1
|
Kolanek A, Cemaga R, Maciejczyk M. Role and Diagnostic Significance of Apolipoprotein D in Selected Neurodegenerative Disorders. Diagnostics (Basel) 2024; 14:2814. [PMID: 39767175 PMCID: PMC11675071 DOI: 10.3390/diagnostics14242814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The World Health Organization in 2021 ranked Alzheimer's disease and other dementias as the seventh leading cause of death globally. Neurodegenerative disorders are progressive, intractable, and often fatal diseases. Early diagnosis may allow patients to enjoy prolonged survival with attenuated symptomatology because of early intervention. Hence, further research on finding non-invasive biomarkers of neurodegenerative diseases is warranted. Apolipoprotein D (ApoD) is a glycoprotein involved in lipid metabolism, oxidative stress regulation, and inflammation. It is expressed in various body fluids and regions of the central nervous system. ApoD's roles in neuroprotection, lipid transport, and anti-inflammatory processes are crucial as far as the prevention of neurodegenerative pathologies is concerned. This review aims to summarize the background knowledge on ApoD, and it covers studies indexed in the PubMed, Scopus, and Web of Science databases. It discusses the evidence for the multifaceted roles of ApoD in the mechanisms and pathogenesis of multiple sclerosis, Alzheimer's disease, and Parkinson's disease. ApoD may be a specific, sensitive, easily obtained, cost-effective biomarker for neurodegenerative diseases and its applications in diagnostic practices, treatment strategies, and advancing neurodegenerative disorders' management.
Collapse
Affiliation(s)
- Agata Kolanek
- Students’ Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-233 Bialystok, Poland; (A.K.); (R.C.)
| | - Roman Cemaga
- Students’ Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-233 Bialystok, Poland; (A.K.); (R.C.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233 Bialystok, Poland
| |
Collapse
|
2
|
Jia S, Li R, Li Y, Huang Y, Liu M, Zhou Y, Liang Y, Hao Z, Xu Y, Wang H. Evolutionary Novelty of Apolipoprotein D Facilitates Metabolic Plasticity in Lepidopteran Wings. Mol Biol Evol 2024; 41:msae252. [PMID: 39665685 PMCID: PMC11683417 DOI: 10.1093/molbev/msae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
Understanding metabolic plasticity of animal evolution is a fundamental challenge in evolutionary biology. Owing to the diversification of insect wing morphology and dynamic energy requirements, the molecular adaptation mechanisms underlying the metabolic pathways in wing evolution remain largely unknown. This study reveals the pivotal role of the duplicated Apolipoprotein D (ApoD) gene in lipid and energy homeostasis in the lepidopteran wing. ApoD underwent significant expansion in insects, with gene duplication and consistent retention observed in Lepidoptera. Notably, duplicated ApoD2 was highly expressed in lepidopteran wings and encoded a unique C-terminal tail, conferring distinct ligand-binding properties. Using Bombyx mori as a model organism, we integrated evolutionary analysis, multiomics, and in vivo functional experiments to elucidate the way duplicated ApoD2 mediates lipid trafficking and homeostasis via the AMP-activated protein kinase pathway in wings. Moreover, we revealed the specific expression and functional divergence of duplicated ApoD as a key mechanism regulating lipid homeostasis in the lepidopteran wing. These findings highlight an evolutionary scenario in which neofunctionalization conferred a novel role of ApoD in shaping adaptive lipid metabolic regulatory networks during wing phenotypic evolution. Overall, we provide in vivo evidence for the functional differentiation of duplicate genes in shaping adaptive metabolic regulatory networks during phenotypic evolution.
Collapse
Affiliation(s)
- Shunze Jia
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rongqiao Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minmin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanting Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Fukuda M, Okanishi H, Ino D, Ono K, Ota T, Wakai E, Sato T, Ohta Y, Kikkawa Y, Inohara H, Kanai Y, Hibino H. Protein profile of mouse endolymph suggests a role in controlling cochlear homeostasis. iScience 2024; 27:111214. [PMID: 39563888 PMCID: PMC11574807 DOI: 10.1016/j.isci.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
The cochlea contains two extracellular fluids, perilymph and endolymph. Endolymph exhibits high potential of approximately +80 to +110 mV (depending on species), which sensitizes sensory hair cells. Other properties of this unique fluid remain elusive, owing to its minuscule volume in rodent cochlea. We therefore developed a technique to collect high-purity endolymph from mouse cochleae. Comprehensive proteomic analysis of sampled endolymph using liquid chromatography with mass spectrometry identified 301 proteins, dominated by molecules engaged in immunity and proteostasis. Approximately 30% of these proteins were undetectable in our perilymph. A combination of mass spectrometry and different approaches revealed that, compared to perilymph, endolymph was enriched with α2-macroglobulin, osteopontin, apolipoprotein D, apolipoprotein E, and apolipoprotein J/clusterin. In other cells or tissues, α2-macroglobulin, apolipoprotein E, and apolipoprotein J contribute to the clearance of degraded proteins from extracellular fluid. Altogether, with the proteins described here, endolymph may play a protective role in stabilizing cochlear homeostasis.
Collapse
Affiliation(s)
- Masatoshi Fukuda
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Ino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Ono
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeru Ota
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eri Wakai
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumi Ohta
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Kikkawa
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- AMED-CREST, AMED, Osaka 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka 565-0871, Japan
| | - Hiroshi Hibino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- AMED-CREST, AMED, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Dai Y, Bi M, Jiao Q, Du X, Yan C, Jiang H. Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:143. [PMID: 39095480 PMCID: PMC11297325 DOI: 10.1038/s41531-024-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
Apolipoprotein D (ApoD), a lipocalin transporter of small hydrophobic molecules, plays an essential role in several neurodegenerative diseases. It was reported that increased immunostaining for ApoD of glial cells surrounding dopaminergic (DAergic) neurons was observed in the brains of Parkinson's disease (PD) patients. Although preliminary findings supported the role of ApoD in neuroprotection, its derivation and effects on the degeneration of nigral DAergic neurons are largely unknown. In the present study, we observed that ApoD levels released from astrocytes were increased in PD models both in vivo and in vitro. When co-cultured with astrocytes, due to the increased release of astrocytic ApoD, the survival rate of primary cultured ventral midbrain (VM) neurons was significantly increased with 1-methyl-4-phenylpyridillium ion (MPP+) treatment. Increased levels of TAp73 and its phosphorylation at Tyr99 in astrocytes were required for the increased ApoD levels and its release. Conditional knockdown of TAp73 in the nigral astrocytes in vivo could aggravate the neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD mice. Our findings reported that astrocyte-derived ApoD was essential for DAergic neuronal survival in PD models, might provide new therapeutic targets for PD.
Collapse
Affiliation(s)
- Yingying Dai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
5
|
Zhang H, Liang X, Li D, Zhang C, Wang W, Tang R, Zhang H, Kiflu AB, Liu C, Liang J, Li X, Luo TR. Apolipoprotein D facilitates rabies virus propagation by interacting with G protein and upregulating cholesterol. Front Immunol 2024; 15:1392804. [PMID: 38868762 PMCID: PMC11167634 DOI: 10.3389/fimmu.2024.1392804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Rabies virus (RABV) causes a fatal neurological disease, consisting of unsegmented negative-strand RNA, which encodes five structural proteins (3'-N-P-M-G-L-5'). Apolipoprotein D (ApoD), a lipocalin, is upregulated in the nervous system after injury or pathological changes. Few studies have focused on the role of ApoD during virus infection so far. This study demonstrated that ApoD is upregulated in the mouse brain (in vivo) and C8-D1A cells (in vitro) after RABV infection. By upregulating ApoD expression in C8-D1A cells, we found that ApoD facilitated RABV replication. Additionally, Co-immunoprecipitation demonstrated that ApoD interacted with RABV glycoprotein (G protein). The interaction could promote RABV replication by upregulating the cholesterol level. These findings revealed a novel role of ApoD in promoting RABV replication and provided a potential therapeutic target for rabies.
