1
|
Li L, McWhorter A, Chousalkar K. Ensuring egg safety: Salmonella survival, control, and virulence in the supply chain. Compr Rev Food Sci Food Saf 2025; 24:e70075. [PMID: 39667949 DOI: 10.1111/1541-4337.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Salmonella contamination of eggs is a global food safety concern, producers, regulatory authorities, and affecting public health. To mitigate Salmonella risks on-farm and along the supply chain, egg producers have adopted various quality assurance, animal husbandry, and biosecurity practices recommended by organizations such as Australian eggs, the European Commission, and the US Department of Agriculture (USDA). However, egg storage requirements vary significantly worldwide. In Australia, most states follow the Food Standards Australia New Zealand, but discrepancies exist. In the United States, the USDA mandates refrigeration of eggs below 7.2°C to prevent Salmonella growth, whereas the European Union requires that eggs must not be refrigerated to avoid condensation, which may promote bacterial growth. Refrigeration of eggs is associated with reduced Salmonella growth and decreased infection risk. Yet, conflicting data regarding the impact of storage temperatures on Salmonella survival may contribute to the disparity between international recommendations for egg storage. Studies indicated better Salmonella survival in egg contents at 5°C due to higher expression levels of survival and stress response-related genes compared to 25°C, yet this may not lead to an increased risk or higher severity of Salmonella infection. Evidence suggests that storing eggs at less than 7°C will influence the virulence of bacteria. Warmer storage temperatures may lead to increased potential of Salmonella multiplication in the nutrient-rich yolk and may cause the expression of certain virulence genes. Eggs can be exposed to various temperatures in the supply chain. Further studies are essential to understand the relationship between the storage temperature on the farm, in the supply chain, and bacterial virulence.
Collapse
Affiliation(s)
- Lingyun Li
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kapil Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Neelawala RN, Edison LK, Kariyawasam S. Pre-Harvest Non-Typhoidal Salmonella Control Strategies in Commercial Layer Chickens. Animals (Basel) 2024; 14:3578. [PMID: 39765482 PMCID: PMC11672659 DOI: 10.3390/ani14243578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Non-typhoidal Salmonella (NTS) infections in poultry, particularly in commercial-layer chickens, pose a critical risk to food safety and public health worldwide. NTS bacteria can remain undetected in poultry flocks, contaminating products and potentially leading to gastroenteritis in humans. This review examines pre-harvest control strategies for NTS in layer chickens, including biosecurity protocols, vaccinations, feed additives, genetic selection, and environmental management. These strategies have substantially reduced Salmonella colonization and product contamination rates in the commercial layer industry. By evaluating these strategies, this review highlights the importance of integrated control measures to limit NTS colonization, reduce antimicrobial resistance, and improve poultry health. This review aims to provide producers, researchers, and policymakers with insights into effective practices to minimize Salmonella contamination and enhance both animal and human health outcomes.
Collapse
Affiliation(s)
| | | | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (R.N.N.); (L.K.E.)
| |
Collapse
|
3
|
Ma Y, Wang S, Hong B, Feng L, Wang J. Construction and Mechanism Exploration of Highly Efficient System for Bacterial Ghosts Preparation Based on Engineered Phage ID52 Lysis Protein E. Vaccines (Basel) 2024; 12:472. [PMID: 38793723 PMCID: PMC11126076 DOI: 10.3390/vaccines12050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial ghosts (BGs) are hollow bacterial cell envelopes with intact cellular structures, presenting as promising candidates for various biotechnological and biomedical applications. However, the yield and productivity of BGs have encountered limitations, hindering their large-scale preparation and multi-faceted applications of BGs. Further optimization of BGs is needed for the commercial application of BG technology. In this study, we screened out the most effective lysis protein ID52-E-W4A among 13 mutants based on phage ID52 lysis protein E and optimized the liquid culture medium for preparing Escherichia coli Nissle 1917 (EcN). The results revealed a significantly higher lysis rate of ID52-E-W4A compared to that of ID52-E in the 2xYT medium. Furthermore, EcN BGs were cultivated in a fermenter, achieving an initial OD600 as high as 6.0 after optimization, indicating enhanced BG production. Moreover, the yield of ID52-E-W4A-induced BGs reached 67.0%, contrasting with only a 3.1% yield from φX174-E-induced BGs. The extended applicability of the lysis protein ID52-E-W4A was demonstrated through the preparation of Salmonella pullorum ghosts and Salmonella choleraesuis ghosts. Knocking out the molecular chaperone gene slyD and dnaJ revealed that ID52-mediated BGs could still undergo lysis. Conversely, overexpression of integral membrane enzyme gene mraY resulted in the loss of lysis activity for ID52-E, suggesting that the lysis protein ID52-E may no longer rely on SlyD or DnaJ to function, with MraY potentially being the target of ID52-E. This study introduces a novel approach utilizing ID52-E-W4A for recombinant expression, accelerating the BG formation and thereby enhancing BG yield and productivity.
Collapse
Affiliation(s)
- Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China (J.W.)
| | | | | | | | | |
Collapse
|
4
|
Abstract
This review is focused on describing and analyzing means by which Salmonella enterica serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present Salmonella-induced disease in poultry and to prevent Salmonella colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated. Practical considerations are also discussed in hope of facilitating means to move lab-proven successful vaccination procedures and vaccine candidates to the marketplace to benefit the poultry industry.
Collapse
Affiliation(s)
- Roy Curtiss
- College of Veterinary Medicine, University of Florida, Gainesville, Florida,
| |
Collapse
|
5
|
Choudhury M, Borah P, Sarma HK, Deka D, Dutta R, Hazarika G, Deka NK. Development of recombinant subunit vaccine targeting InvH protein of Salmonella Typhimurium and evaluation of its immunoprotective efficacy against salmonellosis. Braz J Microbiol 2023; 54:3257-3264. [PMID: 37792270 PMCID: PMC10689308 DOI: 10.1007/s42770-023-01136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Salmonella Typhimurium is the most prevalent non-host specific Salmonella serovars and a major concern for both human and animal health systems worldwide contributing to significant economic loss. Type 3 secretion system (T3SS) of Salmonella plays an important role in bacterial adherence and entry into the host epithelial cells. The product of invH gene of Salmonella is an important component of the needle complex of the type 3 secretion system. Hence, the present study was undertaken to clone and express the 15 kDa InvH surface protein of Salmonella Typhimurium in an E. coli host and to evaluate its immune potency in mice. The purified recombinant InvH (r-InvH) protein provoked a significant (p < 0.01) rise in IgG in the inoculated mice. The immunized mice were completely (100%) protected against the challenge dose of 107.5 LD50, while protection against challenge with the same dose of heterologous serovars was 90%. The bacterin-vaccinated group showed homologous protection of 60% against all three serovars. Findings in this study suggest the potential of the r-InvH protein of S. Typhimurium as an effective vaccine candidate against Salmonella infections.
Collapse
Affiliation(s)
| | - Probodh Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agriculture University, Khanapara, Guwahati, 781022, India.
| | - Hridip Kumar Sarma
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Dipak Deka
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agriculture University, Khanapara, Guwahati, 781022, India
| | - Rupam Dutta
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agriculture University, Khanapara, Guwahati, 781022, India
| | - Girin Hazarika
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agriculture University, Khanapara, Guwahati, 781022, India
| | - Naba Kumar Deka
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| |
Collapse
|
6
|
Gebauer J, Tesařík R, Králová N, Havlíčková H, Matiašovic J. Salmonella Typhimurium-based inactivated vaccine containing a wide spectrum of bacterial antigens which mimics protein expression changes during different stages of an infection process. Vet Microbiol 2023; 282:109756. [PMID: 37141806 DOI: 10.1016/j.vetmic.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/21/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Salmonella infections are still considered a persistent problem in veterinary medicine. Vaccination is one of the tools for decreasing the burden of many pathogens on animals. However, the efficiency of available commercial or experimental vaccines against non-typhoid Salmonella strains is not yet sufficient. We followed the path of an inactivated vaccine that is safe and well accepted, but whose presented antigen spectrum is limited. We improved this issue by using diverse cultivation conditions mimicking bacterial protein expression during the natural infection process. The cultivation process was set up to simulate the host environment to enhance the expression of SPI-1 (Salmonella pathogenicity island) proteins, SPI-2 proteins, siderophore-related proteins, and flagellar proteins. Three different cultivation media were used and subsequent cultures were mixed together, inactivated, and used for the immunization of post-weaned piglets. A mixture of recombinant Salmonella proteins was also used as a recombinant vaccine for comparison. The clinical symptoms during the subsequent experimental infection, antibody response, and organ bacterial loads were examined. One day after the infection, we observed an increased rectal temperature in the group of unvaccinated animals and the animals vaccinated with the recombinant vaccine. The increase in the temperature of the pigs vaccinated with the inactivated Salmonella mixture was significantly lower. In the same group, we also found lower bacterial loads in the ileum content and the colon wall. The IgG response to several Salmonella antigens was enhanced in this group, but it did not reach the titers of the group vaccinated with the recombinant vaccine. To summarize, the pigs vaccinated with an inactivated mixture of Salmonella cultures mimicking protein expression changes during the natural infection exhibited less serious clinical symptoms and lower bacterial load in the body after the experimental infection compared to the unvaccinated pigs and the pigs vaccinated with a mixture of recombinant Salmonella proteins.
