups of Ganoderma. Most of the glucans in the Ganoderma fruiting bodies were β-glucans (~99%), with a nominal α-glucan content (~1%). The β-glucan content ranged from 19.5 to 43.5% (w/w). A range of antioxidant activities was observed for methanol extracts using the ABTS (1.8 to 8.4 mg GAE.g-1), DPPH (1.7 to 9.4 mg GAE/g-1) and FRAP (24.7 to 111.6 mmol FeSO4.g-1) assays, with four specimens presenting relatively high radical scavenging and reducing activities. For the first time, we demonstrated that Australian Ganoderma mushrooms contain medicinal triterpenoids, including ganoderic acid A, and we established a link between its distribution and the fruiting body morphology. However, further research is required to isolate diploid clones and determine factors that impact triterpenoid and glucan synthesis in these strains.
Collapse
Affiliation(s)
- Aline De Oliveira Campos
- Center for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; (A.D.O.C.); (M.D.H.)
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Mark D. Harrison
- Center for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; (A.D.O.C.); (M.D.H.)
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - David L. Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4000, Australia;
| | - Peter James Strong
- Center for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; (A.D.O.C.); (M.D.H.)
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
3
|
Zhao M, Che Y, Gao Y, Zhang X. Application of multi-omics in the study of traditional Chinese medicine. Front Pharmacol 2024; 15:1431862. [PMID: 39309011 PMCID: PMC11412821 DOI: 10.3389/fphar.2024.1431862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Traditional Chinese medicine (TCM) is playing an increasingly important role in disease treatment due to the advantages of multi-target, multi-pathway mechanisms, low adverse reactions and cost-effectiveness. However, the complexity of TCM system poses challenges for research. In recent years, there has been a surge in the application of multi-omics integrated research to explore the active components and treatment mechanisms of TCM from various perspectives, which aids in advancing TCM's integration into clinical practice and holds immense importance in promoting modernization. In this review, we discuss the application of proteomics, metabolomics, and mass spectrometry imaging in the study of composition, quality evaluation, target identification, and mechanism of action of TCM based on existing literature. We focus on the workflows and applications of multi-omics based on mass spectrometry in the research of TCM. Additionally, potential research ideas for future exploration in TCM are outlined. Overall, we emphasize the advantages and prospects of multi-omics based on mass spectrometry in the study of the substance basis and mechanism of action of TCM. This synthesis of methodologies holds promise for enhancing our understanding of TCM and driving its further integration into contemporary medical practices.
Collapse
Affiliation(s)
| | | | | | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Liu C, Chen F, Fan X, Liu B, Chai X, He S, Huang T, Wang X, Liu L, Liu H, Zeng D, Jiang B, Zhang X, Liu M. Combined NMR and MS-based metabonomics and real-time PCR analyses reveal dynamic metabolic changes of Ganoderma lucidum during fruiting body growing. Food Res Int 2024; 180:114056. [PMID: 38395571 DOI: 10.1016/j.foodres.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ganoderma lucidum (G. lucidum) is a rare medicinal fungus with various beneficial properties. One of its main components, ganoderic acids (GAs), are important triterpenoids known for their sedative and analgesic, hepatoprotective, and anti-tumor activities. Understanding the growth and development of the G. lucidum fruiting body is crucial for determining the optimal time to harvest them. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to systematically characterize the metabolites of G. lucidum at seven distinct developmental stages. We also measured the contents of seven kinds of GAs using LC-MS/MS. A total of 49 metabolites were detected in G. lucidum, including amino acids, sugars, organic acids and GAs. During the transition from the bud development period (I) to the budding period (II), we observed a rapid accumulation of glucose, tyrosine, nicotinamide ribotide, inosine and GAs. After the budding period, the contents of most metabolites decreased until the mature period (VII). In addition, the contents of GAs showed an initial raising, followed by a decline during the elongation period, except for GAF, which exhibited a rapid raise during the mature stage. We also detected the expression of several genes involved in GA synthesis, finding that most genes including 16 cytochrome P450 monooxygenase were all down-regulated during periods IV and VII compared to period I. These findings provide valuable insights into the dynamic metabolic profiles of G. lucidum throughout its growth stage, and it is recommended to harvest G. lucidum at period IV.
Collapse
Affiliation(s)
- Caixiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fangfang Chen
- Songjiang Yunjian High School affiliated to Shanghai Foreign Language School, Shanghai 201600, China; Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xinyu Fan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Biao Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xin Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sipei He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaohua Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Laixing Liu
- School of Management Wuhan Institute of Technology, Wuhan 430205, China.
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Danyun Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| |
Collapse
|
5
|
Yue Y, Zhou S, Cheng C, Teng L, Zhang J, Cui B, Han W, Dai Y, Feng N. Determination and Chemotaxonomic Analysis of Lanostane Triterpenoids in the Mycelia of Ganoderma spp. Using Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry (I). PLANTA MEDICA 2023; 89:1505-1514. [PMID: 37579776 DOI: 10.1055/a-2143-8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A comprehensive and sensitive method combining ultra-performance liquid chromatography with tandem mass spectrometry was developed for the quantification of characteristic triterpenoids in Ganoderma mycelia. Eight ganoderic acids previously isolated from the mycelia of Ganoderma lingzhi were separated with a binary mobile phase on a reversed-phase C18 column. A triple quadrupole mass spectrometer equipped with an electrospray ionization source was used as the detector in the negative ion mode. Identification and quantitation of target ganoderic acids were accomplished using the dynamic multiple reaction monitoring mode. The developed method was validated in terms of linearity, precision, accuracy, stability, and recovery. The method was first applied to quantify the contents of eight ganoderic acids in the mycelia of G. lingzhi at different times to determine the optimum fermentation conditions. Subsequently, the distribution of triterpenoids and the contents of eight ganoderic acids in sixteen different Ganoderma species were investigated. The results indicated that UV chromatography combined with dynamic multiple reaction monitoring quantification was an effective chemotaxonomy method for Ganoderma species identification. This study also provided a helpful analytical methodology for both scientific and industrial applications in the quality control of Ganoderma triterpenoids.
Collapse
Affiliation(s)
- Yawen Yue
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China
- School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Chilu Cheng
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Liming Teng
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, P. R. China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Baokai Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, P. R. China
| | - Wei Han
- School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yucheng Dai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, P. R. China
| | - Na Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China
| |
Collapse
|
6
|
Teng L, Wang C, Cui B, Zhang J, Zhou S, Pan X, Pan F, Dai Y, Feng N. Lanostane triterpenoids from mycelia-associated Ganoderma sinense and their anti-inflammatory activity. PHYTOCHEMISTRY 2023; 215:113870. [PMID: 37734511 DOI: 10.1016/j.phytochem.2023.113870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Seven previously undescribed lanostane triterpenoids, ganoderic acid M1 (1), M2 (2), M3 (3), M4 (4), M5 (5), M6 (6), and M7 (7), together with eight known compounds, were isolated from mycelia of the basidiomycete Ganoderma sinense (Ganodermataceae). The structures of all compounds were elucidated by spectroscopic analysis. The possible biosynthetic pathway of these fifteen triterpenoids was proposed. Some of the compounds were evaluated for their anti-inflammatory activity by measuring the production of nitric oxide (NO), TNF-α, and IL-6 in RAW264.7 macrophage cells induced by lipopolysaccharide. Lanosta-7,9(11),24-trien-3β,15α,22β-triacetoxy-26-oic acid (14) exhibited the strongest inhibition of NO production with an IC50 of 0.6 ± 0.1 μM and completely inhibited the secretion of TNF-α and IL-6 at 10 μM. The structure-activity relationship of the anti-inflammatory activity is discussed.
Collapse
Affiliation(s)
- Liming Teng
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China; School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Baokai Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Xinhua Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, 332000, People's Republic of China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, 332000, People's Republic of China
| | - Yucheng Dai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Na Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
| |
Collapse
|
7
|
Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol BS, Tomescu CL, Ionescu AM. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants (Basel) 2023; 12:1907. [PMID: 38001761 PMCID: PMC10669212 DOI: 10.3390/antiox12111907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries under different names, varying depending on the country. The objective of this review is to investigate the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum with significant biological actions in the treatment of cancer. This review presents the classes of bio-compounds existing in G. lucidum that have been reported over time in the main databases and have shown important biological actions in the treatment of cancer. The results highlight the fact that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant action. The potential health benefits of G. lucidum are systematized based on biological actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum bio-compounds in treating different forms of cancer, which may be due to the use of different types of Ganoderma formulations, differences in the study populations, or due to drug-disease interactions. In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical preparations of G. lucidum, standardized by the known active components in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020956 Bucharest, Romania;
| | - Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
8
|
Bondzie-Quaye P, Swallah MS, Acheampong A, Elsherbiny SM, Acheampong EO, Huang Q. Advances in the biosynthesis, diversification, and hyperproduction of ganoderic acids in Ganoderma lucidum. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Cör Andrejč D, Knez Ž, Knez Marevci M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front Pharmacol 2022; 13:934982. [PMID: 35935849 PMCID: PMC9353308 DOI: 10.3389/fphar.2022.934982] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 01/20/2023] Open
Abstract
Ganoderma lucidum is a very medicinal mushroom that has been utilized in Oriental medicine for many years. It has a wide range of pharmacological and therapeutic properties, and has been used for many years as a health promoter. It contains various biologically active compounds that improve the immune system and have antioxidant, antitumor, anti-inflammatory, antifungal, and antimicrobial properties. Active compounds include triterpenoids and polysaccharides, as well as proteins, lipids, phenolics, sterols, etc. In the following review, we summarize briefly their biological activities, such as antioxidant, anti-bacterial, anti-fungal, antitumor, anti-viral, and anti-inflammatory activity. Although Ganoderma has a number of medicinal effects that have been confirmed by the in vitro and in vivo studies summarised in this review, there are some limitations. Clinical trials face mainly a lack of pure constituents. Accurate identification of the compounds obtained is also problematic. In addition, most of the included studies were small, and there were concerns about the methodological quality of each study. Studies have shown that Ganoderma has valuable potential for the prevention and treatment of cancer. In any case, G. lucidum cannot be used as first-line therapy for cancer.