Collapse
Affiliation(s)
- Hongyan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Xingxue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Duoduo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Chuanliang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Wenfeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Rongze Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Hongyun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Abraha Bahlbi Kiflu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Cheng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Jingjing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Xiaoning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Gong H, Zhu C, Han D, Liu S. Secreted Glycoproteins That Regulate Synaptic Function: the Dispatchers in the Central Nervous System. Mol Neurobiol 2024; 61:2719-2727. [PMID: 37924485 DOI: 10.1007/s12035-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Glycoproteins are proteins that contain oligosaccharide chains. As widely distributed functional proteins in the body, glycoproteins are essential for cellular development, cellular function maintenance, and intercellular communication. Glycoproteins not only play a role in the cell and the membrane, but they are also secreted in the intercell. These secreted glycoproteins are critical to the central nervous system for neurodevelopment and synaptic transmission. More specifically, secreted glycoproteins play indispensable roles in neurite growth mediation, axon guiding, synaptogenesis, neuronal differentiation, the release of synaptic vesicles, subunit composition of neurotransmitter receptors, and neurotransmitter receptor trafficking among other things. Abnormal expressions of secreted glycoproteins in the central nervous system are associated with abnormal neuron development, impaired synaptic organization/transmission, and neuropsychiatric disorders. This article reviews the secreted glycoproteins that regulate neuronal development and synaptic function in the central nervous system, and the molecular mechanism of these regulations, providing reference for research about synaptic function regulation and related central nervous system diseases.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
8
|
Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C. Apolipoprotein D in Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051027. [PMID: 37237893 DOI: 10.3390/antiox12051027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Apolipoprotein D (ApoD) is lipocalin able to bind hydrophobic ligands. The APOD gene is upregulated in a number of pathologies, including Alzheimer's disease, Parkinson's disease, cancer, and hypothyroidism. Upregulation of ApoD is linked to decreased oxidative stress and inflammation in several models, including humans, mice, Drosophila melanogaster and plants. Studies suggest that the mechanism through which ApoD modulates oxidative stress and regulate inflammation is via its capacity to bind arachidonic acid (ARA). This polyunsaturated omega-6 fatty acid can be metabolised to generate large variety of pro-inflammatory mediators. ApoD serves as a sequester, blocking and/or altering arachidonic metabolism. In recent studies of diet-induced obesity, ApoD has been shown to modulate lipid mediators derived from ARA, but also from eicosapentaenoic acid and docosahexaenoic acid in an anti-inflammatory way. High levels of ApoD have also been linked to better metabolic health and inflammatory state in the round ligament of morbidly obese women. Since ApoD expression is upregulated in numerous diseases, it might serve as a therapeutic agent against pathologies aggravated by OS and inflammation such as many obesity comorbidities. This review will present the most recent findings underlying the central role of ApoD in the modulation of both OS and inflammation.
Collapse
Affiliation(s)
- Guillaume Fyfe-Desmarais
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Fréderik Desmarais
- Department of Medecine, Faculty of Medecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Éric Rassart
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Catherine Mounier
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
9
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
10
|
Van Valkenburgh J, Meuret C, Martinez AE, Kodancha V, Solomon V, Chen K, Yassine HN. Understanding the Exchange of Systemic HDL Particles Into the Brain and Vascular Cells Has Diagnostic and Therapeutic Implications for Neurodegenerative Diseases. Front Physiol 2021; 12:700847. [PMID: 34552500 PMCID: PMC8450374 DOI: 10.3389/fphys.2021.700847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
High-density lipoproteins (HDLs) are complex, heterogenous lipoprotein particles, consisting of a large family of apolipoproteins, formed in subspecies of distinct shapes, sizes, and functions and are synthesized in both the brain and the periphery. HDL apolipoproteins are important determinants of Alzheimer’s disease (AD) pathology and vascular dementia, having both central and peripheral effects on brain amyloid-beta (Aβ) accumulation and vascular functions, however, the extent to which HDL particles (HLD-P) can exchange their protein and lipid components between the central nervous system (CNS) and the systemic circulation remains unclear. In this review, we delineate how HDL’s structure and composition enable exchange between the brain, cerebrospinal fluid (CSF) compartment, and vascular cells that ultimately affect brain amyloid metabolism and atherosclerosis. Accordingly, we then elucidate how modifications of HDL-P have diagnostic and therapeutic potential for brain vascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cristiana Meuret
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ashley E Martinez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vibha Kodancha
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
12
|
Zhang X, Jiang B, Ji C, Li H, Yang L, Jiang G, Wang Y, Liu G, Liu G, Min L, Zhao F. Quantitative Label-Free Proteomic Analysis of Milk Fat Globule Membrane in Donkey and Human Milk. Front Nutr 2021; 8:670099. [PMID: 34239890 PMCID: PMC8258387 DOI: 10.3389/fnut.2021.670099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Previous studies have found donkey milk (DM) has the similar compositions with human milk (HM) and could be used as a potential hypoallergenic replacement diet for babies suffering from cow's milk allergy. Milk fat globule membrane (MFGM) proteins are involved in many biological functions, behaving as important indicators of the nutritional quality of milk. In this study, we used label-free proteomics to quantify the differentially expressed MFGM proteins (DEP) between DM (in 4-5 months of lactation) and HM (in 6-8 months of lactation). In total, 293 DEP were found in these two groups. Gene Ontology (GO) enrichment analysis revealed that the majority of DEP participated in regulation of immune system process, membrane invagination and lymphocyte activation. Several significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined for the DEP, such as lysosome, galactose metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Our study may provide valuable information in the composition of MFGM proteins in DM and HM, and expand our knowledge of different biological functions between DM and HM.
Collapse
Affiliation(s)
- Xinhao Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China.,National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Haijing Li
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Li Yang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Guimiao Jiang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Yantao Wang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Guangyuan Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Guiqin Liu
- Shandong Donkey Industry, Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Fuwei Zhao
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| |
Collapse
|
13
|
Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 2021; 56:1394-1407. [PMID: 33891896 DOI: 10.1016/j.devcel.2021.03.034] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Lipids play crucial roles in regulating aging and longevity. In the past few decades, a series of genetic pathways have been discovered to regulate lifespan in model organisms. Interestingly, many of these regulatory pathways are linked to lipid metabolism and lipid signaling. Lipid metabolic enzymes undergo significant changes during aging and are regulated by different longevity pathways. Lipids also actively modulate lifespan and health span as signaling molecules. In this review, we summarize recent insights into the roles of lipid metabolism and lipid signaling in aging and discuss lipid-related interventions in promoting longevity.
Collapse
Affiliation(s)
- Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathon Duffy
- Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Desmarais F, Hervé V, Bergeron KF, Ravaut G, Perrotte M, Fyfe-Desmarais G, Rassart E, Ramassamy C, Mounier C. Cerebral Apolipoprotein D Exits the Brain and Accumulates in Peripheral Tissues. Int J Mol Sci 2021; 22:ijms22084118. [PMID: 33923459 PMCID: PMC8073497 DOI: 10.3390/ijms22084118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein D (ApoD) is a secreted lipocalin associated with neuroprotection and lipid metabolism. In rodent, the bulk of its expression occurs in the central nervous system. Despite this, ApoD has profound effects in peripheral tissues, indicating that neural ApoD may reach peripheral organs. We endeavor to determine if cerebral ApoD can reach the circulation and accumulate in peripheral tissues. Three hours was necessary for over 40% of all the radiolabeled human ApoD (hApoD), injected bilaterally, to exit the central nervous system (CNS). Once in circulation, hApoD accumulates mostly in the kidneys/urine, liver, and muscles. Accumulation specificity of hApoD in these tissues was strongly correlated with the expression of lowly glycosylated basigin (BSG, CD147). hApoD was observed to pass through bEnd.3 blood brain barrier endothelial cells monolayers. However, cyclophilin A did not impact hApoD internalization rates in bEnd.3, indicating that ApoD exit from the brain is either independent of BSG or relies on additional cell types. Overall, our data showed that ApoD can quickly and efficiently exit the CNS and reach the liver and kidneys/urine, organs linked to the recycling and excretion of lipids and toxins. This indicated that cerebral overexpression during neurodegenerative episodes may serve to evacuate neurotoxic ApoD ligands from the CNS.
Collapse
Affiliation(s)
- Frederik Desmarais
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
| | - Vincent Hervé
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada;
| | - Karl F. Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
| | - Gaétan Ravaut
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
| | - Morgane Perrotte
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada;
| | - Guillaume Fyfe-Desmarais
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
| | - Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
| | - Charles Ramassamy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada;
- Correspondence: (C.R.); (C.M.)