Collapse
Affiliation(s)
- Jan Gebauer
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic.
| | - Radek Tesařík
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic
| | - Natálie Králová
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 60200, Czech Republic
| | - Hana Havlíčková
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic
| | - Ján Matiašovic
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic
| |
Collapse
|
7
|
Jiang Z, Kang X, Song Y, Zhou X, Yue M. Identification and Evaluation of Novel Antigen Candidates against Salmonella Pullorum Infection Using Reverse Vaccinology. Vaccines (Basel) 2023; 11:vaccines11040865. [PMID: 37112777 PMCID: PMC10143441 DOI: 10.3390/vaccines11040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Pullorum disease, caused by the Salmonella enterica serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate attention is required to prevent their endemics and global spreading. To mitigate the prevalence of MDR Salmonella Pullorum infections in poultry farms, it is urgent to develop effective vaccines. Reverse vaccinology (RV) is a promising approach using expressed genomic sequences to find new vaccine targets. The present study used the RV approach to identify new antigen candidates against Pullorum disease. Initial epidemiological investigation and virulent assays were conducted to select strain R51 for presentative and general importance. An additional complete genome sequence (4.7 Mb) for R51 was resolved using the Pacbio RS II platform. The proteome of Salmonella Pullorum was analyzed to predict outer membrane and extracellular proteins, and was further selected for evaluating transmembrane domains, protein prevalence, antigenicity, and solubility. Twenty-two high-scored proteins were identified among 4713 proteins, with 18 recombinant proteins successfully expressed and purified. The chick embryo model was used to assess protection efficacy, in which vaccine candidates were injected into 18-day-old chick embryos for in vivo immunogenicity and protective effects. The results showed that the PstS, SinH, LpfB, and SthB vaccine candidates were able to elicit a significant immune response. Particularly, PstS confers a significant protective effect, with a 75% survival rate compared to 31.25% for the PBS control group, confirming that identified antigens can be promising targets against Salmonella Pullorum infection. Thus, we offer RV to discover novel effective antigens in an important veterinary infectious agent with high priority.
Collapse
Affiliation(s)
- Zhijie Jiang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiamei Kang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Song
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Zhou
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Barrow PA. Spotlight on avian pathology: Salmonella - new wine and old bottles. Avian Pathol 2021; 50:455-457. [PMID: 34495794 DOI: 10.1080/03079457.2021.1976726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Salmonella enterica remains an important avian and human pathogen. Control has been effective in some countries but the hygiene and biosecurity required may not be possible everywhere. Antibiotic resistance is an increasing problem for both veterinary and human medicine. This short review commentary highlights existing and potential new control measures including legislation, hygiene and biosecurity, use of live and inactivated vaccines, and bacteriophages to tackle intestinal colonization, reduce the prevalence of antibiotic resistance and improve carcass decontamination.
Collapse
Affiliation(s)
- P A Barrow
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
9
|
Hofacre CL, Rosales AG, Costa MD, Cookson K, Schaeffer J, Jones MK. Immunity and Protection Provided by Live Modified Vaccines Against Paratyphoid Salmonella in Poultry-An Applied Perspective. Avian Dis 2021; 65:295-302. [PMID: 34412461 DOI: 10.1637/aviandiseases-d-20-00126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/18/2021] [Indexed: 11/05/2022]
Abstract
Several serotypes of non-host-specific or paratyphoid Salmonella have been linked with contamination of poultry meat, and eggs, resulting in foodborne outbreaks in humans. Vaccination of poultry against paratyphoid Salmonella is a frequent strategy used to reduce the levels of infection and transmission, which ultimately can lead to lower rates of human infections. Live vaccines have been developed and used in poultry immediately after hatching as a result of their ability to colonize the gut, stimulate a mucosal immune response, induce a competitive inhibitory effect against homologous wild strains, and reduce colonization and excretion of Salmonella. Furthermore, vaccines can competitively exclude some heterologous strains of Salmonella from colonizing the gastrointestinal tract when young poultry are immunologically immature. In addition, various studies have suggested that booster vaccination with live vaccines a few weeks after initial vaccination is essential to increase the level of protection and achieve better cross-protective immunity. Vaccination of breeders, broilers, layers, and turkeys with modified live Salmonella vaccines is a common intervention that has become an important component in poultry companies' multistep prevention programs to meet increasingly demanding customer and regulatory food safety requirements. Both live and inactivated vaccines play a critical role in a comprehensive control program for chicken and turkey breeders and commercial layers. This review examines the response and protection conferred by live modified vaccines against non-host-specific Salmonella that can be considered for the design and implementation of vaccination strategies in poultry.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew K Jones
- Southern Poultry Research Group, Inc., Watkinsville, GA 30677
| |
Collapse
|
10
|
Evaluation of transfer of maternal immunity to the offspring of broiler breeders vaccinated with a candidate recombinant vaccine against Salmonella Enteritidis. Vaccine 2021; 39:2408-2415. [PMID: 33781602 DOI: 10.1016/j.vaccine.2021.03.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Salmonella Enteritidis (SE) is a major cause of foodborne diseases in humans being frequently related to the consumption of poultry products. Therefore, guaranteeing early immunity to chicks is an important tool to prevent the colonization and infection by this pathogen. The present study evaluated the effectiveness of a candidate recombinant vaccine against SE. Thirty female and five male broiler breeders that were ten weeks-old were divided into 3 groups: unvaccinated (UV), vaccinated with recombinant vaccine candidate (VAC) and vaccinated with commercial bacterin (BAC). Samples of serum and embryonated egg were collected at seven and twelve weeks after the booster dose to quantify the transfer rate of IgY to egg yolks and offspring. Subsequently, forty day-old offspring were divided into two groups (UV and VAC) and challenged on the following day with 107 CFU/chick of SE. Samples of serum, intestine, liver, and cecal content were harvested. Throughout the experiment period, significantly higher levels of IgY were observed in the egg yolk and also in the serum of broiler breeders and offspring of the VAC group in comparison to the UV group. In addition, increased transfer rates of IgY were observed in the VAC group when compared to the BAC group. Furthermore, higher villus-crypt ratios were found out in duodenum, jejunum and ileum at four days post-infection in the offspring from the VAC group. A high challenge dose of SE (107 CFU per chick) was used and despite the stronger humoral immune response provoked by the candidate vaccine, there were no statistical differences in the recovery of viable SE cells from the offspring cecal contents. Therefore, the effect of vaccination to improve intestinal quality may affect the development of the chickens and consequently increase the resistance to lower SE challenge doses.
Collapse
|
11
|
Tan Z, Lu P, Adewole D, Diarra M, Gong J, Yang C. Iron requirement in the infection of Salmonella and its relevance to poultry health. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
12
|
Hwang H, Singer RS. Survey of the U.S. Broiler Industry Regarding Pre- and Postharvest Interventions Targeted To Mitigate Campylobacter Contamination on Broiler Chicken Products. J Food Prot 2020; 83:1137-1148. [PMID: 32084667 DOI: 10.4315/jfp-19-527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/21/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Campylobacter is one of the most commonly reported foodborne pathogens in the United States. Because poultry is considered a major source of Campylobacter infections in humans, reduction of Campylobacter contamination in poultry products is likely the most important and effective public health strategy for reducing the burden of campylobacteriosis in humans. A comprehensive on-line survey was conducted of key stakeholders in the U.S. broiler industry, including broiler farm managers (n = 18), poultry veterinarians (n = 18), and processing plant managers (n = 20), to assess the current pre- and postharvest Campylobacter interventions and control measures practiced by the industry for reducing Campylobacter contamination of broiler products. The survey also included information regarding each respondent's understanding of Campylobacter transmission and ecology in relation to broiler production. The results revealed that a majority of the establishments included in the survey are following the U.S. Department of Agriculture, Food Safety and Inspection Service guidelines for controlling Campylobacter contamination in broiler flocks and on carcasses. However, establishments appeared to be putting more effort into Salmonella control than into Campylobacter control both on the farm and in the processing plant. A majority of the respondents responded that current interventions are not effective for reducing Campylobacter contamination, especially on the farm. Many respondents did not understand the risk factors associated with Campylobacter colonization in broiler flocks and on carcasses. Continued educational and training programs for key stakeholders in the U.S. broiler industry are needed to increase awareness of the issues associated with Campylobacter infection in broiler chickens and of the fact that Campylobacter infection is a multifaceted problem that requires efforts from both the pre- and postharvest sectors. HIGHLIGHTS
Collapse
Affiliation(s)
- Haejin Hwang
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, Minnesota 55108, USA
| |
Collapse
|
13
|
Li Q, Zhu Y, Ren J, Qiao Z, Yin C, Xian H, Yuan Y, Geng S, Jiao X. Evaluation of the Safety and Protection Efficacy of spiC and nmpC or rfaL Deletion Mutants of Salmonella Enteritidis as Live Vaccine Candidates for Poultry Non-Typhoidal Salmonellosis. Vaccines (Basel) 2019; 7:E202. [PMID: 31801257 PMCID: PMC6963785 DOI: 10.3390/vaccines7040202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a host-ranged pathogen that can infect both animals and humans. Poultry and poultry products are the main carriers of S. Enteritidis, which can be transmitted to humans through the food chain. To eradicate the prevalence of S. Enteritidis in poultry farms, it is necessary to develop novel vaccines against the pathogen. In this study, we constructed two vaccine candidates, CZ14-1∆spiC∆nmpC and CZ14-1∆spiC∆rfaL, and evaluated their protective efficacy. Both mutant strains were much less virulent than the parental strain, as determined by the 50% lethal dose (LD50) for three-day-old specific-pathogen free (SPF) White Leghorns and Hyline White chickens. Immunization with the mutant candidates induced highly specific humoral immune responses and expression of cytokines IFN-γ, IL-1β, and IL-6. In addition, the mutant strains were found to be persistent for almost three weeks post-infection. The survival percentages of chickens immunized with CZ14-1∆spiC∆nmpC and CZ14-1∆spiC∆rfaL reached 80% and 75%, respectively, after challenge with the parental strain. Overall, these results demonstrate that the two mutant strains can be developed as live attenuated vaccines.
