1
|
Khoso MA, Liu H, Zhao T, Zhao W, Huang Q, Sun Z, Dinislam K, Chen C, Kong L, Zhang Y, Liu X. Impact of plant-derived antioxidants on heart aging: a mechanistic outlook. Front Pharmacol 2025; 16:1524584. [PMID: 40191425 PMCID: PMC11969199 DOI: 10.3389/fphar.2025.1524584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Heart aging involves a complex interplay of genetic and environmental influences, leading to a gradual deterioration of cardiovascular integrity and function. Age-related physiological changes, including ventricular hypertrophy, diastolic dysfunction, myocardial fibrosis, increased arterial stiffness, and endothelial dysfunction, are influenced by key mechanisms like autophagy, inflammation, and oxidative stress. This review aims to explore the therapeutic potential of plant-derived bioactive antioxidants in mitigating heart aging. These compounds, often rich in polyphenols, flavonoids, and other phytochemicals, exhibit notable antioxidant, anti-inflammatory, and cardioprotective properties. These substances have intricate cardioprotective properties, including the ability to scavenge ROS, enhance endogenous antioxidant defenses, regulate signaling pathways, and impede fibrosis and inflammation-promoting processes. By focusing on key molecular mechanisms linked to cardiac aging, antioxidants produced from plants provide significant promise to reduce age-related cardiovascular decline and improve general heart health. Through a comprehensive analysis of preclinical and clinical studies, this work highlights the mechanisms associated with heart aging and the promising effects of plant-derived antioxidants. The findings may helpful for researchers in identifying specific molecules with therapeutic and preventive potential for aging heart.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Heng Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Wenjie Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Qiang Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Khuzin Dinislam
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Lingyi Kong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| |
Collapse
|
2
|
Ferdous UT, Nurdin A, Ismail S, Shaari K, Norhana Balia Yusof Z. A comparative study on antioxidant properties, total phenolics, total flavonoid contents, and cytotoxic properties of marine green microalgae and diatoms. J Genet Eng Biotechnol 2025; 23:100456. [PMID: 40074430 PMCID: PMC11795137 DOI: 10.1016/j.jgeb.2024.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Despite having valuable and novel metabolites, the marine microalgae species are still not thoroughly investigated for their pharmaceutical and nutraceutical importance. Therefore, this study was focused on investigating the crude extracts of marine green microalgae species, Tetraselmis sp., Nannochloropsis sp., and diatoms Chaetoceros sp., and Thalassiosira sp., isolated from the Malaysian coastal region in terms of their antioxidant activity, total phenolics, total flavonoid contents and cytotoxicity against human breast cancer cells, MCF-7. Among twenty-eight crude extracts, Tetraselmis ethanol and ethyl acetate extract showed the highest amount of total phenolic (19.87 mg GAE/g), and total flavonoid content (38.58 mg QE/g of extract), respectively. From the antioxidant assays, methanol and ethyl acetate extract of Tetraselmis sp. exhibited significantly higher (p < 0.05) antioxidant activities, revealed through DPPH (54.41 ± 1.18 mg Trolox Equivalent Antioxidant Capacity or TEAC/g extract) and ABTS (41.57 ± 0.83 mg TEAC/g extract) radical scavenging activities, respectively than the rest. Ethyl acetate extract of Tetraselmis sp. also showed high ferric reducing power (113.46 ± 4.83 mg TEAC/g extract). On the contrary, methanol and ethyl acetate extract of Chaetoceros sp. showed the highest cytotoxicity towards MCF-7 and reduced the cell viability to 21.26 % and 21.56 %, respectively. The data suggest that marine diatom Chaetoceros sp. has a good cytotoxic effect on MCF-7, while marine green microalga Tetraselmis sp. has good radical scavenging and ferric reduction capabilities, warranting further investigation along with their metabolic profiling, cancer cell killing mechanism and extensive in vivo study.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Center for Biosystems and Machines (IRC-BSM), King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Armania Nurdin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Saila Ismail
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Goya L, Mateos R. Antioxidant and Anti-inflammatory Effects of Marine Phlorotannins and Bromophenols Supportive of Their Anticancer Potential. Nutr Rev 2025; 83:e1225-e1242. [PMID: 38894623 PMCID: PMC11819485 DOI: 10.1093/nutrit/nuae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Following the goal of optimizing nutrition, the food industry has been continuously working on food reformulation, nutritional patterns, functional foods development, and the general promotion of a healthy lifestyle. To this end, the scientific community has been increasingly investigating natural compounds that could prevent or treat chronic diseases. Phlorotannins and bromophenols are phenolic compounds particularly present in marine organisms. There is extensive evidence that shows their potential in the prevention of noncommunicable diseases, including cancer, the second cause of mortality worldwide. Numerous studies have demonstrated the anticarcinogenic activity of polyphenolic algae compounds both in cell culture and experimental animal models. Although recent reviews are also available, the present update focuses on the most recent findings related to the antioxidant/anti-inflammatory effect of seaweed phenolics, as well as their regulatory capacity for new molecular targets. Additionally, the review addresses and discusses the close link between inflammation and oxidative stress, along with their relationship with tumor onset and progression, including the most recent findings supporting this correlation. Although clinical studies are still needed to support this evidence, phlorotannins and bromophenols constitute an emerging bioactive group with high potential as chemopreventive agents and/or potential adjuvants for existing cancer therapies.
Collapse
Affiliation(s)
- Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Bermudez G, Terenzi C, Medri F, Andrisano V, Montanari S. Extraction and Analytical Methods for the Characterization of Polyphenols in Marine Microalgae: A Review. Mar Drugs 2024; 22:538. [PMID: 39728113 PMCID: PMC11678617 DOI: 10.3390/md22120538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive comparison of traditional and cutting-edge extraction and analytical procedures applied for polyphenolic characterization in marine microalgae over the past 26 years, with a unique perspective on optimizing their recovery and identification. It addresses (I) cell disruption techniques, including bead milling, high-speed homogenization, pulsed electric field, ultrasonication, microwave, freeze-thawing, and enzymatic/chemical hydrolysis; (II) extraction techniques, such as solid-liquid extraction, ultrasound and microwave-assisted extraction, pressurized-liquid extraction, and supercritical CO2; (III) analytical methods, including total phenolic and flavonoid content assays and advanced chromatographic techniques like GC-MS, HPLC-DAD, and HPLC-MS. Key findings showed bead milling and chemical hydrolysis as effective cell disruption techniques, pressurized-liquid extraction and microwave-assisted extraction as promising efficient extraction methods, and HPLC-MS as the finest alternative for precise phenolic characterization. Unlike previous reviews, this study uniquely integrates both extractive and analytical approaches in one work, focusing exclusively on marine microalgae, a relatively underexplored area compared to freshwater species, offering actionable insights to guide future research and industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Serena Montanari
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.B.); (V.A.)
| |
Collapse
|
5
|
Yuan X, Zhong M, Huang X, Hussain Z, Ren M, Xie X. Industrial Production of Functional Foods for Human Health and Sustainability. Foods 2024; 13:3546. [PMID: 39593962 PMCID: PMC11593949 DOI: 10.3390/foods13223546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Functional foods significantly affect social stability, human health, and food security. Plants and microorganisms are high-quality chassis for the bioactive ingredients in functional foods. Characterised by precise nutrition and the provision of both nutritive and medicinal value, functional foods serve a as key extension of functional agriculture and offer assurance of food availability for future space exploration efforts. This review summarises the main bioactive ingredients in functional foods and their functions, describes the strategies used for the nutritional fortification and industrial production of functional foods, and provides insights into the challenges and future developments in the applications of plants and microorganisms in functional foods. Our review aims to provide a theoretical basis for the development of functional foods, ensure the successful production of new products, and support the U.N. Sustainable Development Goals, including no poverty, zero hunger, and good health and well-being.
Collapse
Affiliation(s)
- Xinrui Yuan
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Moyu Zhong
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xinxin Huang
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zahid Hussain
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Maozhi Ren
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xiulan Xie
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| |
Collapse
|
6
|
Cruces E, Cubillos VM, Ramírez-Kushel E, Montory JA, Mardones DA, Chaparro OR, Paredes FJ, Echeverría-Pérez I, Salas-Yanquin LP, Büchner-Miranda JA. Photophysiological and Oxidative Responses of the Symbiotic Estuarine Anemone Anthopleura hermaphroditica to the Impact of UV Radiation and Salinity: Field and Laboratory Approaches. Antioxidants (Basel) 2024; 13:1239. [PMID: 39456492 PMCID: PMC11504032 DOI: 10.3390/antiox13101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The estuarine anemone Anthopleura hermaphroditica and its symbiont Philozoon anthopleurum are continuously exposed to intense fluctuations in solar radiation and salinity owing to tidal changes. The aim of this study was to evaluate the effects of the tidal cycle, solar radiation, and salinity fluctuations on the photosynthetic and cellular responses (lipid peroxidation, total phenolic compounds, and antioxidant activity) of the symbiont complex over a 24 h period in the Quempillén River Estuary. Additionally, laboratory experiments were conducted to determine the specific photobiological responses to photosynthetically active radiation (PAR), ultraviolet radiation (UVR), and salinity. Our field results showed that the photosynthetic parameters of the symbiont complex decreased with increasing ambient radiation; however, no relationship was observed with changes in salinity. Increased peroxidative damage, total phenolic compound levels, and antioxidant activity were mainly related to increased UVR and, to a lesser extent, PAR. During the dark period, only PAR-exposed organisms returned to the basal levels of photosynthesis and cell damage. Laboratory exposure confirmed the deleterious effects of UVR on the photosynthetic response. The present study suggests that the ability of A. hermaphroditica to acclimate to natural radiation stress is mediated by the concerted action of various physiological mechanisms that occur at different times of the day, under varying levels of environmental stress.