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
- Correspondence: (C.R.); (C.M.)
| |
Collapse
|
15
|
Shi L, Winchester LM, Westwood S, Baird AL, Anand SN, Buckley NJ, Hye A, Ashton NJ, Bos I, Vos SJB, Kate MT, Scheltens P, Teunissen CE, Vandenberghe R, Gabel S, Meersmans K, Engelborghs S, De Roeck EE, Sleegers K, Frisoni GB, Blin O, Richardson JC, Bordet R, Molinuevo JL, Rami L, Wallin A, Kettunen P, Tsolaki M, Verhey F, Lléo A, Sala I, Popp J, Peyratout G, Martinez-Lage P, Tainta M, Johannsen P, Freund-Levi Y, Frölich L, Dobricic V, Legido-Quigley C, Barkhof F, Andreasson U, Blennow K, Zetterberg H, Streffer J, Lill CM, Bertram L, Visser PJ, Kolb HC, Narayan VA, Lovestone S, Nevado-Holgado AJ. Replication study of plasma proteins relating to Alzheimer's pathology. Alzheimers Dement 2021; 17:1452-1464. [PMID: 33792144 DOI: 10.1002/alz.12322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/26/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis. METHODS Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively. RESULTS Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis. DISCUSSION Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.
Collapse
Affiliation(s)
- Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Sarah Westwood
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Alison L Baird
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sneha N Anand
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Abdul Hye
- Maurice Wohl Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Nicholas J Ashton
- Maurice Wohl Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands.,Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Mara Ten Kate
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry lab, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Silvy Gabel
- University Hospital Leuven, Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Karen Meersmans
- University Hospital Leuven, Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, UZ Brussel and Center for Neurociences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen E De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Kristel Sleegers
- Complex Genetics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giovanni B Frisoni
- University of Geneva, Geneva, Switzerland.,IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Olivier Blin
- AIX marseille university, INS, Ap-hm, Marseille, France
| | | | - Régis Bordet
- Inserm, University of Lille, CHU Lille, Lille, France
| | - José L Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hopsital Clínic-IDIBAPS, Barcelona, Spain.,Barcelona Beta Brain Research Center, Unversitat Pompeu Fabra, Barcelona, Spain
| | - Lorena Rami
- Barcelona Beta Brain Research Center, Unversitat Pompeu Fabra, Barcelona, Spain
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Makedonia, Thessaloniki, Greece
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Alberto Lléo
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Isabel Sala
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Julius Popp
- University Hospital of Lausanne, Lausanne, Switzerland.,Geriatric Psychiatry, Department of Mental Health and Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | - Peter Johannsen
- Danish Dementia Research Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Yvonne Freund-Levi
- Maurice Wohl Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,Karolinska Institutet Center for Alzheimer Research, Division of Clinical Geriatrics, School of Medical Sciences Örebro University and Department of Neurobiology, Caring Sciences and Society (NVS), Stockholm, Sweden
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg, Mannheim, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Cristina Legido-Quigley
- Kings College London, London, UK.,The Systems Medicine Group, Steno Diabetes Center, Gentofte, Denmark
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherland.,UCL Institutes of Neurology and Healthcare Engineering, London, UK
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Johannes Streffer
- Complex Genetics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,UCB, Braine-l'Alleud, Belgium, formerly Janssen R&D, LLC Beerse, Beerse, Belgium
| | - Christina M Lill
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands.,Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, UK.,Janssen R&D, Beerse, UK
| | | |
Collapse
|
16
|
Vardi A, Pri-Or A, Wigoda N, Grishchuk Y, Futerman AH. Proteomics analysis of a human brain sample from a mucolipidosis type IV patient reveals pathophysiological pathways. Orphanet J Rare Dis 2021; 16:39. [PMID: 33478506 PMCID: PMC7818904 DOI: 10.1186/s13023-021-01679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background Mucolipidosis type IV (MLIV), an ultra-rare neurodevelopmental and neurodegenerative disorder, is caused by mutations in the MCOLN1 gene, which encodes the late endosomal/lysosomal transient receptor potential channel TRPML1 (mucolipin 1). The precise pathophysiogical pathways that cause neurological disease in MLIV are poorly understood. Recently, the first post-mortem brain sample became available from a single MLIV patient, and in the current study we performed mass spectrometry (MS)-based proteomics on this tissue with a view to delineating pathological pathways, and to compare with previously-published data on MLIV, including studies using the Mcoln1−/− mouse. Results A number of pathways were altered in two brain regions from the MLIV patient, including those related to the lysosome, lipid metabolism, myelination, cellular trafficking and autophagy, mTOR and calmodulin, the complement system and interferon signaling. Of these, levels of some proteins not known previously to be associated with MLIV were altered, including APOD, PLIN4, ATG and proteins related to interferon signaling. Moreover, when proteins detected by proteomics in the human brain were compared with their orthologs detected in the Mcoln1−/− mouse by RNAseq, the results were remarkably similar. Finally, analysis of proteins in human and mouse CSF suggest that calbindin 1 and calbindin 2 might be useful as biomarkers to help chart the course of disease development. Conclusions Despite the sample size limitations, our findings are consistent with the relatively general changes in lysosomal function previously reported in MLIV, and shed light on new pathways of disease pathophysiology, which is required in order to understand the course of disease development and to determine the efficacy of therapies when they become available for this devastating disease.
Collapse
Affiliation(s)
- Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Amir Pri-Or
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Noa Wigoda
- The Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, 02114, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
17
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
18
|
Tristán-Noguero A, Borràs E, Molero-Luis M, Wassenberg T, Peters T, Verbeek MM, Willemsen M, Opladen T, Jeltsch K, Pons R, Thony B, Horvath G, Yapici Z, Friedman J, Hyland K, Agosta GE, López-Laso E, Artuch R, Sabidó E, García-Cazorla À. Novel Protein Biomarkers of Monoamine Metabolism Defects Correlate with Disease Severity. Mov Disord 2020; 36:690-703. [PMID: 33152132 DOI: 10.1002/mds.28362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Genetic defects of monoamine neurotransmitters are rare neurological diseases amenable to treatment with variable response. They are major causes of early parkinsonism and other spectrum of movement disorders including dopa-responsive dystonia. OBJECTIVES The objective of this study was to conduct proteomic studies in cerebrospinal fluid (CSF) samples of patients with monoamine defects to detect biomarkers involved in pathophysiology, clinical phenotypes, and treatment response. METHODS A total of 90 patients from diverse centers of the International Working Group on Neurotransmitter Related Disorders were included in the study (37 untreated before CSF collection, 48 treated and 5 unknown at the collection time). Clinical and molecular metadata were related to the protein abundances in the CSF. RESULTS Concentrations of 4 proteins were significantly altered, detected by mass spectrometry, and confirmed by immunoassays. First, decreased levels of apolipoprotein D were found in severe cases of aromatic L-amino acid decarboxylase deficiency. Second, low levels of apolipoprotein H were observed in patients with the severe phenotype of tyrosine hydroxylase deficiency, whereas increased concentrations of oligodendrocyte myelin glycoprotein were found in the same subset of patients with tyrosine hydroxylase deficiency. Third, decreased levels of collagen6A3 were observed in treated patients with tetrahydrobiopterin deficiency. CONCLUSION This study with the largest cohort of patients with monoamine defects studied so far reports the proteomic characterization of CSF and identifies 4 novel biomarkers that bring new insights into the consequences of early dopaminergic deprivation in the developing brain. They open new possibilities to understand their role in the pathophysiology of these disorders, and they may serve as potential predictors of disease severity and therapies. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alba Tristán-Noguero
- Synaptic Metabolism Laboratory, Sant Joan de Déu Foundation, Research Pediatric Institute (IPR), Sant Joan de Déu Hospital, Barcelona, Spain
| | - Eva Borràs
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Molero-Luis
- Department of Clinical Biochemistry, IPR and CIBERER-ISCIII, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Tessa Wassenberg
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Tessa Peters