Collapse
Affiliation(s)
- Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; (Q.L.); (Y.Z.); (J.R.); (Z.Q.); (C.Y.); (H.X.); (Y.Y.); (S.G.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yue Zhu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; (Q.L.); (Y.Z.); (J.R.); (Z.Q.); (C.Y.); (H.X.); (Y.Y.); (S.G.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jingwei Ren
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; (Q.L.); (Y.Z.); (J.R.); (Z.Q.); (C.Y.); (H.X.); (Y.Y.); (S.G.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Zhuang Qiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; (Q.L.); (Y.Z.); (J.R.); (Z.Q.); (C.Y.); (H.X.); (Y.Y.); (S.G.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Chao Yin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; (Q.L.); (Y.Z.); (J.R.); (Z.Q.); (C.Y.); (H.X.); (Y.Y.); (S.G.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Honghong Xian
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; (Q.L.); (Y.Z.); (J.R.); (Z.Q.); (C.Y.); (H.X.); (Y.Y.); (S.G.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yu Yuan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; (Q.L.); (Y.Z.); (J.R.); (Z.Q.); (C.Y.); (H.X.); (Y.Y.); (S.G.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shizhong Geng
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; (Q.L.); (Y.Z.); (J.R.); (Z.Q.); (C.Y.); (H.X.); (Y.Y.); (S.G.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; (Q.L.); (Y.Z.); (J.R.); (Z.Q.); (C.Y.); (H.X.); (Y.Y.); (S.G.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Shiraishi R, Yamazaki Y, Sasaki Y, Haruna M, Nakamura M. Imperfection of Commercial Inactivated Salmonella Vaccine Against Salmonella Infantis During Induced Molting in Chickens and Proposed Evaluation Method. Avian Dis 2019; 62:340-344. [PMID: 31119916 DOI: 10.1637/11354-122315-reg.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/20/2017] [Indexed: 11/05/2022]
Abstract
In the present study, we evaluated the continuance and efficacy of inactivated vaccine against Salmonella Infantis (SI) in chickens raised on a commercial farm. Chickens (88-days-old) were inoculated with 1 or 0.5 doses of commercially available trivalent inactivated Salmonella vaccine; anti-SI antibody titer was examined continuously for 11 mo thereafter. Molting was induced 11 mo after vaccination, and SI was administered orally. SI colony-forming units (CFUs) were measured in cecal feces, cecal contents, liver, and spleen samples. Anti-SI antibodies in the 1 dose vaccination group could be detected in at least 90% of cases until the end of testing. SI discharge was significantly reduced in birds treated with either dose of vaccine. However, SI CFUs were elevated in the induced molting group, regardless of vaccination dose, particularly in the cecal feces, cecal contents, and spleen. Thus, the vaccine provided remarkable protection against SI infection under ordinary rearing methods but not during induced molting. To achieve sufficient SI protective efficacy, we recommend inoculation with 1 dose of vaccine. Moreover, the efficacy of inactivated Salmonella vaccine is recommended to be evaluated by challenging chickens with live Salmonella in addition to Salmonella antibody titration.
Collapse
Affiliation(s)
- Rikiya Shiraishi
- Research Institute for Animal Science in Biochemistry and Toxicology, Hashimotodai, Midori-ku, Sagamihara, Kanagawa 252-0132, Japan,
| | - Yuko Yamazaki
- Research Institute for Animal Science in Biochemistry and Toxicology, Hashimotodai, Midori-ku, Sagamihara, Kanagawa 252-0132, Japan
| | - Yoshimasa Sasaki
- Ministry of Agriculture, Forestry and Fisheries, Kasumigaseki, Chiyoda-ku, Tokyo 100-8950, Japan
| | - Mika Haruna
- Ministry of Agriculture, Forestry and Fisheries, Kasumigaseki, Chiyoda-ku, Tokyo 100-8950, Japan
| | - Masayuki Nakamura
- Research Institute for Animal Science in Biochemistry and Toxicology, Hashimotodai, Midori-ku, Sagamihara, Kanagawa 252-0132, Japan
| |
Collapse
|
15
|
|
16
|
Huberman YD, Velilla AV, Terzolo HR. Evaluation of different live Salmonella enteritidis vaccine schedules administered during layer hen rearing to reduce excretion, organ colonization, and egg contamination. Poult Sci 2019; 98:2422-2431. [PMID: 30690627 DOI: 10.3382/ps/pez003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/08/2019] [Indexed: 11/20/2022] Open
Abstract
Salmonellosis caused by Salmonella Enteritidis is a widespread zoonosis and poultry products are an important source of infection. This study was carried out to evaluate the protection of different vaccination schedules in layers using a live commercial attenuated Salmonella Enteritidis vaccine based on strain Sm24/Rif12/Ssq (AviPro® Salmonella Vac E, ELANCO) during rearing and egg production. Three hundred and fifty Salmonella-free chickens were distributed into 7 vaccinated groups and 1 unvaccinated group. Different vaccination schedules were performed combining either 1, 2, or 3 oral gavage doses. Chickens from Group A, B, and C were vaccinated once, either at the first day, at 7 or 16 wk old, respectively. Chickens from Group D were vaccinated twice-at the first day and 7 wk old. Chickens from Group E were vaccinated twice-at the first day and 16 wk old. Chickens from Group F were vaccinated twice-at 7 and 16 wk old. Chickens from Group G were vaccinated 3 times, following the manufacturer's recommendation: at the first day, 7 and 16 wk old. Chickens from Group H remained unvaccinated. Five challenge trials numbered 1 to 5 were carried out at 8, 12, 16, 29, and 55 wk old, respectively. After challenge, chickens were sampled by cloacal swabbing and, after euthanasia, livers, ovaries, spleens, and cecal contents were cultured to isolate S. Enteritidis. Additionally, eggs were collected after challenge and cultured to isolate S. Enteritidis on egg shells (Trials 4 and 5). Protection against experimental infection with a virulent nalidixic acid resistant S. Enteritidis strain K285/94, was evaluated by measuring reduction of excretion, colonization, invasion into organs, eggshell contamination, and egg production. The live S. Enteritidis vaccine protected the hens by reducing S. Enteritidis excretion, isolation from organs, and egg contamination. Higher protection throughout laying period was afforded after administration of three vaccine doses during rearing period.
Collapse
Affiliation(s)
- Yosef D Huberman
- Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria (EEA) Balcarce, RN 226 Km 73.3, (07620) Balcarce, Buenos Aires, Argentina
| | - Alejandra V Velilla
- Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria (EEA) Balcarce, RN 226 Km 73.3, (07620) Balcarce, Buenos Aires, Argentina
| | - Horacio R Terzolo
- Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria (EEA) Balcarce, RN 226 Km 73.3, (07620) Balcarce, Buenos Aires, Argentina
| |
Collapse
|
17
|
Induction of Mucosal Humoral Immunity by Subcutaneous Injection of an Oil-emulsion Vaccine against Salmonella enterica subsp. enterica serovar Enteritidis in Chickens. Food Saf (Tokyo) 2018; 6:151-155. [PMID: 31998576 PMCID: PMC6795388 DOI: 10.14252/foodsafetyfscj.2018003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/29/2018] [Indexed: 12/02/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis
(SE) is one of the major causes of food poisoning. Much effort has been made to develop a
vaccine for the prevention of SE colonization and infection in poultry. However, the
effect of inactivated whole-cell SE vaccines on the bacterial attachment has not been
clarified. This study investigated the immune responses to a killed whole-cell SE vaccine
in chickens and the effect of vaccination on the bacterial attachment of SE to cultured
Vero cells. A 1 ml dose of 108–109 CFU viable SE bacterial cells was
orally administered to chickens at 4 weeks or 10 months post vaccination. The number (CFU)
of SE in 1 g of cecal droppings was counted on day 6 after administration. The SE CFUs
were significantly lower (p < 0.05) in the vaccinated chickens, not
only at 4 weeks but also at 10 months after vaccination, than in the unvaccinated control
chickens. Anti-SE IgG and anti-SE IgA were detected using enzyme-linked immunosorbent
assay (ELISA) in serum and intestinal and oviduct fluid samples from vaccinated chickens.
Adhesion of heat-killed SE cells to Vero cells was reduced by pre-treatment of the
bacteria by the vaccinated chicken-derived intestinal fluid, indicating the potential of
the vaccine-induced antibody to prevent SE adhesion to epithelial cell surfaces.