Collapse
Affiliation(s)
- Edgardo Cruces
- Centro de Investigaciones Costeras, Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó 1530000, Chile
| | - Víctor M. Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Eduardo Ramírez-Kushel
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Jaime A. Montory
- Centro I~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Daniela A. Mardones
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Oscar R. Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Francisco J. Paredes
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ignacio Echeverría-Pérez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis P. Salas-Yanquin
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Joseline A. Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
7
|
Thangsiri S, Inthachat W, Temviriyanukul P, Sahasakul Y, Trisonthi P, Pan-Utai W, Siriwan D, Suttisansanee U. Bioactive compounds and in vitro biological properties of Arthrospira platensis and Athrospira maxima: a comparative study. Sci Rep 2024; 14:23786. [PMID: 39390067 PMCID: PMC11467430 DOI: 10.1038/s41598-024-74492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Cyanobacteria, especially Arthrospira, are valuable resources of nutrients and natural pigments with many beneficial health-related properties. This study optimized the extraction conditions of Arthrospira to achieve high phenolic contents and antioxidant activities. Under optimized extraction conditions, the bioactive compounds (phenolics and pigment components), antioxidant activities, and inhibitions of the key enzymes relevant to some non-communicable diseases were compared between Arthrospira platensis and Arthrospira maxima. Optimized extraction conditions were determined as 2 h shaking time, 50 °C extraction temperature, and 1% (w/v) solid-to-liquid ratio, giving effective phenolic and phycocyanin contents using aqueous extraction, while 80% (v/v) aqueous ethanolic extraction provided high total chlorophyll content. Most antioxidant activities were higher using 80% (v/v) aqueous ethanolic extracts. Both Arthrospira species inhibited the key enzymes involved in controlling non-communicable diseases including hyperlipidemia (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV), Alzheimer's disease (acetylcholinesterase, butyrylcholinesterase and β-secretase), and hypertension (angiotensin-converting enzyme). High inhibitory activities were detected against β-secretase (BACE-1), the enzyme responsible for β-amyloid plaque formation in the brain that acts as a significant hallmark of Alzheimer's disease. Arthrospira extract and donepezil (Alzheimer's disease drug) synergistically inhibited BACE-1, suggesting the potential of Arthrospira extracts as effective BACE-1 inhibitors. Interestingly, A. maxima exhibited higher bioactive compound contents, antioxidant activities, and key enzyme inhibitions than A. platensis, indicating high potential for future food and medicinal applications.
Collapse
Affiliation(s)
- Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piyapat Trisonthi
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand
| | - Wanida Pan-Utai
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand.
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
8
|
Comley JG, Scott JA, Laamanen CA. Utilizing CO 2 in industrial off-gas for microalgae cultivation: considerations and solutions. Crit Rev Biotechnol 2024; 44:910-923. [PMID: 37500178 DOI: 10.1080/07388551.2023.2233692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
The utilization of microalgae to treat carbon dioxide (CO2)-rich industrial off-gas has been suggested as both beneficial for emissions reduction and economically favorable for the production of microalgal products. Common sources of off-gases include coal combustion (2-15% CO2), cement production (8-15% CO2), coke production (18-23% CO2), and ore smelting (6-7% CO2). However, industrial off-gas also commonly contains other acid gas components [typically nitrogen oxides (NOX) and sulfur dioxide (SO2)] and metals that could inhibit microalgae growth and productivity. To utilize industrial off-gas effectively in microalgae cultivation systems, a number of solutions have been proposed to overcome potential inhibitions. These include bioprospecting to identify suitable strains, genetic modification to improve specific cellular characteristics, chemical additions, and bioreactor designs and operating procedures.In this review, results from microalgae experiments related to utilizing off-gas are presented, and the outcomes of different conditions discussed along with potential solutions to resolve limitations associated with the application of off-gas.
Collapse
Affiliation(s)
- Jacob G Comley
- School of Engineering and Computer Science, Laurentian University, Sudbury, Canada
| | - John A Scott
- School of Engineering and Computer Science, Laurentian University, Sudbury, Canada
| | - Corey A Laamanen
- School of Engineering and Computer Science, Laurentian University, Sudbury, Canada
| |
Collapse
|
9
|
Mary Martin T, K MS. Seaweeds and Their Secondary Metabolites: A Promising Drug Candidate With Novel Mechanisms Against Cancers and Tumor Angiogenesis. Cureus 2024; 16:e66662. [PMID: 39262521 PMCID: PMC11387980 DOI: 10.7759/cureus.66662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Cancer continually remains a severe threat to public health and requires constant demand for novel therapeutic drug candidates. Due to their multi-target orientation, lesser toxicity, and easy availability, natural compounds attract more attention from current scientific research interest than synthetic drug molecules. The plants and microorganisms produce a huge variety of secondary metabolites because of their physiological diversification, and the seaweeds occupy a prominent position as effective drug resources. Seaweeds comprise microscopic or macroscopic photosynthetic, multicellular, eukaryotic marine algae that commonly inhabit the coastal regions. Several molecules (such as polysaccharides, lipids, proteinaceous fractions, phenolic compounds, and alkaloids) are derived from seaweeds, and those small molecules are well attractive and more effective in cancer research programs. Their structural variation, derivative diversity, and quantity vary with seaweed species and geographical origin. Their smaller molecular weight, unique derivatives, hydrophobicity, and degree of sulfation are reported to be causes of their crucial role against different cancer cells in vitro. Several reports showed that those compounds selectively discriminate between normal and cancer cells based on receptor variations, enzyme deficiency, and structural properties. The present review aimed to give a concise explanation regarding their structural diversity, extractability, and mechanism of action related to their anti-cancer activities based on recently published data.
Collapse
Affiliation(s)
- Taniya Mary Martin
- Zebrafish Facility, Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Meenakshi Sundaram K
- Zebrafish Facility, Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
10
|
Albini A, Noonan DM, Corradino P, Magnoni F, Corso G. The Past and Future of Angiogenesis as a Target for Cancer Therapy and Prevention. Cancer Prev Res (Phila) 2024; 17:289-303. [PMID: 38714356 DOI: 10.1158/1940-6207.capr-24-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Cancer growth is dependent on angiogenesis, the formation of new blood vessels, which represents a hallmark of cancer. After this concept was established in the 1970s, inhibition of tumor development and metastases by blocking the neoangiogenic process has been an important approach to the treatment of tumors. However, antiangiogenic therapies are often administered when cancer has already progressed. The key to reducing the cancer burden is prevention. We noticed 20 years ago that a series of possible cancer chemopreventive agents showed antiangiogenic properties when tested in experimental models. This article reviews the relevant advances in the understanding of the rationale for targeting angiogenesis for cancer therapy, prevention, and interception and recently investigated substances with antiangiogenic activity that may be suitable for such strategies. Many compounds, either dietary derivatives or repurposed drugs, with antiangiogenic activity are possible tools for cancer angioprevention. Such molecules have a favorable safety profile and are likely to allow the prolonged duration necessary for an efficient preventive strategy. Recent evidence on mechanisms and possible use is described here for food derivatives, including flavonoids, retinoids, triterpenoids, omega fatty acids, and carotenoids from marine microorganisms. As examples, a number of compounds, including epigallocatechin, resveratrol, xanthohumol, hydroxytyrosol, curcumin, fenretinide, lycopene, fucoxanthin, and repurposed drugs, such as aspirin, β blockers, renin-angiotensin-aldosterone inhibitors, carnitines, and biguanides, are reviewed.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| | - Paola Corradino
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Francesca Magnoni
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Zeng Y, Yang X, Xia Z, Chen R, He F, Zhang J, He P. Review of Allelopathy in Green Tides: The Case of Ulva prolifera in the South Yellow Sea. BIOLOGY 2024; 13:456. [PMID: 38927336 PMCID: PMC11201074 DOI: 10.3390/biology13060456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The proliferation of large green macroalgae in marine environments has led to the occurrence of green tides, particularly in the South Yellow Sea region of China, where Ulva prolifera has been identified as the primary species responsible for the world's largest green tide events. Allelopathy among plants is a critical factor influencing the dynamics of green tides. This review synthesizes previous research on allelopathic interactions within green tides, categorizing four extensively studied allelochemicals: fatty acids, aldehydes, phenols, and terpenes. The mechanisms by which these compounds regulate the physiological processes of green tide algae are examined in depth. Additionally, recent advancements in the rapid detection of allelochemicals are summarized, and their potential applications in monitoring green tide events are discussed. The integration of advanced monitoring technologies, such as satellite observation and environmental DNA (eDNA) analysis, with allelopathic substance detection is also explored. This combined approach addresses gaps in understanding the dynamic processes of green tide formation and provides a more comprehensive insight into the mechanisms driving these phenomena. The findings and new perspectives presented in this review aim to offer valuable insights and inspiration for researchers and policymakers.
