1
|
Fulton KM, Mendoza-Barberà E, Tomás JM, Twine SM, Smith JC, Merino S. Polar flagellin glycan heterogeneity of Aeromonas hydrophila strain ATCC 7966 T. Bioorg Chem 2025; 158:108300. [PMID: 40058227 DOI: 10.1016/j.bioorg.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Motile pathogens often rely upon flagellar motility as an essential virulence factor and in many species the structural flagellin protein is glycosylated. Flagellin glycosylation has been shown to be important for proper function of the flagellar filament in a number of bacterial species. Aeromonas hydrophila is a ubiquitous aquatic pathogen with a constitutively expressed polar flagellum. Using a suite of mass spectrometry techniques, the flagellin FlaA and FlaB structural proteins of A. hydrophila strain ATCC 7966T were shown to be glycosylated with significant microheterogeneity, macroheterogeneity, and metaheterogeneity. The primary linking sugar in this strain was a novel and previously unreported pseudaminic acid derivative with a mass of 422 Da. The pseudaminic acid derivative was followed in sequence by two hexoses, an N-acetylglucosamine (with additional variable secondary modification), and a deoxy N-acetylglucosamine derivative. These pentasaccharide glycans were observed modifying all eight modification sites. Hexasaccharides, which included an additional N-acetylhexosamine residue as the capping sugar, were observed exclusively modifying a pair of isobaric peptides from FlaA and FlaB. Interestingly, these isobaric peptides are immediately adjacent to a toll-like receptor 5 binding site in both protein sequences. Glycosylation status was also linked to motility, a critical bacterial virulence factor.
Collapse
Affiliation(s)
- Kelly M Fulton
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada; Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| | - Elena Mendoza-Barberà
- Departamento de Biologia, Sanidad y Medio Ambiente, Facultad de Farmacia y Ciencias de la Alimentación, Universidad de Barcelona, C/ Joan XXIII, 27, 08028 Barcelona, Barcelona, Spain; Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain
| | - Juan M Tomás
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada; Department of Biology, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Susana Merino
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Muniandy M, Joenväärä S, van der Kolk BW, Tohmola T, Haltia H, Saari S, Hakkarainen A, Lundbom J, Kuula J, Groop PH, Kaprio J, Heinonen S, Renkonen R, Pietiläinen KH. Plasma N-Glycoproteomics in monozygotic twin pairs discordant for body mass index reveals an obesity signature related to inflammation and iron metabolism. Biol Direct 2025; 20:31. [PMID: 40108677 PMCID: PMC11921541 DOI: 10.1186/s13062-025-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND N-glycosylation is a complex, post-translational modification which influences protein function and is sensitive to physiological changes. Obesity is associated with alterations in protein function; however, little is known about the glycoproteome in obesity beyond observations of association with types and structures of selected glycopeptides. Most often, due to technical challenges, glycan composition and structure information are missing. Here, we combined label-free data-independent proteomics and targeted quantitative glycoproteomics to study N-glycosylation of plasma proteins in obesity. Using a monozygotic twin study design, we controlled for genetic variation and focused only on the acquired effects of obesity. METHODS Using plasma samples of 48 monozygotic twin pairs discordant for BMI (intrapair difference > 2.5 kg/m2), we identified using mass spectrometry, differential protein and glycopeptide levels between heavier and leaner co-twins. We used a within-twin paired analysis model and considered p < 0.05 as significant. RESULTS We identified 48 protein and 33 N-glycosylation expression differences (p < 0.05) between co-twins. These differences occurred either both in the protein expression and glycoprotein (sometimes in opposing directions) or independently from each other. Haptoglobin protein was upregulated (Fold Change = 1.10, p = 0.001) in heavier co-twins along with seven upregulated glycan compositions at N-glycosylation site Asn241. The complement protein C3 was upregulated (Fold Change = 1.08, p = 0.014) along with one upregulated glycopeptide at Asn85. Additionally, many glycopeptides were upregulated despite non-significant differences in protein-backbone plasma levels. CONCLUSION Differential protein expression related to cholesterol biosynthesis and acute phase signalling as well as N-glycosylation of proteins related to iron metabolism and inflammation can be linked to acquired obesity.
Collapse
Affiliation(s)
- Maheswary Muniandy
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Sakari Joenväärä
- Transplantation Laboratory, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Birgitta W van der Kolk
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiialotta Tohmola
- Transplantation Laboratory, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Hanna Haltia
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sina Saari
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Hakkarainen
- Department of Radiology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Jesper Lundbom
- Department of Radiology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Juho Kuula
- Department of Radiology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Faculty of Medicine Doctoral Program in Clinical Research, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Healthy Weight Hub, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Chen CX, Wang X, Su W, Tian Y, Gao Y, Liu DL, Xiang H, Liu BC, Shi JL, Zhang Y, Shen D, He WZ, Yang L, Hong C, Wu F, Shi LT, Cun YN, Zhou J. Changes in the dynamic characteristics of G-protein can alter the immune-protection efficacy of rabies virus vaccine. J Virol 2025; 99:e0195424. [PMID: 39982033 PMCID: PMC11915851 DOI: 10.1128/jvi.01954-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/12/2025] [Indexed: 02/22/2025] Open
Abstract
The efficacy of the G-protein is influenced by N-linked glycosylation, which serves as the sole immunogen of the rabies virus vaccine. However, achieving satisfactory immune-protection efficacy remains challenging, owing to the heterogeneous glycosylation of G-proteins. Within molecular dynamics, examining the impact of N-glycan heterogeneity on the structural characteristics of G-proteins provides insights into the relationship between antigens and the efficacy of rabies virus vaccines. Glycosylation is regulated by host cells. In rabies virus cultured in Vero cells (VRV), all N-glycosylation sites of the G-protein underwent modification. In contrast, rabies virus G-protein cultured in KMB17 cells (human diploid cell vaccine [HDCV]) was only modified by N-glycans at amino acid positions 247 and 319. Furthermore, treatment of VRV with de-glycosylation significantly improved its immune-protective efficacy, whereas de-glycosylation did not alter the immune-protective efficacy of HDCV. To support the impact of glycosylation on VRV efficacy, the structures and dynamics of G-proteins were analyzed using GROMACS. Specifically, the hydrophobicity, flexibility, and radius of gyration of the G-protein trimer in VRV were significantly altered by excessive hydrogen bonds formed by the three-branched hybrid glycan at the aa 319 site. These changes increase the instability of the G-protein trimer and may lead to a decrease in vaccine protective efficacy. Ultimately, we determined that N-glycan heterogeneity affects the immune-protection effect of antigen proteins by altering their dynamic characteristics, enhancing our understanding of the correlation between antigen structural characteristics and efficacy. IMPORTANCE N-glycosylation of rabies virus glycoprotein dynamically regulates protein folding, stability, and antigenicity. Therefore, regulation of N-glycan modification is key to improving vaccine stability and protective efficacy. How the type and modification sites of N-glycans affect the protective efficacy of rabies vaccines remains unclear. Our research indicates that there are differences in the protective efficacy of rabies virus G-proteins modified with different N-glycans. Moreover, the modification of the three-branched hybrid glycan at the aa 319 site of G-protein significantly altered the hydrophobicity, flexibility, and radius, and increased its trimeric antigen instability through molecular dynamics demonstrations. These findings update the current understanding of the impact of glycans on vaccine antigenicity and develop a system to evaluate the stability of antigen glycoproteins based on molecular dynamics.
Collapse
Affiliation(s)
- Chang-Xu Chen
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xi Wang
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Wen Su
- Biological Product Batch Issuance Laboratory, Medical Products Administration of Yunnan Province, Kunming, China
| | - Yuan Tian
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yu Gao
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Dong-Lan Liu
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Hong Xiang
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Bo-Chuan Liu
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Jin-Li Shi
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yang Zhang
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Dong Shen
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Wen-Zhi He
- Biological Product Batch Issuance Laboratory, Medical Products Administration of Yunnan Province, Kunming, China
| | - Li Yang
- Biological Product Batch Issuance Laboratory, Medical Products Administration of Yunnan Province, Kunming, China
| | - Chao Hong
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Fan Wu
- Biological Product Batch Issuance Laboratory, Medical Products Administration of Yunnan Province, Kunming, China
| | - Lei-Tai Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Yi-Na Cun
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Jian Zhou
- Bioproduct R&D Process Research Platform, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| |
Collapse
|
4
|
Kapp KL, Garcia-Marques F, Totten SM, Bermudez A, Tanimoto C, Brooks JD, Pitteri SJ. Intact glycopeptide analysis of human prostate tissue reveals site-specific heterogeneity of protein glycosylation in prostate cancer. Glycobiology 2025; 35:cwaf010. [PMID: 40036572 PMCID: PMC11899575 DOI: 10.1093/glycob/cwaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
Approximately 300,000 American men were diagnosed with prostate cancer in 2024. Existing screening approaches based on measuring levels of prostate-specific antigen in the blood lack specificity for prostate cancer. Studying the glycans attached to proteins has the potential to generate new biomarker candidates and/or increase the specificity of existing protein biomarkers, and studying protein glycosylation changes in prostate cancer could also add new information to our understanding of prostate cancer biology. Here, we present the analysis of N-glycoproteins in clinical prostate cancer tissue and patient-matched, non-cancerous adjacent tissue using LC-MS/MS-based intact N-linked glycopeptide analysis. This analysis allowed us to characterize protein N-linked glycosylation changes in prostate cancer at the glycoprotein, glycopeptide, and glycosite levels. Overall, 1894 unique N-glycosites on 7022 unique N-glycopeptides from 1354 unique glycoproteins were identified. Importantly, we observed an overall increase in glycoprotein, glycopeptide, and glycosite counts in prostate cancer tissue than non-cancerous tissue. We identified biological functions enriched in prostate cancer that relate to cancer development. Additionally, we characterized N-glycosite-specific changes in prostate cancer, demonstrating significant meta- and micro-heterogeneity in N-glycan composition in prostate cancer in comparison to non-cancerous tissue. Our findings support the idea that protein glycosylation is heavily impacted and aberrant in prostate cancer and provide examples of N-glycosite-specific changes that could be exploited for more specific markers of prostate cancer.