Collapse
|
18
|
Efficacy of a Salmonella live vaccine for turkeys in different age groups and antibody response of vaccinated and non-vaccinated turkeys. BMC Res Notes 2018; 11:431. [PMID: 29970192 PMCID: PMC6029038 DOI: 10.1186/s13104-018-3524-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/20/2018] [Indexed: 11/10/2022] Open
Abstract
Objective Human Salmonellosis continues to be one of the most important foodborne zoonoses worldwide, although a decrease in case numbers has been noted in recent years. It is a foodborne zoonotic infection most commonly associated with the consumption of raw egg products but also with meat consumption including the consumption of poultry products. Turkey flocks in Europe have been reported to be affected by Salmonella infection, too. The present study examines the efficacy of a newly licensed Salmonella life vaccine in reducing infections with the Salmonella serovars Typhimurium and Enteritidis in turkeys. Turkeys were vaccinated the first day of life and at the age of 6 and 16 weeks. Groups of birds which had received different numbers of vaccinations were then submitted to challenge trials with either SE or ST. Results In vaccinated birds Salmonella counts in liver and spleen and, less effectively, in caecum were reduced compared to unvaccinated birds. In several groups serum antibody-titers were statistically significantly higher in vaccinated turkeys than in non-vaccinated ones at day seven post infection, but only in one out of six groups at day 14 post infection.
Collapse
|
19
|
Groves PJ, Sharpe SM, Muir WI, Pavic A, Cox JM. Live and inactivated vaccine regimens against caecal Salmonella Typhimurium colonisation in laying hens. Aust Vet J 2018; 94:387-93. [PMID: 27671084 PMCID: PMC5129469 DOI: 10.1111/avj.12490] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 11/03/2015] [Accepted: 01/27/2016] [Indexed: 01/07/2023]
Abstract
Objective In Australia, Salmonella serovar Typhimurium (S. Typhimurium) is the predominant zoonotic serovar in humans and is frequently isolated from layer hens. Vaccination against this serovar has been previously shown to be effective in broilers and the aim of this current study was to assess and determine the best vaccination strategy (live or inactivated) to minimise caecal colonisation by S. Typhimurium. Methods A long‐term experiment (56 weeks) was conducted on ISABROWN pullets using a commercial live aroA deleted mutant S. Typhimurium vaccine and an autogenous inactivated multivalent Salmonella vaccine (containing serovars Typhimurium, Infantis, Montevideo and Zanzibar). These vaccines were administered PO or by SC or IM injection, either alone or in combination. Pullets were vaccinated throughout rearing (to 18 weeks of age) and sequentially bled for antibody titre levels. The birds, vaccinated and controls, were challenged orally with a field isolate of S. Typhimurium at different ages, held for 21 days post‐challenge, then euthanased and their caeca cultured for the presence of Salmonella. Results None of the oral live‐vaccinated groups exhibited lasting protection. When administered twice, the inactivated vaccine gave significant protection at 17 weeks of age and the live vaccine given by SC injection given twice produced significant protection at 17, 25 and 34 weeks. Conclusions Vaccination regimens that included parenteral administration of live or inactivated vaccines and thus achieved positive serum antibody levels were able to provide protection against challenge. Hence, vaccination may play a useful role in a management strategy for Salmonella carriage in layer flocks.
Collapse
Affiliation(s)
- P J Groves
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Rd, Camden, New South Wales, 2570, Australia.
| | - S M Sharpe
- University of New South Wales, Kensington, NSW, Australia.,Birling Avian Laboratories, Bringelly, NSW, Australia
| | - W I Muir
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Rd, Camden, New South Wales, 2570, Australia
| | - A Pavic
- Birling Avian Laboratories, Bringelly, NSW, Australia
| | - J M Cox
- University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
20
|
Lalsiamthara J, Lee JH. A live attenuated mutant of Salmonella Montevideo triggers IL-6, IFN-γ and IL-12 cytokines that co-related with humoral and cellular immune responses required for reduction of challenge bacterial load in experimental chickens. Comp Immunol Microbiol Infect Dis 2016; 50:1-7. [PMID: 28131368 DOI: 10.1016/j.cimid.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022]
Abstract
A live attenuated Salmonella enterica serovar Montevideo (SM) mutant JOL1599 was constructed by deletion of virulence-associated genes. The protective efficacy and immune response profiles of chickens immunized with JOL1599 were investigated. Immunized chickens demonstrated significant increases in plasma IgG and lymphocyte proliferative responses (P≤0.05). Increased levels of IL-6, INF-γ, and IL-12 were also observed. Immunized birds strongly responded to infection by rapid stimulation of a CD4+ subset of T cells. Organ bacterial recovery assay revealed a significant reduction in the challenge strain among immunized birds. Multiple doses of JOL1599 enhanced the immune responses of the birds as revealed by ascending trends of the immunological profiles. These findings indicate that immunization of chickens with JOL1599 may provide protection against Salmonella Montevideo infection via induction of IL-6, INF-γ, and IL-12 protective cytokines, which in turn triggers conducive humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Jonathan Lalsiamthara
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 570-752, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 570-752, Republic of Korea.
| |
Collapse
|
21
|
Mapping B-cell responses to Salmonella enterica serovars Typhimurium and Enteritidis in chickens for the discrimination of infected from vaccinated animals. Sci Rep 2016; 6:31186. [PMID: 27510219 PMCID: PMC4980624 DOI: 10.1038/srep31186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
Serological surveillance and vaccination are important strategies for controlling infectious diseases of food production animals. However, the compatibility of these strategies is limited by a lack of assays capable of differentiating infected from vaccinated animals (DIVA tests) for established killed or attenuated vaccines. Here, we used next generation phage-display (NGPD) and a 2-proportion Z score analysis to identify peptides that were preferentially bound by IgY from chickens infected with Salmonella Typhimurium or S. Enteritidis compared to IgY from vaccinates, for both an attenuated and an inactivated commercial vaccine. Peptides that were highly enriched against IgY from at least 4 out of 10 infected chickens were selected: 18 and 12 peptides for the killed and attenuated vaccines, respectively. The ten most discriminatory peptides for each vaccine were identified in an ELISA using a training set of IgY samples. These peptides were then used in multi-peptide assays that, when analysing a wider set of samples from infected and vaccinated animals, diagnosed infection with 100% sensitivity and specificity. The data describes a method for the development of DIVA assays for conventional attenuated and killed vaccines.
Collapse
|
22
|
Ghunaim H, Desin TS. Potential Impact of Food Safety Vaccines on Health Care Costs. Foodborne Pathog Dis 2015; 12:733-40. [PMID: 26111256 DOI: 10.1089/fpd.2014.1924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Foodborne pathogens continue to cause several outbreaks every year in many parts of the world. Among the bacterial pathogens involved, Shiga toxin-producing Escherichia coli, Campylobacter jejuni, and nontyphoidal Salmonella species cause a significant number of human infections worldwide, resulting in a huge annual economic burden that amounts to millions of dollars in health care costs. Human infections are primarily caused by the consumption of contaminated food. Vaccination of food-producing animals is an attractive, cost-effective strategy to lower the levels of these pathogens that will ultimately result in a safer food supply and fewer human infections. However, producers are often reluctant to routinely vaccinate animals against these pathogens since they do not cause any detectable clinical symptoms. This review highlights recent approaches used to develop effective food safety vaccines and the potential impact these vaccines might have on health care costs.
Collapse
Affiliation(s)
- Haitham Ghunaim
- 1 Department of Health Sciences, College of Arts and Science, Qatar University , Doha, Qatar
| | - Taseen S Desin
- 2 Basic Sciences Department, College of Science & Health Professions, King Saud bin Abdulaziz University for Health Sciences , Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Jawale CV, Lee JH. Characterization of a Salmonella Typhimurium ghost carrying an adjuvant protein as a vaccine candidate for the protection of chickens against virulent challenge. Avian Pathol 2014; 43:506-13. [PMID: 25245884 DOI: 10.1080/03079457.2014.966303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study we describe the generation of a safe, immunogenic, genetically inactivated Salmonella Typhimurium ghost vaccine candidate carrying the Escherichia coli heat-labile enterotoxin B subunit (LTB) protein as an adjuvant molecule. An asd(+) p15A ori(-) plasmid pJHL187-LTB harbouring the E lysis gene cassette and a foreign antigen delivery cassette containing the eltB gene was used to transform a Δasd Salmonella Typhimurium (JOL1311) strain to construct the ghost strain, JOL1499. Incubation of mid-logarithmic phase JOL1499 cultures at 42°C resulted in co-expression of the eltB and E lysis genes, leading to the generation of Salmonella Typhimurium ghost cells carrying the LTB protein (Salmonella Typhimurium-LTB ghost). The production of LTB in Salmonella Typhimurium-LTB ghost preparations was confirmed by western blot analysis, and functional activity of the LTB protein to bind with GM1 receptors was determined by means of GM1 enzyme-linked immunosorbent assay. Efficacy of the Salmonella Typhimurium-LTB ghost as a vaccine candidate was evaluated in a chicken model using 56 chickens at 5 weeks old, which were divided into four groups (n = 14): group A was designated the non-vaccinated control group, whereas the birds in groups B, C, and D were immunized intramuscularly with 10(9), 10(8), and 10(7) ghost cells, respectively. Compared with the non-immunized chickens (group A), immunized chickens (groups B, C and D) exhibited increased titres of plasma IgG and intestinal secretory IgA antibodies. After oral challenge with 10(9) colony-forming units of a virulent Salmonella Typhimurium strain, the vaccinated group B birds showed a decrease in internal organ colonization with the challenge strain.