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,Department of Pediatric Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Michel Willemsen
- Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas Opladen
- Division of Neuropediatrics & Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropediatrics & Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Roser Pons
- First Department of Pediatrics, Pediatric Neurology Unit, Agia Sofia Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Beat Thony
- Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Gabriella Horvath
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Zuhal Yapici
- Division of Child Neurology, Department of Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Jennifer Friedman
- Departments of Neuroscience and Pediatrics, University of California, San Diego, California, USA.,Rady Children's Hospital and Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Keith Hyland
- Medical Neurogenetics, LLC, Atlanta, Georgia, USA
| | | | - Eduardo López-Laso
- Pediatric Neurology Unit, Department of Pediatrics, University Hospital Reina Sofía, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), and CIBERER, Córdoba, Spain
| | - Rafael Artuch
- Department of Clinical Biochemistry, IPR and CIBERER-ISCIII, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Àngels García-Cazorla
- Synaptic Metabolism Laboratory, Sant Joan de Déu Foundation, Research Pediatric Institute (IPR), Sant Joan de Déu Hospital, Barcelona, Spain.,Neurometabolic Unit, Neurology Department, IPR, CIBER ("Centro de investigación Biomédica en Red") of Rare Diseases and Carlos III Healthcare Institute (CIBERER-ISCIII), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Sant Joan de Déu Hospital, Barcelona, Spain
| |
Collapse
|
19
|
Pascua-Maestro R, Corraliza-Gomez M, Fadrique-Rojo C, Ledesma MD, Schuchman EH, Sanchez D, Ganfornina MD. Apolipoprotein D-mediated preservation of lysosomal function promotes cell survival and delays motor impairment in Niemann-Pick type A disease. Neurobiol Dis 2020; 144:105046. [PMID: 32798728 DOI: 10.1016/j.nbd.2020.105046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022] Open
Abstract
Lysosomal Storage Diseases (LSD) are genetic diseases causing systemic and nervous system dysfunction. The glia-derived lipid binding protein Apolipoprotein D (ApoD) is required for lysosomal functional integrity in glial and neuronal cells, ensuring cell survival upon oxidative stress or injury. Here we test whether ApoD counteracts the pathogenic consequences of a LSD, Niemann Pick-type-A disease (NPA), where mutations in the acid sphingomyelinase gene result in sphingomyelin accumulation, lysosomal permeabilization and early-onset neurodegeneration. We performed a multivariable analysis of behavioral, cellular and molecular outputs in 12 and 24 week-old male and female NPA model mice, combined with ApoD loss-of-function mutation. Lack of ApoD in NPA mice accelerates cerebellar-dependent motor deficits, enhancing loss of Purkinje neurons. We studied ApoD expression in brain sections from a NPA patient and age-matched control, and the functional consequences of ApoD supplementation in primary human fibroblasts from two independent NPA patients and two control subjects. Cell viability, lipid peroxidation, and lysosomal functional integrity (pH, Cathepsin B activity, Galectin-3 exclusion) were examined. ApoD is endogenously overexpressed in NPA patients and NPA mouse brains and targeted to lysosomes of NPA patient cells, including Purkinje neurons and cultured fibroblasts. The accelerated lysosomal targeting of ApoD by oxidative stress is hindered in NPA fibroblasts, contributing to NPA lysosomes vulnerability. Exogenously added ApoD reduces NPA-prompted lysosomal permeabilization and alkalinization, reverts lipid peroxides accumulation, and significantly increases NPA cell survival. ApoD administered simultaneously to sphingomyelin overload results in complete rescue of cell survival. Our results reveal that ApoD protection of lysosomal integrity counteracts NPA pathology. ApoD supplementation could significantly delay not only the progression of NPA disease, but also of other LSDs through its beneficial effects in lysosomal functional maintenance.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Miriam Corraliza-Gomez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Cristian Fadrique-Rojo
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Maria D Ledesma
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | | | - Diego Sanchez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain.
| | - Maria D Ganfornina
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain.
| |
Collapse
|
20
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
21
|
König S, Hadrian K, Schlatt S, Wistuba J, Thanos S, Böhm M. Topographic protein profiling of the age-related proteome in the retinal pigment epithelium of Callithrix jacchus with respect to macular degeneration. J Proteomics 2019; 191:1-15. [DOI: 10.1016/j.jprot.2018.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/12/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022]
|
22
|
Perrotte M, Le Page A, Fournet M, Le Sayec M, Rassart É, Fulop T, Ramassamy C. Blood-based redox-signature and their association to the cognitive scores in MCI and Alzheimer's disease patients. Free Radic Biol Med 2019; 130:499-511. [PMID: 30445127 DOI: 10.1016/j.freeradbiomed.2018.10.452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023]
Abstract
Oxidative stress plays a pivotal and early role in the pathophysiology of Alzheimer's disease (AD). There is convincing evidence that oxidative alterations in AD and in mild cognitive impairment (MCI) patients are not limited to the brain but are extended to the blood compartment. However, the oxidative pattern in plasma is still inconclusive. Moreover, their potential association with the clinical scores MMSE (Mini-Mental State Examination) and MoCA (Montreal Cognitive Assessment) is poorly investigated. The aim of our study was to establish a pattern of blood-based redox alterations in prodromal AD and their evolution during the progression of the disease. Our results showed a reduction in the total antioxidant capacity (TAC) and an increase of the stress-response proteins apolipoprotein J (ApoJ) and Klotho in MCI subjects. For the first time, we evidenced circulating-proteasome activity. We found that the alteration of the circulating-proteasome activity is associated with the accumulation of oxidized proteins in plasma form early AD. Interestingly, the TAC, the levels of vitamin D and the activity of proteasome were positively associated to the clinical scores MMSE and MoCA. The levels of protein carbonyls and of ApoJ were negatively associated to the MMSE and MoCA scores. The levels of apolipoprotein D (ApoD) were not different between groups. Interestingly, the receiver operating characteristic (ROC) curves analysis indicated that these redox markers provide a fair classification of different groups with high accuracy. Overall, our results strengthen the notion that some specific oxidative markers could be considered as non-invasive blood-based biomarkers for an early MCI diagnosis and AD progression.
Collapse
Affiliation(s)
- Morgane Perrotte
- INRS-Institut Armand-Frappier, Laval, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada
| | - Aurélie Le Page
- Department of Medicine, Geriatric Division, Research Center on Aging, Université de Sherbrooke, QC, Canada
| | | | | | - Éric Rassart
- Université Québec à Montréal, Dept. Sciences biologiques, QC, Canada
| | - Tamas Fulop
- Department of Medicine, Geriatric Division, Research Center on Aging, Université de Sherbrooke, QC, Canada
| | - Charles Ramassamy
- INRS-Institut Armand-Frappier, Laval, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada.
| |
Collapse
|
23
|
Desmarais F, Bergeron KF, Lacaille M, Lemieux I, Bergeron J, Biron S, Rassart E, Joanisse DR, Mauriege P, Mounier C. High ApoD protein level in the round ligament fat depot of severely obese women is associated with an improved inflammatory profile. Endocrine 2018; 61:248-257. [PMID: 29869155 DOI: 10.1007/s12020-018-1621-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Apolipoprotein D (ApoD) is a lipocalin participating in lipid transport. It binds to a variety of ligands, with a higher affinity for arachidonic acid, and is thought to have a diverse array of functions. We investigated a potential role for ApoD in insulin sensitivity, inflammation, and thrombosis-processes related to lipid metabolism-in severely obese women. METHODS We measured ApoD expression in a cohort of 44 severely obese women including dysmetabolic and non-dysmetabolic patients. Physical and metabolic characteristics of these women were determined from anthropometric measurements and blood samples. ApoD was quantified at the mRNA and protein levels in samples from three intra-abdominal adipose tissues (AT): omental, mesenteric and round ligament (RL). RESULTS ApoD protein levels were highly variable between AT of the same individual. High ApoD protein levels, particularly in the RL depot, were linked to lower plasma insulin levels (-40%, p = 0.015) and insulin resistance (-47%, p = 0.022), and increased insulin sensitivity (+10%, p = 0.008). Lower circulating pro-inflammatory PAI-1 (-39%, p = 0.001), and TNF-α (-19%, p = 0.030) levels were also correlated to high ApoD protein in the RL AT. CONCLUSIONS ApoD variability between AT was consistent with different accumulation efficiencies and/or metabolic functions according to the anatomic location of fat depots. Most statistically significant correlations implicated ApoD protein levels, in agreement with protein accumulation in target tissues. These correlations associated higher ApoD levels in fat depots with improved metabolic health in severely obese women.