Collapse
Affiliation(s)
- Yinqing Zeng
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (X.Y.); (Z.X.); (R.C.); (F.H.)
| | - Xinlan Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (X.Y.); (Z.X.); (R.C.); (F.H.)
| | - Zhangyi Xia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (X.Y.); (Z.X.); (R.C.); (F.H.)
| | - Runze Chen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (X.Y.); (Z.X.); (R.C.); (F.H.)
| | - Faqing He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (X.Y.); (Z.X.); (R.C.); (F.H.)
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (X.Y.); (Z.X.); (R.C.); (F.H.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (X.Y.); (Z.X.); (R.C.); (F.H.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
12
|
Lu X, Zhao W, Wang J, He Y, Yang S, Sun H. A comprehensive review on the heterotrophic production of bioactive compounds by microalgae. World J Microbiol Biotechnol 2024; 40:210. [PMID: 38773011 DOI: 10.1007/s11274-024-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/09/2024] [Indexed: 05/23/2024]
Abstract
Bioactive compounds derived from microalgae have garnered considerable attention as valuable resources for drugs, functional foods, and cosmetics. Among these compounds, photosynthetic pigments and polyunsaturated fatty acids (PUFAs) have gained increasing interest due to their numerous beneficial properties, including anti-oxidant, anti-viral, anti-bacterial, anti-fungal, anti-inflammatory, and anti-tumor effects. Several microalgae species have been identified as rich sources of bioactive compounds, including the Chlorophyceae Dunaliella and Haematococcus, the Bacillariophyta Phaeodactylum and Nitzschia, and the dinoflagellate Crypthecodinium cohnii. However, most of the reported microalgae species primarily grow through autotrophic mechanisms, resulting in low yields and high production costs of bioactive compounds. Consequently, the utilization of heterotrophic microalgae, such as Chromochloris zofingiensis and Nitzschia laevis, has shown significant advantages in the production of astaxanthin and eicosapentaenoic acid (EPA), respectively. These heterotrophic microalgae exhibit superior capabilities in synthesizing target compounds. This comprehensive review provides a thorough examination of the heterotrophic production of bioactive compounds by microalgae. It covers key aspects, including the metabolic pathways involved, the impact of cultivation conditions, and the practical applications of these compounds. The review discusses how heterotrophic cultivation strategies can be optimized to enhance bioactive compound yields, shedding light on the potential of microalgae as a valuable resource for high-value product development.
Collapse
Affiliation(s)
- Xue Lu
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Weixuan Zhao
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Mariam I, Krikigianni E, Rantzos C, Bettiga M, Christakopoulos P, Rova U, Matsakas L, Patel A. Transcriptomics aids in uncovering the metabolic shifts and molecular machinery of Schizochytrium limacinum during biotransformation of hydrophobic substrates to docosahexaenoic acid. Microb Cell Fact 2024; 23:97. [PMID: 38561811 PMCID: PMC10983653 DOI: 10.1186/s12934-024-02381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Biotransformation of waste oil into value-added nutraceuticals provides a sustainable strategy. Thraustochytrids are heterotrophic marine protists and promising producers of omega (ω) fatty acids. Although the metabolic routes for the assimilation of hydrophilic carbon substrates such as glucose are known for these microbes, the mechanisms employed for the conversion of hydrophobic substrates are not well established. Here, thraustochytrid Schizochytrium limacinum SR21 was investigated for its ability to convert oils (commercial oils with varying fatty acid composition and waste cooking oil) into ω-3 fatty acid; docosahexaenoic acid (DHA). RESULTS Within 72 h SR21 consumed ~ 90% of the oils resulting in enhanced biomass (7.5 g L- 1) which was 2-fold higher as compared to glucose. Statistical analysis highlights C16 fatty acids as important precursors of DHA biosynthesis. Transcriptomic data indicated the upregulation of multiple lipases, predicted to possess signal peptides for secretory, membrane-anchored and cytoplasmic localization. Additionally, transcripts encoding for mitochondrial and peroxisomal β-oxidation along with acyl-carnitine transporters were abundant for oil substrates that allowed complete degradation of fatty acids to acetyl CoA. Further, low levels of oxidative biomarkers (H2O2, malondialdehyde) and antioxidants were determined for hydrophobic substrates, suggesting that SR21 efficiently mitigates the metabolic load and diverts the acetyl CoA towards energy generation and DHA accumulation. CONCLUSIONS The findings of this study contribute to uncovering the route of assimilation of oil substrates by SR21. The thraustochytrid employs an intricate crosstalk among the extracellular and intracellular molecular machinery favoring energy generation. The conversion of hydrophobic substrates to DHA can be further improved using synthetic biology tools, thereby providing a unique platform for the sustainable recycling of waste oil substrates.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Eleni Krikigianni
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Chloe Rantzos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
- Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden.
| |
Collapse
|
14
|
Naik B, Mishra R, Kumar V, Mishra S, Gupta U, Rustagi S, Gupta AK, Preet MS, Bhatt SC, Rizwanuddin S. Micro-algae: Revolutionizing food production for a healthy and sustainable future. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 15:100939. [DOI: 10.1016/j.jafr.2023.100939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Wang Y, Yang S, Liu J, Wang J, Xiao M, Liang Q, Ren X, Wang Y, Mou H, Sun H. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165546. [PMID: 37454852 DOI: 10.1016/j.scitotenv.2023.165546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Increasing carbon dioxide (CO2) emission has already become a dire threat to the human race and Earth's ecology. Microalgae are recommended to be engineered as CO2 fixers in biorefinery, which play crucial roles in responding climate change and accelerating the transition to a sustainable future. This review sorted through each segment of microalgal biorefinery to explore the potential for its practical implementation and commercialization, offering valuable insights into research trends and identifies challenges that needed to be addressed in the development process. Firstly, the known mechanisms of microalgal photosynthetic CO2 fixation and the approaches for strain improvement were summarized. The significance of process regulation for strengthening fixation efficiency and augmenting competitiveness was emphasized, with a specific focus on CO2 and light optimization strategies. Thereafter, the massive potential of microalgal refineries for various bioresource production was discussed in detail, and the integration with contaminant reclamation was mentioned for economic and ecological benefits. Subsequently, economic and environmental impacts of microalgal biorefinery were evaluated via life cycle assessment (LCA) and techno-economic analysis (TEA) to lit up commercial feasibility. Finally, the current obstacles and future perspectives were discussed objectively to offer an impartial reference for future researchers and investors.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
16
|
Papavasileiou P, Koutras S, Koutra E, Ali SS, Kornaros M. A novel rice hull - microalgal biorefinery for the production of natural phenolic compounds comprising of rice hull acid pretreatment and a two-stage Botryococcus braunii cultivation process. BIORESOURCE TECHNOLOGY 2023; 387:129621. [PMID: 37544534 DOI: 10.1016/j.biortech.2023.129621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Recently, the rising demand of the industry for natural phenolic antioxidant compounds has turned to the study of microalgae as potential sources. Yet, more economic substrates for microalgal cultivation are sought to lower production costs. To this end, the present work deals with the utilization of rice hull hydrolysate (RHH) as substrate for microalgae Botryococcus braunii through a novel two-stage cultivation system. Initially, RHH was optimized to maximize the contained nutrients while minimizing its inhibitors content. The optimum point was reached under 121 °C, 60 min, 2% (v/v) H2SO4, 30% (w/v) loading. Next, B. braunii was successfully grown first heterotrophically in RHH (25%, v/v), obtaining high biomass production (6.67 g L-1) and then autotrophically to enhance phenolics accumulation. At the end, a high phenolic content of 7.44 ± 0.60 mg Gallic Acid Equivalents g-1 DW was achieved from the produced biomass, thus highlighting the potential of this novel biotechnological method.