Collapse
Affiliation(s)
- Chetan V Jawale
- a College of Veterinary Medicine , Chonbuk National University , Jeonju , Republic of Korea
| | | |
Collapse
|
24
|
Jawale CV, Lee JH. Comparative evaluation of Salmonella Enteritidis ghost vaccines with a commercial vaccine for protection against internal egg contamination with Salmonella. Vaccine 2014; 32:5925-30. [PMID: 25218296 DOI: 10.1016/j.vaccine.2014.08.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
The study was conducted for the comparative evaluation of the vaccine potential of Salmonella Enteritidis (S. Enteritidis, SE) ghost, SE ghost carrying Escherichia coli heat labile enterotoxin B subunit (LTB) protein, and a commercial vaccine. Group A chickens were used as a non-vaccinated control, group B chickens were immunized with the ghost carrying LTB protein, group C chickens were immunized with the ghost and, group D chickens were immunized with a commercial vaccine. Group D chickens showed the swelling at the injection site, while no adverse reactions were observed at injection sites of the group B and C chickens. Chickens from the immunized groups B, C, and D demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative responses. After challenge with a virulent SE strain via intravenous route, groups B, C, and D showed significantly higher egg production and lower internal egg contamination and lower recovery of the challenge strain from internal organs compared to non-immunized-challenged control group A. In conclusion, these data indicate that immunization of chickens with the ghost and ghost carrying LTB is safe, without causing any adverse reaction, and is effective as the commercial vaccine in terms of reduction in internal egg contamination and internal organ colonization of Salmonella.
Collapse
Affiliation(s)
- Chetan V Jawale
- College of Veterinary Medicine, Chonbuk National University, Veterinary Public Health, 664-14 Duckjin-dong, Jeonju 561-756, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Veterinary Public Health, 664-14 Duckjin-dong, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
25
|
Some aspects of control of salmonella infection in poultry for minimising contamination in the food chain. WORLD POULTRY SCI J 2014. [DOI: 10.1017/s0043933914000579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Zárate-Bonilla LJ, Del Portillo P, Sáenz-Suárez H, Gonzáles-Santos J, Barreto-Sampaio GE, Poutou-Piñales RA, Rey AF, Rey JG. Computational modeling and preliminary iroN, fepA, and cirA gene expression in Salmonella Enteritidis under iron-deficiency-induced conditions. Poult Sci 2014; 93:221-30. [PMID: 24570443 DOI: 10.3382/ps.2012-02993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonellosis outbreaks in Europe, the United States, and Latin America have been associated with contaminated food derivatives including meat from the poultry industry. Salmonella grown under iron-limiting conditions has the capability to increase concentration of several iron-regulated outer-membrane proteins to augment the acquisition of the metal. These proteins have been proved to have immunogenic properties. Our aim was to increase the relative expression of iroN, fepA, and cirA in Salmonella Enteritidis domestic strain. Furthermore, we proposed a 3-dimensional structure model for each protein to predict and locate antigenic peptides. Our eventual objective is to produce an effective vaccine against regional avian salmonellosis. Two simple factorial designs were carried out to discriminate between 2 nitrogen sources and determine chelating-agent addition timing to augment relative gene expression. Two antigenic peptides located at the external face of each protein and 2 typical domains of iron-regulated outer-membrane proteins, plug and TonB-dep-Rec, were identified from the 3-dimensional models. Tryptone was selected as the best nitrogen source based on growth rate (μx = 0.36 h(-1)) and biomass productivity (Px = 0.9 g•h(-1)•L(-1)) as determined by a general factorial design. Optimum timing for chelating agent addition was in the middle of the log phase, which allowed relative expressions at 4 h of culture. Increase in iroN, fepA, and cirA relative expression was favored by the length of log phase and the addition of chelating agent, which decreased chelating toxicity and enhanced cell growth rate.
Collapse
|
27
|
Lee SK, Chon JW, Song KY, Hyeon JY, Moon JS, Seo KH. Prevalence, characterization, and antimicrobial susceptibility of Salmonella Gallinarum isolated from eggs produced in conventional or organic farms in South Korea. Poult Sci 2013; 92:2789-97. [DOI: 10.3382/ps.2013-03175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Desin TS, Köster W, Potter AA. Salmonella vaccines in poultry: past, present and future. Expert Rev Vaccines 2013; 12:87-96. [PMID: 23256741 DOI: 10.1586/erv.12.138] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Salmonella species are important zoonotic pathogens that cause gastrointestinal disease in humans and animals. Poultry products contaminated with these pathogens are one of the major sources of human Salmonella infections. Vaccination of chickens, along with other intervention measures, is an important strategy that is currently being used to reduce the levels of Salmonella in poultry flocks, which will ultimately lead to lower rates of human Salmonella infections. However, despite numerous studies that have been performed, there is still a need for safer, well-defined Salmonella vaccines. This review examines the different classes of Salmonella vaccines that have been tested, highlighting the merits and problems of each, and provides an insight into the future of Salmonella vaccines and the platforms that can be used for delivery.
Collapse
Affiliation(s)
- Taseen S Desin
- Vaccine & Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
29
|
Evaluation of recombinant outer membrane protein based vaccine against Salmonella Typhimurium in birds. Biologicals 2013; 41:162-8. [DOI: 10.1016/j.biologicals.2013.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 10/15/2012] [Accepted: 01/12/2013] [Indexed: 11/17/2022] Open
|
30
|
Efficacy and clinical trials of Salenvac-T, bivalent killed vaccine containing Salmonella Enteritidis and Salmonella Typhimurium. ACTA ACUST UNITED AC 2013. [DOI: 10.14405/kjvr.2013.53.1.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Galiş AM, Marcq C, Marlier D, Portetelle D, Van I, Beckers Y, Théwis A. Control ofSalmonellaContamination of Shell Eggs-Preharvest and Postharvest Methods: A Review. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/1541-4337.12007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anca M. Galiş
- Univ. of Agronomical Sciences and Veterinary Medicine of Bucharest; Animal Science Unit; Bd. Mărăşti, no. 59, sector 1; Bucharest; 011464; Romania
| | - Christopher Marcq
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal Science Unit. Passage des Déportés; 2, B-5030; Gembloux; Belgium
| | - Didier Marlier
- Univ. of Liege, Faculty of Veterinary Medicine; Dept. of Clinical Science, Clinic for Birds, Rabbits and Rodents; Boulevard de Colonster 20, B42; Sart-Tilman; B4000; Liege; Belgium
| | - Daniel Portetelle
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal and Microbial Biology Unit.; Passage des Déportés, 2; B-5030; Gembloux; Belgium
| | - Ilie Van
- Univ. of Agronomical Sciences and Veterinary Medicine of Bucharest; Animal Science Unit; Bd. Mărăşti, no. 59, sector 1; Bucharest; 011464; Romania
| | - Yves Beckers
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal Science Unit. Passage des Déportés; 2, B-5030; Gembloux; Belgium
| | - André Théwis
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal Science Unit. Passage des Déportés; 2, B-5030; Gembloux; Belgium
| |
Collapse
|
32
|
Dehghani B, Rasooli I, Gargari SLM, Nadooshan MRJ, Owlia P, Nazarian S. Immunogenicity of Salmonella enterica serovar Enteritidis virulence protein, InvH, and cross-reactivity of its antisera with Salmonella strains. Microbiol Res 2013; 168:84-90. [PMID: 23141708 DOI: 10.1016/j.micres.2012.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/03/2012] [Accepted: 09/09/2012] [Indexed: 11/19/2022]
Affiliation(s)
- Behzad Dehghani
- Department of Biology, Shahed University, Tehran-Qom Express Way, Opposite Imam Khomeini's Shrine, Tehran 3319118651, Iran
| | | | | | | | | | | |
Collapse
|
33
|
Hartley C, Salisbury AM, Wigley P. CpG oligonucleotides and recombinant interferon-γ in combination improve protection in chickens to Salmonella enterica serovar Enteritidis challenge as an adjuvant component, but have no effect in reducing Salmonella carriage in infected chickens. Avian Pathol 2012; 41:77-82. [PMID: 22845324 DOI: 10.1080/03079457.2011.640305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Salmonella enterica serovar Enteritidis is the most common cause of human salmonellosis in many developed nations. It is frequently associated with both poultry meat and eggs. In the present study we have determined whether CpG oligonucleotides that stimulate the immune system via Toll like-receptors 15 and 21 in the chicken can be used as immunomodulatory agents to break carriage of S. Enteritidis in in vitro and in vivo infection models. We also investigated its use as a component in an adjuvant to stimulate cell mediated immunity with a killed vaccine preparation. Following infection of the chicken macrophage-like cell line HD11 with Salmonella enterica serovar Gallinarum, cells were stimulated with an oligonucleotide containing a CpG motif, or with a non-CpG oligonucleotide control at concentrations ranging from 0 to 80 µM. Addition of the CpG oligonucleotide greatly enhanced clearance of S. Enteritidis in dose-dependent manner, whilst the control oligonucleotide had no significant effect. In contrast, stimulation of cells infected with S. Gallinarum had no effect. The CpG or control oligonucleotide with recombinant chicken interferon-γ was administered intramuscularly into chickens experimentally colonized with S. Enteritidis, although neither preparation produced any change in intestinal colonization levels to that in untreated control birds. Finally, CpG oligonucleotides were incorporated with recombinant interferon-γ, double-stranded RNA (Poly I:C) and squalene as a Th1-stimulating combined adjuvant for synergistic activation of cellular immunity (CASAC) together with whole killed Salmonella as the antigen as an experimental vaccine. Following vaccination and challenge of chickens with S. Enteritidis, CASAC gave significant protection to intestinal colonization whereas the same antigen given with a proprietary adjuvant did not. Neither adjuvant increased protection to systemic infection. The data suggest that adjuvants incorporating CpG motifs and interferon-γ may improve protection afforded by killed-Salmonella vaccines.