Collapse
Affiliation(s)
- Kathryn L Kapp
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Fernando Garcia-Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Sarah M Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Cheylene Tanimoto
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Center of Academic Medicine, 453 Quarry Rd, Urology-5656, Palo Alto, California 94304, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| |
Collapse
|
5
|
Han X, Zhang Z, Su CC, Lyu M, Miyagi M, Yu E, Nieman MT. Elucidating the dynamics of Integrin αIIbβ3 from native platelet membranes by cryo-EM with build and retrieve method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.27.625729. [PMID: 39651215 PMCID: PMC11623648 DOI: 10.1101/2024.11.27.625729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Platelets fulfill their essential physiological roles sensing the extracellular environment through their membrane proteins. The native membrane environment provides essential regulatory cues that impact the protein structure and mechanism of action. Single-particle cryogenic electron microscopy (cryo-EM) has transformed structural biology by allowing high-resolution structures of membrane proteins to be solved from homogeneous samples. Our recent breakthroughs in data processing now make it feasible to obtain atomic-level-resolution protein structures from crude preparations in their native environments by integrating cryo-EM with the "Build-and-Retrieve" (BaR) data processing methodology. We applied this iterative bottom-up methodology on resting human platelet membranes for an in-depth systems biology approach to uncover how lipids, metal binding, post-translational modifications, and co-factor associations in the native environment regulate platelet function at the molecular level. Here, we report using cryo-EM followed by the BaR method to solve the unmodified integrin αIIbβ3 structure directly from resting human platelet membranes in its inactivated and intermediate states at 2.75Å and 2.67Å, respectively. Further, we also solved a novel dimer conformation of αIIbβ3 at 2.85Å formed by two intermediate-states of αIIbβ3. This may indicate a previously unknown self-regulatory mechanism of αIIbβ3 in its native environment. In conclusion, our data show the power of using cryo-EM with the BaR method to determine three distinct structures including a novel dimer directly from natural sources. This approach allows us to identify unrecognized regulation mechanisms for proteins without artifacts due to purification processes. These data have the potential to enrich our understanding of platelet signaling circuitry.
Collapse
Affiliation(s)
- Xu Han
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Zhemin Zhang
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Chih-Chia Su
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Meinan Lyu
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Masaru Miyagi
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Edward Yu
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Marvin T Nieman
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| |
Collapse
|
6
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Nagai-Okatani C, Tomioka A, Tominaga D, Sakaue H, Kuno A, Kaji H. Inter-tissue glycan heterogeneity: site-specific glycoform analysis of mouse tissue N-glycoproteomes using MS1-based glycopeptide detection method assisted by lectin microarray. Anal Bioanal Chem 2025; 417:973-988. [PMID: 39676134 DOI: 10.1007/s00216-024-05686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
To understand the biological and pathological functions of protein glycosylation, the glycan heterogeneities for each glycosite in a single glycoprotein need to be elucidated depending on the type and status of cells. For this aim, a reliable strategy is needed to compare site-specific glycoforms of multiple glycoprotein samples in a comprehensive manner. To analyze this "inter-heterogeneity" of samples, we previously introduced an MS1-based glycopeptide detection method, "Glyco-RIDGE." Here, to elucidate inter-tissue glycan heterogeneities, this estimation method was applied to site-specific N-glycoforms of glycoproteins from six normal mouse tissues (liver, kidney, spleen, pancreas, stomach, and testis). The analyses of desialylated glycopeptides estimated 11,325 site-specific N-glycoforms with 239 glycan compositions at 1260 sites (1122 non-redundant core peptides) in 800 glycoproteins, revealing inter-tissue differences in macro-, micro-, and meta-glycan heterogeneities. To obtain detailed information on their glycan features and tissue distribution, the Glyco-RIDGE results were compared with laser microdissection-assisted lectin microarray (LMD-LMA)-based mouse tissue glycome mapping data deposited on LM-GlycomeAtlas, as well as MS-based mouse tissue glycome data deposited on GlycomeAtlas. This integrated approach supported the certainty of Glyco-RIDGE results and suggested that inter-tissue differences exist in glycan motifs, such as alpha-galactose and bisecting N-acetylglucosamine, in both whole tissue glycomes and specific glycoproteins, Anpep and Lamc1. In addition, the comparison with LMD-LMA-based tissue glycome mapping data suggested the possibility of estimating the tissue distribution of the assigned glycans and glycopeptides. Taken together, these findings demonstrate the utility of an integrated approach using MS assisted by LMA for large-scale analyses.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| | - Azusa Tomioka
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Daisuke Tominaga
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroaki Sakaue
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroyuki Kaji
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
8
|
Kong S, Zhang W, Cao W. Tools and techniques for quantitative glycoproteomic analysis. Biochem Soc Trans 2024; 52:2439-2453. [PMID: 39656178 DOI: 10.1042/bst20240257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Recent advances in mass spectrometry (MS)-based methods have significantly expanded the capabilities for quantitative glycoproteomics, enabling highly sensitive and accurate quantitation of glycosylation at intact glycopeptide level. These developments have provided valuable insights into the roles of glycoproteins in various biological processes and diseases. In this short review, we summarize pertinent studies on quantitative techniques and tools for site-specific glycoproteomic analysis published over the past decade. We also highlight state-of-the-art MS-based software that facilitate multi-dimension quantification of the glycoproteome, targeted quantification of specific glycopeptides, and the analysis of glycopeptide isomers. Additionally, we discuss the potential applications of these technologies in clinical biomarker discovery and the functional characterization of glycoproteins in health and disease. The review concludes with a discussion of current challenges and future perspectives in the field, emphasizing the need for more precise, high-throughput and efficient methods to further advance quantitative glycoproteomics and its applications.
Collapse
Affiliation(s)
- Siyuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200433, China
| | - Wei Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200433, China
| | - Weiqian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Tomita S, Nagai-Okatani C. Expanding the recognition of monosaccharides and glycans: A comprehensive analytical approach using chemical-nose/tongue technology and a comparison to lectin microarrays. BBA ADVANCES 2024; 7:100129. [PMID: 39790466 PMCID: PMC11714387 DOI: 10.1016/j.bbadva.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
Chemical-nose/tongue technologies are emerging as promising analytical tools for glycan analysis. After briefly introducing the importance of glycans and their analytical methods, including the lectin microarray (LMA) as one of the gold standards, the fundamental principles underlying chemical noses/tongues are explained and various applications for monosaccharides and glycans are introduced. Then, the similarities and differences of these two approaches are discussed. While both technologies aim to comprehensively profile biospecimens based on 'interaction patterns' between multiple recognition probes and analytes, each has its own strengths. LMAs excel at specific, targeted analysis based on defined lectin-glycan interactions, whereas chemical nose/tongue offers greater flexibility and expandability in terms of system design, making it well-suited for discovering unknown glycan profiles and detecting broader differences in glycan mixtures. In the future, chemical-nose/tongue technologies may be applied to niche areas in glycan analysis and become powerful tools that complement LMA techniques.
Collapse
Affiliation(s)
- Shunsuke Tomita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Chiaki Nagai-Okatani
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
10
|
Bernstein ZJ, Gierke TR, Dammen-Brower K, Tzeng SY, Zhu S, Chen SS, Wilson DS, Green JJ, Yarema KJ, Spangler JB. Production of site-specific antibody conjugates using metabolic glycoengineering and novel Fc glycovariants. J Biol Chem 2024; 300:108005. [PMID: 39551135 PMCID: PMC11697773 DOI: 10.1016/j.jbc.2024.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Molecular conjugation to antibodies has emerged as a growing strategy to combine the mechanistic activities of the attached molecule with the specificity of antibodies. A variety of technologies have been applied for molecular conjugation; however, these approaches face several limitations, including disruption of antibody structure, destabilization of the antibody, and/or heterogeneous conjugation patterns. Collectively, these challenges lead to reduced yield, purity, and function of conjugated antibodies. While glycoengineering strategies have largely been applied to study protein glycosylation and manipulate cellular metabolism, these approaches also harbor great potential to enhance the production and performance of protein therapeutics. Here, we devise a novel glycoengineering workflow for the development of site-specific antibody conjugates. This approach combines metabolic glycoengineering using azido-sugar analogs with newly installed N-linked glycosylation sites in the antibody constant domain to achieve specific conjugation to the antibody via the introduced N-glycans. Our technique allows facile and efficient manufacturing of well-defined antibody conjugates without the need for complex or destructive chemistries. Moreover, the introduction of conjugation sites in the antibody fragment crystallizable (Fc) domain renders this approach widely applicable and target agnostic. Our platform can accommodate up to three conjugation sites in tandem, and the extent of conjugation can be tuned through the use of different sugar analogs or production in different cell lines. We demonstrated that our platform is compatible with various use-cases, including fluorescent labeling, antibody-drug conjugation, and targeted gene delivery. Overall, this study introduces a versatile and effective yet strikingly simple approach to producing antibody conjugates for research, industrial, and medical applications.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taylor R Gierke
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kris Dammen-Brower
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stanley Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabrina S Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Scott Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Marihonnaiah S, Belur Shivappa GK. Site-Specific N-Glycoprofiling of Immunoglobulin G Subtypes from Donkey Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26547-26557. [PMID: 39557633 DOI: 10.1021/acs.jafc.4c07168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Donkey milk IgG was probed for the site-specific N-glycosylation pattern through RP-UHPLC-MS/MS. The affinity-purified milk IgG was subjected to SDS-PAGE and proteomic analysis, which revealed the presence of subtypes. Multiple N-glycopeptides arising from the predicted donkey IgG1, IgG2, IgG3, IgG5, IgG6, and IgG7 subtypes' heavy-chain constant region were shown to contain glycans at the highly conserved glycosylation site NST in the CH2 domain. Differences in the peptide backbone with the NST site among subtypes generated after trypsin digestion resulted in the evaluation of the subtype-specific glycan pattern. Glycan sequence analysis indicated predominantly biantennary complex types with core fucosylation at the site NST. Interestingly, an additional site NQT in the CH1 domain of the heavy-chain constant region of IgG5 was found to possess mainly sialylated biantennary complex glycans with NeuAc and NeuGc. Structural diversity of glycans was mainly observed in the predicted donkey IgG1, IgG5, and IgG7, whereas IgG2, IgG3, and IgG6 resulted in the glycopeptides that are of low abundance in the analyzed samples. These findings would pave the way for a better understanding of donkey milk functional properties.