Collapse
Affiliation(s)
- Polytimi Papavasileiou
- Laboratory of Biochemical Engineering and Environmental Technologies (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; Institute of Circular Economy and Environment (ICEE), University of Patras' Research and Development Center, 26504 Patras, Greece
| | - Stamatis Koutras
- Laboratory of Biochemical Engineering and Environmental Technologies (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; Institute of Circular Economy and Environment (ICEE), University of Patras' Research and Development Center, 26504 Patras, Greece
| | - Eleni Koutra
- Laboratory of Biochemical Engineering and Environmental Technologies (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; Institute of Circular Economy and Environment (ICEE), University of Patras' Research and Development Center, 26504 Patras, Greece
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Kornaros
- Laboratory of Biochemical Engineering and Environmental Technologies (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; Institute of Circular Economy and Environment (ICEE), University of Patras' Research and Development Center, 26504 Patras, Greece.
| |
Collapse
|
17
|
Heydari M, Carbone K, Gervasi F, Parandi E, Rouhi M, Rostami O, Abedi-Firoozjah R, Kolahdouz-Nasiri A, Garavand F, Mohammadi R. Cold Plasma-Assisted Extraction of Phytochemicals: A Review. Foods 2023; 12:3181. [PMID: 37685115 PMCID: PMC10486403 DOI: 10.3390/foods12173181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, there has been growing interest in bioactive plant compounds for their beneficial effects on health and for their potential in reducing the risk of developing certain diseases such as cancer, cardiovascular diseases, and neurodegenerative disorders. The extraction techniques conventionally used to obtain these phytocompounds, however, due to the use of toxic solvents and high temperatures, tend to be supplanted by innovative and unconventional techniques, in line with the demand for environmental and economic sustainability of new chemical processes. Among non-thermal technologies, cold plasma (CP), which has been successfully used for some years in the food industry as a treatment to improve food shelf life, seems to be one of the most promising solutions in green extraction processes. CP is characterized by its low environmental impact, low cost, and better extraction yield of phytochemicals, saving time, energy, and solvents compared with other classical extraction processes. In light of these considerations, this review aims to provide an overview of the potential and critical issues related to the use of CP in the extraction of phytochemicals, particularly polyphenols and essential oils. To review the current knowledge status and future insights of CP in this sector, a bibliometric study, providing quantitative information on the research activity based on the available published scientific literature, was carried out by the VOSviewer software (v. 1.6.18). Scientometric analysis has seen an increase in scientific studies over the past two years, underlining the growing interest of the scientific community in this natural substance extraction technique. The literature studies analyzed have shown that, in general, the use of CP was able to increase the yield of essential oil and polyphenols. Furthermore, the composition of the phytoextract obtained with CP would appear to be influenced by process parameters such as intensity (power and voltage), treatment time, and the working gas used. In general, the studies analyzed showed that the best yields in terms of total polyphenols and the antioxidant and antimicrobial properties of the phytoextracts were obtained using mild process conditions and nitrogen as the working gas. The use of CP as a non-conventional extraction technique is very recent, and further studies are needed to better understand the optimal process conditions to be adopted, and above all, in-depth studies are needed to better understand the mechanisms of plasma-plant matrix interaction to verify the possibility of any side reactions that could generate, in a highly oxidative environment, potentially hazardous substances, which would limit the exploitation of this technique at the industrial level.
Collapse
Affiliation(s)
- Mahshid Heydari
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Fabio Gervasi
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 3158777871, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Azin Kolahdouz-Nasiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Farhad Garavand
- Department of Food Chemistry & Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co., P61 C996 Cork, Ireland
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| |
Collapse
|
18
|
Grande T, Vornoli A, Lubrano V, Vizzarri F, Raffaelli A, Gabriele M, Novoa J, Sandoval C, Longo V, Echeverria MC, Pozzo L. Chlamydomonas agloeformis from the Ecuadorian Highlands: Nutrients and Bioactive Compounds Profiling and In Vitro Antioxidant Activity. Foods 2023; 12:3147. [PMID: 37685081 PMCID: PMC10487033 DOI: 10.3390/foods12173147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Green microalgae are single-celled eukaryotic organisms that, in recent years, are becoming increasingly important in the nutraceutical, cosmetic, and pharmaceutical fields because of their high content of bioactive compounds. In this study, a particular green microalga was isolated from freshwater highland lakes of Ecuador and morphologically and molecularly identified as Chlamydomonas agloeformis (ChA), and it was studied for nutritional and nutraceutical properties. The phenolic composition and the fatty acids profile of lyophilized cells were determined. The methanolic extract was analyzed for the phenolic compounds profile and the antioxidant capacity by means of in vitro tests. Finally, Human Microvascular Endothelial Cells (HMEC-1) were exploited to explore the capacity of ChA to reduce the endothelial damage induced by oxidized LDL-mediated oxidative stress. The extract showed a good antioxidant ability thanks to the high content in polyphenolic compounds. The observed decrease in HMEC-1 cells endothelial damage also was probably due to the antioxidant compounds present in the extract. Based on the outcomes of our in vitro assays, ChA demonstrated to be a promising source of bioactive compounds possessing exceptional antioxidant capacities which make it a prospective functional food.
Collapse
Affiliation(s)
- Teresa Grande
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Andrea Vornoli
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Valter Lubrano
- Fondazione G. Monasterio, CNR/Regione Toscana, 56124 Pisa, Italy;
| | - Francesco Vizzarri
- National Agricultural and Food Centre Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia;
| | - Andrea Raffaelli
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
- Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Jeniffer Novoa
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Carla Sandoval
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Maria Cristina Echeverria
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| |
Collapse
|
19
|
Wang N, Pei H, Xiang W, Li T, Lin S, Wu J, Chen Z, Wu H, Li C, Wu H. Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants. Foods 2023; 12:2652. [PMID: 37509744 PMCID: PMC10378671 DOI: 10.3390/foods12142652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In order to rapidly screen microalgae species as feedstocks for antioxidants, extracts were obtained from 16 microalgae strains (under 11 genera, 7 classes) using two methods: a one-step extraction with ethanol/water and a three-step fractionating procedure using hexane, ethylacetate, and water successively. Measuring the total phenol content (TPC), total carotenoid content (TCC), and antioxidant activity of the extracts, indicating TPC and TCC, played an important role in determining the antioxidant activity of the microalgae. A weighted scoring system was used to evaluate the antioxidant activity, and the scores of microalgal samples from two extraction methods were calculated using the same system. Among the investigated microalgae, Euglena gracilis SCSIO-46781 had the highest antioxidant score, contributing to high TPC and TCC, followed by Arthrospira platensis SCSIO-44012, Nannochloropsis sp. SCSIO-45224, Phaeodactylum tricornutum SCSIO-45120, and Nannochloropsis sp. SCSIO-45006, respectively. Additionally, the above-mentioned five strains are currently being applied in commercial production, indicating this system could be effective not only for screening microalgal antioxidants, but also for screening microalgal species/strains with strong adaptation to environmental stress, which is a critical trait for their commercial cultivation.
Collapse
Affiliation(s)
- Na Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiwei Pei
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Shengjie Lin
- Guangzhou Keneng Cosmetic Scientific Research Co., Ltd., Guanghzou 510800, China
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Chuanmao Li
- Guangzhou Keneng Cosmetic Scientific Research Co., Ltd., Guanghzou 510800, China
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
20
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
21
|
Garcia-Perez P, Cassani L, Garcia-Oliveira P, Xiao J, Simal-Gandara J, Prieto MA, Lucini L. Algal nutraceuticals: A perspective on metabolic diversity, current food applications, and prospects in the field of metabolomics. Food Chem 2023; 409:135295. [PMID: 36603477 DOI: 10.1016/j.foodchem.2022.135295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The current consumers' demand for food naturalness is urging the search for new functional foods of natural origin with enhanced health-promoting properties. In this sense, algae constitute an underexplored biological source of nutraceuticals that can be used to fortify food products. Both marine macroalgae (or seaweeds) and microalgae exhibit a myriad of chemical constituents with associated features as a result of their primary and secondary metabolism. Thus, primary metabolites, especially polysaccharides and phycobiliproteins, present interesting properties to improve the rheological and nutritional properties of food matrices, whereas secondary metabolites, such as polyphenols and xanthophylls, may provide interesting bioactivities, including antioxidant or cytotoxic effects. Due to the interest in algae as a source of nutraceuticals by the food and related industries, novel strategies should be undertaken to add value to their derived functional components. As a result, metabolomics is considered a high throughput technology to get insight into the full metabolic profile of biological samples, and it opens a wide perspective in the study of algae metabolism, whose knowledge is still little explored. This review focuses on algae metabolism and its applications in the food industry, paying attention to the promising metabolomic approaches to be developed aiming at the functional characterization of these organisms.