Collapse
Affiliation(s)
- Frederik Desmarais
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada
| | - Karl-F Bergeron
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada
| | - Michel Lacaille
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Isabelle Lemieux
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
| | - Jean Bergeron
- Endocrinology and Nephrology Axis, Research Center of the University Hospital, Quebec City, QC, Canada
| | - Simon Biron
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Eric Rassart
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada
| | - Denis R Joanisse
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
| | - Pascale Mauriege
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
| | - Catherine Mounier
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada.
| |
Collapse
|
24
|
Li L, Liu MS, Li GQ, Tang J, Liao Y, Zheng Y, Guo TL, Kang X, Yuan MT. Relationship between Apolipoprotein Superfamily and Parkinson's Disease. Chin Med J (Engl) 2018; 130:2616-2623. [PMID: 29067960 PMCID: PMC5678263 DOI: 10.4103/0366-6999.217092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Parkinson's disease (PD) is featured with motor disorder and nonmotor manifestations including psychological symptoms, autonomic nervous system dysfunction, and paresthesia, which results in great inconvenience to the patients’ life. The apolipoprotein (Apo) superfamily, as a group of potentially modifiable biomarkers in clinical practice, is of increasing significance in the diagnosis, evaluation, and prognosis of PD. The present review summarized the current understanding and emerging findings of the relationship between Apo superfamily and PD. Data Sources: All literatures were identified by systematically searching PubMed, Embase, and Cochrane electronic databases with terms “Parkinson disease,” “apolipoprotein,” and their synonyms until May 2017. Study Selection: We have thoroughly examined titles and abstracts of all the literatures that met our search strategy and the full text if the research is identified or not so definite. Reference lists of retrieved articles were also scrutinized for additional relevant studies. Results: The levels of plasma ApoA1 are inversely correlated with the risk of PD and the lower levels of ApoA1 trend toward association with poorer motor performance. Higher ApoD expression in neurons represents more puissant protection against PD, which is critical in delaying the neurodegeneration process of PD. It is suggested that APOE alleles are related to development and progression of cognitive decline and age of PD onset, but conclusions are not completely identical, which may be attributed to different ApoE isoforms. APOJ gene expressions are upregulated in PD patients and it is possible that high ApoJ level is an indicator of PD dementia and correlates with specific phenotypic variations in PD. Conclusions: The Apo superfamily has been proved to be closely involved in the initiation, progression, and prognosis of PD. Apos and their genes are of great value in predicting the susceptibility of PD and hopeful to become the target of medical intervention to prevent the onset of PD or slow down the progress. Therefore, further large-scale studies are warranted to elucidate the precise mechanisms of Apos in PD.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Su Liu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Guang-Qin Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jie Tang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yan Liao
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yang Zheng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Tong-Li Guo
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xin Kang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Mao-Ting Yuan
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
25
|
Navarro A, Del Valle E, Tolivia J. Differential Expression of Apolipoprotein D in Human Astroglial and Oligodendroglial Cells. J Histochem Cytochem 2016; 52:1031-6. [PMID: 15258178 DOI: 10.1369/jhc.3a6213.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apolipoprotein D (Apo D) is a secreted lipocalin in the nervous system that may be related to processes of reinnervation and regeneration. Under normal conditions, Apo D is present in the central nervous system in oligodendrocytes, astrocytes, and some scattered neurons. To elucidate the regional and cellular distribution of Apo D in normal human brain, we performed double immunohistochemistry for glial fibrillary acidic protein (GFAP) and Apo D in samples of postmortem human cerebral and cerebellar cortices. Most of the GFAP-positive cells in the gray matter had features of protoplasmic astrocytes and were mainly Apo D-positive. Apo D staining was mostly confined to the cell soma and proximal processes, whereas GFAP extended to a rich and extensive array of processes. The fibrous astrocytes in the white matter were immunoreactive for GFAP but not for Apo D. In the white matter, Apo D was mainly detected in oligodendrocytes and extracellularly in the neuropil. The results of the present study support a specific behavior for each astrocyte type. These findings suggest that Apo D expression may be cell-specific, depending on the particular tissue physiology at the time of examination.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo 33006, Spain
| | | | | |
Collapse
|
26
|
Najyb O, Do Carmo S, Alikashani A, Rassart E. Apolipoprotein D Overexpression Protects Against Kainate-Induced Neurotoxicity in Mice. Mol Neurobiol 2016; 54:3948-3963. [PMID: 27271124 PMCID: PMC7091089 DOI: 10.1007/s12035-016-9920-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023]
Abstract
Excitotoxicity due to the excessive activation of glutamatergic receptors leads to neuronal dysfunction and death. Excitotoxicity has been implicated in the pathogenesis of a myriad of neurodegenerative diseases with distinct etiologies such as Alzheimer's and Parkinson's. Numerous studies link apolipoprotein D (apoD), a secreted glycoprotein highly expressed in the central nervous system (CNS), to maintain and protect neurons in various mouse models of acute stress and neurodegeneration. Here, we used a mouse model overexpressing human apoD in neurons (H-apoD Tg) to test the neuroprotective effects of apoD in the kainic acid (KA)-lesioned hippocampus. Our results show that apoD overexpression in H-apoD Tg mice induces an increased resistance to KA-induced seizures, significantly attenuates inflammatory responses and confers protection against KA-induced cell apoptosis in the hippocampus. The apoD-mediated protection against KA-induced toxicity is imputable in part to increased plasma membrane Ca2+ ATPase type 2 expression (1.7-fold), decreased N-methyl-D-aspartate receptor (NMDAR) subunit NR2B levels (30 %) and lipid metabolism alterations. Indeed, we demonstrate that apoD can attenuate intracellular cholesterol content in primary hippocampal neurons and in brain of H-apoD Tg mice. In addition, apoD can be internalised by neurons and this internalisation is accentuated in ageing and injury conditions. Our results provide additional mechanistic information on the apoD-mediated neuroprotection in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Sonia Do Carmo
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Azadeh Alikashani
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada.
| |
Collapse
|
27
|
Del Valle E, Navarro A, Martínez-Pinilla E, Torices S, Tolivia J. Apo J and Apo D: Complementary or Antagonistic Roles in Alzheimer's Disease? J Alzheimers Dis 2016; 53:639-50. [PMID: 27197790 DOI: 10.3233/jad-160032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Apolipoprotein D (Apo D) and Apolipoprotein J (Apo J) are among the only nine apolipoproteins synthesized in the nervous system. Apart from development, these apolipoproteins are implicated in the normal aging process as well as in different neuropathologies as Alzheimer's disease (AD), where a neuroprotective role has been postulated. Different authors have proposed that Apo D and Apo J could be biomarkers for AD but as far as we know, there are no studies about the relationship between them as well as their expression pattern along the progression of the disease. In this paper, using double immunohistochemistry techniques, we have demonstrated that Apo D is mainly located in glial cells while Apo J expression preferentially occurs in neurons; both proteins are also present in AD diffuse and mature senile plaques but without signal overlap. In addition, we have observed that Apo J and Apo D immunostaining shows a positive correlation with the progression of the disease and the Braak's stages. These results suggest complementary and cell-dependent neuroprotective roles for each apolipoprotein during AD progress.
Collapse
|
28
|
Armanmehr S, Kalhor HR, Tabarraei A. Production of a soluble and functional recombinant apolipoproteinD in the Pichia pastoris expression system. Protein Expr Purif 2016; 121:157-62. [PMID: 26826316 DOI: 10.1016/j.pep.2016.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/17/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022]
Abstract
ApolipoproteinD (ApoD) is a human glycoprotein from the lipocalin family. ApoD contains a conserved central motif of an 8-stranded antiparallel β-sheet, which forms a beta-barrel that can be used for transport and storage of diverse hydrophobic ligands. Due to hydrophobic nature of ApoD, it has been difficult to generate a recombinant version of this protein. In the present work, we aimed at the production of ApoD in the robust Pichia pastoris expression system. To this end, the ApoD gene sequence was synthesized and subcloned for expression in the yeast host cells. Following integration of the ApoD gene into the yeast genomic region using homologous recombination, the ApoD recombinant protein was induced using methanol, reaching its maximum induction at 96 h. Having purified the ApoD recombinant protein by affinity chromatography, we measured the dissociation constant (KD) using its natural ligands: progesterone and arachidonic acid. Our results provide a viable solution to the production of recombinant ApoD protein in lieu of previous obstacles in generating soluble and functional ApoD protein.
Collapse
Affiliation(s)
- Shiva Armanmehr
- Metabolic Disorder Research Center, Golestan University of Medical Science, Gorgan, Iran; Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Hamid Reza Kalhor
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
29
|
Kim JY, Park YK, Lee KP, Lee SM, Kang TW, Kim HJ, Dho SH, Kim SY, Kwon KS. Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging. Aging (Albany NY) 2015; 6:524-44. [PMID: 25063768 PMCID: PMC4153621 DOI: 10.18632/aging.100677] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle degenerates progressively, losing mass (sarcopenia) over time, which leads to reduced physical ability and often results in secondary diseases such as diabetes and obesity. The regulation of gene expression by microRNAs is a key event in muscle development and disease. To understand genome‐wide changes in microRNAs and mRNAs during muscle aging, we sequenced microRNAs and mRNAs from mouse gastrocnemius muscles at two different ages (6 and 24 months). Thirty‐four microRNAs (15 up‐regulated and 19 down‐regulated) were differentially expressed with age, including the microRNAs miR‐206 and ‐434, which were differentially expressed in aged muscle in previous studies. Interestingly, eight microRNAs in a microRNA cluster at the imprinted Dlk1‐Dio3 locus on chromosome 12 were coordinately down‐regulated. In addition, sixteen novel microRNAs were identified. Integrative analysis of microRNA and mRNA expression revealed that microRNAs may contribute to muscle aging through the positive regulation of transcription, metabolic processes, and kinase activity. Many of the age‐related microRNAs have been implicated in human muscular diseases. We suggest that genome‐wide microRNA profiling will expand our knowledge of microRNA function in the muscle aging process.