Collapse
Affiliation(s)
- Sudarshan Marihonnaiah
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gnanesh Kumar Belur Shivappa
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Ives CM, Singh O, D'Andrea S, Fogarty CA, Harbison AM, Satheesan A, Tropea B, Fadda E. Restoring protein glycosylation with GlycoShape. Nat Methods 2024; 21:2117-2127. [PMID: 39402214 PMCID: PMC11541215 DOI: 10.1038/s41592-024-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Despite ground-breaking innovations in experimental structural biology and protein structure prediction techniques, capturing the structure of the glycans that functionalize proteins remains a challenge. Here we introduce GlycoShape ( https://glycoshape.org ), an open-access glycan structure database and toolbox designed to restore glycoproteins to their native and functional form in seconds. The GlycoShape database counts over 500 unique glycans so far, covering the human glycome and augmented by elements from a wide range of organisms, obtained from 1 ms of cumulative sampling from molecular dynamics simulations. These structures can be linked to proteins with a robust algorithm named Re-Glyco, directly compatible with structural data in open-access repositories, such as the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and AlphaFold Protein Structure Database, or own. The quality, performance and broad applicability of GlycoShape is demonstrated by its ability to predict N-glycosylation occupancy, scoring a 93% agreement with experiment, based on screening all proteins in the PDB with a corresponding glycoproteomics profile, for a total of 4,259 N-glycosylation sequons.
Collapse
Affiliation(s)
- Callum M Ives
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Ojas Singh
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Silvia D'Andrea
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Carl A Fogarty
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | | | | | | | - Elisa Fadda
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
13
|
James VK, van der Zon AAM, Escobar EE, Dunham SD, Gargano AFG, Brodbelt JS. Hydrophilic Interaction Chromatography Coupled to Ultraviolet Photodissociation Affords Identification, Localization, and Relative Quantitation of Glycans on Intact Glycoproteins. J Proteome Res 2024; 23:4684-4693. [PMID: 39312773 DOI: 10.1021/acs.jproteome.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein glycosylation is implicated in a wide array of diseases, yet glycoprotein analysis remains elusive owing to the extreme heterogeneity of glycans, including microheterogeneity of some of the glycosites (amino acid residues). Various mass spectrometry (MS) strategies have proven tremendously successful for localizing and identifying glycans, typically utilizing a bottom-up workflow in which glycoproteins are digested to create glycopeptides to facilitate analysis. An emerging alternative is top-down MS that aims to characterize intact glycoproteins to allow precise identification and localization of glycans. The most comprehensive characterization of intact glycoproteins requires integration of a suitable separation method and high performance tandem mass spectrometry to provide both protein sequence information and glycosite localization. Here, we couple ultraviolet photodissociation and hydrophilic interaction chromatography with high resolution mass spectrometry to advance the characterization of intact glycoproteins ranging from 15 to 34 kDa, offering site localization of glycans, providing sequence coverages up to 93%, and affording relative quantitation of individual glycoforms.
Collapse
Affiliation(s)
- Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Annika A M van der Zon
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrea F G Gargano
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Goecker ZC, Burke MC, Remoroza CA, Liu Y, Mirokhin YA, Sheetlin SL, Tchekhovskoi DV, Yang X, Stein SE. Variation of Site-Specific Glycosylation Profiles of Recombinant Influenza Glycoproteins. Mol Cell Proteomics 2024; 23:100827. [PMID: 39128790 PMCID: PMC11417209 DOI: 10.1016/j.mcpro.2024.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
This work presents a detailed determination of site-specific N-glycan distributions of the recombinant influenza glycoproteins hemagglutinin (HA) and neuraminidase. Variation in glycosylation among recombinant glycoproteins is not predictable and can depend on details of the biomanufacturing process as well as details of protein structure. In this study, recombinant influenza proteins were analyzed from eight strains of four different suppliers. These include five HA and three neuraminidase proteins, each produced from a HEK293 cell line. Digestion was conducted using a series of complex multienzymatic methods designed to isolate glycopeptides containing single N-glycosylated sites. Site-specific glycosylation profiles of intact glycopeptides were produced using a recently developed method and comparisons were made using spectral similarity scores. Variation in glycan abundances and distribution was most pronounced between different strains of virus (similarity score = 383 out of 999), whereas digestion replicates and injection replicates showed relatively little variation (similarity score = 957). Notably, glycan distributions for homologous regions of influenza glycoprotein variants showed low variability. Due to the multiple possible sources of variation and inherent analytical difficulties in site-specific glycan determinations, variations were individually examined for multiple factors, including differences in supplier, production batch, protease digestion, and replicate measurement. After comparing all glycosylation distributions, four distinguishable classes could be identified for the majority of sites. Finally, attempts to identify glycosylation distributions on adjacent potential N-glycosylated sites of one HA variant were made. Only the second site (NnST) was found to be occupied using two rarely used proteases in proteomics, subtilisin and esperase, both of which did selectively cleave these adjacent sites.
Collapse
Affiliation(s)
- Zachary C Goecker
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
| | - Meghan C Burke
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Concepcion A Remoroza
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Yi Liu
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Yuri A Mirokhin
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Sergey L Sheetlin
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Dmitrii V Tchekhovskoi
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Xiaoyu Yang
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Stephen E Stein
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
15
|
Nagai-Okatani C, Tominaga D, Tomioka A, Sakaue H, Goda N, Ko S, Kuno A, Kaji H. GRable Version 1.0: A Software Tool for Site-Specific Glycoform Analysis With Improved MS1-Based Glycopeptide Detection With Parallel Clustering and Confidence Evaluation With MS2 Information. Mol Cell Proteomics 2024; 23:100833. [PMID: 39181535 PMCID: PMC11421343 DOI: 10.1016/j.mcpro.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
High-throughput intact glycopeptide analysis is crucial for elucidating the physiological and pathological status of the glycans attached to each glycoprotein. Mass spectrometry-based glycoproteomic methods are challenging because of the diversity and heterogeneity of glycan structures. Therefore, we developed an MS1-based site-specific glycoform analysis method named "Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile (Glyco-RIDGE)" for a more comprehensive analysis. This method detects glycopeptide signals as a cluster based on the mass and chromatographic properties of glycopeptides and then searches for each combination of core peptides and glycan compositions by matching their mass and retention time differences. Here, we developed a novel browser-based software named GRable for semi-automated Glyco-RIDGE analysis with significant improvements in glycopeptide detection algorithms, including "parallel clustering." This unique function improved the comprehensiveness of glycopeptide detection and allowed the analysis to focus on specific glycan structures, such as pauci-mannose. The other notable improvement is evaluating the "confidence level" of the GRable results, especially using MS2 information. This function facilitated reduced misassignment of the core peptide and glycan composition and improved the interpretation of the results. Additional improved points of the algorithms are "correction function" for accurate monoisotopic peak picking; one-to-one correspondence of clusters and core peptides even for multiply sialylated glycopeptides; and "inter-cluster analysis" function for understanding the reason for detected but unmatched clusters. The significance of these improvements was demonstrated using purified and crude glycoprotein samples, showing that GRable allowed site-specific glycoform analysis of intact sialylated glycoproteins on a large-scale and in-depth. Therefore, this software will help us analyze the status and changes in glycans to obtain biological and clinical insights into protein glycosylation by complementing the comprehensiveness of MS2-based glycoproteomics. GRable can be freely run online using a web browser via the GlyCosmos Portal (https://glycosmos.org/grable).
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Daisuke Tominaga
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Azusa Tomioka
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiroaki Sakaue
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Norio Goda
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Shigeru Ko
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kaji
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
16
|
Klein J, Carvalho L, Zaia J. Expanding N-glycopeptide identifications by modeling fragmentation, elution, and glycome connectivity. Nat Commun 2024; 15:6168. [PMID: 39039063 PMCID: PMC11263600 DOI: 10.1038/s41467-024-50338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Accurate glycopeptide identification in mass spectrometry-based glycoproteomics is a challenging problem at scale. Recent innovation has been made in increasing the scope and accuracy of glycopeptide identifications, with more precise uncertainty estimates for each part of the structure. We present a dynamically adapting relative retention time model for detecting and correcting ambiguous glycan assignments that are difficult to detect from fragmentation alone, a layered approach to glycopeptide fragmentation modeling that improves N-glycopeptide identification in samples without compromising identification quality, and a site-specific method to increase the depth of the glycoproteome confidently identifiable even further. We demonstrate our techniques on a set of previously published datasets, showing the performance gains at each stage of optimization. These techniques are provided in the open-source glycomics and glycoproteomics platform GlycReSoft available at https://github.com/mobiusklein/glycresoft .
Collapse
Affiliation(s)
- Joshua Klein
- Program for Bioinformatics, Boston University, Boston, MA, US.
| | - Luis Carvalho
- Program for Bioinformatics, Boston University, Boston, MA, US
- Department of Math and Statistics, Boston University, Boston, MA, US
| | - Joseph Zaia
- Program for Bioinformatics, Boston University, Boston, MA, US.
- Department of Biochemistry and Cell Biology, Boston University, Boston, MA, US.
| |
Collapse
|
17
|
Arigoni-Affolter I, Losfeld ME, Hennig R, Rapp E, Aebi M. A hierarchical structure in the N-glycosylation process governs the N-glycosylation output: prolonged cultivation induces glycoenzymes expression variations that are reflected in the cellular N-glycome but not in the protein and site-specific glycoprofile of CHO cells. Glycobiology 2024; 34:cwae045. [PMID: 38938083 PMCID: PMC11231950 DOI: 10.1093/glycob/cwae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
N-glycosylation is a central component in the modification of secretory proteins. One characteristic of this process is a heterogeneous output. The heterogeneity is the result of both structural constraints of the glycoprotein as well as the composition of the cellular glycosylation machinery. Empirical data addressing correlations between glycosylation output and glycosylation machinery composition are seldom due to the low abundance of glycoenzymes. We assessed how differences in the glycoenzyme expression affected the N-glycosylation output at a cellular as well as at a protein-specific level. Our results showed that cellular N-glycome changes could be correlated with the variation of glycoenzyme expression, whereas at the protein level differential responses to glycoenzymes alterations were observed. We therefore identified a hierarchical structure in the N-glycosylation process: the enzyme levels in this complex pathway determine its capacity (reflected in the N-glycome), while protein-specific parameters determine the glycosite-specificity. What emerges is a highly variable and adaptable protein modification system that represents a hallmark of eukaryotic cells.
Collapse
Affiliation(s)
- Ilaria Arigoni-Affolter
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8049 Zürich, Switzerland
| | - Marie-Estelle Losfeld
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8049 Zürich, Switzerland
| | - René Hennig
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse, 39106 Magdeburg, Germany
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8049 Zürich, Switzerland
| |
Collapse
|
18
|
Ives CM, Nguyen L, Fogarty CA, Harbison AM, Durocher Y, Klassen J, Fadda E. Role of N343 glycosylation on the SARS-CoV-2 S RBD structure and co-receptor binding across variants of concern. eLife 2024; 13:RP95708. [PMID: 38864493 PMCID: PMC11168744 DOI: 10.7554/elife.95708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work, we show through over 45 μs of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how this glycan's structural role changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2), and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha, and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.