Collapse
Affiliation(s)
- Catherine Hartley
- National Centre for Zoonosis Research & Department of Infection Biology, Institute for Infection & Global Health, University of Liverpool, Neston, UK
| | | | | |
Collapse
|
34
|
Crespo R, Schaberg D, Warren C. Detection of Salmonella Enteritidis (SE) bacterin in environmental samples from poultry houses using the RapidChek SE immunoassay. Avian Dis 2012; 56:621-4. [PMID: 23050486 DOI: 10.1637/10137-031912-case.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Environmental swabs from pullet houses were tested for the presence of Salmonella Enteritidis (SE) using the RapidChek SE immunoassay test. Of the 1162 samples tested in 2011, 20 samples were positive, but only two samples were confirmed positive for SE by culture. Seventeen positive samples were from pullet houses that had been vaccinated with SE bacterin 2 to 3 days prior to submission to the lab. This study investigated the detection of SE bacterin using the RapidChek SE test system. Swabs were inoculated with different amounts of a commercial SE bacterin. As little as 0.25 ml of the SE bacterin was sufficient to cause positive results with the RapidChek SE test. This finding emphasizes the need to perform bacterial isolation and identification when a positive result occurs using an immunoassay test.
Collapse
Affiliation(s)
- Rocio Crespo
- Animal Health and Food Safety Laboratory, Washington Animal Disease Diagnostic Laboratory, Washington State University, 2607 W. Pioneer, Puyallup, WA 98371, USA.
| | | | | |
Collapse
|
35
|
Revolledo L, Ferreira A. Current perspectives in avian salmonellosis: Vaccines and immune mechanisms of protection. J APPL POULTRY RES 2012. [DOI: 10.3382/japr.2011-00409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Dewaele I, Van Meirhaeghe H, Rasschaert G, Vanrobaeys M, De Graef E, Herman L, Ducatelle R, Heyndrickx M, De Reu K. Persistent Salmonella Enteritidis environmental contamination on layer farms in the context of an implemented national control program with obligatory vaccination. Poult Sci 2012; 91:282-91. [DOI: 10.3382/ps.2011-01673] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Park SI, Jeong JH, Choy HE, Rhee JH, Na HS, Lee TH, Her M, Cho KO, Hong Y. Immune response induced by ppGpp-defective Salmonella enterica serovar Gallinarum in chickens. J Microbiol 2010; 48:674-81. [PMID: 21046347 DOI: 10.1007/s12275-010-0179-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/17/2010] [Indexed: 01/02/2023]
Abstract
To protect chickens from typhoid caused by Salmonella enterica serovar Gallinarum (S. Gallinarum), the attenuated 9R strain has been used in the field as a vaccine. However, safety concerns have been raised because the mutations in 9R are undefined while its efficacy is still a question under debate. A global regulator, ppGpp, synthesized by RelA and SpoT, has been shown to induce various virulence genes in S. Gallinarum (Jeong et al., 2008). In this study, two mutant strains defective in ppGpp-synthesis were constructed in wild-type S. Gallinarum (ΔppGpp) and 9R strain (9R-ΔppGpp) backgrounds and tested as live vaccines in chickens. After oral inoculation, the LD(50) values of ΔppGpp and 9R-ΔppGpp were approximately 5×10(10) colony forming unit (CFU) similarly as 9R strain, which was ∼10(5)-fold higher than that of the wildtype S. Gallinarum strain. Immunological analyses revealed immunization with either of the two attenuated ppGpp-defective strains induced significant antibody responses, the production of antibody-secreting B cells in blood, proliferation of CD4+ and CD8+ T cells in the spleen, and splenic expression of proinflammatory cytokines, such as IFN-γ and TGF-β4, at levels comparable to the 9R strain. Chickens immunized with the mutants (1×10(8) CFU) were 80% protected against oral challenge with 1×10(9) wild-type virulent bacteria (4,000-fold LD(50) dose), similar to the level of protection achieved by 9R immunization. Based on these data, live attenuated ΔppGpp-defective strains may serve as novel vaccines to control fowl typhoid in chickens.
Collapse
Affiliation(s)
- Sang-Ik Park
- Bio-Therapy Human Resources Center, College of Veterinary Medicine, Gwangju 501-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Effect of Salmonella vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations. Appl Environ Microbiol 2010; 76:7820-5. [PMID: 20889797 DOI: 10.1128/aem.01320-10] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While measures to control carcass contamination with Salmonella at the processing plant have been implemented with some success, on-farm interventions that reduce Salmonella prevalence in meat birds entering the processing plant have not translated well on a commercial scale. We determined the impact of Salmonella vaccination on commercial poultry operations by monitoring four vaccinated and four nonvaccinated breeder (parental) chicken flocks and comparing Salmonella prevalences in these flocks and their broiler, meat bird progeny. For one poultry company, their young breeders were vaccinated by using a live-attenuated Salmonella enterica serovar Typhimurium vaccine (Megan VAC-1) followed by a killed Salmonella bacterin consisting of S. enterica serovar Berta and S. enterica serovar Kentucky. The other participating poultry company did not vaccinate their breeders or broilers. The analysis revealed that vaccinated hens had a lower prevalence of Salmonella in the ceca (38.3% versus 64.2%; P < 0.001) and the reproductive tracts (14.22% versus 51.7%; P < 0.001). We also observed a lower Salmonella prevalence in broiler chicks (18.1% versus 33.5%; P < 0.001), acquired from vaccinated breeders, when placed at the broiler farms contracted with the poultry company. Broiler chicken farms populated with chicks from vaccinated breeders also tended to have fewer environmental samples containing Salmonella (14.4% versus 30.1%; P < 0.001). There was a lower Salmonella prevalence in broilers entering the processing plants (23.4% versus 33.5%; P < 0.001) for the poultry company that utilized this Salmonella vaccination program for its breeders. Investigation of other company-associated factors did not indicate that the difference between companies could be attributed to measures other than the vaccination program.
Collapse
|
39
|
Penha Filho RAC, de Paiva JB, Arguello YMS, da Silva MD, Gardin Y, Resende F, Berchieri Junior AB, Sesti L. Efficacy of several vaccination programmes in commercial layer and broiler breeder hens against experimental challenge with Salmonella enterica serovar Enteritidis. Avian Pathol 2010; 38:367-75. [PMID: 19937524 DOI: 10.1080/03079450903183645] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two experiments were performed to evaluate the protective effect of various vaccination combinations given at 5 and 9 weeks of age against experimental challenge with Salmonella enterica serovar Enteritidis (SE) phage type 4 at 12 weeks of age. In Experiment 1, groups of commercial layers were vaccinated by one of the following programmes: Group 1, two doses of a SE bacterin (Layermune SE); Group 2, one dose of a live Salmonella enterica serovar Gallinarum vaccine (Cevac SG9R) followed by one dose of the SE bacterin; Group 3, one dose of each of two different multivalent inactivated vaccines containing SE cells (Corymune 4K and Corymune 7K; and Group 4, unvaccinated, challenged controls. In Experiment 2, groups of broiler breeders were vaccinated by the same programmes as Groups 1 and 2 above while Group 3 was an unvaccinated, challenged control group. All vaccination programmes and the challenge induced significant (P < 0.05) seroconversion as measured by enzyme-linked immunosorbent assay. Overall, in both experiments, all vaccination schemes were significantly effective in reducing organ (spleen, liver and caeca) colonization by the challenge strain as well as reducing faecal excretion for at least 3 weeks. Vaccinated layers in Groups 1 and 2 and broiler breeders in Group 2 showed the greatest reduction in organ colonization and the least faecal excretion. In Experiment 1, layers vaccinated with multivalent inactivated vaccines containing a SE component (Group 3) were only moderately protected, indicating that such a vaccination programme may be useful in farms with good husbandry and housing conditions and low environmental infectious pressure by Salmonella.