Collapse
Affiliation(s)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, Maribor, Slovenia.,Laboratory Faculty of Medicine, Maribor, Slovenia
| | | |
Collapse
|
10
|
The aminopeptidase B (Ap-B) is phosphorylated in HEK293 cells. Biochimie 2022; 201:204-212. [PMID: 35952945 DOI: 10.1016/j.biochi.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Proteolysis is a post-translational modification (PTM) that affects the whole proteome. First regarded as only destructive, it is more precise than expected. It is finely regulated by other PTMs like phosphorylation. Aminopeptidase B (Ap-B), a M1 metallopeptidase, hydrolyses the peptide bond on the carbonyl side of basic residues at the NH2-terminus of peptides. 2D electrophoresis (2DE) was used to show that Ap-B is modified by phosphorylation. Detection of Ap-B by western blot after 2DE reveals several isoforms with different isoelectric points. Using alkaline phosphatase, Pro-Q Diamond phosphorylation-specific dye and kinase-specific inhibitors, we confirmed that Ap-B is phosphorylated. Phosphorylation can alter the structure of proteins leading to changes in their activity, localization, stability and association with other interacting molecules. We showed that Ap-B phosphorylation might delay its turnover. Our study illustrates the central role of the crosstalk between kinases and proteases in the regulation of many biological processes.
Collapse
|
11
|
Yue Q, Zhang W, Lin S, Zheng T, Hou Y, Zhang Y, Li Z, Wang K, Yue L, Abay B, Li M, Fan L. Ejiao ameliorates lipopolysaccharide-induced pulmonary inflammation via inhibition of NFκB regulating NLRP3 inflammasome and mitochondrial ROS. Biomed Pharmacother 2022; 152:113275. [PMID: 35714510 DOI: 10.1016/j.biopha.2022.113275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
There is no effective treatment for acute lung injury (ALI) at present. Some studies have reported the anti-inflammatory effect of Ejiao, but no study has addressed the underlying action mechanism. In this study, the CCK8 assay displayed Ejiao had a protective effect against LPS-elicited inflammatory lung epithelial Beas 2B cells (LILEB 2B cells). Beas 2B cells treated with LPS and Ejiao were challenged with NFκB inhibitor Bay11-7082 and ROS scavenger N-acetyl cysteine (NAC) alone and in combination. The results of qRT-PCR, Western blotting and fluorescence labeling experiments using Bay11-7082 and NAC demonstrated Ejiao could significantly decrease the expression of p-p65 and p-IκBα in NFκB signaling pathway and its downstream NLRP3, ASC, Caspase-1 and IL-1β related to pyroptosis of LILEB 2B cells. Moreover, Ejiao reduced the production of mitochondrial ROS and reversed the change of mitochondrial membrane potential of LILEB 2B cells. Then, HE staining demonstrated Ejiao had a protective effect against the LPS-elicited ALI mouse model (LAMM). Ejiao also dramatically decreased the cell amount and the overall protein concentration of bronchoalveolar lavage fluid in LAMM. Immunohistochemical staining showed Ejiao remarkably reduced the expression of p-p65 and p-IκBα in NFκB signaling pathway and its downstream NLRP3, ASC, Caspase-1 and IL-1β. The ELISA of IL-1β revealed Ejiao could dose-dependably decrease the concentration of IL-1β in lung tissues, serum and BALF of LAMM. Finally, fluorescence labeling demonstrated Ejiao significantly reduced the mitochondrial ROS generation in the lung tissue of LAMM. This finding may afford a novel strategy for the precaution and therapy of ALI.
Collapse
Affiliation(s)
- Qingxi Yue
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wen Zhang
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shumeng Lin
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tiansheng Zheng
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yaqin Hou
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanfei Zhang
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziye Li
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liduo Yue
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baigenzhin Abay
- National Scientific Medical Research Center, Astana, Kazakhstan
| | - Ming Li
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lihong Fan
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Lin S, Wen J, Xu X, Shi J, Zhang W, Zheng T, Hou Y, Zhang Y, Li Z, Wang K, Jin J, Yue L, Abay B, Li M, Yue Q, Fan L. Amygdalin Induced Mitochondria-Mediated Apoptosis of Lung Cancer Cells via Regulating NF[Formula: see text]B-1/NF[Formula: see text]B Signaling Cascade in Vitro and in Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1361-1386. [PMID: 35681261 DOI: 10.1142/s0192415x22500586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death worldwide. Amygdalin, a natural compound commonly distributed in plants of the Rosaceae species, owns anticancer activity, less side effects, wide source, and relatively low price. Although the apoptosis is a central process activated by amygdalin in cancer cells, the underlying molecular mechanisms through which amygdalin induces the apoptosis of lung cancer cells remain poorly understood. In this research work, amygdalin could suppress the proliferation of lung cancer A549 and PC9 cells by CCK8 assay. Amygdalin significantly promoted the apoptosis of lung cancer A549 and PC9 cells stained with Annexin V-FITC/PI by flow cytometry assay. Furthermore, amygdalin dose-dependently decreased the mitochondrial membrane potential (MMP) with JC-1 dye by flow cytometry. To investigate the underlying molecular mechanisms through which amygdalin induced mitochondria-mediated apoptosis of cancer cells, the differentially-expressed genes with a fold change >2.0 and [Formula: see text] < 0.05 were acquired from the cDNA microarray analysis. The results of qRT-PCR further confirmed that the differentially-expressed level of the NF[Formula: see text]B-1 gene was most obviously enhanced in lung cancer cells treated with amygdalin. The results of immunofluorescence staining, Western blotting and siRNA knockdown indicated that amygdalin induced mitochondria-mediated apoptosis of lung cancer cells via enhancing the expression of NF[Formula: see text]B-1 and inactivating NF[Formula: see text]B signaling cascade and further changing the expressions of proteins (Bax, Bcl-2, cytochrome C, caspase 9, caspase 3 and PARP) related to apoptosis, which were further checked by in vivo study of the lung cancer cell xenograft mice model accompanying with immunohistochemical staining and TUNEL staining. Our results indicated that amygdalin might be a potential activator of NF[Formula: see text]B-1, which sheds more light on the molecular mechanism of anticancer effects of amygdalin. These results highlighted amygdalin as a potential therapeutic anticancer agent, which warrants its development as a therapy for lung cancer.
Collapse
Affiliation(s)
- Shumeng Lin
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China.,Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Jing Wen
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China.,Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Xiao Xu
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Jiamin Shi
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Wen Zhang
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Tiansheng Zheng
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Yaqin Hou
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Yanfei Zhang
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Ziye Li
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Kai Wang
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Jing Jin
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Liduo Yue
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Baigenzhin Abay
- National Scientific Medical Research Center, Astana, Kazakhstan
| | - Ming Li
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Qingxi Yue
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Lihong Fan
- Institute of Energy Metabolism and Health, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| |
Collapse
|
13
|
Chen N, Wan G, Zeng X. Integrated Whole-Transcriptome Profiling and Bioinformatics Analysis of the Polypharmacological Effects of Ganoderic Acid Me in Colorectal Cancer Treatment. Front Oncol 2022; 12:833375. [PMID: 35574354 PMCID: PMC9093067 DOI: 10.3389/fonc.2022.833375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Ganoderic acid Me (GA-Me) is a natural bioactive compound derived from Ganoderma lucidum. Our present results suggested that GA-Me inhibited proliferation, induced DNA fragmentation and significantly activated caspase-9 and caspase-3 in HCT116 cells. As shown in our previous studies, GA-Me targets several genes to prevent cancer, including colorectal cancer (CRC). Thus, we hypothesized that GA-Me might be a multitarget ligand against cancer. However, its exact mechanism in CRC remains unclear. Here, whole-transcriptome sequencing was employed to assess the long noncoding RNA (lncRNA), circular RNA (circRNA), microRNA (miRNA), and messenger RNA (mRNA) profiles of GA-Me-treated HCT116 cells. In total, 1572 differentially expressed (DE) lncRNAs, 123 DEcircRNAs, 87 DEmiRNAs, and 1508 DEmRNAs were identified. DCBLD2 and RAPGEF5 were validated as two core mRNAs in the DElncRNA, DEcircRNA, and DEmiRNA networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed the biological functions and potential mechanisms of TCONS-00008997, XR-925056.2, circRNA-07908, hsa-miR-100-3p, hsa-miR-1257, hsa-miR-3182, NAV3, ADAM20, and STARD4, which were altered after GA-Me treatment. The regulatory relationships of the XR-925056.2-hsa-miR-3182-NAV3/ADAM20/STARD4, circRNA-07908|Chr22:38986298-39025349-hsa-miR-3182-NAV3/ADAM20, ENST00000414039/ENST00000419190-novel874_mature-MMP9 and circRNA-00314|Chr1:35470863-35479212/circRNA-05460|Chr17:72592203-72649268-novel874_mature-MMP9 immune-regulatory networks involved both noncoding RNAs (ncRNAs) and mRNAs. Molecular docking studies showed that Zn2+ and the His201, His205, His211, Glu202, and Ala165 residues of MMP2 contributed to its high affinity for GA-Me. Zn2+ and the Glu402 and Gly186 residues of MMP9 are important for its interaction with GA-Me. Our results suggested and confirmed that GA-Me is a potential multitarget lead compound for CRC treatment with unique polypharmacological advantages.