Collapse
Affiliation(s)
- Callum M Ives
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | - Linh Nguyen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Carl A Fogarty
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | | | - Yves Durocher
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council CanadaQuébecCanada
- Département de Biochimie et Médecine Moléculaire, Université de MontréalQuébecCanada
| | - John Klassen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Elisa Fadda
- School of Biological Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
19
|
Baerenfaenger M, Post MA, Zijlstra F, van Gool AJ, Lefeber DJ, Wessels HJCT. Maximizing Glycoproteomics Results through an Integrated Parallel Accumulation Serial Fragmentation Workflow. Anal Chem 2024; 96:8956-8964. [PMID: 38776126 PMCID: PMC11154686 DOI: 10.1021/acs.analchem.3c05874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
Glycoproteins play important roles in numerous physiological processes and are often implicated in disease. Analysis of site-specific protein glycobiology through glycoproteomics has evolved rapidly in recent years thanks to hardware and software innovations. Particularly, the introduction of parallel accumulation serial fragmentation (PASEF) on hybrid trapped ion mobility time-of-flight mass spectrometry instruments combined deep proteome sequencing with separation of (near-)isobaric precursor ions or converging isotope envelopes through ion mobility separation. However, the reported use of PASEF in integrated glycoproteomics workflows to comprehensively capture the glycoproteome is still limited. To this end, we developed an integrated methodology using timsTOF Pro 2 to enhance N-glycopeptide identifications in complex mixtures. We systematically optimized the ion optics tuning, collision energies, mobility isolation width, and the use of dopant-enriched nitrogen gas (DEN). Thus, we obtained a marked increase in unique glycopeptide identification rates compared to standard proteomics settings, showcasing our results on a large set of glycopeptides. With short liquid chromatography gradients of 30 min, we increased the number of unique N-glycopeptide identifications in human plasma samples from around 100 identifications under standard proteomics conditions to up to 1500 with our optimized glycoproteomics approach, highlighting the need for tailored optimizations to obtain comprehensive data.
Collapse
Affiliation(s)
- Melissa Baerenfaenger
- Department
of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
- Division
of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular
and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, Netherlands
| | - Merel A. Post
- Department
of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
| | - Fokje Zijlstra
- Translational
Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
| | - Alain J. van Gool
- Translational
Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
| | - Dirk J. Lefeber
- Department
of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
- Translational
Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
| | - Hans J. C. T. Wessels
- Translational
Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
| |
Collapse
|
20
|
Chen X, Song X, Li J, Wang J, Yan Y, Yang F. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of small extracellular vesicles from C2C12 myoblasts identify specific PTM patterns in ligand-receptor interactions. Cell Commun Signal 2024; 22:273. [PMID: 38755675 PMCID: PMC11097525 DOI: 10.1186/s12964-024-01640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Small extracellular vesicles (sEVs) are important mediators of intercellular communication by transferring of functional components (proteins, RNAs, and lipids) to recipient cells. Some PTMs, including phosphorylation and N-glycosylation, have been reported to play important role in EV biology, such as biogenesis, protein sorting and uptake of sEVs. MS-based proteomic technology has been applied to identify proteins and PTM modifications in sEVs. Previous proteomic studies of sEVs from C2C12 myoblasts, an important skeletal muscle cell line, focused on identification of proteins, but no PTM information on sEVs proteins is available.In this study, we systematically analyzed the proteome, phosphoproteome, and N-glycoproteome of sEVs from C2C12 myoblasts with LC-MS/MS. In-depth analyses of the three proteomic datasets revealed that the three proteomes identified different catalogues of proteins, and PTMomic analysis could expand the identification of cargos in sEVs. At the proteomic level, a high percentage of membrane proteins, especially tetraspanins, was identified. The sEVs-derived phosphoproteome had a remarkably high level of tyrosine-phosphorylated sites. The tyrosine-phosphorylated proteins might be involved with EPH-Ephrin signaling pathway. At the level of N-glycoproteomics, several glycoforms, such as complex N-linked glycans and sialic acids on glycans, were enriched in sEVs. Retrieving of the ligand-receptor interaction in sEVs revealed that extracellular matrix (ECM) and cell adhesion molecule (CAM) represented the most abundant ligand-receptor pairs in sEVs. Mapping the PTM information on the ligands and receptors revealed that N-glycosylation mainly occurred on ECM and CAM proteins, while phosphorylation occurred on different categories of receptors and ligands. A comprehensive PTM map of ECM-receptor interaction and their components is also provided.In summary, we conducted a comprehensive proteomic and PTMomic analysis of sEVs of C2C12 myoblasts. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analysis of sEVs might provide some insights about their specific uptake mechanism.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xi Song
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaran Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yumeng Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Hiono T, Sakaue H, Tomioka A, Kaji H, Sasaki M, Orba Y, Sawa H, Kuno A. Combinatorial Approach with Mass Spectrometry and Lectin Microarray Dissected Site-Specific Glycostem and Glycoleaf Features of the Virion-Derived Spike Protein of Ancestral and γ Variant SARS-CoV-2 Strains. J Proteome Res 2024; 23:1408-1419. [PMID: 38536229 DOI: 10.1021/acs.jproteome.3c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted public health globally. As the glycosylation of viral envelope glycoproteins is strongly associated with their immunogenicity, intensive studies have been conducted on the glycans of the glycoprotein of SARS-CoV-2, the spike (S) protein. Here, we conducted intensive glycoproteomic analyses of the SARS-CoV-2 S protein of ancestral and γ-variant strains using a combinatorial approach with two different technologies: mass spectrometry (MS) and lectin microarrays (LMA). Our unique MS1-based glycoproteomic technique, Glyco-RIDGE, in addition to MS2-based Byonic search, identified 1448 (ancestral strain) and 1785 (γ-variant strain) site-specific glycan compositions, respectively. Asparagine at amino acid position 20 (N20) is mainly glycosylated within two successive potential glycosylation sites, N17 and N20, of the γ-variant S protein; however, we found low-frequency glycosylation at N17. Our novel approaches, glycostem mapping and glycoleaf scoring, also illustrate the moderately branched/extended, highly fucosylated, and less sialylated natures of the glycoforms of S proteins. Subsequent LMA analysis emphasized the intensive end-capping of glycans by Lewis fucoses, which complemented the glycoproteomic features. These results illustrate the high-resolution glycoproteomic features of the SARS-CoV-2 S protein, contributing to vaccine design and understanding of viral protein synthesis.
Collapse
Affiliation(s)
- Takahiro Hiono
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hiroaki Sakaue
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Azusa Tomioka
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Kaji
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Michihito Sasaki
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yasuko Orba
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Hirofumi Sawa
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
22
|
Liang G, Madhavarao CN, Morris C, O'Connor T, Ashraf M, Yoon S. Effects of process intensification on homogeneity of an IgG1:κ monoclonal antibody during perfusion culture. Appl Microbiol Biotechnol 2024; 108:274. [PMID: 38530495 DOI: 10.1007/s00253-024-13110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The pharmaceutical industry employs various strategies to improve cell productivity. These strategies include process intensification, culture media improvement, clonal selection, media supplementation and genetic engineering of cells. However, improved cell productivity has inherent risk of impacting product quality attributes (PQA). PQAs may affect the products' efficacy via stability, bioavailability, or in vivo bioactivity. Variations in manufacturing process may introduce heterogeneity in the products by altering the type and extent of N-glycosylation, which is a PQA of therapeutic proteins. We investigated the effect of different cell densities representing increasing process intensification in a perfusion cell culture on the production of an IgG1-κ monoclonal antibody from a CHO-K1 cell line. This antibody is glycosylated both on light chain and heavy chain. Our results showed that the contents of glycosylation of IgG1-κ mAb increased in G0F and fucosylated type glycans as a group, whereas sialylated type glycans decreased, for the mAb whole protein. Overall, significant differences were observed in amounts of G0F, G1F, G0, G2FS1, and G2FS2 type glycans across all process intensification levels. G2FS2 and G2 type N-glycans were predominantly quantifiable from light chain rather than heavy chain. It may be concluded that there is a potential impact to product quality attributes of therapeutic proteins during process intensification via perfusion cell culture that needs to be assessed. Since during perfusion cell culture the product is collected throughout the duration of the process, lot allocation needs careful attention to process parameters, as PQAs are affected by the critical process parameters (CPPs). KEY POINTS: • Molecular integrity may suffer with increasing process intensity. • Galactosylated and sialylated N-glycans may decrease. • Perfusion culture appears to maintain protein charge structure.
Collapse
Affiliation(s)
- George Liang
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Caitlin Morris
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Thomas O'Connor
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
| | - Muhammad Ashraf
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
23
|
White MEH, Sinn LR, Jones DM, de Folter J, Aulakh SK, Wang Z, Flynn HR, Krüger L, Tober-Lau P, Demichev V, Kurth F, Mülleder M, Blanchard V, Messner CB, Ralser M. Oxonium ion scanning mass spectrometry for large-scale plasma glycoproteomics. Nat Biomed Eng 2024; 8:233-247. [PMID: 37474612 PMCID: PMC10963274 DOI: 10.1038/s41551-023-01067-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.
Collapse
Affiliation(s)
- Matthew E H White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ludwig R Sinn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Marc Jones
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Joost de Folter
- Software Engineering and Artificial Intelligence Technology Platform, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ziyue Wang
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lynn Krüger
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vadim Demichev
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High-throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Christoph B Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Precision Proteomic Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
24
|
Garcia-Marques F, Fuller K, Bermudez A, Shamsher N, Zhao H, Brooks JD, Flory MR, Pitteri SJ. Identification and characterization of intact glycopeptides in human urine. Sci Rep 2024; 14:3716. [PMID: 38355753 PMCID: PMC10866872 DOI: 10.1038/s41598-024-53299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Glycoproteins in urine have the potential to provide a rich class of informative molecules for studying human health and disease. Despite this promise, the urine glycoproteome has been largely uncharacterized. Here, we present the analysis of glycoproteins in human urine using LC-MS/MS-based intact glycopeptide analysis, providing both the identification of protein glycosites and characterization of the glycan composition at specific glycosites. Gene enrichment analysis reveals differences in biological processes, cellular components, and molecular functions in the urine glycoproteome versus the urine proteome, as well as differences based on the major glycan class observed on proteins. Meta-heterogeneity of glycosylation is examined on proteins to determine the variation in glycosylation across multiple sites of a given protein with specific examples of individual sites differing from the glycosylation trends in the overall protein. Taken together, this dataset represents a potentially valuable resource as a baseline characterization of glycoproteins in human urine for future urine glycoproteomics studies.