Collapse
|
30
|
Li H, Ruberu K, Muñoz SS, Jenner AM, Spiro A, Zhao H, Rassart E, Sanchez D, Ganfornina MD, Karl T, Garner B. Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice. Neurobiol Aging 2015; 36:1820-33. [PMID: 25784209 DOI: 10.1016/j.neurobiolaging.2015.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 02/10/2015] [Indexed: 11/24/2022]
Abstract
Apolipoprotein D (apoD) is expressed in the brain and levels are increased in affected brain regions in Alzheimer's disease (AD). The role that apoD may play in regulating AD pathology has not been addressed. Here, we crossed both apoD-null mice and Thy-1 human apoD transgenic mice with APP-PS1 amyloidogenic AD mice. Loss of apoD resulted in a nearly 2-fold increase in hippocampal amyloid plaque load, as assessed by immunohistochemical staining. Conversely, transgenic expression of neuronal apoD reduced hippocampal plaque load by approximately 35%. This latter finding was associated with a 60% decrease in amyloid β 1-40 peptide levels, and a 34% decrease in insoluble amyloid β 1-42 peptide. Assessment of β-site amyloid precursor protein cleaving enzyme-1 (BACE1) levels and proteolytic products of amyloid precursor protein and neuregulin-1 point toward a possible association of altered BACE1 activity in association with altered apoD levels. In conclusion, the current studies provide clear evidence that apoD regulates amyloid plaque pathology in a mouse model of AD.
Collapse
Affiliation(s)
- Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Kalani Ruberu
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Andrew M Jenner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Adena Spiro
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Hua Zhao
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Eric Rassart
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada; BioMed, centre de recherches biomédicales, Université du Québec à Montréal, Montréal, Canada
| | - Diego Sanchez
- Departamento de Bioquímica y Biología Molecular y Fisiología - Instituto de Biología y Genética Molecular, Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Maria D Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología - Instituto de Biología y Genética Molecular, Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Tim Karl
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Medical Sciences, University of New South Wales, NSW, Australia; Schizophrenia Research Institute, Darlinghurst, NSW, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia.
| |
Collapse
|
31
|
Previte D, Olds BP, Yoon K, Sun W, Muir W, Paige KN, Lee SH, Clark J, Koehler JE, Pittendrigh BR. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium. INSECT MOLECULAR BIOLOGY 2014; 23:244-254. [PMID: 24404961 PMCID: PMC4454818 DOI: 10.1111/imb.12077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days post-infection, but plateaued in head lice at 4 days post-infection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation.
Collapse
Affiliation(s)
- D Previte
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dassati S, Waldner A, Schweigreiter R. Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 2014; 35:1632-42. [PMID: 24612673 PMCID: PMC3988949 DOI: 10.1016/j.neurobiolaging.2014.01.148] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 02/08/2023]
Abstract
Apolipoprotein D (ApoD) is an ancient member of the lipocalin family with a high degree of sequence conservation from insects to mammals. It is not structurally related to other major apolipoproteins and has been known as a small, soluble carrier protein of lipophilic molecules that is mostly expressed in neurons and glial cells within the central and peripheral nervous system. Recent data indicate that ApoD not only supplies cells with lipophilic molecules, but also controls the fate of these ligands by modulating their stability and oxidation status. Of particular interest is the binding of ApoD to arachidonic acid and its derivatives, which play a central role in healthy brain function. ApoD has been shown to act as a catalyst in the reduction of peroxidized eicosanoids and to attenuate lipid peroxidation in the brain. Manipulating its expression level in fruit flies and mice has demonstrated that ApoD has a favorable effect on both stress resistance and life span. The APOD gene is the gene that is upregulated the most in the aging human brain. Furthermore, ApoD levels in the nervous system are elevated in a large number of neurologic disorders including Alzheimer's disease, schizophrenia, and stroke. There is increasing evidence for a prominent neuroprotective role of ApoD because of its antioxidant and anti-inflammatory activity. ApoD emerges as an evolutionarily conserved anti-stress protein that is induced by oxidative stress and inflammation and may prove to be an effective therapeutic agent against a variety of neuropathologies, and even against aging.
Collapse
Affiliation(s)
- Sarah Dassati
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Andreas Waldner
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Rüdiger Schweigreiter
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
33
|
Tóth ME, Szegedi V, Varga E, Juhász G, Horváth J, Borbély E, Csibrány B, Alföldi R, Lénárt N, Penke B, Sántha M. Overexpression of Hsp27 ameliorates symptoms of Alzheimer's disease in APP/PS1 mice. Cell Stress Chaperones 2013; 18:759-71. [PMID: 23605646 PMCID: PMC3789881 DOI: 10.1007/s12192-013-0428-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 01/16/2023] Open
Abstract
Hsp27 belongs to the small heat shock protein family, which are ATP-independent chaperones. The most important function of Hsp27 is based on its ability to bind non-native proteins and inhibit the aggregation of incorrectly folded proteins maintaining them in a refolding-competent state. Additionally, it has anti-apoptotic and antioxidant activities. To study the effect of Hsp27 on memory and synaptic functions, amyloid-β (Aβ) accumulation, and neurodegeneration, we generated transgenic mice overexpressing human Hsp27 protein and crossed with APPswe/PS1dE9 mouse strain, a mouse model of Alzheimer's disease (AD). Using different behavioral tests, we found that spatial learning was impaired in AD model mice and was rescued by Hsp27 overexpression. Electrophysiological recordings have revealed that excitability of neurons was significantly increased, and long-term potentiation (LTP) was impaired in AD model mice, whereas they were normalized in Hsp27 overexpressing AD model mice. Using anti-amyloid antibody, we counted significantly less amyloid plaques in the brain of APPswe/PS1dE9/Hsp27 animals compared to AD model mice. These results suggest that overexpression of Hsp27 protein might ameliorate certain symptoms of AD.
Collapse
Affiliation(s)
- Melinda Erzsébet Tóth
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari Ave. 62, 6726, Szeged, Hungary,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lifelong expression of apolipoprotein D in the human brainstem: correlation with reduced age-related neurodegeneration. PLoS One 2013; 8:e77852. [PMID: 24167586 PMCID: PMC3805570 DOI: 10.1371/journal.pone.0077852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
The lipocalin apolipoprotein D (Apo D) is upregulated in peripheral nerves following injury and in regions of the central nervous system, such as the cerebral cortex, hippocampus, and cerebellum, during aging and progression of certain neurological diseases. In contrast, few studies have examined Apo D expression in the brainstem, a region necessary for survival and generally less prone to age-related degeneration. We measured Apo D expression in whole human brainstem lysates by slot-blot and at higher spatial resolution by quantitative immunohistochemistry in eleven brainstem nuclei (the 4 nuclei of the vestibular nuclear complex, inferior olive, hypoglossal nucleus, oculomotor nucleus, facial motor nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and Roller`s nucleus). In contrast to cortex, hippocampus, and cerebellum, apolipoprotein D was highly expressed in brainstem tissue from subjects (N = 26, 32−96 years of age) with no history of neurological disease, and expression showed little variation with age. Expression was significantly stronger in somatomotor nuclei (hypoglossal, oculomotor, facial) than visceromotor or sensory nuclei. Both neurons and glia expressed Apo D, particularly neurons with larger somata and glia in the periphery of these brainstem centers. Immunostaining was strongest in the neuronal perinuclear region and absent in the nucleus. We propose that strong brainstem expression of Apo D throughout adult life contributes to resistance against neurodegenerative disease and age-related degeneration, possibly by preventing oxidative stress and ensuing lipid peroxidation.