Collapse
Affiliation(s)
- Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen,China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Guoqing Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen,China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen,China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Ahmad MF, Wahab S, Ahmad FA, Ashraf SA, Abullais SS, Saad HH. Ganoderma lucidum: A potential pleiotropic approach of ganoderic acids in health reinforcement and factors influencing their production. FUNGAL BIOL REV 2022; 39:100-125. [DOI: 10.1016/j.fbr.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Yang X, Zhang H, Li L, Zhou X, Liu Y, Lai J. Proteomic Analysis of Protective Effects of Epimedium Flavonoids against Ethanol-Induced Toxicity in Retinoic Acid-Treated SH-SY5Y Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031026. [PMID: 35164291 PMCID: PMC8838442 DOI: 10.3390/molecules27031026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/05/2022]
Abstract
Alcohol (ethanol) is one of the most common addictive psychoactive substances in the world, and alcoholism may result in harmful effects on human health, especially on the nervous system. Flavonoids are regarded as the main active constituent in Epimedium, which has been used to cure some nervous system diseases such as amnesia for over 1000 years. Here, the protective effects of Epimedium flavonoids against ethanol-induced toxicity in retinoic acid (RA)-treated SH-SY5Y cells were investigated. Their mechanism was explored by a label-free proteomic approach combined with bioinformatic analysis for the first time. The results showed that ethanol treatment decreased cell viability by 18%, whereas the viability increased significantly after intervention with Epimedium flavonoids (p < 0.01). According to proteomic and bioinformatic analyses, hundreds of differentially expressed proteins (DEPs) were identified and classified as biological process (GO_BP), cellular component (GO_CC) and molecular function (GO_MF). Among them, GO_MF of DEPs, especially molecular function relevant to G proteins, greatly changed in SH-SY5Y cells pretreated by Epimedium flavonoids. In the alcoholism pathway, the expression of the Gi protein was up-regulated under the influence of ethanol, whereas Epimedium flavonoids could reverse the expression profile, both of which were validated by Western blot assay. In conclusion, Gi protein seemed to be an important factor in the alcoholism pathway to suppress the ethanol-induced toxicity of SH-SY5Y cells. These findings suggest a protective potential of Epimedium flavonoids against ethanol-induced toxicity to neurons via the regulation of Gi protein function.
Collapse
Affiliation(s)
- Xiaohua Yang
- Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Huafeng Zhang
- International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China; (L.L.); (X.Z.); (Y.L.)
- Correspondence: (H.Z.); (J.L.); Tel.: +86-29-8265-7505 (J.L.)
| | - Lu Li
- International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China; (L.L.); (X.Z.); (Y.L.)
| | - Xuexue Zhou
- International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China; (L.L.); (X.Z.); (Y.L.)
| | - Yichao Liu
- International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China; (L.L.); (X.Z.); (Y.L.)
| | - Jianghua Lai
- Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China;
- Correspondence: (H.Z.); (J.L.); Tel.: +86-29-8265-7505 (J.L.)
| |
Collapse
|
16
|
A Study of the Protective Effect of Bushen Huoxue Prescription on Cerebral Microvascular Endothelia Based on Proteomics and Bioinformatics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2545074. [PMID: 35035499 PMCID: PMC8758271 DOI: 10.1155/2022/2545074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Diabetic cognitive dysfunction is a serious complication of type 2 diabetes mellitus (T2DM), which can cause neurological and microvascular damage in the brain. At present, there is no effective treatment for this complication. Bushen Huoxue prescription (BSHX) is a newly formulated compound Chinese medicine containing 7 components. Previous research indicated that BSHX was neuroprotective against advanced glycosylation end product (AGE)-induced PC12 cell insult; however, the effect of BSHX on AGE-induced cerebral microvascular endothelia injury has not been studied. In the current research, we investigated the protective effects of BSHX on AGE-induced injury in bEnd.3 cells. Our findings revealed that BSHX could effectively protect bEnd.3 cells from apoptosis. Moreover, we analyzed the network regulation effect of BSHX on AGE-induced bEnd.3 cells injury at the proteomic level. The LC-MS/MS-based shotgun proteomics analysis showed BSHX negatively regulated multiple AGE-elicited proteins. Bioinformatics analysis revealed these differential proteins were involved in multiple processes, such as Foxo signaling pathway. Further molecular biology analysis confirmed that BSHX could downregulate the expression of FoxO1/3 protein and inhibit its nuclear transfer and inhibit the expression of downstream apoptotic protein Bim and the activation of caspase, so as to play a protective role in AGE-induced bEnd.3 injury. Taken together, these findings demonstrated the role of BSHX in the management of diabetic cerebral microangiopathy and provide some insights into the proteomics-guided pharmacological mechanism study of traditional Chinese Medicine.
Collapse
|
17
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
18
|
Ferreira WAS, Burbano RR, do Ó Pessoa C, Harada ML, do Nascimento Borges B, de Oliveira EHC. Pisosterol Induces G2/M Cell Cycle Arrest and Apoptosis via the ATM/ATR Signaling Pathway in Human Glioma Cells. Anticancer Agents Med Chem 2021; 20:734-750. [PMID: 32013837 DOI: 10.2174/1871520620666200203160117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/05/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. OBJECTIVE This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. METHODS The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). RESULTS Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. CONCLUSION It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.
Collapse
Affiliation(s)
- Wallax A S Ferreira
- Laboratorio de Cultura de Tecidos e Citogenetica, SAMAM, Instituto Evandro Chagas, Ananindeua, Para, Brazil
| | - Rommel R Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil.,Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, Pará, Brazil
| | - Claudia do Ó Pessoa
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceara, Fortaleza, Ceara, Brazil
| | - Maria L Harada
- Laboratorio de Biologia Molecular Francisco Mauro Salzano, Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem, Para, Brazil
| | - Bárbara do Nascimento Borges
- Laboratorio de Biologia Molecular Francisco Mauro Salzano, Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem, Para, Brazil
| | - Edivaldo H Correa de Oliveira
- Laboratorio de Cultura de Tecidos e Citogenetica, SAMAM, Instituto Evandro Chagas, Ananindeua, Para, Brazil.,Instituto de Ciências Exatas e Naturais, Faculdade de Ciências Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
19
|
Khan DA, Hamdani SDA, Iftikhar S, Malik SZ, Zaidi NUSS, Gul A, Babar MM, Ozturk M, Turkyilmaz Unal B, Gonenc T. Pharmacoinformatics approaches in the discovery of drug-like antimicrobials of plant origin. J Biomol Struct Dyn 2021; 40:7612-7628. [PMID: 33663347 DOI: 10.1080/07391102.2021.1894982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Medicinal plants have served as an important source for addressing the ailments of humans and animals alike. The emergence of advanced technologies in the field of drug discovery and development has helped in isolating various bioactive phytochemicals and developing them as drugs. Owing to their significant pharmacological benefits and minimum adverse effects, they not only serve as good candidates for therapeutics themselves but also help in the identification and development of related drug like molecules against various metabolic and infectious diseases. The ever-increasing diversity, severity and incidence of infectious diseases has resulted in an exaggerated mortality and morbidity levels. Geno-proteomic mutations in microbes, irrational prescribing of antibiotics, antimicrobial resistance and human population explosion, all call for continuous efforts to discover and develop alternated therapeutic options against the microbes. This review article describes the pharmacoinformatics tools and methods which are currently used in the discovery of bioactive phytochemicals, thus making the process more efficient and effective. The pharmacological aspects of the drug discovery and development process have also been reviewed with reference to the in silico activities. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Duaa Ahmad Khan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Syed Damin Abbas Hamdani
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sahar Iftikhar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najam-Us-Sahar Sadaf Zaidi
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Arts & Sciences Faculty, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Tuba Gonenc
- Department of Pharmacognosy, Faculty of Pharmacy, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
20
|
Şoica C, Voicu M, Ghiulai R, Dehelean C, Racoviceanu R, Trandafirescu C, Roșca OJ, Nistor G, Mioc M, Mioc A. Natural Compounds in Sex Hormone-Dependent Cancers: The Role of Triterpenes as Therapeutic Agents. Front Endocrinol (Lausanne) 2021; 11:612396. [PMID: 33552000 PMCID: PMC7859451 DOI: 10.3389/fendo.2020.612396] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Sex hormone-dependent cancers currently contribute to the high number of cancer-related deaths worldwide. The study and elucidation of the molecular mechanisms underlying the progression of these tumors was a double-edged sword, leading to the expansion and development of new treatment options, with the cost of triggering more aggressive, therapy resistant relapses. The interaction of androgen, estrogen and progesterone hormones with specific receptors (AR, ER, PR) has emerged as a key player in the development and progression of breast, ovarian, prostate and endometrium cancers. Sex hormone-dependent cancers share a common and rather unique carcinogenesis mechanism involving the active role of endogenous and exogenous sex hormones to maintain high mitotic rates and increased cell proliferation thus increasing the probability of aberrant gene occurrence and accumulation highly correlated with abnormal cell division and the occurrence of malignant phenotypes. Cancer related hormone therapy has evolved, currently being associated with the blockade of other signaling pathways often associated with carcinogenesis and tumor progression in cancers, with promising results. However, despite the established developments, there are still several shortcomings to be addressed. Triterpenes are natural occurring secondary metabolites biosynthesized by various pathways starting from squalene cyclization. Due to their versatile therapeutic potential, including the extensively researched antiproliferative effect, these compounds are most definitely a cornerstone in the research and development of new natural/semisynthetic anticancer therapies. The present work thoroughly describes the ongoing research related to the antitumor activity of triterpenes in sex hormone-dependent cancers. Also, the current review highlights both the biological activity of various triterpenoid compounds and their featured mechanisms of action correlated with important chemical structural features.