Collapse
Affiliation(s)
- Fernando Garcia-Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
| | - Keely Fuller
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
| | - Nikhiya Shamsher
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mark R Flory
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA.
| |
Collapse
|
25
|
Hu Z, Gao W, Liu R, Yang J, Han R, Li J, Yu J, Ma D, Tang K. An efficient strategy with a synergistic effect of hydrophilic and electrostatic interactions for simultaneous enrichment of N- and O-glycopeptides. Analyst 2024; 149:1090-1101. [PMID: 38131340 DOI: 10.1039/d3an01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
N- and O-glycosylation modifications of proteins are closely linked to the onset and development of many diseases and have gained widespread attention as potential targets for therapy and diagnosis. However, the low abundance and low ionization efficiency of glycopeptides as well as the high heterogeneity make glycosylation analysis challenging. Here, an enrichment strategy, using Knoevenagel copolymers modified with polydopamine-adenosine (denoted as PDA-ADE@KCP), was firstly proposed for simultaneous enrichment of N- and O-glycopeptides through the synergistic effects of hydrophilic and electrostatic interactions. The adjustable charged surface and hydrophilic properties endow the material with the capability to achieve effective enrichment of intact N- and O-glycopeptides. The experimental results exhibited excellent selectivity (1 : 5000) and sensitivity (0.1 fmol μL-1) of the prepared material for N-glycopeptides from standard protein digest samples. Moreover, it was further applied to simultaneous capturing of N- and O-glycopeptides from mouse liver protein digests. Compared to the commercially available zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) material, the number of glycoproteins corresponding to all N- and O-glycopeptides enriched with PDA-ADE@KCP was much more than that with ZIC-HILIC. Furthermore, PDA-ADE@KCP captured more O-glycopeptides than ZIC-HILIC, revealing its superior performance in O-glycopeptide enrichment. All these results indicated that the strategy holds immense potential in characterizing N- and O-intact glycopeptides in the field of proteomics.
Collapse
Affiliation(s)
- Zhonghan Hu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Rong Liu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Jiaqian Yang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Renlu Han
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Danhua Ma
- Department of Stomatology, Ningbo No.2 Hospital, Ningbo, 315010, PR China.
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| |
Collapse
|
26
|
Hevér H, Xue A, Nagy K, Komka K, Vékey K, Drahos L, Révész Á. Can We Boost N-Glycopeptide Identification Confidence? Smart Collision Energy Choice Taking into Account Structure and Search Engine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:333-343. [PMID: 38286027 PMCID: PMC10853973 DOI: 10.1021/jasms.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
High confidence and reproducibility are still challenges in bottom-up mass spectrometric N-glycopeptide identification. The collision energy used in the MS/MS measurements and the database search engine used to identify the species are perhaps the two most decisive factors. We investigated how the structural features of N-glycopeptides and the choice of the search engine influence the optimal collision energy, delivering the highest identification confidence. We carried out LC-MS/MS measurements using a series of collision energies on a large set of N-glycopeptides with both the glycan and peptide part varied and studied the behavior of Byonic, pGlyco, and GlycoQuest scores. We found that search engines show a range of behavior between peptide-centric and glycan-centric, which manifests itself already in the dependence of optimal collision energy on m/z. Using classical statistical and machine learning methods, we revealed that peptide hydrophobicity, glycan and peptide masses, and the number of mobile protons also have significant and search-engine-dependent influence, as opposed to a series of other parameters we probed. We envisioned an MS/MS workflow making a smart collision energy choice based on online available features such as the hydrophobicity (described by retention time) and glycan mass (potentially available from a scout MS/MS). Our assessment suggests that this workflow can lead to a significant gain (up to 100%) in the identification confidence, particularly for low-scoring hits close to the filtering limit, which has the potential to enhance reproducibility of N-glycopeptide analyses. Data are available via MassIVE (MSV000093110).
Collapse
Affiliation(s)
- Helga Hevér
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Andrea Xue
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Kinga Nagy
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
- Faculty
of Science, Institute of Chemistry, Hevesy György PhD School
of Chemistry, Eötvös Loránd
University, Pázmány
Péter sétány 1/A, Budapest H-1117, Hungary
| | - Kinga Komka
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Károly Vékey
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - László Drahos
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Ágnes Révész
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| |
Collapse
|
27
|
Sendid B, Cornu M, Cordier C, Bouckaert J, Colombel JF, Poulain D. From ASCA breakthrough in Crohn's disease and Candida albicans research to thirty years of investigations about their meaning in human health. Autoimmun Rev 2024; 23:103486. [PMID: 38040100 DOI: 10.1016/j.autrev.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Anti-Saccharomyces cerevisiae antibodies (ASCA) are human antibodies that can be detected using an enzyme-linked immunosorbent assay involving a mannose polymer (mannan) extracted from the cell wall of the yeast S. cerevisiae. The ASCA test was developed in 1993 with the aim of differentiating the serological response in two forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis. The test, which is based on the detection of anti-oligomannosidic antibodies, has been extensively performed worldwide and there have been hundreds of publications on ASCA. The earlier studies concerned the initial diagnostic indications of ASCA and investigations then extended to many human diseases, generally in association with studies on intestinal microorganisms and the interaction of the micro-mycobiome with the immune system. The more information accumulates, the more the mystery of the meaning of ASCA deepens. Many fundamental questions remain unanswered. These questions concern the heterogeneity of ASCA, the mechanisms of their generation and persistence, the existence of self-antigens, and the relationship between ASCA and inflammation and autoimmunity. This review aims to discuss the gray areas concerning the origin of ASCA from an analysis of the literature. Structured around glycobiology and the mannosylated antigens of S. cerevisiae and Candida albicans, this review will address these questions and will try to clarify some lines of thought. The importance of the questions relating to the pathophysiological significance of ASCA goes far beyond IBD, even though these diseases remain the preferred models for their understanding.
Collapse
Affiliation(s)
- Boualem Sendid
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France; Pôle de Biologie-Pathologie-Génétique, Institut de Microbiologie, Service de Parasitologie-Mycologie, CHU Lille, F-59000 Lille, France.
| | - Marjorie Cornu
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France; Pôle de Biologie-Pathologie-Génétique, Institut de Microbiologie, Service de Parasitologie-Mycologie, CHU Lille, F-59000 Lille, France
| | - Camille Cordier
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France; Pôle de Biologie-Pathologie-Génétique, Institut de Microbiologie, Service de Parasitologie-Mycologie, CHU Lille, F-59000 Lille, France
| | - Julie Bouckaert
- CNRS UMR 8576, Computational Molecular Systems Biology, Université de Lille, F-59000 Lille, France
| | - Jean Frederic Colombel
- Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Poulain
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France.
| |
Collapse
|
28
|
Yang T, Xiao H, Chen X, Zheng L, Guo H, Wang J, Jiang X, Zhang CY, Yang F, Ji X. Characterization of N-glycosylation and its functional role in SIDT1-Mediated RNA uptake. J Biol Chem 2024; 300:105654. [PMID: 38237680 PMCID: PMC10850970 DOI: 10.1016/j.jbc.2024.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
The mammalian SID-1 transmembrane family members, SIDT1 and SIDT2, are multipass transmembrane proteins that mediate the cellular uptake and intracellular trafficking of nucleic acids, playing important roles in the immune response and tumorigenesis. Previous work has suggested that human SIDT1 and SIDT2 are N-glycosylated, but the precise site-specific N-glycosylation information and its functional contribution remain unclear. In this study, we use high-resolution liquid chromatography tandem mass spectrometry to comprehensively map the N-glycosites and quantify the N-glycosylation profiles of SIDT1 and SIDT2. Further molecular mechanistic probing elucidates the essential role of N-linked glycans in regulating cell surface expression, RNA binding, protein stability, and RNA uptake of SIDT1. Our results provide crucial information about the potential functional impact of N-glycosylation in the regulation of SIDT1-mediated RNA uptake and provide insights into the molecular mechanisms of this promising nucleic acid delivery system with potential implications for therapeutic applications.
Collapse
Affiliation(s)
- Tingting Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Haonan Xiao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Le Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaohong Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, China.
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, China; Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Cramer DAT, Yin V, Caval T, Franc V, Yu D, Wu G, Lloyd G, Langendorf C, Whisstock JC, Law RHP, Heck AJR. Proteoform-Resolved Profiling of Plasminogen Activation Reveals Novel Abundant Phosphorylation Site and Primary N-Terminal Cleavage Site. Mol Cell Proteomics 2024; 23:100696. [PMID: 38101751 PMCID: PMC10825491 DOI: 10.1016/j.mcpro.2023.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.
Collapse
Affiliation(s)
- Dario A T Cramer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Tomislav Caval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Dingyi Yu
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Guojie Wu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Gordon Lloyd
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Christopher Langendorf
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
30
|
Wu W, Krijgsveld J. Secretome Analysis: Reading Cellular Sign Language to Understand Intercellular Communication. Mol Cell Proteomics 2024; 23:100692. [PMID: 38081362 PMCID: PMC10793180 DOI: 10.1016/j.mcpro.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.
Collapse
Affiliation(s)
- Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
31
|
Luo M, Su T, Cheng Q, Zhang X, Cai F, Yin Z, Li F, Yang H, Liu F, Zhang Y. GlycoTCFM: Glycoproteomics Based on Two Complementary Fragmentation Methods Reveals Distinctive O-Glycosylation in Human Sperm and Seminal Plasma. J Proteome Res 2023; 22:3833-3842. [PMID: 37943980 DOI: 10.1021/acs.jproteome.3c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Human semen, consisting of spermatozoa (sperm) and seminal plasma, represents a special clinical sample type in human body fluid. Protein glycosylation in sperm and seminal plasma plays key roles in spermatogenesis, maturation, capacitation, sperm-egg recognition, motility of sperm, and fertilization. In this study, we profiled the most comprehensive O-glycoproteome map of human sperm and seminal plasma using our recently presented Glycoproteomics based on Two Complementary Fragmentation Methods (GlycoTCFM). We showed that sperm and seminal plasma contain many novel and distinctive O-glycoproteins, which are mostly located in the extracellular region (seminal plasma) and sperm membrane, enriched in the biological processes of cell adhesion and angiogenesis, and mainly involved in multiple biological functions including extracellular matrix structural constituents and binding. Based on GlycoTCFM, we created a comprehensive human sperm and seminal plasma O-glycoprotein database that contains 371 intact O-glycopeptides and 202 O-glycosites from 68 O-glycoproteins. Interestingly, 105 manually confirmed O-glycosites from 25 O-glycoproteins were reported for the first time, and they were mainly modified by core 1 O-glycans. We also found that three highly abundant, highly complex, and highly O-glycosylated proteins (semenogelin-1, semenogelin-2, and equatorin) may play important roles in sperm or seminal plasma composition and function. These data deepen our knowledge about O-glycosylation in sperm and seminal plasma and lay the foundation for the functional study of O-glycoproteins in male infertility.