Collapse
|
35
|
Binding and repressive activities of apolipoprotein E3 and E4 isoforms on the human ApoD promoter. Mol Neurobiol 2013; 48:669-80. [PMID: 23715769 PMCID: PMC7090986 DOI: 10.1007/s12035-013-8456-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/09/2013] [Indexed: 11/04/2022]
Abstract
Apolipoprotein D (ApoD) gene expression is increased in several neurological disorders such as Alzheimer’s disease (AD) and multiple sclerosis. We previously showed that transgenic mice that overexpress human ApoD show a better resistance against paraquat or OC43 coronavirus-induced neurodegeneration. Here, we identified several nuclear factors from the cortex of control and OC43-infected mice which bind a fragment of the proximal ApoD promoter in vitro. Of interest, we detected apolipoprotein E (ApoE). Human ApoE consists of three isoforms (E2, E3, and E4) with the E4 and E2 alleles representing a greater and a lower risk for developping AD, respectively. Our results show that ApoE is located in the nucleus and on the ApoD promoter in human hepatic and glioblastoma cells lines. Furthermore, overexpression of ApoE3 and ApoE4 isoforms but not ApoE2 significantly inhibited the ApoD promoter activity in U87 cells (E3/E3 genotype) cultured under normal or different stress conditions while ApoE knock-down by siRNA had a converse effect. Consistent with these results, we also demonstrated by ChIP assay that E3 and E4 isoforms, but not E2, bind the ApoD promoter. Moreover, using the Allen Brain Atlas in situ hybridization database, we observed an inverse correlation between ApoD and ApoE mRNA expression during development and in several regions of the mouse brain, notably in the cortex, hippocampus, plexus choroid, and cerebellum. This negative correlation was also observed for cortex layers IV–VI based on a new Transcriptomic Atlas of the Mouse Neocortical Layers. These findings reveal a new function for ApoE by regulating ApoD gene expression.
Collapse
|
36
|
Tripathi A. New cellular and molecular approaches to ageing brain. Ann Neurosci 2012; 19:177-82. [PMID: 25205996 PMCID: PMC4117059 DOI: 10.5214/ans.0972.7531.190410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/01/2012] [Accepted: 12/30/2012] [Indexed: 11/23/2022] Open
Abstract
The last decade has witnessed a mammoth progress in the area of brain ageing. Recent gene profiling and brain imaging techniques have made it possible to explore the dark areas of ageing neurons in a new molecular perspective. Many conserved pathways and cellular and molecular mechanisms particularly nuclear mitochondrial molecular interactions are known now. Disruptions in mitochondrial function and reduction in cellular antioxidative and immunoproteins contribute to generation of reactive oxygen species (ROS) which leads to deteriorated adult neurogenesis, reduced white matter and compromised neural plasticity. The overall deteriorated structure and function of neurons is manifested in form of cognitive decline and prolonged neurodegenerative disorders. Dietary restrictions (DR), physical and mental activities however have been shown to counter these ailments. However more precise molecular dynamics at protein levels is still debatable which is the future task for neuroscientists.
Collapse
Affiliation(s)
- Anurag Tripathi
- Department of Zoology, Ranchi College, Ranchi University, Ranchi – 834008
| |
Collapse
|
37
|
Pérez C, Navarro A, Martínez E, Ordóñez C, Del Valle E, Tolivia J. Age-related changes of apolipoprotein D expression in female rat central nervous system with chronic estradiol treatment. AGE (DORDRECHT, NETHERLANDS) 2012; 34:895-904. [PMID: 21761133 PMCID: PMC3682073 DOI: 10.1007/s11357-011-9286-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
Aging is associated with a reduction in metabolic functions, increased incidence of neurodegenerative diseases, and memory or cognitive dysfunction. With aging, a decrease in plasma estrogen levels, related to loss of gonadal function, occurs in females. Estrogens have neuroprotective effects and estradiol treatment improves some aspects of neuronal homeostasis affected by aging. In other way, recent studies show that apo D can play a neuroprotective role in some neuropathologies and during aging. The possible relation between estradiol treatment and the expression of apo D, during aging in the CNS, was investigated in female rats. Our results confirm an expression of apo D zone-dependent, in relation with aging, and an overexpression of apo D related to ovariectomy and estradiol treatment. This overexpression strengthens the idea that apo D plays a neuroprotective role in the CNS.
Collapse
Affiliation(s)
- Cristina Pérez
- Department of Morphology and Cellular Biology, 8ª Planta Facultad de Medicina, University of Oviedo, c/ Julián Clavería s/n, Oviedo, 33006 Spain
| | - Ana Navarro
- Department of Morphology and Cellular Biology, 8ª Planta Facultad de Medicina, University of Oviedo, c/ Julián Clavería s/n, Oviedo, 33006 Spain
| | - Eva Martínez
- Department of Morphology and Cellular Biology, 8ª Planta Facultad de Medicina, University of Oviedo, c/ Julián Clavería s/n, Oviedo, 33006 Spain
| | - Cristina Ordóñez
- Department of Morphology and Cellular Biology, 8ª Planta Facultad de Medicina, University of Oviedo, c/ Julián Clavería s/n, Oviedo, 33006 Spain
| | - Eva Del Valle
- Department of Morphology and Cellular Biology, 8ª Planta Facultad de Medicina, University of Oviedo, c/ Julián Clavería s/n, Oviedo, 33006 Spain
| | - Jorge Tolivia
- Department of Morphology and Cellular Biology, 8ª Planta Facultad de Medicina, University of Oviedo, c/ Julián Clavería s/n, Oviedo, 33006 Spain
| |
Collapse
|
38
|
Hamley IW. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem Rev 2012; 112:5147-92. [DOI: 10.1021/cr3000994] [Citation(s) in RCA: 670] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- I. W. Hamley
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD,
U.K
| |
Collapse
|
39
|
Immunohistochemical Distribution of Somatostatin and Somatostatin Receptor Subtypes (SSTR1–5) in Hypothalamus of ApoD Knockout Mice Brain. J Mol Neurosci 2012; 48:684-95. [DOI: 10.1007/s12031-012-9792-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/26/2012] [Indexed: 01/09/2023]
|
40
|
Ordóñez C, Navarro A, Pérez C, Martínez E, del Valle E, Tolivia J. Gender differences in apolipoprotein D expression during aging and in Alzheimer disease. Neurobiol Aging 2012; 33:433.e11-20. [DOI: 10.1016/j.neurobiolaging.2011.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/10/2010] [Accepted: 01/26/2011] [Indexed: 11/24/2022]
|
41
|
Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 2011; 34:453-61. [PMID: 21467629 DOI: 10.1248/bpb.34.453] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins in the central nervous system (CNS) are not incorporated from the blood but are formed mainly by glial cells within the CNS. In addition, cholesterol in the CNS is synthesized endogenously because the blood-brain barrier segregates the CNS from the peripheral circulation. Apolipoprotein (apo) E is a major apo in the CNS. In normal condition, apo E is secreted from glia, mainly from astrocytes, and forms cholesterol-rich lipoproteins by ATP-binding cassette transporters. Subsequently, apo E-containing glial lipoproteins supply cholesterol and other components to neurons via a receptor-mediated process. Recent findings demonstrated that receptors of the low density lipoprotein (LDL) receptor family not only internalize lipoproteins into the cells but also, like signaling receptors, transduce signals upon binding the ligands. In this review, the regulation of lipid homeostasis will be discussed as well as roles of lipoproteins and functions of receptors of LDL receptor family in the CNS. Furthermore, the relation between lipid metabolism and Alzheimer's disease (AD) is discussed.