Collapse
Affiliation(s)
- Codruţa Şoica
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Trandafirescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Janina Roșca
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Vascular Surgery, Pius Brinzeu Timisoara City Emergency Clinical Hospital, Timisoara, Romania
| | - Gabriela Nistor
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
21
|
Zhou Y, Hou J, Long H, Zhang Z, Lei M, Wu W. Design, synthesis and anti-tumor activities of carbamate derivatives of cinobufagin. Steroids 2020; 164:108749. [PMID: 33065151 DOI: 10.1016/j.steroids.2020.108749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022]
Abstract
A series of cinobufagin-3-yl nitrogen-containing-carbamate derivatives were designed, synthesized, and evaluated for their proliferation inhibition activities. The structure-activity relationships suggested that the substituents at C-16 was a crucial factor for the potency and that follows this trends: acetic ester ≫ benzoic ester ≈ hydroxy > carbamate. Compounds 3f, 3g, 3h, and 3i exhibited significant in vitro antiproliferative activities against the eight tested tumor cell lines, with IC50 values ranging from 8.1 to 237.4 nM. Furthermore, 3g tartrate (3g-TA) significantly inhibited tumor growth by 64.5%, 83.9%, and 93.0% at a doses of 4, 6, 8 mg/kg/qod by ip, respectively.
Collapse
Affiliation(s)
- Yang Zhou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
22
|
Shao CS, Zhou XH, Zheng XX, Huang Q. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113213. [PMID: 32755651 DOI: 10.1016/j.jep.2020.113213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/12/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Ganoderma lucidum has been used as a medicinal mushroom for more than 2000 years in China. Ganoderic acid D (GAD) as a representative active triterpenoid from Ganoderma lucidum is known to possess anticancer activity. However, the mechanism involved in its anticancer cell process is still largely elusive. AIM OF THE STUDY Our study aimed to investigate the anticancer effects of GAD on the esophageal squamous cell carcinoma (ESCC) cells and the underlying mechanisms at the cell level. MATERIALS AND METHODS EC9706 and Eca109 cells were treated with GAD (0, 10, 20, 40 μM) for 24 h. The cell viability, cell cycle, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis rate, caspase-3 activity, autophagic flux, lysosomal function were examined. Cell cycle, apoptotic, autophagy and mTOR signal pathway related proteins such as P53, Cyclin B1, CytoC, PARP, Beclin-1, P62, LC3, PI3K, AKT and mTOR were analyzed by Western blot approach. RESULTS GAD inhibited cell proliferation and induced both apoptosis and autophagic cell death. In particular, we found that in the early stage of the autophagic process, GAD could initiate and enhance the autophagy signal while in the late stage it on the contrary could block the autophagic flux by impairing the autophagosome-lysosome fusion and inhibited the lysosomal degradation. Besides the autophagic cell death, GAD also induced the apoptosis mediated by caspase-related process in parallel. The mechanism involved for the synergistic apoptotic and autophagic cell death was also explored. We found that GAD down-regulated the expression of PI3K, AKT and mTOR phosphorylated proteins in the mTOR signaling pathway which thus led to the synergistic effect on apoptosis and autophagic cell death in the ESCC cells. CONCLUSIONS In summary, this study has documented that GAD may inhibit cell proliferation through the mTOR pathway in ESCC cells, and induce synergistic apoptosis and autophagic cell death by disrupting the autophagic flux. This work therefore also suggests that GAD may be used as an efficient anticancer adjuvant for ESCC cancer therapy.
Collapse
Affiliation(s)
- Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; University of Science and Technology of China, Hefei, 230026, China.
| | - Xiu-Hong Zhou
- Center of Biology, Anhui Agricultural University, Hefei, China.
| | - Xin-Xin Zheng
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; University of Science and Technology of China, Hefei, 230026, China.
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
23
|
Thingholm TE, Rönnstrand L, Rosenberg PA. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell Mol Life Sci 2020; 77:3085-3102. [PMID: 32076742 PMCID: PMC7391401 DOI: 10.1007/s00018-020-03473-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Zinc is required for the regulation of proliferation, metabolism, and cell signaling. It is an intracellular second messenger, and the cellular level of ionic, mobile zinc is strictly controlled by zinc transporters. In mammals, zinc homeostasis is primarily regulated by ZIP and ZnT zinc transporters. The importance of these transporters is underscored by the list of diseases resulting from changes in transporter expression and activity. However, despite numerous structural studies of the transporters revealing both zinc binding sites and motifs important for transporter function, the exact molecular mechanisms regulating ZIP and ZnT activities are still not clear. For example, protein phosphorylation was found to regulate ZIP7 activity resulting in the release of Zn2+ from intracellular stores leading to phosphorylation of tyrosine kinases and activation of signaling pathways. In addition, sequence analyses predict all 24 human zinc transporters to be phosphorylated suggesting that protein phosphorylation is important for regulation of transporter function. This review describes how zinc transporters are implicated in a number of important human diseases. It summarizes the current knowledge regarding ZIP and ZnT transporter structures and points to how protein phosphorylation seems to be important for the regulation of zinc transporter activity. The review addresses the need to investigate the role of protein phosphorylation in zinc transporter function and regulation, and argues for a pressing need to introduce quantitative phosphoproteomics to specifically target zinc transporters and proteins involved in zinc signaling. Finally, different quantitative phosphoproteomic strategies are suggested.
Collapse
Affiliation(s)
- T E Thingholm
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, J.B. Winsløws Vej 25, 3, 5000, Odense C, Denmark.
| | - L Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Lund Stem Cell Center, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - P A Rosenberg
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
24
|
Xu Y, Yuan H, Luo Y, Zhao YJ, Xiao JH. Ganoderic Acid D Protects Human Amniotic Mesenchymal Stem Cells against Oxidative Stress-Induced Senescence through the PERK/NRF2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8291413. [PMID: 32774686 PMCID: PMC7407022 DOI: 10.1155/2020/8291413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
Aging is an important risk factor in the occurrence of many chronic diseases. Senescence and exhaustion of adult stem cells are considered as a hallmark of aging in organisms. In this study, a senescent human amniotic mesenchymal stem cell (hAMSC) model subjected to oxidative stress was established in vitro using hydrogen peroxide. We investigated the effects of ganoderic acid D (GA-D), a natural triterpenoid compound produced from Ganoderma lucidum, on hAMSC senescence. GA-D significantly inhibited β-galactosidase (a senescence-associated marker) formation, in a dose-dependent manner, with doses ranging from 0.1 μM to 10 μM, without inducing cytotoxic side-effects. Furthermore, GA-D markedly inhibited the generation of reactive oxygen species (ROS) and the expression of p21 and p16 proteins, relieved the cell cycle arrest, and enhanced telomerase activity in senescent hAMSCs. Furthermore, GA-D upregulated the expression of phosphorylated protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK), peroxidase III (PRDX3), and nuclear factor-erythroid 2-related factor (NRF2) and promoted intranuclear transfer of NRF2 in senescent cells. The PERK inhibitor GSK2656157 and/or the NRF2 inhibitor ML385 suppressed the PERK/NRF2 signaling, which was activated by GA-D. They induced a rebound for the generation of ROS and β-galactosidase-positive cells and attenuated the differentiation capacity. These findings suggest that GA-D retards hAMSC senescence through activation of the PERK/NRF2 signaling pathway and may be a promising candidate for the discovery of antiaging agents.
Collapse
Affiliation(s)
- Yan Xu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| | - Huan Yuan
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| | - Yu-Jie Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| |
Collapse
|
25
|
Zhang Y, Chen X, Zhou Y, Hou J, Long H, Zhang Z, Lei M, Wu W. Synthesis of oleandrin derivatives and their cytotoxic activity. Steroids 2020; 159:108650. [PMID: 32360418 DOI: 10.1016/j.steroids.2020.108650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
A series of oleandrin-4'-yl ester derivatives were designed, synthesized, and evaluated for their proliferation inhibition activities against tumor cell lines. Cytotoxicity data revealed that the C4' moiety had an important influence on cytotoxic activity. Several compounds that we designed and synthesized exhibit significant in vitro antiproliferative activity against the tested tumor cell lines. Among the derivatives of OL, 4b-HCl not only had good anti-tumor activity but also had good water solubility. Furthermore, 4b-HCl can significantly inhibit tumor growth by 96.4% at a dose of 6 mg/kg/d by ip.