Collapse
Affiliation(s)
- Mengqi Luo
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingyuan Cheng
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Zhang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Cai
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zaiwen Yin
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fuping Li
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Burke MC, Liu Y, Remoroza C, Mirokhin YA, Sheetlin SL, Tchekhovskoi DV, Wang G, Yang X, Stein SE. Determining Site-Specific Glycan Profiles of Recombinant SARS-CoV-2 Spike Proteins from Multiple Sources. J Proteome Res 2023; 22:3225-3241. [PMID: 37647588 DOI: 10.1021/acs.jproteome.3c00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Glycopeptide Abundance Distribution Spectra (GADS) were recently introduced as a means of representing, storing, and comparing glycan profiles of intact glycopeptides. Here, using that representation, an extensive analysis is made of multiple commercial sources of the recombinant SARS-CoV-2 spike protein, each containing 22 N-linked glycan sites (sequons). Multiple proteases are used along with variable energy fragmentation followed by ion trap confirmation. This enables a detailed examination of the reproducibility of the method across multiple types of variability. These results show that GADS are consistent between replicates and laboratories for sufficiently abundant glycopeptides. Derived GADS enable the examination and comparison of the glycan profiles between commercial sources of the spike protein. Multiple distinct glycopeptide distributions, generated by multiple proteases, confirm these profiles. Comparisons of GADS derived from 11 sources of recombinant spike protein reveal that sources for which protein expression methods were the same produced near-identical glycan profiles, thereby demonstrating the ability of this method to measure GADS of sufficient reliability to distinguish different glycoform distributions between commercial vendors and potentially to reliably determine and compare differences in glycosylation for any glycoprotein under different conditions of production. All mass spectrometry data files have been deposited in the MassIVE repository under the identifier MSV000091776.
Collapse
Affiliation(s)
- Meghan C Burke
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yi Liu
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Concepcion Remoroza
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yuri A Mirokhin
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sergey L Sheetlin
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Dmitrii V Tchekhovskoi
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Guanghui Wang
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaoyu Yang
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Stephen E Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
33
|
Herman X, Far J, Peeters M, Quinton L, Chaumont F, Navarre C. In vivo deglycosylation of recombinant glycoproteins in tobacco BY-2 cells. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1773-1784. [PMID: 37266972 PMCID: PMC10440984 DOI: 10.1111/pbi.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/21/2023] [Accepted: 04/29/2023] [Indexed: 06/03/2023]
Abstract
Production of recombinant pharmaceutical glycoproteins has been carried out in multiple expression systems. However, N-glycosylation, which increases heterogeneity and raises safety concerns due to the presence of non-human residues, is usually not controlled. The presence and composition of N-glycans are also susceptible to affect protein stability, function and immunogenicity. To tackle these issues, we are developing glycoengineered Nicotiana tabacum Bright Yellow-2 (BY-2) cell lines through knock out and ectopic expression of genes involved in the N-glycosylation pathway. Here, we report on the generation of BY-2 cell lines producing deglycosylated proteins. To this end, endoglycosidase T was co-expressed with an immunoglobulin G or glycoprotein B of human cytomegalovirus in BY-2 cell lines producing only high mannose N-glycans. Endoglycosidase T cleaves high mannose N-glycans to generate single, asparagine-linked, N-acetylglucosamine residues. The N-glycosylation profile of the secreted antibody was determined by mass spectrometry analysis. More than 90% of the N-glycans at the conserved Asn297 site were deglycosylated. Likewise, extensive deglycosylation of glycoprotein B, which possesses 18 N-glycosylation sites, was observed. N-glycan composition of gB glycovariants was assessed by in vitro enzymatic mobility shift assay and proven to be consistent with the expected glycoforms. Comparison of IgG glycovariants by differential scanning fluorimetry revealed a significant impact of the N-glycosylation pattern on the thermal stability. Production of deglycosylated pharmaceutical proteins in BY-2 cells expands the set of glycoengineered BY-2 cell lines.
Collapse
Affiliation(s)
- Xavier Herman
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Johann Far
- Mass Spectrometry Laboratory‐MolSys Research UnitULiegeLiègeBelgium
| | - Marie Peeters
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory‐MolSys Research UnitULiegeLiègeBelgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Catherine Navarre
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
34
|
Kundalia PH, Pažitná L, Kianičková K, Jáné E, Lorencová L, Katrlík J. A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics. SENSORS (BASEL, SWITZERLAND) 2023; 23:5362. [PMID: 37420529 DOI: 10.3390/s23125362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 07/09/2023]
Abstract
Protein-carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligands among the plethora of others is central for any glycan-targeting probe being tested by microarray analyses. Ever since the introduction of the microarray as an elemental tool for high-throughput glycoprofiling, numerous distinct array platforms possessing different customizations and assemblies have been developed. Accompanying these customizations are various factors ushering variances across array platforms. In this primer, we investigate the influence of various extrinsic factors, namely printing parameters, incubation procedures, analyses and array storage conditions on the protein-carbohydrate interactions and evaluate these factors for the optimal performance of microarray glycomics analysis. We hereby propose a 4D approach (Design-Dispense-Detect-Deduce) to minimize the effect of these extrinsic factors on glycomics microarray analyses and thereby streamline cross-platform analyses and comparisons. This work will aid in optimizing microarray analyses for glycomics, minimize cross-platform disparities and bolster the further development of this technology.
Collapse
Affiliation(s)
- Paras H Kundalia
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Lucia Pažitná
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Kristína Kianičková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Eduard Jáné
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Lenka Lorencová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| |
Collapse
|
35
|
Freitas R, Peixoto A, Ferreira E, Miranda A, Santos LL, Ferreira JA. Immunomodulatory glycomedicine: Introducing next generation cancer glycovaccines. Biotechnol Adv 2023; 65:108144. [PMID: 37028466 DOI: 10.1016/j.biotechadv.2023.108144] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Cancer remains a leading cause of death worldwide due to the lack of safer and more effective therapies. Cancer vaccines developed from neoantigens are an emerging strategy to promote protective and therapeutic anti-cancer immune responses. Advances in glycomics and glycoproteomics have unveiled several cancer-specific glycosignatures, holding tremendous potential to foster effective cancer glycovaccines. However, the immunosuppressive nature of tumours poses a major obstacle to vaccine-based immunotherapy. Chemical modification of tumour associated glycans, conjugation with immunogenic carriers and administration in combination with potent immune adjuvants constitute emerging strategies to address this bottleneck. Moreover, novel vaccine vehicles have been optimized to enhance immune responses against otherwise poorly immunogenic cancer epitopes. Nanovehicles have shown increased affinity for antigen presenting cells (APCs) in lymph nodes and tumours, while reducing treatment toxicity. Designs exploiting glycans recognized by APCs have further enhanced the delivery of antigenic payloads, improving glycovaccine's capacity to elicit innate and acquired immune responses. These solutions show potential to reduce tumour burden, while generating immunological memory. Building on this rationale, we provide a comprehensive overview on emerging cancer glycovaccines, emphasizing the potential of nanotechnology in this context. A roadmap towards clinical implementation is also delivered foreseeing advances in glycan-based immunomodulatory cancer medicine.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - Andreia Miranda
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal; Health School of University Fernando Pessoa, 4249-004 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal; Department of Surgical Oncology, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal.
| |
Collapse
|
36
|
Zukowska D, Gedaj A, Porebska N, Pozniak M, Krzyscik M, Czyrek A, Krowarsch D, Zakrzewska M, Otlewski J, Opalinski L. Receptor clustering by a precise set of extracellular galectins initiates FGFR signaling. Cell Mol Life Sci 2023; 80:113. [PMID: 37012400 PMCID: PMC10070233 DOI: 10.1007/s00018-023-04768-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
FGF/FGFR signaling is critical for the development and homeostasis of the human body and imbalanced FGF/FGFR contributes to the progression of severe diseases, including cancers. FGFRs are N-glycosylated, but the role of these modifications is largely unknown. Galectins are extracellular carbohydrate-binding proteins implicated in a plethora of processes in heathy and malignant cells. Here, we identified a precise set of galectins (galectin-1, -3, -7, and -8) that directly interact with N-glycans of FGFRs. We demonstrated that galectins bind N-glycan chains of the membrane-proximal D3 domain of FGFR1 and trigger differential clustering of FGFR1, resulting in activation of the receptor and initiation of downstream signaling cascades. Using engineered galectins with controlled valency, we provide evidence that N-glycosylation-dependent clustering of FGFR1 constitutes a mechanism for FGFR1 stimulation by galectins. We revealed that the consequences of galectin/FGFR signaling for cell physiology are markedly different from the effects induced by canonical FGF/FGFR units, with galectin/FGFR signaling affecting cell viability and metabolic activity. Furthermore, we showed that galectins are capable of activating an FGFR pool inaccessible for FGF1, enhancing the amplitude of transduced signals. Summarizing, our data identify a novel mechanism of FGFR activation, in which the information stored in the N-glycans of FGFRs provides previously unanticipated information about FGFRs' spatial distribution, which is differentially deciphered by distinct multivalent galectins, affecting signal transmission and cell fate.