Collapse
Affiliation(s)
- Pascual Garcia-Perez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO-IPB), Campus de Santa Apolónia, Bragança, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO-IPB), Campus de Santa Apolónia, Bragança, Portugal
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO-IPB), Campus de Santa Apolónia, Bragança, Portugal
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
22
|
Casanova LM, Macrae A, de Souza JE, Neves Junior A, Vermelho AB. The Potential of Allelochemicals from Microalgae for Biopesticides. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091896. [PMID: 37176954 PMCID: PMC10181251 DOI: 10.3390/plants12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Improvements in agricultural productivity are required to meet the demand of a growing world population. Phytopathogens, weeds, and insects are challenges to agricultural production. The toxicity and widespread application of persistent synthetic pesticides poses a major threat to human and ecosystem health. Therefore, sustainable strategies to control pests are essential for agricultural systems to enhance productivity within a green paradigm. Allelochemicals are a less persistent, safer, and friendly alternative to efficient pest management, as they tend to be less toxic to non-target organisms and more easily degradable. Microalgae produce a great variety of allelopathic substances whose biocontrol potential against weeds, insects, and phytopathogenic fungi and bacteria has received much attention. This review provides up-to-date information and a critical perspective on allelochemicals from microalgae and their potential as biopesticides.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Jacqueline Elis de Souza
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Athayde Neves Junior
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
23
|
Kolackova M, Janova A, Dobesova M, Zvalova M, Chaloupsky P, Krystofova O, Adam V, Huska D. Role of secondary metabolites in distressed microalgae. ENVIRONMENTAL RESEARCH 2023; 224:115392. [PMID: 36746204 DOI: 10.1016/j.envres.2023.115392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Proficient photosynthetic microalgae/cyanobacteria produce a remarkable amount of various biomolecules. Secondary metabolites (SM) represent high value products for global biotrend application. Production improvement can be achieved by nutritional, environmental, and physiological stress as a first line tools for their stimulation. In recent decade, an increasing interest in algal stress biology and omics techniques have deepened knowledge in this area. However, deep understanding and connection of specific stress elucidator are missing. Hence, the present review summarizes recent evidence with an emphasis on the carotenoids, phenolic, and less-discussed compounds (glycerol, proline, mycosporins-like amino acids). Even when they are synthesized at very low concentrations, it highlights the need to expand knowledge in this area using genome-editing tools and omics approaches.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Monika Zvalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
24
|
Perez Rojo F, Pillow JJ, Kaur P. Bioprospecting microbes and enzymes for the production of pterocarpans and coumestans. Front Bioeng Biotechnol 2023; 11:1154779. [PMID: 37187887 PMCID: PMC10175578 DOI: 10.3389/fbioe.2023.1154779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The isoflavonoid derivatives, pterocarpans and coumestans, are explored for multiple clinical applications as osteo-regenerative, neuroprotective and anti-cancer agents. The use of plant-based systems to produce isoflavonoid derivatives is limited due to cost, scalability, and sustainability constraints. Microbial cell factories overcome these limitations in which model organisms such as Saccharomyces cerevisiae offer an efficient platform to produce isoflavonoids. Bioprospecting microbes and enzymes can provide an array of tools to enhance the production of these molecules. Other microbes that naturally produce isoflavonoids present a novel alternative as production chassis and as a source of novel enzymes. Enzyme bioprospecting allows the complete identification of the pterocarpans and coumestans biosynthetic pathway, and the selection of the best enzymes based on activity and docking parameters. These enzymes consolidate an improved biosynthetic pathway for microbial-based production systems. In this review, we report the state-of-the-art for the production of key pterocarpans and coumestans, describing the enzymes already identified and the current gaps. We report available databases and tools for microbial bioprospecting to select the best production chassis. We propose the use of a holistic and multidisciplinary bioprospecting approach as the first step to identify the biosynthetic gaps, select the best microbial chassis, and increase productivity. We propose the use of microalgal species as microbial cell factories to produce pterocarpans and coumestans. The application of bioprospecting tools provides an exciting field to produce plant compounds such as isoflavonoid derivatives, efficiently and sustainably.
Collapse
Affiliation(s)
- Fernando Perez Rojo
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - J. Jane Pillow
- UWA School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
25
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
26
|
León-Vaz A, León R, Vigara J, Funk C. Exploring Nordic microalgae as a potential novel source of antioxidant and bioactive compounds. N Biotechnol 2023; 73:1-8. [PMID: 36513346 DOI: 10.1016/j.nbt.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Nordic microalgae are a group of photosynthetic organisms acclimated to growth at low temperature and in varying light conditions; the subarctic climate offers bright days with moderate temperatures during summer and cold and dark winter months. The robustness to these natural stress conditions makes the species interesting for large-scale cultivation in harsh environments and for the production of high-value compounds. The aim of this study was to explore the ability of nineteen species of Nordic microalgae to produce different bioactive compounds, such as carotenoids or polyphenols. The results showed that some of these strains are able to produce high amounts of carotenoids (over 12 mg·g-1 dry weight) and phenolic compounds (over 20 mg GAE·g-1 dry weight). Based on these profiles, six species were selected for cultivation under high light and cold stress (500 μmol·m-2·s-1 and 10 ˚C). The strains Chlorococcum sp. (MC1) and Scenedesmus sp. (B2-2) exhibited similar values of biomass productivity under standard or stress conditions, but produced higher concentrations of carotenoids (an increase of 40% and 25%, respectively), phenolic compounds (an increase of 40% and 30%, respectively), and showed higher antioxidant capacity (an increase of 15% and 20%, respectively) during stress. The results highlight the ability of these Nordic microalgae as outstanding producers of bioactive compounds, justifying their cultivation at large scale in Nordic environments.
Collapse
Affiliation(s)
- Antonio León-Vaz
- Department of Chemistry, Umeå University, Umeå, Sweden; Laboratory of Biochemistry. Faculty of Experimental Sciences and REMSMA. University of Huelva, Huelva, Spain.
| | - Rosa León
- Laboratory of Biochemistry. Faculty of Experimental Sciences and REMSMA. University of Huelva, Huelva, Spain.
| | - Javier Vigara
- Laboratory of Biochemistry. Faculty of Experimental Sciences and REMSMA. University of Huelva, Huelva, Spain.
| | | |
Collapse
|
27
|
Yilmaz Kardas B, Diken ME, Bayhan H, Acar M, Dogan S. Cytoprotective, antimutagenic/antirecombinogenic and antibacterial properties of Lallemantia iberica extracts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1901-1911. [PMID: 36207573 DOI: 10.1002/jsfa.12257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plants have important chemical compounds to protect organisms from many mutagens but they may also have dangerous toxic substances that must be tested before use. Lallemantia iberica has been used by local people for treatment of some diseases but it was never tested for its cell protective and antimutagenic/antirecombinogenic properties. In this study, it was aimed to determine the cytoprotective, antimutagenic/antirecombinogenic, antibacterial, antioxidant and phenolic profile of L. iberica by MTS assay, micronucleus test/somatic mutation recombination test (SMART), disc diffusion method, ABTS/DPPH tests and liquid chromatography (LC), respectively. RESULTS MTS assay results showed that both of the extracts supported the normal growth of healthy human lymphocytes and there was no significant difference between extracts. Although there was no significant increase in micronucleus concentration (‰) of the cultures treated with ethanol or methanol extracts, methanol extract caused slightly lower micronucleus concentration (12.64 ± 3.65‰) than the ethanol extract (24.46 ± 4.50‰). SMART results showed that ethanol and methanol extracts prevented harmful mitotic recombination. Lallemantia iberica also showed antibacterial activity against all of the strains tested, and the largest inhibition zones were observed with Pseudomonas aeruginosa (17.9 mm) and Enterobacter aerogenes (13.8 mm). Methanol extracts showed better antioxidant activities (ABTS IC50 : 104.07 μg mL-1 , DPPH IC50 : 58.8 μg mL-1 ) than ethanol extracts (ABTS IC50 : 344.03 μg mL-1 , DPPH IC50 : 233.7 μg mL-1 ). According to the LC results, the most abundant phenolic compounds were rutin hydrate (1796.4 ± 62.9 mg kg-1 ) and p-coumaric acid (228.1 ± 7.60 mg kg-1 ). CONCLUSION Lallemantia iberica extracts had cell-protective, antimutagenic/antirecombinogenic, antibacterial and strong antioxidant characteristics in relation to their rich phenolic content. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Begumhan Yilmaz Kardas
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| | - Mehmet Emin Diken
- Science and Technology Application and Research Center, Balikesir University, Balikesir, Turkey
| | - Hamza Bayhan
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| | - Mikail Acar
- Department of Plant and Animal Production, Munzur University, Tunceli, Turkey
| | - Serap Dogan
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| |
Collapse
|
28
|
Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, Ma Z, Show PL. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 372:128661. [PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
Collapse
Affiliation(s)
- Tengku Nilam Baizura Tengku Ibrahim
- Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Azalina Suzianti Feisal
- Department of Environmental Health, Faculty of Health Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Noor Haziqah Kamaludin
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
29
|
Pistelli L, Del Mondo A, Smerilli A, Corato F, Sansone C, Brunet C. Biotechnological response curve of the cyanobacterium Spirulina subsalsa to light energy gradient. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:28. [PMID: 36803279 PMCID: PMC9940373 DOI: 10.1186/s13068-023-02277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Microalgae represent a suitable and eco-sustainable resource for human needs thanks to their fast growth ability, together with the great diversity in species and intracellular secondary bioactive metabolites. These high-added-value compounds are of great interest for human health or animal feed. The intracellular content of these valuable compound families is tightly associated with the microalgal biological state and responds to environmental cues, e.g., light. Our study develops a Biotechnological response curve strategy exploring the bioactive metabolites synthesis in the marine cyanobacterium Spirulina subsalsa over a light energy gradient. The Relative Light energy index generated in our study integrates the red, green and blue photon flux density with their relative photon energy. The Biotechnological response curve combined biochemical analysis of the macromolecular composition (total protein, lipid, and carbohydrate content), total sterols, polyphenols and flavonoids, carotenoids, phenolic compounds, vitamins (A, B1, B2, B6, B9, B12, C, D2, D3, E, H, and K1), phycobiliproteins, together with the antioxidant activity of the biomass as well as the growth ability and photosynthesis. RESULTS Results demonstrated that light energy significantly modulate the biochemical status of the microalga Spirulina subsalsa revealing the relevance of the light energy index to explain the light-induced biological variability. The sharp decrease of the photosynthetic rate at high light energy was accompanied with an increase of the antioxidant network response, such as carotenoids, total polyphenols, and the antioxidant capacity. Conversely, low light energy favorized the intracellular content of lipids and vitamins (B2, B6, B9, D3, K1, A, C, H, and B12) compared to high light energy. CONCLUSIONS Results of the Biotechnological response curves were discussed in their functional and physiological relevance as well as for the essence of their potential biotechnological applications. This study emphasized the light energy as a relevant tool to explain the biological responses of microalgae towards light climate variability, and, therefore, to design metabolic manipulation of microalgae.