Collapse
Affiliation(s)
- Yanzhi Zhang
- College of Pharmacy, Dali University, Dali 671000, PR China
| | - Xubing Chen
- College of Pharmacy, Dali University, Dali 671000, PR China
| | - Yang Zhou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
26
|
Ganoderic acid A is the effective ingredient of Ganoderma triterpenes in retarding renal cyst development in polycystic kidney disease. Acta Pharmacol Sin 2020; 41:782-790. [PMID: 31911637 PMCID: PMC7468358 DOI: 10.1038/s41401-019-0329-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common life-threatening monogenetic diseases characterized by progressive enlargement of fluid-filled renal cysts. Our previous study has shown that Ganoderma triterpenes (GT) retards PKD renal cyst development. In the present study we identified the effective ingredient of GT in suppression of kidney cyst development. Using an in vitro MDCK cystogenesis model, we identified ganoderic acid A (GA-A) as the most promising candidate among the 12 ganoderic acid (GA) monomers. We further showed that GA-A (6.25−100 μM) significantly inhibited cyst growth in MDCK cyst model and embryonic kidney cyst model in vitro, and the inhibitory effect was reversible. In kidney-specific Pkd1 knockout (kPKD) mice displaying severe cystic kidney disease, administration of GA-A (50 mg· kg−1 ·d−1, sc) significantly attenuated renal cyst development. In both MDCK cells and kidney of kPKD mice, we revealed that GA-A dose-dependently downregulated the Ras/MAPK signaling pathway. The expression of proliferating cell nuclear antigen (PCNA) was also suppressed, suggesting a possible effect of GA-A on cell proliferation. These experimental data suggest that GA-A may be the main ingredient of GT as a potential therapeutic reagent for treating ADPKD.
Collapse
|
27
|
Kaur R, Sharma P, Gupta GK, Ntie-Kang F, Kumar D. Structure-Activity-Relationship and Mechanistic Insights for Anti-HIV Natural Products. Molecules 2020; 25:E2070. [PMID: 32365518 PMCID: PMC7249135 DOI: 10.3390/molecules25092070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Acquired Immunodeficiency Syndrome (AIDS), which chiefly originatesfroma retrovirus named Human Immunodeficiency Virus (HIV), has impacted about 70 million people worldwide. Even though several advances have been made in the field of antiretroviral combination therapy, HIV is still responsible for a considerable number of deaths in Africa. The current antiretroviral therapies have achieved success in providing instant HIV suppression but with countless undesirable adverse effects. Presently, the biodiversity of the plant kingdom is being explored by several researchers for the discovery of potent anti-HIV drugs with different mechanisms of action. The primary challenge is to afford a treatment that is free from any sort of risk of drug resistance and serious side effects. Hence, there is a strong demand to evaluate drugs derived from plants as well as their derivatives. Several plants, such as Andrographis paniculata, Dioscorea bulbifera, Aegle marmelos, Wistaria floribunda, Lindera chunii, Xanthoceras sorbifolia and others have displayed significant anti-HIV activity. Here, weattempt to summarize the main results, which focus on the structures of most potent plant-based natural products having anti-HIV activity along with their mechanisms of action and IC50 values, structure-activity-relationships and important key findings.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| | - Pooja Sharma
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Girish K. Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy, Badhani, Pathankot 145001, India;
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63 Buea, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Dinesh Kumar
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| |
Collapse
|
28
|
Zhao J, Zhang Q, Zou G, Gao G, Yue Q. Arenobufagin, isolated from toad venom, inhibited epithelial-to-mesenchymal transition and suppressed migration and invasion of lung cancer cells via targeting IKKβ/NFκB signal cascade. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112492. [PMID: 31866511 DOI: 10.1016/j.jep.2019.112492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lung cancer is the leading cause of cancer incidence and mortality worldwide. Arenobufagin (Arg), a representative natural bufadienolide compound, is one of the major bioactive components isolated from toad venom ("Chan Su"named in Chinese to treat multifarious clinical neoplasms in China). However, the underlying molecular mechanisms that Arg inhibited the metastasis of lung cancer cells remain poorly understood. MATERIALS AND METHODS The mobility capacities of lung cancer cells treated with Arg were evaluated using wound healing assay. The anti-migratory and anti-invasive effects of Arg on lung cancer cells were investigated by transwell invasion assay and matrigel invasion assay. iTRAQ-labeled LC-MS proteomics was used to analyze the potential proteins related to metastasis in lung cancer cells treated with Arg and differentially-expressed proteins related to EMT and NFκB signaling cascade were further confirmed by Western blotting assay. The changed subcellular localization of p65 in lung cancer A549 and H1299 cells treated with Arg was detected by immunofluorescence staining. Molecular docking and molecular dynamic (MD) simulation assay were performed to verify the binding between Arg and IKKα/IKKβ. siRNA knockdown was used to check whether Arg inhibited EMT of lung cancer cells via targeting NFκB signaling cascade, which was further verified by in vivo study of lung cancer cell xenograft mice model and pulmonary metastasis mice model accompanying with immunohistochemical and hematoxylin-eosin (HE) staining. RESULTS Arg suppressed the wound closure of lung cancer cells using wound healing assay. Moreover, Arg significantly inhibited the migration and invasion of lung cancer cells by transwell invasion assay and matrigel invasion assay. 24 unique differentially-expressed proteins related to metastasis in lung cancer cells treated with Arg were identified using iTRAQ-labeled LC-MS proteomics and 14 differentially-expressed proteins related to EMT were further confirmed by Western blotting assay. Arg significantly decreased the phosphorylation of IKKβ, IκBα and p65 in the cytoplasm of lung cancer cells by Western blotting assay, and remarkably reduced the release of p65 from the cytoplasm to the nucleus. Arg could be bound in the ATP binding pocket of IKKα and IKKβ by molecular docking assay, and MD simulation assay further demonstrated that Arg binding to the ATP-binding pocket of IKKβ was very stable in 300 ns MD simulation, compared with the binding of Arg and IKKα. IKKβ/NFκB signaling cascade was also involved in the inhibitory effect of Arg on EMT of lung cancer cells by siRNA knockdown assay. The study of lung cancer cell xenograft mice model and pulmonary metastasis mice model in vivo indicated that Arg inhibited EMT and suppressed migration and invasion of lung cancer cells via downregulating IKKβ/NFκB signaling cascade. CONCLUSION In the present study, we explored the molecular mechanism of Arg prohibiting the metastasis of lung cancer cells in vitro and in vivo, which displayed Arg could target IKKβ to inactive NFκB signaling cascade and further change the expression of proteins related to EMT. These results highlight the potential of toad venom as a potential chemotherapeutic agent and warrant its development as the clinical therapy for lung cancer.
Collapse
Affiliation(s)
- Jiangmin Zhao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China; Department of Radiology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Gangyong Zou
- Department of Pathology,Weihai Municipal Hospital,Weihai, Shandong, 264200, China.
| | - Guogang Gao
- Department of Pathology,Weihai Municipal Hospital,Weihai, Shandong, 264200, China.
| | - Qingxi Yue
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
29
|
Yang B, Mao J, Gao B, Lu X. Computer-Assisted Drug Virtual Screening Based on the Natural Product Databases. Curr Pharm Biotechnol 2019; 20:293-301. [PMID: 30919773 DOI: 10.2174/1389201020666190328115411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Computer-assisted drug virtual screening models the process of drug screening through computer simulation technology, by docking small molecules in some of the databases to a certain protein target. There are many kinds of small molecules databases available for drug screening, including natural product databases. METHODS Plants have been used as a source of medication for millennia. About 80% of drugs were either natural products or related analogues by 1990, and many natural products are biologically active and have favorable absorption, distribution, metabolization, excretion, and toxicology. RESULTS In this paper, we review the natural product databases' contributions to drug discovery based on virtual screening, focusing particularly on the introductions of plant natural products, microorganism natural product, Traditional Chinese medicine databases, as well as natural product toxicity prediction databases. CONCLUSION We highlight the applications of these databases in many fields of virtual screening, and attempt to forecast the importance of the natural product database in next-generation drug discovery.
Collapse
Affiliation(s)
- Baoyu Yang
- Department of Biochemistry and Cell Biology, The School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jing Mao
- Department of Biochemistry and Cell Biology, The School of Life Science, Liaoning University, Shenyang 110036, China
| | - Bing Gao
- Department of Cell Biology and Genetics, Shenyang Medical College, 146 Huanghe North Street, Shenyang 110034, China
| | - Xiuli Lu
- Department of Biochemistry and Cell Biology, The School of Life Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
30
|
Liang C, Tian D, Liu Y, Li H, Zhu J, Li M, Xin M, Xia J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur J Med Chem 2019; 174:130-141. [PMID: 31035236 DOI: 10.1016/j.ejmech.2019.04.039] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 01/25/2023]
Abstract
Ganoderma lucidum is a multi-purpose plant medicine that is homologous to functional food. The most attractive properties of G. lucidum are its immunomodulatory and antitumour activities, which are mainly attributed to the following two major active components: G. lucidum polysaccharides and G. lucidum triterpenoids (GLTs). GLTs are effective as supplemental therapies and improve health when combined with other medications to treat hepatitis, fatigue syndrome, and prostate cancer. However, research investigating the mechanism and application of G. lucidum or GLTs in the treatment of diseases remains preliminary in terms of both the utilization efficacy and product type. This review offers comprehensive insight into the pharmacological activities of GLTs and their potential applications in the development of functional foods and nutraceuticals. Specifically, 83 GLTs were selected, and their molecular structures and chemical formulas were described. We also describe 7 ganoderic acids that are currently at different stages of clinical trials (ganoderic acids A, C2, D, F, DM, X and Y). The related pharmacodynamic mechanisms and targeted signalling proteins were further analysed. Notably, the specific relationship between autophagy and apoptosis induced by ganoderic acid DM is summarized here for the first time.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Danni Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jialiang Zhu
- National Institutes for Food and Drug Control, Beijing, 100050, PR China.
| | - Min Li
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China.