Collapse
Affiliation(s)
- Dominika Zukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Aleksandra Gedaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Natalia Porebska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Marta Pozniak
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Mateusz Krzyscik
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
37
|
Zhang L, Li Y, Li R, Yang X, Zheng Z, Fu J, Yu H, Chen X. Glycoprotein In Vitro N-Glycan Processing Using Enzymes Expressed in E. coli. Molecules 2023; 28:2753. [PMID: 36985724 PMCID: PMC10051842 DOI: 10.3390/molecules28062753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Protein N-glycosylation is a common post-translational modification that plays significant roles on the structure, property, and function of glycoproteins. Due to N-glycan heterogeneity of naturally occurring glycoproteins, the functions of specific N-glycans on a particular glycoprotein are not always clear. Glycoprotein in vitro N-glycan engineering using purified recombinant enzymes is an attractive strategy to produce glycoproteins with homogeneous N-glycoforms to elucidate the specific functions of N-glycans and develop better glycoprotein therapeutics. Toward this goal, we have successfully expressed in E. coli glycoside hydrolases and glycosyltransferases from bacterial and human origins and developed a robust enzymatic platform for in vitro processing glycoprotein N-glycans from high-mannose-type to α2-6- or α2-3-disialylated biantennary complex type. The recombinant enzymes are highly efficient in step-wise or one-pot reactions. The platform can find broad applications in N-glycan engineering of therapeutic glycoproteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
38
|
Sun F, Suttapitugsakul S, Wu R. Systematic characterization of extracellular glycoproteins using mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:519-545. [PMID: 34047389 PMCID: PMC8627532 DOI: 10.1002/mas.21708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 05/13/2023]
Abstract
Surface and secreted glycoproteins are essential to cells and regulate many extracellular events. Because of the diversity of glycans, the low abundance of many glycoproteins, and the complexity of biological samples, a system-wide investigation of extracellular glycoproteins is a daunting task. With the development of modern mass spectrometry (MS)-based proteomics, comprehensive analysis of different protein modifications including glycosylation has advanced dramatically. This review focuses on the investigation of extracellular glycoproteins using MS-based proteomics. We first discuss the methods for selectively enriching surface glycoproteins and investigating protein interactions on the cell surface, followed by the application of MS-based proteomics for surface glycoprotein dynamics analysis and biomarker discovery. We then summarize the methods to comprehensively study secreted glycoproteins by integrating various enrichment approaches with MS-based proteomics and their applications for global analysis of secreted glycoproteins in different biological samples. Collectively, MS significantly expands our knowledge of extracellular glycoproteins and enables us to identify extracellular glycoproteins as potential biomarkers for disease detection and drug targets for disease treatment.
Collapse
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
39
|
Piovesana S, Cavaliere C, Cerrato A, Laganà A, Montone CM, Capriotti AL. Recent trends in glycoproteomics by characterization of intact glycopeptides. Anal Bioanal Chem 2023:10.1007/s00216-023-04592-z. [PMID: 36811677 PMCID: PMC10328862 DOI: 10.1007/s00216-023-04592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
This trends article provides an overview of the state of the art in the analysis of intact glycopeptides by proteomics technologies based on LC-MS analysis. A brief description of the main techniques used at the different steps of the analytical workflow is provided, giving special attention to the most recent developments. The topics discussed include the need for dedicated sample preparation for intact glycopeptide purification from complex biological matrices. This section covers the common approaches with a special description of new materials and innovative reversible chemical derivatization strategies, specifically devised for intact glycopeptide analysis or dual enrichment of glycosylation and other post-translational modifications. The approaches are described for the characterization of intact glycopeptide structures by LC-MS and data analysis by bioinformatics for spectra annotation. The last section covers the open challenges in the field of intact glycopeptide analysis. These challenges include the need of a detailed description of the glycopeptide isomerism, the issues with quantitative analysis, and the lack of analytical methods for the large-scale characterization of glycosylation types that remain poorly characterized, such as C-mannosylation and tyrosine O-glycosylation. This bird's-eye view article provides both a state of the art in the field of intact glycopeptide analysis and open challenges to prompt future research on the topic.
Collapse
Affiliation(s)
- Susy Piovesana
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
40
|
Mukherjee S, Jankevics A, Busch F, Lubeck M, Zou Y, Kruppa G, Heck AJR, Scheltema RA, Reiding KR. Oxonium Ion-Guided Optimization of Ion Mobility-Assisted Glycoproteomics on the timsTOF Pro. Mol Cell Proteomics 2023; 22:100486. [PMID: 36549589 PMCID: PMC9853368 DOI: 10.1016/j.mcpro.2022.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Spatial separation of ions in the gas phase, providing information about their size as collisional cross-sections, can readily be achieved through ion mobility. The timsTOF Pro (Bruker Daltonics) series combines a trapped ion mobility device with a quadrupole, collision cell, and a time-of-flight analyzer to enable the analysis of ions at great speed. Here, we show that the timsTOF Pro is capable of physically separating N-glycopeptides from nonmodified peptides and producing high-quality fragmentation spectra, both beneficial for glycoproteomics analyses of complex samples. The glycan moieties enlarge the size of glycopeptides compared with nonmodified peptides, yielding a clear cluster in the mobilogram that, next to increased dynamic range from the physical separation of glycopeptides and nonmodified peptides, can be used to make an effective selection filter for directing the mass spectrometer to analytes of interest. We designed an approach where we (1) focused on a region of interest in the ion mobilogram and (2) applied stepped collision energies to obtain informative glycopeptide tandem mass spectra on the timsTOF Pro:glyco-polygon-stepped collision energy-parallel accumulation serial fragmentation. This method was applied to selected glycoproteins, human plasma- and neutrophil-derived glycopeptides. We show that the achieved physical separation in the region of interest allows for improved extraction of information from the samples, even at shorter liquid chromatography gradients of 15 min. We validated our approach on human neutrophil and plasma samples of known makeup, in which we captured the anticipated glycan heterogeneity (paucimannose, phosphomannose, high mannose, hybrid and complex glycans) from plasma and neutrophil samples at the expected abundances. As the method is compatible with off-the-shelve data acquisition routines and data analysis software, it can readily be applied by any laboratory with a timsTOF Pro and is reproducible as demonstrated by a comparison between two laboratories.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | | | - Yang Zou
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Gary Kruppa
- Bruker Daltonik GmbH & Co KG, Bremen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
41
|
Munteanu CVA, Chirițoiu GN, Petrescu AJ, Petrescu ȘM. Defining the altered glycoproteomic space of the early secretory pathway by class I mannosidase pharmacological inhibition. Front Mol Biosci 2023; 9:1064868. [PMID: 36699698 PMCID: PMC9869281 DOI: 10.3389/fmolb.2022.1064868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
N-glycosylation is a key process for various biological functions like protein folding, maturation and sorting for the conventional secretory compartment, cell-cell communication and immune response. This is usually accomplished by a complex system of mannosidases in which those from class I have an outstanding role, commonly involved in the early protein sorting associated to the Endoplasmic Reticulum (ER) in the N-glycan dependent quality control (ERQC) and ER-associated degradation (ERAD). Although these are vital processes in maintaining cellular homeostasis, large-scale analysis studies for this pool of molecules, further denoted as proteins from the early secretory pathway (ESP), were limited addressed. Here, using a custom workflow employing a combination of glycomics and deglycoproteomics analyses, using lectin affinity and selective Endoglycosidase H (Endo H) digestion, we scrutinize the steady-state oligomannosidic glycoprotein load and delineate ESP fraction in melanoma cells. All of these were assessed by applying our workflow for glycosite relative quantification of both the peptide chain and carbohydrate structure in cells with inhibited activity of class I mannosidases after kifunensine treatment. We found that most of the ESP are transient clients involved in cell communication via extracellular matrix, particularly integrin-mediated communication which adopt Man9 N-glycans in kifunensine-treated cells. Moreover, our results reveal that core-fucosylation is decreased subsequent inhibition of class I mannosidases and this could be explained by a general lower protein level of FUT8, the enzyme responsible for fucosylation. By comparing our data with results obtained following downregulation of a key mannosidase in misfolded protein degradation, we mapped both novel and previously suggested endogenous substrate candidates like PCDH2, HLA-B, LAMB2 or members of the integrin family of proteins such as ITGA1 and ITGA4, thus validating the findings obtained using our workflow regarding accumulation and characterization of ESP transitory members following mannosidase class I inhibition. This workflow and the associated dataset not only allowed us to investigate the oligomannosidic glycoprotein fraction but also to delineate differences mediated at glycosite-level upon kifunensine treatment and outline the potential associated cellular responses.
Collapse
Affiliation(s)
- Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Gabriela N Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| |
Collapse
|
42
|
Doud EH, Yeh ES. Mass Spectrometry-Based Glycoproteomic Workflows for Cancer Biomarker Discovery. Technol Cancer Res Treat 2023; 22:15330338221148811. [PMID: 36740994 PMCID: PMC9903044 DOI: 10.1177/15330338221148811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycosylation has a clear role in cancer initiation and progression, with numerous studies identifying distinct glycan features or specific glycoproteoforms associated with cancer. Common findings include that aggressive cancers tend to have higher expression levels of enzymes that regulate glycosylation as well as glycoproteins with greater levels of complexity, increased branching, and enhanced chain length1. Research in cancer glycoproteomics over the last 50-plus years has mainly focused on technology development used to observe global changes in glycosylation. Efforts have also been made to connect glycans to their protein carriers as well as to delineate the role of these modifications in intracellular signaling and subsequent cell function. This review discusses currently available techniques utilizing mass spectrometry-based technologies used to study glycosylation and highlights areas for future advancement.
Collapse
Affiliation(s)
- Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, USA
| | - Elizabeth S. Yeh
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
43
|
Aloor A, Aradhya R, Venugopal P, Gopalakrishnan Nair B, Suravajhala R. Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochem Pharmacol 2022; 206:115335. [PMID: 36328134 PMCID: PMC9621623 DOI: 10.1016/j.bcp.2022.115335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.
Collapse
Affiliation(s)
- Arya Aloor
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | | | - Renuka Suravajhala
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| |
Collapse
|
44
|
Van Coillie J, Schulz MA, Bentlage AEH, de Haan N, Ye Z, Geerdes DM, van Esch WJE, Hafkenscheid L, Miller RL, Narimatsu Y, Vakhrushev SY, Yang Z, Vidarsson G, Clausen H. Role of N-Glycosylation in FcγRIIIa interaction with IgG. Front Immunol 2022; 13:987151. [PMID: 36189205 PMCID: PMC9524020 DOI: 10.3389/fimmu.2022.987151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulins G (IgG) and their Fc gamma receptors (FcγRs) play important roles in our immune system. The conserved N-glycan in the Fc region of IgG1 impacts interaction of IgG with FcγRs and the resulting effector functions, which has led to the design of antibody therapeutics with greatly improved antibody-dependent cell cytotoxicity (ADCC) activities. Studies have suggested that also N-glycosylation of the FcγRIII affects receptor interactions with IgG, but detailed studies of the interaction of IgG1 and FcγRIIIa with distinct N-glycans have been hindered by the natural heterogeneity in N-glycosylation. In this study, we employed comprehensive genetic engineering of the N-glycosylation capacities in mammalian cell lines to express IgG1 and FcγRIIIa with different N-glycan structures to more generally explore the role of N-glycosylation in IgG1:FcγRIIIa binding interactions. We included FcγRIIIa variants of both the 158F and 158V allotypes and investigated the key N-glycan features that affected binding affinity. Our study confirms that afucosylated IgG1 has the highest binding affinity to oligomannose FcγRIIIa, a glycan structure commonly found on Asn162 on FcγRIIIa expressed by NK cells but not monocytes or recombinantly expressed FcγRIIIa.