Collapse
Affiliation(s)
- Luigi Pistelli
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy
| | - Angelo Del Mondo
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy
| | - Arianna Smerilli
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy
| | - Federico Corato
- Stazione zoologica Anton Dohrn, villa comunale, 80121, Naples, Italy
| | - Clementina Sansone
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy.
| | - Christophe Brunet
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133, Naples, Italy
| |
Collapse
|
30
|
Del Mondo A, Vinaccia A, Pistelli L, Brunet C, Sansone C. On the human health benefits of microalgal phytohormones: An explorative in silico analysis. Comput Struct Biotechnol J 2023; 21:1092-1101. [PMID: 36789263 PMCID: PMC9900276 DOI: 10.1016/j.csbj.2023.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Phytohormones represent a group of secondary metabolites with different chemical structures, in which belong auxins, cytokinins, gibberellins, or brassinosteroids. In higher plants, they cover active roles in growth or defense function, while their potential benefits for human health protection were noted for some phytohormones and little explored for many others. In this study, we developed a target fishing strategy on fifty-three selected naturally occurring phytohormones covering different families towards proteins involved in key cellular functions related to human metabolism and health protection/disease. This in silico analysis strategy aims to screen the potential human health-driven bioactivity of more than fifty phytohormones through the analysis of their interactions with specific targets. From this analysis, twenty-eight human targets were recovered. Some targets e.g., the proteins mitochondrial glutamate dehydrogenase (GLUD1) or nerve growth factor (NGF) bound many phytohormones, highlighting their involvement in amino acid metabolism and/or in the maintenance or survival of neurons. Conversely, some phytohormones specifically interacted with some proteins, e.g., SPRY domain-containing SOCS box protein 2 (SPSB2) or Inosine-5'-monophosphate dehydrogenase 1 (IMPDH1), both involved in human immune response. They were then investigated with a molecular docking analysis approach. Our bioprospecting study indicated that many phytohormones may endow human health benefits, with potential functional role in multiple cellular processes including immune response and cell cycle progression.
Collapse
|
31
|
Microalgae as a Source of Valuable Phenolic Compounds and Carotenoids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248852. [PMID: 36557985 PMCID: PMC9783697 DOI: 10.3390/molecules27248852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Microalgae are photosynthetic, eukaryotic organisms that are widely used in the industry as cell factories to produce valuable substances, such as fatty acids (polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), sterols (sitosterol), recombinant therapeutic proteins, carbohydrates, vitamins, phenolic compounds (gallic acid, quercetin), and pigments (β-carotene, astaxanthin, lutein). Phenolic compounds and carotenoids, including those extracted from microalgae, possess beneficial bioactivities such as antioxidant capacity, antimicrobial and immunomodulatory activities, and direct health-promoting effects, which may alleviate oxidative stress and age-related diseases, including cardiovascular diseases or diabetes. The production of valuable microalgal metabolites can be modified by using abiotic stressors, such as light, salinity, nutrient availability, and xenobiotics (for instance, phytohormones).
Collapse
|
32
|
Chen Y, Liang H, Du H, Jesumani V, He W, Cheong KL, Li T, Hong T. Industry chain and challenges of microalgal food industry-a review. Crit Rev Food Sci Nutr 2022; 64:4789-4816. [PMID: 36377724 DOI: 10.1080/10408398.2022.2145455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, the whole world is facing hunger due to the increase in the global population and the rising level of food consumption. Unfortunately, the impact of environmental, climate, and political issues on agriculture has resulted in limited global food resources. Thus, it is important to develop new food sources that are environmentally friendly and not subject to climate or space limitations. Microalgae represent a potential source of nutrients and bioactive components for a wide range of high-value products. Advances in cultivation and genetic engineering techniques provide prospective approaches to widen their application for food. However, there are currently problems in the microalgae food industry in terms of assessing nutritional value, selecting processes for microalgae culture, obtaining suitable commercial strains of microalgae, etc. Additionally, the limitations of real data of market opportunities for microalgae make it difficult to assess their actual potential and to develop a better industrial chain. This review addresses the current status of the microalgae food industry, the process of commercializing microalgae food and breeding methods. Current research progress in addressing the limitations of microalgae industrialization and future prospects for developing microalgae food products are discussed.
Collapse
Affiliation(s)
- Yuanhao Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Valentina Jesumani
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Ting Hong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
33
|
Cobos M, Condori RC, Grandez MA, Estela SL, Del Aguila MT, Castro CG, Rodríguez HN, Vargas JA, Tresierra AB, Barriga LA, Marapara JL, Adrianzén PM, Ruiz R, Castro JC. Genomic analysis and biochemical profiling of an unaxenic strain of Synechococcus sp. isolated from the Peruvian Amazon Basin region. Front Genet 2022; 13:973324. [DOI: 10.3389/fgene.2022.973324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Cyanobacteria are diverse photosynthetic microorganisms able to produce a myriad of bioactive chemicals. To make possible the rational exploitation of these microorganisms, it is fundamental to know their metabolic capabilities and to have genomic resources. In this context, the main objective of this research was to determine the genome features and the biochemical profile of Synechococcus sp. UCP002. The cyanobacterium was isolated from the Peruvian Amazon Basin region and cultured in BG-11 medium. Growth parameters, genome features, and the biochemical profile of the cyanobacterium were determined using standardized methods. Synechococcus sp. UCP002 had a specific growth rate of 0.086 ± 0.008 μ and a doubling time of 8.08 ± 0.78 h. The complete genome of Synechococcus sp. UCP002 had a size of ∼3.53 Mb with a high coverage (∼200x), and its quality parameters were acceptable (completeness = 99.29%, complete and single-copy genes = 97.5%, and contamination = 0.35%). Additionally, the cyanobacterium had six plasmids ranging from 24 to 200 kbp. The annotated genome revealed ∼3,422 genes, ∼ 3,374 protein-coding genes (with ∼41.31% hypothetical protein-coding genes), two CRISPR Cas systems, and 61 non-coding RNAs. Both the genome and plasmids had the genes for prokaryotic defense systems. Additionally, the genome had genes coding the transcription factors of the metalloregulator ArsR/SmtB family, involved in sensing heavy metal pollution. The biochemical profile showed primary nutrients, essential amino acids, some essential fatty acids, pigments (e.g., all-trans-β-carotene, chlorophyll a, and phycocyanin), and phenolic compounds. In conclusion, Synechococcus sp. UCP002 shows biotechnological potential to produce human and animal nutrients and raw materials for biofuels and could be a new source of genes for synthetic biological applications.
Collapse
|
34
|
Rezig L, Ghzaiel I, Ksila M, Yammine A, Nury T, Zarrouk A, Samadi M, Chouaibi M, Vejux A, Lizard G. Cytoprotective activities of representative nutrients from the Mediterranean diet and of Mediterranean oils against 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity: Application to age-related diseases and civilization diseases. Steroids 2022; 187:109093. [PMID: 36029811 DOI: 10.1016/j.steroids.2022.109093] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
7-ketocholesterol and 7β-hydroxycholesterol are two oxysterols mainly formed by the autoxidation of cholesterol. These two molecules are interconvertible via specific enzymes. These two oxysterols are often observed at increased amounts in biological fluids as well as tissues and organs affected during age-related diseases and in diseases of civilization such as cardiovascular, neurodegenerative, and ocular diseases as well as type 2 diabetes and metabolic syndrome. Noteworthy, 7-ketocholesterol and 7β-hydroxycholesterol induce oxidative stress and inflammation, which are frequently observed in patients with age-related and civilization diseases. For this reason, the involvement of these two oxysterols in the pathophysiology of these diseases is widely suspected. In addition, the toxicity of these oxysterols can lead to death by oxiapoptophagy characterized by oxidative stress, apoptosis induction and autophagy criteria. To prevent, or even treat, certain age-related or civilization diseases associated with increased levels of 7-ketocholesterol and 7β-hydroxycholesterol, the identification of molecules or mixtures of molecules attenuating or inhibiting the toxic effects of these oxysterols allows to consider new treatments. In this context, many nutrients present in significant amounts in the Mediterranean diet, especially tocopherols, fatty acids, and polyphenols, have shown cytoprotective activities as well as several Mediterranean oils (argan and olive oils, milk thistle seed oil, and pistacia lentiscus seed oil). Consequently, a nutraceutical approach, rich in nutrients present in the Mediterranean diet, could thus make it possible to counteract certain age-related and civilization diseases associated with increased levels of 7-ketocholesterol and 7β-hydroxycholesterol.