Collapse
|
40
|
Atterbury RJ, Allen VM, Carrique-Mas JJ, Davies RH. Salmonella
colonisation of laying hens following vaccination with killed and live attenuated commercial Salmonella
vaccines. Vet Rec 2009; 165:493-6. [DOI: 10.1136/vr.165.17.493] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - V. M. Allen
- Department of Clinical Veterinary Science; University of Bristol; Langford Bristol BS40 5LX
| | | | - R. H. Davies
- Department of Bacterial Diseases; Veterinary Laboratories Agency - Weybridge; Woodham Lane, New Haw Addlestone Surrey KT15 3NB
| |
Collapse
|
41
|
Public health assessment of Salmonella enterica serovar enteritidis inactivated-vaccine treatment in layer flocks. Appl Environ Microbiol 2008; 75:1005-10. [PMID: 19047380 DOI: 10.1128/aem.01689-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although there have been several reports on the efficacy assessment of a Salmonella enterica serovar Enteritidis vaccine against intestinal and parenchymatous organ diseases of laying hens, no public health risk characterization of its long-term effect on eggs has been reported. In this study, we attempted to assess the public health effect of an inactivated S. enterica serovar Enteritidis vaccine against serovar Enteritidis contamination of chicken eggs. We analyzed serovar Enteritidis isolation test results from four windowless farms in which inactivated-vaccine administration was initiated based on the sanitary monitoring program of a farm. When flocks with and without S. enterica serovar Enteritidis vaccine treatments were mixed, the application of an inactivated serovar Enteritidis vaccine decreased the most probable number (MPN) of bacteria by at least 100-fold in broken (liquid) egg samples positive for serovar Enteritidis, although a statistical difference between those MPNs could not be obtained. The isolation frequency after the vaccine application was less than 1/10 (P < 0.01). No S. enterica serovar Enteritidis bacteria were isolated approximately 1 year after all of the chickens had received the inactivated serovar Enteritidis vaccine. It was suggested that an adequate administration of an inactivated serovar Enteritidis vaccine reduced the contamination risk of eggs (the number of isolated serovar Enteritidis cells and detection frequency) compared to the contamination risk of eggs laid by nonvaccinated hens.
Collapse
|
42
|
Chappell L, Kaiser P, Barrow P, Jones MA, Johnston C, Wigley P. The immunobiology of avian systemic salmonellosis. Vet Immunol Immunopathol 2008; 128:53-9. [PMID: 19070366 DOI: 10.1016/j.vetimm.2008.10.295] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Avian systemic salmonellosis is primarily caused by Salmonella enterica serovar Gallinarum and serovar Pullorum causing the diseases Fowl Typhoid and Pullorum Disease respectively. During infection interaction with the immune system occurs in three main phases. First is invasion via the gastrointestinal tract. Infection with S. Pullorum or S. Gallinarum does not cause substantial inflammation, unlike S. Typhimurium or S. Enteritidis. Through in vitro models it was found that S. Gallinarum does not induce expression of CXC chemokines or pro-inflammatory cytokines such as IL-1beta or IL-6, whilst in an in vivo model S. Pullorum infection leads to down-regulation of CXCLi1 and CXCLi2 in the ileum. The absence of flagella in S. Gallinarum and S. Pullorum means they are not recognised by TLR5, which is believed to play a key role in the initiation of inflammatory responses, though other pathogen-factors are likely to be involved. The second phase is establishing systemic infection. Salmonella invade macrophages and probably dendritic cells and are translocated to the spleen and liver, where replication occurs. Salmonella survival is dependent on the Salmonella pathogenicity island 2 type III secretion system, which inhibits antimicrobial activity by preventing fusion of lysosymes with the phagocytic vacuole and by modulation of MHC and cytokine expression. Studies in resistant and susceptible chicken lines have shown that the interaction with macrophages is central to the progression of infection or immunological clearance. Primary macrophages from resistant animals are more efficient in killing Salmonella through respiratory burst and by induction of cytokine expression including the initiation of protective Th1 responses that leads to the third phase. Where replication of Salmonella is not controlled the death of the animal usually results. If the innate immune system is not able to control replication then cellular and humoral responses, primarily mediated through Th1-associated cytokines, are able to clear infection. In S. Pullorum a significant number of animals develop persistent infection of splenic macrophages. Here we show preliminary evidence of modulation of adaptive immunity away from a Th1 response to facilitate the development of the carrier state. In carrier animals persistence may lead to reproductive tract and egg infection associated with a decline in CD4+ T cell numbers and function associated with the onset of sexual maturity in hens.
Collapse
Affiliation(s)
- Lucy Chappell
- Division of Immunology, Institute for Animal Health, Compton, Newbury, RG20 7NN, UK
| | | | | | | | | | | |
Collapse
|
43
|
de Freitas Neto OC, Mesquita AL, de Paiva JB, Zotesso F, Berchieri Júnior A. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines. Braz J Microbiol 2008; 39:390-6. [PMID: 24031235 PMCID: PMC3768411 DOI: 10.1590/s1517-838220080002000034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 10/16/2007] [Accepted: 03/18/2008] [Indexed: 11/22/2022] Open
Abstract
Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must be associated with general hygiene and disinfection practices in poultry husbandry.
Collapse
Affiliation(s)
- Oliveiro Caetano de Freitas Neto
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho , Jaboticabal, SP , Brasil
| | | | | | | | | |
Collapse
|
44
|
Abstract
Salmonella enterica in poultry remains a major political issue. S. enterica serovar Enteritidis, particularly, remains a world-wide problem. Control in poultry by immunity, whether acquired or innate, is a possible means of containing the problem. Widespread usage of antibiotics has led to the emergence of multiple antibiotic-resistant bacteria. This problem has indicated an increasing requirement for effective vaccines to control this important zoonotic infection. An attempt is made in the present review to explain the relatively poor success in immunizing food animals against these non-host-specific Salmonella serotypes that usually produce food-poisoning, compared with the success obtained with the small number of serotypes that more typically produce systemic "typhoid-like" diseases. New examinations of old problems such as the carrier state and vertical transmission, observed with S. Pullorum, is generating new information of relevance to immunity. Newer methods of attenuation are being developed. Live vaccines, if administered orally, demonstrate non-specific and rapid protection against infection that is of biological and practical interest. However, from the point of view of consumer safety, there is a school of thought that considers inactivated or sub-unit vaccines to be the safest. The benefits of developing effective killed or sub-unit vaccines over the use of live vaccines are enormous. Recently, there have been significant advances in the development of adjuvants (e.g. microspheres) that are capable of potent immuno-stimulation, targeting different arms of the immune system. The exploitation of such technology in conjunction with the ongoing developments in identifying key Salmonella virulence determinants should form the next generation of Salmonella sub-unit vaccines for the control of this important group of pathogens. There are additional areas of concern associated with the use of live vaccines, particularly if these are generated by genetic manipulation.
Collapse
Affiliation(s)
- P A Barrow
- School of Veterinary Medicine and Science, University of Nottingham. Loughborough, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
45
|
Davies R, Breslin M. Observations on Salmonella contamination of eggs from infected commercial laying flocks where vaccination for Salmonella enterica serovar Enteritidis had been used. Avian Pathol 2006; 33:133-44. [PMID: 15276979 DOI: 10.1080/03079450310001652040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eggs were collected monthly from 12 cage-layer flocks on four farms where Salmonella Enteritidis was present in vaccinated flocks despite vaccination with an S. Enteritidis bacterin. Where possible, hens were also taken for culture at the end of the laying period, and faecal and environmental samples were taken from the laying houses before and after cleaning and disinfection. Twenty-four batches of six egg shells from the 13 652 tested (0.18% [0.11 to 0.26 CI(95)] single egg equivalent) were positive for S. Enteritidis and 54 (0.40% [0.30 to 0.52 CI(95)] single egg equivalent) for other serovars. Six batches of 13 640 (0.04% [0.02 to 0.10 CI95] single egg equivalent) egg contents, bulked in six egg pools, contained S. Enteritidis and three batches contained other serovars. In addition three further batches contained S. Enteritidis in both contents and shells, and two other batches contained other serovars in both. The total level of contamination by S. Enteritidis of both contents and shells found in vaccinated flocks was therefore 33 batches/13 682 eggs(0.24% [0.17 to 0.34 CI(95)] single egg equivalent). The total of contamination for any Salmonella serovar was 92 batches/13 682 eggs (0.68% [0.55 to 0.84 CI(95)] single egg equivalent). These results contrast with the findings of testing of eggs from three unvaccinated flocks prior to this study where 21 batches of egg shells from a total of 2101 eggs (1.0% [0.63 to 1.56 CI(95)] single egg equivalent) and six batches of contents from 2051 eggs (0.29% [0.11 to 0.64 CI95] single egg equivalent) were contaminated with S. Enteritidis. S. Enteritidis was found in 67/699 (9.6%) of vaccinated spent hens and 64/562 (11.4%) of bulked fresh faecal samples taken from laying houses. Failure to adequately clean and disinfect laying houses and to control mice appeared to be a common feature on the farms.