Collapse
Affiliation(s)
- Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Morten A. Schulz
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arthur E. H. Bentlage
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Lise Hafkenscheid
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- GlycoDisplay ApS, Copenhagen, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- GlycoDisplay ApS, Copenhagen, Denmark
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Cramer DAT, Franc V, Caval T, Heck AJR. Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry. Anal Chem 2022; 94:12732-12741. [PMID: 36074704 PMCID: PMC9494300 DOI: 10.1021/acs.analchem.2c02215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Most proteins in serum are glycosylated, with several
annotated
as biomarkers and thus diagnostically important and of interest for
their role in disease. Most methods for analyzing serum glycoproteins
employ either glycan release or glycopeptide centric mass spectrometry-based
approaches, which provide excellent tools for analyzing known glycans
but neglect previously undefined or unknown glycosylation and/or other
co-occurring modifications. High-resolution native mass spectrometry
is a relatively new technique for the analysis of intact glycoproteins,
providing a “what you see is what you get” mass profile
of a protein, allowing the qualitative and quantitative observation
of all modifications present. So far, a disadvantage of this approach
has been that it centers mostly on just one specific serum glycoprotein
at the time. To address this issue, we introduce an ion-exchange chromatography-based
fractionation method capable of isolating and analyzing, in parallel,
over 20 serum (glyco)proteins, covering a mass range between 30 and
190 kDa, from 150 μL of serum. Although generating data in parallel
for all these 20 proteins, we focus the discussion on the very complex
proteoform profiles of four selected proteins, i.e., α-1-antitrypsin,
ceruloplasmin, hemopexin, and complement protein C3. Our analyses
provide an insight into the extensive proteoform landscape of serum
proteins in individual donors, caused by the occurrence of various N- and O-glycans, protein cysteinylation,
and co-occurring genetic variants. Moreover, native mass intact mass
profiling also provided an edge over alternative approaches revealing
the presence of apo- and holo-forms of ceruloplasmin and the endogenous
proteolytic processing in plasma of among others complement protein
C3. We also applied our approach to a small cohort of serum samples
from healthy and diseased individuals. In these, we qualitatively
and quantitatively monitored the changes in proteoform profiles of
ceruloplasmin and revealed a substantial increase in fucosylation
and glycan occupancy in patients with late-stage hepatocellular carcinoma
and pancreatic cancer as compared to healthy donor samples.
Collapse
Affiliation(s)
- Dario A T Cramer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Tomislav Caval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
46
|
Delafield DG, Miles HN, Liu Y, Ricke WA, Li L. Complementary proteome and glycoproteome access revealed through comparative analysis of reversed phase and porous graphitic carbon chromatography. Anal Bioanal Chem 2022; 414:5461-5472. [PMID: 35137243 PMCID: PMC9246830 DOI: 10.1007/s00216-022-03934-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 11/01/2022]
Abstract
Continual developments in instrumental and analytical techniques have aided in establishing rigorous connections between protein glycosylation and human illness. These illnesses, such as various forms of cancer, are often associated with poor prognoses, prompting the need for more comprehensive characterization of the glycoproteome. While innovative instrumental and computational strategies have largely benefited glycoproteomic analyses, less attention is given to benefits gained through alternative, optimized chromatographic techniques. Porous graphitic carbon (PGC) chromatography has gained considerable interest in glycomics research due to its mobile phase flexibility, increased retention of polar analytes, and improved structural elucidation at higher temperatures. PGC has yet to be systematically compared against or in tandem with standard reversed phase liquid chromatography (RPLC) in high-throughput bottom-up glycoproteomic experiments, leaving the potential benefits unexplored. Performing comparative analysis of single and biphasic separation regimes at a range of column temperatures illustrates complementary advantages for each method. PGC separation is shown to selectively retain shorter, more hydrophilic glycopeptide species, imparting higher average charge, and exhibiting greater microheterogeneity coverage for identified glycosites. Additionally, we demonstrate that liquid-phase separation of glycopeptide isomers may be achieved through both single and biphasic PGC separations, providing a means towards facile, multidimensional glycopeptide characterization. Beyond this, we demonstrate how utilization of multiple separation regimes and column temperatures can aid in profiling the glycoproteome in tumorigenic and aggressive prostate cancer cells. RAW MS proteomic and glycoproteomic datasets have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024196 (10.6019/PXD024196) and PXD024195, respectively.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hannah N Miles
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - William A Ricke
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
- George M. O'Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA.
| |
Collapse
|
47
|
Puranik A, Saldanha M, Chirmule N, Dandekar P, Jain R. Advanced strategies in glycosylation prediction and control during biopharmaceutical development: Avenues toward Industry 4.0. Biotechnol Prog 2022; 38:e3283. [PMID: 35752935 DOI: 10.1002/btpr.3283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Glycosylation has been shown to define the safety and efficacy of biopharmaceuticals, thus classified as a critical quality attribute. However, controlling glycan heterogeneity has always been a major challenge owing to the multi-variate factors that govern the glycosylation process. Conventional approaches for controlling glycosylation such as gene editing and metabolic control have succeeded in obtaining desired glycan profiles in accordance with the Quality by Design paradigm. Nonetheless, the development of smart algorithms and omics-enabled complete cell characterization have made it possible to predict glycan profiles beforehand, and manipulate process variables accordingly. This review thus discusses the various approaches available for control and prediction of glycosylation in biopharmaceuticals. Further, the futuristic goal of integrating such technologies is discussed in order to attain an automated and digitized continuous bioprocess for control of glycosylation. Given, control of a process as complex as glycosylation requires intense monitoring intervention, we examine the current technologies that enable automation. Finally, we discuss the challenges and the technological gap that currently limits incorporation of an automated process in routine bio-manufacturing, with a glimpse into the economic bearing. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amita Puranik
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Marianne Saldanha
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| | | | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|
48
|
Tabang DN, Wang D, Li L. A Spin-Tip Enrichment Strategy for Simultaneous Analysis of N-Glycopeptides and Phosphopeptides from Human Pancreatic Tissues. J Vis Exp 2022:10.3791/63735. [PMID: 35604151 PMCID: PMC9186302 DOI: 10.3791/63735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024] Open
Abstract
Mass spectrometry can provide deep coverage of post-translational modifications (PTMs), although enrichment of these modifications from complex biological matrices is often necessary due to their low stoichiometry in comparison to non-modified analytes. Most enrichment workflows of PTMs on peptides in bottom-up proteomics workflows, where proteins are enzymatically digested before the resulting peptides are analyzed, only enrich one type of modification. It is the entire complement of PTMs, however, that leads to biological functions, and enrichment of a single type of PTM may miss such crosstalk of PTMs. PTM crosstalk has been observed between protein glycosylation and phosphorylation, the two most common PTMs in human proteins and also the two most studied PTMs using mass spectrometry workflows. Using the simultaneous enrichment strategy described herein, both PTMs are enriched from post-mortem human pancreatic tissue, a complex biological matrix. Dual-functional Ti(IV)-immobilized metal affinity chromatography is used to separate various forms of glycosylation and phosphorylation simultaneously in multiple fractions in a convenient spin tip-based method, allowing downstream analyses of potential PTM crosstalk interactions. This enrichment workflow for glyco- and phosphopeptides can be applied to various sample types to achieve deep profiling of multiple PTMs and identify potential target molecules for future studies.
Collapse
Affiliation(s)
| | - Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison; School of Pharmacy, University of Wisconsin-Madison;
| |
Collapse
|
49
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
50
|
Wilson J, Bilbao A, Wang J, Liao YC, Velickovic D, Wojcik R, Passamonti M, Zhao R, Gargano AFG, Gerbasi VR, Pas̆a-Tolić L, Baker SE, Zhou M. Online Hydrophilic Interaction Chromatography (HILIC) Enhanced Top-Down Mass Spectrometry Characterization of the SARS-CoV-2 Spike Receptor-Binding Domain. Anal Chem 2022; 94:5909-5917. [PMID: 35380435 PMCID: PMC9003935 DOI: 10.1021/acs.analchem.2c00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor-binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein's structure and function, and thus, comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications. Liquid chromatography coupled to mass spectrometry has been widely used to characterize post-translational modifications in proteins, including glycosylation. Most studies of RBDs were performed at the proteolytic peptide (bottom-up proteomics) or released glycan level because of the technical challenges in resolving highly heterogeneous glycans at the intact protein level. Herein, we evaluated several online separation techniques: (1) C2 reverse-phase liquid chromatography (RPLC), (2) capillary zone electrophoresis (CZE), and (3) acrylamide-based monolithic hydrophilic interaction chromatography (HILIC) to separate intact recombinant RBDs with varying combinations of glycosylations (glycoforms) for top-down mass spectrometry (MS). Within the conditions we explored, the HILIC method was superior to RPLC and CZE at separating RBD glycoforms, which differ significantly in neutral glycan groups. In addition, our top-down analysis readily captured unexpected modifications (e.g., cysteinylation and N-terminal sequence variation) and low abundance, heavily glycosylated proteoforms that may be missed by using glycopeptide data alone. The HILIC top-down MS platform holds great potential in resolving heterogeneous glycoproteins for facile comparison of biosimilars in quality control applications.
Collapse
Affiliation(s)
- Jesse
W. Wilson
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Aivett Bilbao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Juan Wang
- Biological
Sciences Division, Pacific Northwest National
Laboratories, 902 Battelle
Boulevard, Richland, Washington 99354, United States
| | - Yen-Chen Liao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Dusan Velickovic
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Roza Wojcik
- National
Security Directorate, Pacific Northwest
National Laboratories, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Marta Passamonti
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The
Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Rui Zhao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Andrea F. G. Gargano
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The
Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Vincent R. Gerbasi
- Biological
Sciences Division, Pacific Northwest National
Laboratories, 902 Battelle
Boulevard, Richland, Washington 99354, United States
| | - Ljiljana Pas̆a-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Scott E. Baker
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| |
Collapse
|