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
| |
Collapse
|
31
|
Yao G, Ma Y, Muhammad M, Huang Q. Understanding the infrared and Raman spectra of ganoderic acid A: An experimental and DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:372-380. [PMID: 30502725 DOI: 10.1016/j.saa.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Ganoderic Acids (GAs) are the major medicinal compounds in Ganoderma lucidum used as traditional Chinese medicine since ancient times. Ganoderic acid A (GAA) is the first discovered ganoderic acids reported in the literature, which is also one of most abundant triterpenoids of Ganoderma lucidum. Especially, GAA has been extensively investigated in recent decades for its positive medicinal activities. However, the vibrational properties of GAs have rarely been studied or reported. In this work, we focused on the typical GAA and studied the infrared (IR) and Raman spectra based on both experiments and DFT calculations. As such, we could not only achieve the assignments of the vibrational modes, but also from the IR and Raman spectra, we found that the spectral region from 1500 cm-1 to 1800 cm-1 is particularly useful for distinguishing different types of GAs. In addition, its dehydrogenated derivative ganoderenic acid A (GOA) was also studied, which could be identified due to its spectral feature of strong IR and Raman bands around 1620 cm-1. This work therefore may facilitate the application of IR and Raman spectroscopies in the inspection and quality control of Ganoderma lucidum.
Collapse
Affiliation(s)
- Guohua Yao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuhan Ma
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China; College of Life Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Muhammad Muhammad
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China
| | - Qing Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China; College of Life Science, Anhui Science and Technology University, Fengyang 233100, China.
| |
Collapse
|
32
|
Reis IMA, Conceição RS, Ferreira RS, Dos Santos CC, da Silva GR, de Mattos Oliveira L, Cassiano DSA, Dos Santos Junior MC, Botura MB, da Silva VDA, Costa SL, da Silva TMS, Vieira IJC, Braz-Filho R, Branco A. Alkene lactones from Persea fulva (Lauraceae): Evaluation of their effects on tumor cell growth in vitro and molecular docking studies. Bioorg Chem 2019; 86:665-673. [PMID: 30826627 DOI: 10.1016/j.bioorg.2019.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/14/2019] [Accepted: 02/09/2019] [Indexed: 12/20/2022]
Abstract
The new alkene lactone, (3E)-5,6-dihydro-5-(hydroxymethyl)-3-docdecylidenefuran-3(4H)-one (1), named majoranolide B, and three alkene lactones known as majorenolide (2), majoranolide (3) and majorynolide (4) were obtained from the aerial parts of Persea fulva (Lauraceae). The structures were elucidated in light of extensive spectroscopic analysis, including 1D, 2D NMR (1H, 13C, 1H-1H-COSY, HMBC and HSQC) and HR-ESI-MS. These compounds were screened for their in vitro antiproliferative activity in rat C6 glioma and astrocyte cells using MTT assay and in silico by molecular docking against targets that play a central role in controlling glioma cell cycle progression. Majoranolide (3) is the most active compound with IC50 6.69 µM against C6 glioma cells, followed by the compounds 1 (IC50 9.06 µM), 2 (IC50 12.04 µM) and 4 (IC50 41.90 µM). The alkene lactones 1-3 exhibited lower toxicity in non-tumor cells when compared to glioma cells. Molecular docking results showed that majoranolide establishes hydrogen bonds with all targets through its α,β-unsaturated-γ-lactone moiety, whereas the long-chain alkyl group binds by means of several hydrophobic bonds. In the present study, it can be concluded from the anti-proliferative activity of isolates against C6 glioma cells that lactone constituents from P. fulva could have a great potential for the control of C6 glioma cells.
Collapse
Affiliation(s)
- Isabella Mary Alves Reis
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, 44036-900 Feira de Santana, BA, Brazil
| | - Rodrigo Souza Conceição
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, 44036-900 Feira de Santana, BA, Brazil
| | - Rafael Short Ferreira
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, 41100-100 Salvador, BA, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, 41100-100 Salvador, BA, Brazil
| | - Girliane Regina da Silva
- Programa de Pós-Graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Departamento de Ciências Molecular, Universidade Federal Rural de Pernambuco, Campus Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Larissa de Mattos Oliveira
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, 44036-900 Feira de Santana, BA, Brazil
| | - Dayse Santos Almeida Cassiano
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, 44036-900 Feira de Santana, BA, Brazil
| | | | - Mariana Borges Botura
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, 44036-900 Feira de Santana, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, 41100-100 Salvador, BA, Brazil
| | - Silvia Lima Costa
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, 41100-100 Salvador, BA, Brazil
| | - Tania Maria Sarmento da Silva
- Programa de Pós-Graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Departamento de Ciências Molecular, Universidade Federal Rural de Pernambuco, Campus Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Ivo José Curcino Vieira
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Raimundo Braz-Filho
- PVE-FAPERJ/DEQUIM-ICE-Universidade Federal Rural do Rio de Janeiro (UFRRJ), CP 74541, 23894-374 Seropédica, RJ, Brazil; LCQUI-CCT-Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-600 Campos dos Goytacazes, RJ, Brazil
| | - Alexsandro Branco
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, 44036-900 Feira de Santana, BA, Brazil.
| |
Collapse
|
33
|
Abstract
Pharmacological science is trying to establish the link between chemicals, targets, and disease-related phenotypes. A plethora of chemical proteomics and structural data have been generated, thanks to the target-based approach that has dominated drug discovery at the turn of the century. There is an invaluable source of information for in silico target profiling. Prediction is based on the principle of chemical similarity (similar drugs bind similar targets) or on first principles from the biophysics of molecular interactions. In the first case, compound comparison is made through ligand-based chemical similarity search or through classifier-based machine learning approach. The 3D techniques are based on 3D structural descriptors or energy-based scoring scheme to infer a binding affinity of a compound with its putative target. More recently, a new approach based on compound set metric has been proposed in which a query compound is compared with a whole of compounds associated with a target or a family of targets. This chapter reviews the different techniques of in silico target profiling and their main applications such as inference of unwanted targets, drug repurposing, or compound prioritization after phenotypic-based screening campaigns.
Collapse
|
34
|
Huang H, Zhang G, Zhou Y, Lin C, Chen S, Lin Y, Mai S, Huang Z. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds. Front Chem 2018; 6:138. [PMID: 29868550 PMCID: PMC5954125 DOI: 10.3389/fchem.2018.00138] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Collapse
Affiliation(s)
- Hongbin Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Guigui Zhang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Yuquan Zhou
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Chenru Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Suling Chen
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Yutong Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Shangkang Mai
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| |
Collapse
|
35
|
Wang LC, Wei WH, Zhang XW, Liu D, Zeng KW, Tu PF. An Integrated Proteomics and Bioinformatics Approach Reveals the Anti-inflammatory Mechanism of Carnosic Acid. Front Pharmacol 2018; 9:370. [PMID: 29713284 PMCID: PMC5911474 DOI: 10.3389/fphar.2018.00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
Drastic macrophages activation triggered by exogenous infection or endogenous stresses is thought to be implicated in the pathogenesis of various inflammatory diseases. Carnosic acid (CA), a natural phenolic diterpene extracted from Salvia officinalis plant, has been reported to possess anti-inflammatory activity. However, its role in macrophages activation as well as potential molecular mechanism is largely unexplored. In the current study, we sought to elucidate the anti-inflammatory property of CA using an integrated approach based on unbiased proteomics and bioinformatics analysis. CA significantly inhibited the robust increase of nitric oxide and TNF-α, downregulated COX2 protein expression, and lowered the transcriptional level of inflammatory genes including Nos2, Tnfα, Cox2, and Mcp1 in LPS-stimulated RAW264.7 cells, a murine model of peritoneal macrophage cell line. The LC-MS/MS-based shotgun proteomics analysis showed CA negatively regulated 217 LPS-elicited proteins which were involved in multiple inflammatory processes including MAPK, nuclear factor (NF)-κB, and FoxO signaling pathways. A further molecular biology analysis revealed that CA effectually inactivated IKKβ/IκB-α/NF-κB, ERK/JNK/p38 MAPKs, and FoxO1/3 signaling pathways. Collectively, our findings demonstrated the role of CA in regulating inflammation response and provide some insights into the proteomics-guided pharmacological mechanism study of natural products.
Collapse
Affiliation(s)
- Li-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wen-Hui Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
36
|
Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules 2018. [PMID: 29534044 PMCID: PMC6017764 DOI: 10.3390/molecules23030649] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.
Collapse
|
37
|
Xu X, Huang M, Zou X. Docking-based inverse virtual screening: methods, applications, and challenges. BIOPHYSICS REPORTS 2018; 4:1-16. [PMID: 29577065 PMCID: PMC5860130 DOI: 10.1007/s41048-017-0045-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Identifying potential protein targets for a small-compound ligand query is crucial to the process of drug development. However, there are tens of thousands of proteins in human alone, and it is almost impossible to scan all the existing proteins for a query ligand using current experimental methods. Recently, a computational technology called docking-based inverse virtual screening (IVS) has attracted much attention. In docking-based IVS, a panel of proteins is screened by a molecular docking program to identify potential targets for a query ligand. Ever since the first paper describing a docking-based IVS program was published about a decade ago, the approach has been gradually improved and utilized for a variety of purposes in the field of drug discovery. In this article, the methods employed in docking-based IVS are reviewed in detail, including target databases, docking engines, and scoring function methodologies. Several web servers developed for non-expert users are also reviewed. Then, a number of applications are presented according to different research purposes, such as target identification, side effects/toxicity, drug repositioning, drug-target network development, and receptor design. The review concludes by discussing the challenges that docking-based IVS needs to overcome to become a robust tool for pharmaceutical engineering.