Collapse
Affiliation(s)
- Robert Davies
- Department of Food and Environmental Safety, Veterinary Laboratories Agency--Weybridge, Surrey, UK.
| | | |
Collapse
|
46
|
Oral immunisation of laying hens with the live vaccine strains of TAD Salmonella vac E and TAD Salmonella vac T reduces internal egg contamination with Salmonella Enteritidis. Vaccine 2006; 24:6250-5. [PMID: 16842890 DOI: 10.1016/j.vaccine.2006.05.070] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/18/2006] [Accepted: 05/23/2006] [Indexed: 11/19/2022]
Abstract
Eggs are a major source of human infections with Salmonella. Therefore controlling egg contamination in laying hen flocks is one of the main targets for control programmes. A study was carried out to assess the effect of oral vaccination with TAD Salmonella vac E, TAD Salmonella vac T and with both vaccines TAD Salmonella vac E and TAD Salmonella vac T, on colonization of the reproductive tract and internal egg contamination of laying hens with Salmonella Enteritidis. Three groups of 30 laying hens were vaccinated at 1 day, 6 weeks and 16 weeks of age with either one of the vaccine strains, or a combination of both vaccine strains, while a fourth group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 0.5 ml containing 5 x 10(7)cfu Salmonella Enteritidis PT4 S1400/94. The number of oviducts from which Salmonella was isolated, was significantly lower in the vaccinated than in the non-vaccinated hens at 3 weeks post-challenge. Significantly less egg contents were Salmonella positive in the birds vaccinated with TAD Salmonella vac E or TAD Salmonella vac T (12/105 batches of eggs in both groups) than in the unvaccinated birds (28/105 batches of eggs). Internal egg contamination in the hens vaccinated with both TAD Salmonella vac E and TAD Salmonella vac T was even more reduced, as over the whole experiment, only one batch of eggs was positive. In conclusion, these data indicate that vaccination of laying hens with these live vaccines could be considered as a valuable tool in controlling internal egg contamination.
Collapse
|
47
|
Beal RK, Powers C, Wigley P, Barrow PA, Kaiser P, Smith AL. A strong antigen-specific T-cell response is associated with age and genetically dependent resistance to avian enteric salmonellosis. Infect Immun 2005; 73:7509-16. [PMID: 16239553 PMCID: PMC1273861 DOI: 10.1128/iai.73.11.7509-7516.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chicken genetics and age affect resistance to enteric infection with Salmonella enterica serovar Typhimurium and were used to identify the immune responses that may contribute to rapid clearance. When birds were infected at 40 days of age, line 6(1) chickens cleared the infection more effectively than line N chickens, whereas when birds were infected at 10 days of age, both chicken lines were highly susceptible to infection. Antibody levels, T-cell responsiveness, and cytokine mRNA levels were all elevated during infection. A negative correlation between resistance and antigen-specific antibody production was observed in older chickens. However, this finding was not replicated for age-related resistance; we found that older chickens exhibited a stronger and more rapid antibody response than younger chickens. The levels of interleukin-1beta (IL-1beta) and gamma interferon (IFN-gamma) mRNA were similar in the spleens and cecal tonsils of both line 6(1) and line N chickens, except for higher levels of IL-1beta in the spleens of line 6(1) chickens at 6 days postinfection. Differences in the levels of IFN-gamma and IL-1beta 1beta mRNA between the lines were more apparent in younger chickens, but while the increases were greater than those observed in the older chickens, the clearance of enteric S. enterica serovar Typhimurium was much slower. The level of antigen-specific proliferation of splenocytes was associated with increased resistance in both experimental systems, and the strongest responses were observed in older and genetically resistant chickens. The data presented here implicate T-cell responses in the clearance of S. enterica serovar Typhimurium from the intestine of infected chickens.
Collapse
Affiliation(s)
- Richard K Beal
- Division of Immunology, Institute for Animal Health, Compton, Newbury, Berkshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Ochoa-Repáraz J, García B, Solano C, Lasa I, Irache JM, Gamazo C. Protective ability of subcellular extracts from Salmonella Enteritidis and from a rough isogenic mutant against salmonellosis in mice. Vaccine 2005; 23:1491-501. [PMID: 15670885 DOI: 10.1016/j.vaccine.2004.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 09/07/2004] [Indexed: 11/19/2022]
Abstract
We evaluated the efficacy of surface components enriched hot saline extracts (HE) from parental and two isogenic rough mutant strains of Salmonella Enteritidis as subcellular vaccine candidates. By a randomized mutagenesis approach from a clinical isolate of S. Enteritidis there were selected two rough mutants defective in LPS synthesis (R1 and R2 mutants). The mutations mapped to the wcaI gene and gmd gene, respectively, of the O-antigen gene cluster involved in O-antigen synthesis. BALB/c mice received intraperitoneally one single dose of 30 microg of HE from parental and mutant strains, and the protection against a lethal infection with S. Enteritidis was determined. In contrast to the wild type extract, immunization with rough extracts did not induce any distress symptoms in the mice. HE extract from wild type and R1 strains induced the highest immunogenic response with respect IFN-gamma eliciting splenic cells, in contrast with HE-R2. These results correlated with the obtained levels of protection. Thus, at day 63 post-infection, HE from parental strain rendered an 80% level of protection; HE-R1 conferred a 60% level of protection, whereas HE-R2 did not protect the mice. Any of the antigenic extracts elicited systemic IgG1 and IgG2a responses, although these antibodies did not, however, correlate with protection. These results put forward the importance of cellular immune response mediated by IFN-gamma in protection against salmonellosis. The significantly different protective capacity between HE extracts from both rough mutants suggest that other factors independent of the O-chain, like outer membrane proteins and fimbrial antigens, may be involved in protection. In summary, the HE is a good candidate acellular extract for evaluation of its protective ability against salmonellosis following vaccination in poultry.
Collapse
|
49
|
Eyigor A, Goncagul G, Gunaydin E, Carli KT. Salmonella profile in chickens determined by real-time polymerase chain reaction and bacteriology from years 2000 to 2003 in Turkey. Avian Pathol 2005; 34:101-5. [PMID: 16191689 DOI: 10.1080/03079450500059461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
From years 2000 to 2003, Salmonella was investigated from a total of 1785 samples comprised of chicken intestinal samples, cloacal swabs, drag swabs, litter samples and chick dust samples collected from 191 poultry breeding flocks belonging to 15 different chicken breeding stock companies in the Marmara region, Turkey by a SYBR green-based real-time polymerase chain reaction (SGBRT-PCR), by a probe-specific real-time polymerase chain reaction (PSRT-PCR) and by standardized bacteriology as described in the manual of National Poultry Improvement Plan and Auxillary Provisions, United States Department of Agriculture. Between January 2000 and July 2001, Salmonella was detected at the rates of 5.87% and 4.10% out of a total of 1242 samples by SGBRT-PCR and bacteriology, respectively. From July 2001 until December 2003, Salmonella was found at rates of 11.42% and 5.52% from a total of 543 samples by PSRT-PCR and bacteriology, respectively. The dominant Salmonella serovar was determined as Salmonella enterica subsp. enterica Serovar Enteritidis (S. Enteritidis), while serogroup C1 and C2 in 2001 and serogroup E1 in 2002 were isolated as additional serovars. As a conclusion, S. Enteritidis seems to be the major problem in poultry breeding flocks in Turkey, and both of the real-time polymerase chain reaction methods were found more sensitive than standard bacteriology for the detection of Salmonella from poultry samples.
Collapse
Affiliation(s)
- Aysegul Eyigor
- Department of Food Hygiene and Technology, Uludag University, Gorukle Kampusu, Bursa, Turkey
| | | | | | | |
Collapse
|
50
|
Wigley P, Hulme S, Powers C, Beal R, Smith A, Barrow P. Oral infection with the Salmonella enterica serovar Gallinarum 9R attenuated live vaccine as a model to characterise immunity to fowl typhoid in the chicken. BMC Vet Res 2005; 1:2. [PMID: 16221297 PMCID: PMC1236940 DOI: 10.1186/1746-6148-1-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 09/12/2005] [Indexed: 12/23/2022] Open
Abstract
Background Salmonella enterica serovar Gallinarum (S. Gallinarum) is the causative agent of fowl typhoid, a severe systemic disease of chickens that results in high mortality amongst infected flocks. Due to its virulence, the immune response to S. Gallinarum is poorly characterised. In this study we have utilised infection by the live attenuated S. Gallinarum 9R vaccine strain in inbred chickens to characterise humoral, cellular and cytokine responses to systemic salmonellosis. Results Infection with 9R results in a mild systemic infection. Bacterial clearance at three weeks post infection coincides with increases in circulating anti-Salmonella antibodies, increased T cell proliferation to Salmonella challenge and increased expression of interferon gamma. These responses peak at four weeks post infection, then decline. Only modest increases of expression of the pro-inflammatory cytokine interleukin-1β were detected early in the infection. Conclusion Infection of chickens with the 9R vaccine strain induces a mild form of systemic salmonellosis. This induces both cellular and humoral immune responses, which peak soon after bacterial clearance. Unlike enteric-associated Salmonella infections the immune response is not prolonged, reflecting the absence of persistence of Salmonella in the gastrointestinal tract. The findings here indicate that the use of the S. Gallinarum 9R vaccine strain is an effective model to study immunity to systemic salmonellosis in the chicken and may be employed in further studies to determine which components of the immune response are needed for protection.
Collapse
Affiliation(s)
- Paul Wigley
- Department of Veterinary Pathology, University of Liverpool, Leahurst, Neston, CH64 7TE, Merseyside, UK
| | - Scott Hulme
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, UK, RG20 7NN, Berkshire, UK
| | - Claire Powers
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, UK, RG20 7NN, Berkshire, UK
| | - Richard Beal
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, UK, RG20 7NN, Berkshire, UK
| | - Adrian Smith
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, UK, RG20 7NN, Berkshire, UK
| | - Paul Barrow
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, UK, RG20 7NN, Berkshire, UK
| |
Collapse
|