Collapse
Affiliation(s)
- Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis 1080, Tunisia; University of Carthage, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir 5000, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, Tunis 2092, Tunisia
| | - Mohamed Ksila
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia
| | - Aline Yammine
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; Institut Européen des Antioxydants (IEA), 1B, rue Victor de Lespinats, Neuves-Maisons 54230, France
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France
| | - Amira Zarrouk
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir 5000, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, Metz 57070, France
| | - Moncef Chouaibi
- University of Carthage, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia; University of Carthage, Bio-preservation and Valorization of Agricultural Products UR13-AGR 02, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia
| | - Anne Vejux
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France.
| |
Collapse
|
35
|
Ferdous UT, Nurdin A, Ismail S, Balia Yusof ZN. Evaluation of the antioxidant and cytotoxic activities of crude extracts from marine Chlorella sp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Calijuri ML, Silva TA, Magalhães IB, Pereira ASADP, Marangon BB, Assis LRD, Lorentz JF. Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. CHEMOSPHERE 2022; 305:135508. [PMID: 35777544 DOI: 10.1016/j.chemosphere.2022.135508] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are a potential feedstock for several bioproducts, mainly from its primary and secondary metabolites. Lipids can be converted in high-value polyunsaturated fatty acids (PUFA) such as omega-3, carbohydrates are potential biohydrogen (bioH2) sources, proteins can be converted into biopolymers (such as bioplastics) and pigments can achieve high concentrations of valuable carotenoids. This work comprehends the current practices for the production of such products from microalgae biomass, with insights on technical performance, environmental and economical sustainability. For each bioproduct, discussion includes insights on bioprocesses, productivity, commercialization, environmental impacts and major challenges. Opportunities for future research, such as wastewater cultivation, arise as environmentally attractive alternatives for sustainable production with high potential for resource recovery and valorization. Still, microalgae biotechnology stands out as an attractive topic for it research and market potential.
Collapse
Affiliation(s)
- Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Thiago Abrantes Silva
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Iara Barbosa Magalhães
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Alexia Saleme Aona de Paula Pereira
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bianca Barros Marangon
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Letícia Rodrigues de Assis
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Juliana Ferreira Lorentz
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
37
|
Sansone C, Pistelli L, Del Mondo A, Calabrone L, Fontana A, Noonan DM, Albini A, Brunet C. The Microalgal Diatoxanthin Inflects the Cytokine Storm in SARS-CoV-2 Stimulated ACE2 Overexpressing Lung Cells. Antioxidants (Basel) 2022; 11:antiox11081515. [PMID: 36009234 PMCID: PMC9405469 DOI: 10.3390/antiox11081515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Abstract
Contact between SARS-CoV-2 and human lung cells involves the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor on epithelial cells, the latter being strongly involved in the regulation of inflammation as well as blood pressure homeostasis. SARS-CoV-2 infection is characterized by a strong inflammatory response defined as a “cytokine storm”. Among recent therapeutic approaches against SARS-CoV-2 targeting the dramatic inflammatory reaction, some natural products are promising. Diatoms are microalgae able to produce bioactive secondary metabolites, such as the xanthophyll diatoxanthin (Dt). The aim of this study is to demonstrate the anti-inflammatory effects of Dt on the A549-hACE2 lung cell line, exploring its interaction with the ACE2 receptor, as well as depicting its role in inhibiting a cytokine storm induced by the SARS-CoV-2 spike glycoprotein. Results showed that Dt enhanced the cell metabolism, e.g., the percent of metabolically active cells, as well as the ACE2 enzymatic activity. Moreover, Dt strongly affected the response of the SARS-CoV-2 spike glycoprotein-exposed A549-hACE2 cells in decreasing the interleukin-6 production and increasing the interleukin-10 release. Moreover, Dt upregulated genes encoding for the interferon pathway related to antiviral defense and enhanced proteins belonging to the innate immunity response. The potential interest of Dt as a new therapeutic agent in the treatment and/or prevention of the severe inflammatory syndrome related to SARS-CoV-2 infection is postulated.
Collapse
Affiliation(s)
- Clementina Sansone
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Institute of Biomolecular Chemistry, CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy;
- Correspondence: (C.S.); (C.B.); Tel.: +39-0815833262 (C.S. & C.B.)
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
| | - Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
| | - Luana Calabrone
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy;
- Department of Biology, University of Naples “Federico II”, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Douglas M. Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Adriana Albini
- IRCCS European Institute of Oncology, IEO, 20141 Milan, Italy;
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Correspondence: (C.S.); (C.B.); Tel.: +39-0815833262 (C.S. & C.B.)
| |
Collapse
|
38
|
Promising Biomolecules with High Antioxidant Capacity Derived from Cryptophyte Algae Grown under Different Light Conditions. BIOLOGY 2022; 11:biology11081112. [PMID: 35892969 PMCID: PMC9331842 DOI: 10.3390/biology11081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
The accumulation and production of biochemical compounds in microalgae are influenced by available light quality and algal species-specific features. In this study, four freshwater cryptophyte strains (Cryptomonas ozolinii, C. pyrenoidifera, C. curvata, and C. sp. (CPCC 336)) and one marine strain (Rhodomonas salina) were cultivated under white (control), blue, and green (experimental conditions) lights. Species-specific responses to light quality were detected, i.e., the color of light significantly affected cryptophyte biomass productivity and biochemical compositions, but the optimal light for the highest chemical composition with high antioxidant capacity was different for each algal strain. Overall, the highest phycoerythrin (PE) content (345 mg g−1 dry weight; DW) was reached by C. pyrenoidifera under green light. The highest phenolic (PC) contents (74, 69, and 66 mg g−1 DW) were detected in C. curvata under control conditions, in C. pyrenoidifera under green light, and in C. ozolinii under blue light, respectively. The highest exopolysaccharide (EPS) content (452 mg g−1 DW) was found in C. curvata under the control light. In terms of antioxidant activity, the biochemical compounds from the studied cryptophytes were highly active, with IC50 -values < 50 µg mL−1. Thus, in comparison to well-known commercial microalgal species, cryptophytes could be considered a possible candidate for producing beneficial biochemical compounds.
Collapse
|
39
|
Gohara-Beirigo AK, Matsudo MC, Cezare-Gomes EA, Carvalho JCMD, Danesi EDG. Microalgae trends toward functional staple food incorporation: Sustainable alternative for human health improvement. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Zhou L, Li K, Duan X, Hill D, Barrow C, Dunshea F, Martin G, Suleria H. Bioactive compounds in microalgae and their potential health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Chen C, Tang T, Shi Q, Zhou Z, Fan J. The potential and challenge of microalgae as promising future food sources. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Influence of Carbon Sources on the Phenolic Compound Production by Euglena gracilis Using an Untargeted Metabolomic Approach. Biomolecules 2022; 12:biom12060795. [PMID: 35740922 PMCID: PMC9221438 DOI: 10.3390/biom12060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
Industrial development and urbanization has led to the diverse presence of metals in wastewater that are often improperly treated. The microalgae Euglena gracilis can tolerate high concentrations of metal via the excretion of organic metabolites, including phenolics. This study aims to evaluate how carbon amendment stimulates phenolic compound production by E. gracilis. The number, relative intensity and molecular composition of the phenolic compounds were significantly different between each of four carbon amended cultures (i.e., glutamic acid, malic acid, glucose, reduced glutathione) during the log phase. Phenolic compounds were mainly produced during the minimum growth rate, likely a response to stressful conditions. A better understanding of phenolic compounds production by E. gracilis and the impact of growth conditions will help identify conditions that favor certain phenolic compounds for dietary and metal chelation applications.
Collapse
|
43
|
In Vivo Nutritional Assessment of the Microalga Nannochloropsis gaditana and Evaluation of the Antioxidant and Antiproliferative Capacity of Its Functional Extracts. Mar Drugs 2022; 20:md20050318. [PMID: 35621969 PMCID: PMC9147351 DOI: 10.3390/md20050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Nannochloropsis gaditana is a microalga with interesting nutritional and functional value due to its high content of protein, polyunsaturated fatty acids, and bioactive compounds. However, the hardness of its cell wall prevents accessibility to these components. This work aimed to study the effect of a treatment to increase the fragility of the cell wall on the bioavailability of its nutrients and functional compounds. The antioxidant and antiproliferative capacity of functional extracts from treated and untreated N. gaditana was assessed, and the profile of bioactive compounds was characterized. Furthermore, to study the effect of treatment on its nutrient availability and functional capacity, an in vivo experiment was carried out using a rat experimental model and a 20% dietary inclusion level of microalgae. Functional extracts from treated N. gaditana exhibited higher antioxidant activity than the untreated control. Furthermore, the treated microalga induced hypoglycemic action, higher nitrogen digestibility, and increased hepatic antioxidant activity. In conclusion, N. gaditana has interesting hepatoprotective, antioxidant, and anti-inflammatory potential, thus proving itself an ideal functional food candidate, especially if the microalga is treated to increase the fragility of its cell wall before consumption.