Collapse
Affiliation(s)
- Hideki Hayashi
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjo, Japan.
| |
Collapse
|
42
|
Zhang X, Azhar G, Helms S, Burton B, Huang C, Zhong Y, Gu X, Fang H, Tong W, Wei JY. Identification of New SRF Binding Sites in Genes Modulated by SRF Over-Expression in Mouse Hearts. GENE REGULATION AND SYSTEMS BIOLOGY 2011; 5:41-59. [PMID: 21792293 PMCID: PMC3140411 DOI: 10.4137/grsb.s7457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background: To identify in vivo new cardiac binding sites of serum response factor (SRF) in genes and to study the response of these genes to mild over-expression of SRF, we employed a cardiac-specific, transgenic mouse model, with mild over-expression of SRF (Mild-O SRF Tg). Methodology: Microarray experiments were performed on hearts of Mild-O-SRF Tg at 6 months of age. We identified 207 genes that are important for cardiac function that were differentially expressed in vivo. Among them the promoter region of 192 genes had SRF binding motifs, the classic CArG or CArG-like (CArG-L) elements. Fifty-one of the 56 genes with classic SRF binding sites had not been previously reported. These SRF-modulated genes were grouped into 12 categories based on their function. It was observed that genes associated with cardiac energy metabolism shifted toward that of carbohydrate metabolism and away from that of fatty acid metabolism. The expression of genes that are involved in transcription and ion regulation were decreased, but expression of cytoskeletal genes was significantly increased. Using public databases of mouse models of hemodynamic stress (GEO database), we also found that similar altered expression of the SRF-modulated genes occurred in these hearts with cardiac ischemia or aortic constriction as well. Conclusion and significance: SRF-modulated genes are actively regulated under various physiological and pathological conditions. We have discovered that a large number of cardiac genes have classic SRF binding sites and were significantly modulated in the Mild-O-SRF Tg mouse hearts. Hence, the mild elevation of SRF protein in the heart that is observed during typical adult aging may have a major impact on many SRF-modulated genes, thereby affecting cardiac structure and performance. The results from our study could help to enhance our understanding of SRF regulation of cellular processes in the aged heart.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences and Geriatric Research, Education, and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011; 50:357-71. [PMID: 21741992 DOI: 10.1016/j.plipres.2011.06.002] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood-brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
44
|
Wakasaya Y, Kawarabayashi T, Watanabe M, Yamamoto-Watanabe Y, Takamura A, Kurata T, Murakami T, Abe K, Yamada K, Wakabayashi K, Sasaki A, Westaway D, Hyslop PSG, Matsubara E, Shoji M. Factors responsible for neurofibrillary tangles and neuronal cell losses in tauopathy. J Neurosci Res 2011; 89:576-84. [DOI: 10.1002/jnr.22572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 11/09/2022]
|
45
|
Antioxidant activities of recombinant amphioxus (Branchiostoma belcheri) apolipoprotein D. Mol Biol Rep 2010; 38:1847-51. [PMID: 20848217 DOI: 10.1007/s11033-010-0301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Apolipoprotein D (ApoD), a member of lipocalin, has been recently shown to be involved in regulating protection from oxidative stress. The absence of ApoD in mouse and Drosophila can reduce the resistance to oxidative stress and shorten lifespan. However, little information is available regarding the expression in vitro of ApoD and its biochemical properties. Amphioxus (Branchiostoma belcheri) ApoD, BbApoD, is an archetype of vertebrate ApoD proteins. In this study, the prokaryotic expression plasmid pET32a-BbApoD was constructed and recombinant BbApoD expressed in Escherichia coli BL21 and purified. Antioxidation assays showed that the recombinant BbApoD protein had the capacities to scavenge hydroxyl radicals (≥ 240 μg/ml) and to prevent nicking of the supercoiled DNA (≥ 100 μg/ml) in vitro, providing a biochemical evidence for antioxidant role of ApoD. This supports the notion that ApoD is part of the mechanisms regulating protection from oxidative stresses.
Collapse
|
46
|
Elliott DA, Weickert CS, Garner B. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. ACTA ACUST UNITED AC 2010; 51:555-573. [PMID: 21423873 DOI: 10.2217/clp.10.37] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The brain is the most lipid-rich organ in the body and, owing to the impermeable nature of the blood-brain barrier, lipid and lipoprotein metabolism within this organ is distinct from the rest of the body. Apolipoproteins play a well-established role in the transport and metabolism of lipids within the CNS; however, evidence is emerging that they also fulfill a number of functions that extend beyond lipid transport and are critical for healthy brain function. The importance of apolipoproteins in brain physiology is highlighted by genetic studies, where apolipoprotein gene polymorphisms have been identified as risk factors for several neurological diseases. Furthermore, the expression of brain apolipoproteins is significantly altered in several brain disorders. The purpose of this article is to provide an up-to-date assessment of the major apolipoproteins found in the brain (ApoE, ApoJ, ApoD and ApoA-I), covering their proposed roles and the factors influencing their level of expression. Particular emphasis is placed on associations with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- David A Elliott
- Prince of Wales Medical Research Institute, Randwick, Sydney, NSW 2031, Australia
| | | | | |
Collapse
|
47
|
Perdomo G, Henry Dong H. Apolipoprotein D in lipid metabolism and its functional implication in atherosclerosis and aging. Aging (Albany NY) 2010; 1:17-27. [PMID: 19946382 PMCID: PMC2784685 DOI: 10.18632/aging.100004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Levros LC, Do Carmo S, Edouard E, Legault P, Charfi C, Rassart E. Characterization of nuclear factors modulating the apolipoprotein D promoter during growth arrest: implication of PARP-1, APEX-1 and ERK1/2 catalytic activities. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1062-71. [PMID: 20493910 PMCID: PMC7114184 DOI: 10.1016/j.bbamcr.2010.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/22/2010] [Accepted: 04/29/2010] [Indexed: 11/28/2022]
Abstract
Human Apolipoprotein D (apoD) is upregulated under several stress conditions and pathological situations such as neurodegenerative diseases and cancers. We previously showed that apoD mRNA expression is induced in growth-arrested cells and demonstrated the specific binding of nuclear proteins to the region −514 to −475 of the promoter. Such region contains a pair of Serum Responsive Elements (SRE), an Ets-Binding Site (EBS) and a Glucocorticoid Responsive Element (GRE). In this study, we show that Parp-1, HnRNP-U, CBF-A, BUB-3, Kif4, APEX-1 and Ifi204 bind these regulatory elements of the apoD promoter. Specific binding of HnRNP-U and Parp-1 was confirmed by Electrophoretic Mobility Shift Assay (EMSA). In a biotin pull-down assay, Kif4 and BUB-3 bind preferentially the SRE1 and the EBS-GRE sites, respectively, while APEX-1 seems recruited indirectly to these elements. We found that the mRNA expression of some of these binding factors is upregulated in growth-arrested cells and that these proteins also transactivate the apoD promoter. In agreement with these results, mutants of APEX-1 and of Parp-1 defective for their DNA-binding and catalytic activities could not transactivate the promoter. The knockdown of Parp-1 and HnRNP-U and the use of specific inhibitors of MEK1/2 and of Parp-1 also inhibited the induction of apoD gene expression. Moreover, ERK1/2 was found activated in a biphasic manner post serum-starvation and the inhibition of Parp-1 causes a sustained activation of ERK2 but not ERK1 for up to 2 h. Altogether, these findings demonstrate the importance of Parp-1, APEX-1 and ERK1/2 catalytic activities in the growth arrest-induced apoD gene expression.
Collapse
Affiliation(s)
- Louis-Charles Levros
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, and Centre BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
During the past century, treatments for the diseases of youth and middle age have helped raise life expectancy significantly. However, cognitive decline has emerged as one of the greatest health threats of old age, with nearly 50% of adults over the age of 85 afflicted with Alzheimer's disease. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain ageing. Recent advances in the biology of ageing in model organisms, together with molecular and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline.
Collapse
Affiliation(s)
- Nicholas A Bishop
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
50
|
Navarro A, del Valle E, Juárez A, Martinez E, Ordóñez C, Astudillo A, Tolivia J. Apolipoprotein D synthesis progressively increases in frontal cortex during human lifespan. AGE (DORDRECHT, NETHERLANDS) 2010; 32:85-96. [PMID: 19936966 PMCID: PMC2829646 DOI: 10.1007/s11357-009-9117-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 10/05/2009] [Indexed: 05/04/2023]
Abstract
Apolipoprotein D (apo D) is a lipocalin present in the nervous system that may be related to processes of reinnervation, regeneration and neuronal cell protection. On the other hand, apo D expression has been correlated, in some brain regions, with normal ageing and neurodegenerative diseases. To elucidate the regional and cellular expression of apo Din normal human brain during ageing, we performed a detailed and extensive study in samples of post-mortem human cerebral cortices. To achieve this study, slot-blot techniques, for protein and mRNA,as well as immunohistochemistry and hybridohistochemistry methods, were used. A positive correlation for apo D expression with ageing was found;furthermore, mRNA levels, as well as the protein ones, were higher in the white than in the grey matter. Immunohistochemistry and non-isotopic in situ hybridization showed that apo D is synthesised in both neurons and glial cells. Apo D expression is notorious in oligodendrocytes, but with ageing, the number of neurons that synthesise apo D is increased.Our results indicate that apo D could play a fundamental role in central nervous system ageing and in the reduction of products derived from lipid peroxidation. The increment in the expression of apo D with ageing can be included in a global mechanism of cellular protection to prevent the deleterious effects caused by ageing.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Eva del Valle
- Life Sciences Department, The Open University, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA UK
| | - Amalia Juárez
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Eva Martinez
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Cristina Ordóñez
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge Tolivia
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| |
Collapse
|