Collapse
Affiliation(s)
- Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 USA
- Informatics Institute, University of Missouri, Columbia, MO 65211 USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
| | - Marshal Huang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 USA
- Informatics Institute, University of Missouri, Columbia, MO 65211 USA
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 USA
- Informatics Institute, University of Missouri, Columbia, MO 65211 USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
38
|
Zhao RL, He YM. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:287-295. [PMID: 28882624 DOI: 10.1016/j.jep.2017.08.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/20/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (GL) is an oriental medical fungus, which was used to prevent and treat many diseases. Previously, the effective compounds of Ganoderma lucidum extract (GLE) were extracted from two kinds of GL, [Ganoderma lucidum (Leyss. Ex Fr.) Karst.] and [Ganoderma sinense Zhao, Xu et Zhang], which have been used for adjuvant anti-cancer clinical therapy for more than 20 years. However, its concrete active compounds and its regulation mechanisms on tumor are unclear. AIM OF THE STUDY In this study, we aimed to identify the main active compounds from GLE and to investigate its anti-cancer mechanisms via drug-target biological network construction and prediction. MATERIALS AND METHODS The main active compounds of GLE were identified by HPLC, EI-MS and NMR, and the compounds related targets were predicted using docking program. To investigate the functions of GL holistically, the active compounds of GL and related targets were predicted based on four public databases. Subsequently, the Identified-Compound-Target network and Predicted-Compound-Target network were constructed respectively, and they were overlapped to detect the hub potential targets in both networks. Furthermore, the qRT-PCR and western-blot assays were used to validate the expression levels of target genes in GLE treated Hepa1-6-bearing C57 BL/6 mice. RESULTS In our work, 12 active compounds of GLE were identified, including Ganoderic acid A, Ganoderenic acid A, Ganoderic acid B, Ganoderic acid H, Ganoderic acid C2, Ganoderenic acid D, Ganoderic acid D, Ganoderenic acid G, Ganoderic acid Y, Kaemferol, Genistein and Ergosterol. Using the docking program, 20 targets were mapped to 12 compounds of GLE. Furthermore, 122 effective active compounds of GL and 116 targets were holistically predicted using public databases. Compare with the Identified-Compound-Target network and Predicted-Compound-Target network, 6 hub targets were screened, including AR, CHRM2, ESR1, NR3C1, NR3C2 and PGR, which was considered as potential markers and might play important roles in the process of GLE treatment. GLE effectively inhibited tumor growth in Hepa1-6-bearing C57 BL/6 mice. Finally, consistent with the results of qRT-PCR data, the results of western-blot assay demonstrated the expression levels of PGR and ESR1 were up-regulated, as well as the expression levels of NR3C2 and AR were down-regulated, while the change of NR3C1 and CHRM2 had no statistical significance. CONCLUSIONS The results indicated that these 4 hub target genes, including NR3C2, AR, ESR1 and PGR, might act as potential markers to evaluate the curative effect of GLE treatment in tumor. And, the combined data provide preliminary study of the pharmacological mechanisms of GLE, which may be a promising potential therapeutic and chemopreventative candidate for anti-cancer.
Collapse
Affiliation(s)
- Ruo-Lin Zhao
- School of Basic Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yu-Min He
- School of Basic Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
39
|
Zhao J, Nagle DG, Zhou Y, Zhang W. Network Pharmacology in the Study of TCM Formulae. SYSTEMS BIOLOGY AND ITS APPLICATION IN TCM FORMULAS RESEARCH 2018:69-95. [DOI: 10.1016/b978-0-12-812744-5.00004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Lu Z, Ma Y, Zhang Q, Zhao X, Zhang Y, Zhang L. Proteomic analyses of ram (Ovis aries) testis during different developmental stages. Anim Reprod Sci 2017; 189:93-102. [PMID: 29279200 DOI: 10.1016/j.anireprosci.2017.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
Abstract
Male reproductive capacity is essential for animal breeding and reproduction. In males, the testes produce sperm and secrete androgen, processes which require precise regulation by multiple proteins. The composition of proteins in the ram testes has not yet been studied systematically, thus, the application of proteomics to explore differential protein regulation during ram testes development is of great significance. In the present study, ram testes were studied at five different developmental phases to assess postnatal differences in protein regulation. Two dimensional electrophoresis (2-DE) was used to separate ram testes proteins at each developmental phase, yielding 45 different proteins, 37 of which were identified by Matrix Assisted Laser Desorption Ionization-Time of Flight-Time of Flight-Mass Spectrometry (MALDI-TOF/TOF-MS). Gene Ontology (GO) was used to specifically annotate the biological process, cellular composition, and molecular function of each identified protein. Most of the identified proteins were involved in structural formation, development, reproduction, and apoptosis of the testicular spermatogenic tissue and spermatozoa. Quantitative real time PCR (qRT-PCR), western blot and immunohistochemical methods were used to verify the proteins, and the results were consistent with that of 2-DE. The proteins that were different in abundance that were identified in this study can be used as biomarkers in future studies of ram reproduction.
Collapse
Affiliation(s)
- Zengkui Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China.
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
41
|
Gill BS, Navgeet, Mehra R, Kumar V, Kumar S. Ganoderic acid, lanostanoid triterpene: a key player in apoptosis. Invest New Drugs 2017; 36:136-143. [DOI: 10.1007/s10637-017-0526-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022]
|
42
|
Wang B, Niu T, Bhatti MZ, Chen F, Wu L, Chen J. Identification of cyst wall proteins of the hypotrich ciliate Euplotes encysticus using a proteomics approach. J Microbiol 2017; 55:545-553. [DOI: 10.1007/s12275-017-6422-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/02/2017] [Accepted: 03/13/2017] [Indexed: 12/01/2022]
|
43
|
Peón A, Naulaerts S, Ballester PJ. Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space. Sci Rep 2017; 7:3820. [PMID: 28630414 PMCID: PMC5476590 DOI: 10.1038/s41598-017-04264-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/26/2017] [Indexed: 02/05/2023] Open
Abstract
Many computational methods to predict the macromolecular targets of small organic molecules have been presented to date. Despite progress, target prediction methods still have important limitations. For example, the most accurate methods implicitly restrict their predictions to a relatively small number of targets, are not systematically validated on drugs (whose targets are harder to predict than those of non-drug molecules) and often lack a reliability score associated with each predicted target. Here we present a systematic validation of ligand-centric target prediction methods on a set of clinical drugs. These methods exploit a knowledge-base covering 887,435 known ligand-target associations between 504,755 molecules and 4,167 targets. Based on this dataset, we provide a new estimate of the polypharmacology of drugs, which on average have 11.5 targets below IC50 10 µM. The average performance achieved across clinical drugs is remarkable (0.348 precision and 0.423 recall, with large drug-dependent variability), especially given the unusually large coverage of the target space. Furthermore, we show how a sparse ligand-target bioactivity matrix to retrospectively validate target prediction methods could underestimate prospective performance. Lastly, we present and validate a first-in-kind score capable of accurately predicting the reliability of target predictions.
Collapse
Affiliation(s)
- Antonio Peón
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, Marseille, F-13009, France
- CNRS, UMR7258, Marseille, F-13009, France
- Institut Paoli-Calmettes, Marseille, F-13009, France
- Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Stefan Naulaerts
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, Marseille, F-13009, France
- CNRS, UMR7258, Marseille, F-13009, France
- Institut Paoli-Calmettes, Marseille, F-13009, France
- Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Pedro J Ballester
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, Marseille, F-13009, France.
- CNRS, UMR7258, Marseille, F-13009, France.
- Institut Paoli-Calmettes, Marseille, F-13009, France.
- Aix-Marseille University, UM 105, F-13284, Marseille, France.
| |
Collapse
|
44
|
Li B, Ali Z, Chan M, Li J, Wang M, Abe N, Wu CR, Khan IA, Wang W, Li SX. Chemical constituents of Pholidota cantonensis. PHYTOCHEMISTRY 2017; 137:132-138. [PMID: 28215606 DOI: 10.1016/j.phytochem.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Two 9,10-dihydrophenanthrenes trivially named phocantol and phocantone, two diterpenoid glycosidesnamed phocantoside A and phocantoside B were isolated from the ethanol extract of the air-dried whole plant of Pholidota cantonensis Rolfe, together with seventeen known compounds. The structures of the four compounds were identified as 1-hydroxy-2,7-dimethoxy-9,10-dihydrophenanthro-[4,5-bcd]furan, 5-hydroxy-2,7-dimethoxy-9,10-dihydro-1,4-phenanthrenedione, (8R,13E)-ent-labd-13-ene-3α,8,15-triol 15-O-β-D-gluco-pyranoside and (5S,8R,9S,10R)-cis-cleroda-3,13(E)-diene-15,18-diol 15-O-β-D-glucopyranosyl-18-O-β-D-glucopyranoside by chemical and spectroscopic methods, including 1D and 2D NMR. Twenty compounds were evaluated for their cytotoxic activities against mouse leukemia p388D1 cancer cells, and compound phocantone, phocantoside A, tanshinone IIA and syringate exhibited cytotoxic activity against the mouse leukemia p388D1 cancer cells with IC50 values ranging from 13.37 to 27.5 μM.