Collapse
|
44
|
Yucetepe A. A combination of osmotic shock and ultrasound pre-treatments and the use of enzyme for extraction of proteins from Chlorella vulgaris microalgae: Optimization of extraction conditions by RSM. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01258-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Del Mondo A, Sansone C, Brunet C. Insights into the biosynthesis pathway of phenolic compounds in microalgae. Comput Struct Biotechnol J 2022; 20:1901-1913. [PMID: 35521550 PMCID: PMC9052079 DOI: 10.1016/j.csbj.2022.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Microalgal PCs are important bioactive molecules beneficial for human health. Bioinformatic comparative exploration predicts PCs synthesis in microalgae. Ten groups of prokaryotic and eukaryotic microalgae reveal a conserved pathway core. Featured PCs can be restricted to diverse microalgae due to ecological implications.
Among the most relevant bioactive molecules family, phenolic compounds (PCs) are well known in higher plants, while their knowledge in microalgae is still scarce. Microalgae represent a novel and promising source of human health benefit compounds to be involved, for instance, in nutraceutical composition. This study aims to investigate the PCs biosynthetic pathway in the microalgal realm, exploring its potential variability over the microalgal biodiversity axis. A multistep in silico analysis was carried out using a selection of core enzymes from the pathway described in land plants. This study explores their presence in ten groups of prokaryotic and eukaryotic microalgae.. Analyses were carried out taking into account a wide selection of algal protein homologs, functional annotation of conserved domains and motifs, and maximum-likelihood tree construction. Results showed that a conserved core of the pathway for PCs biosynthesis is shared horizontally in all microalgae. Conversely, the ability to synthesize some subclasses of phenolics may be restricted to only some microalgal groups (i.e., Chlorophyta) depending on featured enzymes, such as the flavanone naringenin and other related chalcone isomerase dependent compounds.
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133 Napoli, Italy
- Corresponding author.
| | - Clementina Sansone
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133 Napoli, Italy
- Institute of Biomolecular Chemistry, CNR, via Campi Flegrei 34, Pozzuoli 80078, Na, Italy
| | - Christophe Brunet
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133 Napoli, Italy
| |
Collapse
|
46
|
Kim S, Ishizawa H, Inoue D, Toyama T, Yu J, Mori K, Ike M, Lee T. Microalgal transformation of food processing byproducts into functional food ingredients. BIORESOURCE TECHNOLOGY 2022; 344:126324. [PMID: 34785335 DOI: 10.1016/j.biortech.2021.126324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of food processing byproducts (FPBs) are generated from food manufacturing industries, the second-largest portion of food waste generation. FPBs may require additional cost for post-treatment otherwise cause environmental contamination. Valorization of FPBs into food ingredients by microalgae cultivation can save a high cost for organic carbon sources and nutrients from medium cost. This study reviews FPBs generation categorized by industry and traditional disposal. In contrast with the low-value production, FPBs utilization as the nutrient-abundant medium for microalgae can lead to high-value production. Due to the complex composition in FPBs, various pretreatment methods have been applied to extract the desired compounds and medium preparation. Using the FPB-based medium resulted in cost reduction and a productivity enhancement in previous literature. Although there are still challenges to overcome to achieve economic viability and environmental sustainability, the microalgal transformation of FPBs is attractive for functional food ingredients production.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hidehiro Ishizawa
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
47
|
Singh S, Verma DK, Thakur M, Tripathy S, Patel AR, Shah N, Utama GL, Srivastav PP, Benavente-Valdés JR, Chávez-González ML, Aguilar CN. Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Res Int 2021; 150:110746. [PMID: 34865764 DOI: 10.1016/j.foodres.2021.110746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.
Collapse
Affiliation(s)
- Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India.
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India.
| | - Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Juan Roberto Benavente-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico.
| |
Collapse
|
48
|
Antioxidant, Scavenging, Reducing, and Anti-Proliferative Activities of Selected Tropical Brown Seaweeds Confirm the Nutraceutical Potential of Spatoglossum asperum. Foods 2021; 10:foods10102482. [PMID: 34681531 PMCID: PMC8536100 DOI: 10.3390/foods10102482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Brown seaweeds have shown high potential of bioactivity and provide health benefits as an important functional food ingredient. Therefore, four abundantly growing tropical brown seaweeds—Iyengaria stellata, Spatoglossum asperum, Sargassum linearifolium, and Stoechospermum polypodioides—were collected from the Saurashtra Coast of the Arabian Sea. They were analyzed for metabolite profiling, biochemical activities (including total antioxidant, reducing, scavenging, and anti-proliferative characteristics), and total phenolic and flavonoid contents. A concentration-dependent antioxidant, reducing, and scavenging activities were observed for all four brown seaweeds. The S. asperum and I. stellata extracts showed maximum total antioxidant activity. S. asperum also showed high scavenging and reducing activities compared to other studied brown seaweeds. Further, S. asperum contained high total phenolic and flavonoid content compared to other brown seaweeds collected from the same coast. A multivariate correlation study confirmed a positive correlation between total phenolic and flavonoid contents, and biochemical activities (total antioxidant, scavenging and reducing) for all brown seaweeds. About 35% anti-proliferative activity was observed with S. asperum extract on Huh7 cells; in contrast S. polypodioide showed about 44% proliferation inhibition of Huh7 cells. Similarly, 26% proliferation inhibition of HeLa cells was observed with S. asperum extract. Overall, S. asperum possesses high total flavonoid and phenolic amounts, and showed potential antioxidant, scavenging and reducing characteristics. The study confirmed the nutraceutical potential of S. asperum and that it could be a promising functional food ingredient.
Collapse
|
49
|
Flores-Félix JD, Gonçalves AC, Alves G, Silva LR. Consumption of Phenolic-Rich Food and Dietary Supplements as a Key Tool in SARS-CoV-19 Infection. Foods 2021; 10:2084. [PMID: 34574194 PMCID: PMC8469666 DOI: 10.3390/foods10092084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
The first cases of COVID-19, which is caused by the SARS-CoV-2, were reported in December 2019. The vertiginous worldwide expansion of SARS-CoV-2 caused the collapse of health systems in several countries due to the high severity of the COVID-19. In addition to the vaccines, the search for active compounds capable of preventing and/or fighting the infection has been the main direction of research. Since the beginning of this pandemic, some evidence has highlighted the importance of a phenolic-rich diet as a strategy to reduce the progression of this disease, including the severity of the symptoms. Some of these compounds (e.g., curcumin, gallic acid or quercetin) already showed capacity to limit the infection of viruses by inhibiting entry into the cell through its binding to protein Spike, regulating the expression of angiotensin-converting enzyme 2, disrupting the replication in cells by inhibition of viral proteases, and/or suppressing and modulating the host's immune response. Therefore, this review intends to discuss the most recent findings on the potential of phenolics to prevent SARS-CoV-2.
Collapse
Affiliation(s)
- José David Flores-Félix
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
| | - Ana C. Gonçalves
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
| | - Gilberto Alves
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
| | - Luís R. Silva
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
- Unidade de Investigação para o Desenvolvimento do Interior (UDI/IPG), Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
50
|
Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production. Antioxidants (Basel) 2021; 10:antiox10091360. [PMID: 34572991 PMCID: PMC8468856 DOI: 10.3390/antiox10091360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgal biotechnology is gaining importance. However, key issues in the pipeline from species selection towards large biomass production still require improvements to maximize the yield and lower the microalgal production costs. This study explores a co-cultivation strategy to improve the bioactive compounds richness of the harvested microalgal biomass. Based on their biotechnological potential, two diatoms (Skeletonema marinoi, Cyclotella cryptica) and one eustigmatophyte (Nannochloropsis oceanica) were grown alone or in combination. Concentrations of ten vitamins (A, B1, B2, B6, B12, C, D2, D3, E and H), carotenoids and polyphenols, together with total flavonoids, sterols, lipids, proteins and carbohydrates, were compared. Moreover, antioxidant capacity and chemopreventive potential in terms inhibiting four human tumor-derived and normal cell lines proliferation were evaluated. Co-cultivation can engender biomass with emergent properties regarding bioactivity or bioactive chemical profile, depending on the combined species. The high vitamin content of C. cryptica or N. oceanica further enhanced (until 10% more) when co-cultivated, explaining the two-fold increase of the antioxidant capacity of the combined C. cryptica and N. oceanica biomass. Differently, the chemopreventive activity was valuably enhanced when coupling the two diatoms C. cryptica and S. marinoi. The results obtained in this pilot study promote microalgal co-cultivation as a valuable strategy aiming to boost their application in eco-sustainable biotechnology.
Collapse
|