Collapse
Affiliation(s)
- Bin Li
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; TCM and Ethnomedicine Innovation & Development Laboratory, Sino-Luxemburg TCM Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zulfiqar Ali
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, USA
| | - Michael Chan
- Natural Health and Food Products Research Group, British Columbia Institute of Technology, Burnaby V5G3H2, BC, Canada
| | - Juan Li
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mei Wang
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, USA
| | - Naohito Abe
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, USA
| | - Can-Rong Wu
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ikhlas A Khan
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, USA; Department of Pharmacognosy, University of Mississippi, Oxford, MS 38677, USA
| | - Wei Wang
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; TCM and Ethnomedicine Innovation & Development Laboratory, Sino-Luxemburg TCM Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shun-Xiang Li
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
45
|
Protein abundance changes of Zygosaccharomyces rouxii in different sugar concentrations. Int J Food Microbiol 2016; 233:44-51. [PMID: 27322723 DOI: 10.1016/j.ijfoodmicro.2016.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/14/2016] [Accepted: 05/04/2016] [Indexed: 11/24/2022]
Abstract
Zygosaccharomyces rouxii is a yeast which can cause spoilage in the concentrated juice industries. It exhibits resistance to high sugar concentrations but genome- and proteome-wide studies on Z. rouxii in response to high sugar concentrations have been poorly investigated. Herein, by using a 2-D electrophoresis based workflow, the proteome of a wild strain of Z. rouxii under different sugar concentrations has been analyzed. Proteins were extracted, quantified, and subjected to 2-DE analysis in the pH range 4-7. Differences in growth (lag phase), protein content (13.97-19.23mg/g cell dry weight) and number of resolved spots (196-296) were found between sugar concentrations. ANOVA test showed that 168 spots were different, and 47 spots, corresponding to 40 unique gene products have been identified. These protein species are involved in carbohydrate and energy metabolism, amino acid metabolism, response to stimulus, protein transport and vesicle organization, cell morphogenesis regulation, transcription and translation, nucleotide metabolism, amino-sugar nucleotide-sugar pathways, oxidoreductases balancing, and ribosome biogenesis. The present study provides important information about how Z. rouxii acts to cope with high sugar concentration at molecular levels, which might enhance our global understanding of Z. rouxii's high sugar-tolerance trait.
Collapse
|
46
|
Synthesis and cytotoxicity evaluation of 4′-amino-4′-dehydroxyloleandrin derivatives. Fitoterapia 2016; 113:85-90. [DOI: 10.1016/j.fitote.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 11/20/2022]
|
47
|
Liu M, Feng LX, Sun P, Liu W, Wu WY, Jiang BH, Yang M, Hu LH, Guo DA, Liu X. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice. PLoS One 2016; 11:e0159789. [PMID: 27459387 PMCID: PMC4961401 DOI: 10.1371/journal.pone.0159789] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
BF211 is a synthetic molecule derived from bufalin (BF). The apoptosis-inducing effect of BF211 was stronger than that of BF while the acute toxicity of BF211 was much lower than that of BF. BF211 exhibited promising concentration-dependent anti-cancer effects in nude mice inoculated with A549 cells in vivo. The growth of A549 tumor xenografts was almost totally blocked by treatment with BF211 at 6 mg/kg. Notably, BF and BF211 exhibited differences in their binding affinity and kinetics to recombinant proteins of the α subunits of Na+/K+-ATPase. Furthermore, there was a difference in the effects of BF or BF211 on inhibiting the activity of porcine cortex Na+/K+-ATPase and in their time-dependent effects on intracellular Ca2+ levels in A549 cells. The time-dependent effects of BF or BF211 on the activation of Src, which was mediated by the Na+/K+-ATPase signalosome, in A549 cells were also different. Both BF and BF211 could induce apoptosis-related cascades, such as activation of caspase-3 and the cleavage of PARP (poly ADP-ribose polymerase) in A549 cells, in a concentration-dependent manner; however, the effects of BF211 on apoptosis-related cascades was stronger than that of BF. The results of the present study supported the importance of binding to the Na+/K+-ATPase α subunits in the mechanism of cardiac steroids and also suggested the possibility of developing new cardiac steroids with a stronger anti-cancer activity and lower toxicity as new anti-cancer agents.
Collapse
Affiliation(s)
- Miao Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Li-Xing Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Peng Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Wang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Wan-Ying Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Bao-Hong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Min Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Li-Hong Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- * E-mail: (LH); (DG); (XL)
| | - De-An Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- * E-mail: (LH); (DG); (XL)
| | - Xuan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- * E-mail: (LH); (DG); (XL)
| |
Collapse
|
48
|
Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells. PLoS One 2016; 11:e0159034. [PMID: 27428326 PMCID: PMC4948917 DOI: 10.1371/journal.pone.0159034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K-ATPase α1 and α3 subunits and increased the expression of WEE1 in HeLa cells. Antibodies against Na, K-ATPase α1 and α3 subunits alone or combinated with arenobufagin also inhibited the activity of proteasome. Furthermore, the expression of the possible intermediate proteins ataxin-1 and translationally-controlled tumor protein was increased in HeLa cells treated with arenobufagin by flow cytometry analysis, respectively. These results indicated that arenobufagin might directly bind with Na, K-ATPase α1 and α3 subunits and the inhibitive effect of arenobufagin on proteasomal activity of HeLa cells might be related to its binding with Na, K-ATPase.
Collapse
|
49
|
Lu JJ, Lu DZ, Chen YF, Dong YT, Zhang JR, Li T, Tang ZH, Yang Z. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chin J Nat Med 2016; 13:673-9. [PMID: 26412427 DOI: 10.1016/s1875-5364(15)30065-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 12/27/2022]
Abstract
Platycodin D (PD), a triterpenoid saponin isolated from Platycodonis Radix, is a famous Chinese herbal medicine that has been shown to have anti-proliferative effects in several cancer cell lines. The aim of this study was to determine the changes in cellular proteins after the treatment of hepatocellular carcinoma HepG2 cells with PD using proteomics approaches. The cell viability was determined using the MTT assay. The proteome was analyzed by two-dimensional difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Western blot analysis was used to confirm the expression of changed proteins. Our results showed that PD inhibited the proliferation of HepG2 cells in concentration- and time-dependent manners. Sixteen proteins were identified to be up-regulated in PD-treated HepG2 cells, including ATP5H, OXCT1, KRT9, CCDC40, ERP29, RCN1, ZNF175, HNRNPH1, HSP27, PA2G4, PHB, BANF1, TPM3, ECH1, LGALS1, and MYL6. Three proteins (i.e., RPS12, EMG1, and KRT1) decreased in HepG2 cells after treatment with PD. The changes in HSP27 and PHB were further confirmed by Western blotting. In conclusion, our results shed new lights on the mechanisms of action for the anti-cancer activity of PD.
Collapse
Affiliation(s)
- Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - De-Zhao Lu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu-Fei Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ya-Ting Dong
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jun-Ren Zhang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhen Yang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
50
|
Sun P, Feng LX, Zhang DM, Liu M, Liu W, Mi T, Wu WY, Jiang BH, Yang M, Hu LH, Guo DA, Liu X. Bufalin derivative BF211 inhibits proteasome activity in human lung cancer cells in vitro by inhibiting β1 subunit expression and disrupting proteasome assembly. Acta Pharmacol Sin 2016; 37:908-18. [PMID: 27238210 DOI: 10.1038/aps.2016.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
Abstract
AIM Bufalin is one of the active components in the traditional Chinese medicine ChanSu that is used to treat arrhythmia, inflammation and cancer. BF211 is a bufalin derivative with stronger cytotoxic activity in cancer cells. The aim of this study was to identify the putative target proteins of BF211 and the signaling pathways in cancer cells. METHODS A549 human lung cancer cells were treated with BF211. A SILAC-based proteomic analysis was used to detect the protein expression profiles of BF211-treated A549 cells. Cellular proteasome activities were examined using fluorogenic peptide substrates, and the binding affinities of BF211 to recombinant proteasome subunit proteins were evaluated using the Biacore assay. The expression levels of proteasome subunits were determined using RT-PCR and Western blotting, and the levels of the integral 26S proteasome were evaluated using native PAGE analysis. RESULTS The proteomic analysis revealed that 1282 proteins were differentially expressed in BF211-treated A549 cells, and the putative target proteins of BF211 were associated with various cellular functions, including transcription, translation, mRNA splicing, ribosomal protein synthesis and proteasome function. In A549 cells, BF211 (5, 10, and 20 nmol/L) dose-dependently inhibited the enzymatic activities of proteasome. But BF211 displayed a moderate affinity in binding to proteasome β1 subunit and no binding affinity to the β2 and β5 subunits. Moreover, BF211 (0.1, 1, and 10 nmol/L) did not inhibit the proteasome activities in the cell lysates. BF211 (5, 10, and 20 nmol/L) significantly decreased the expression level of proteasome β1 subunit and the levels of integral 26S proteasome in A549 cells. Similarly, knockdown of the β1 subunit with siRNA in A549 cells significantly decreased integral 26S proteasome and proteasome activity. CONCLUSION BF211 inhibits proteasome activity in A549 cells by decreasing β1 subunit expression and disrupting proteasome assembly.
Collapse
|