1
|
Huang X, He Q, Hu H, Shi H, Zhang X, Xu Y. Integrating machine learning and nontargeted plasma lipidomics to explore lipid characteristics of premetabolic syndrome and metabolic syndrome. Front Endocrinol (Lausanne) 2024; 15:1335269. [PMID: 38559697 PMCID: PMC10979736 DOI: 10.3389/fendo.2024.1335269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To identify plasma lipid characteristics associated with premetabolic syndrome (pre-MetS) and metabolic syndrome (MetS) and provide biomarkers through machine learning methods. Methods Plasma lipidomics profiling was conducted using samples from healthy individuals, pre-MetS patients, and MetS patients. Orthogonal partial least squares-discriminant analysis (OPLS-DA) models were employed to identify dysregulated lipids in the comparative groups. Biomarkers were selected using support vector machine recursive feature elimination (SVM-RFE), random forest (rf), and least absolute shrinkage and selection operator (LASSO) regression, and the performance of two biomarker panels was compared across five machine learning models. Results In the OPLS-DA models, 50 and 89 lipid metabolites were associated with pre-MetS and MetS patients, respectively. Further machine learning identified two sets of plasma metabolites composed of PS(38:3), DG(16:0/18:1), and TG(16:0/14:1/22:6), TG(16:0/18:2/20:4), and TG(14:0/18:2/18:3), which were used as biomarkers for the pre-MetS and MetS discrimination models in this study. Conclusion In the initial lipidomics analysis of pre-MetS and MetS, we identified relevant lipid features primarily linked to insulin resistance in key biochemical pathways. Biomarker panels composed of lipidomics components can reflect metabolic changes across different stages of MetS, offering valuable insights for the differential diagnosis of pre-MetS and MetS.
Collapse
Affiliation(s)
- Xinfeng Huang
- The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University, Fuzhou, China
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qing He
- The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University, Fuzhou, China
| | - Haiping Hu
- The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University, Fuzhou, China
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huanhuan Shi
- The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University, Fuzhou, China
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoyang Zhang
- The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University, Fuzhou, China
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Youqiong Xu
- The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University, Fuzhou, China
- School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Bocheńska K, Gabig-Cimińska M. Unbalanced Sphingolipid Metabolism and Its Implications for the Pathogenesis of Psoriasis. Molecules 2020; 25:E1130. [PMID: 32138315 PMCID: PMC7179243 DOI: 10.3390/molecules25051130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs), which have structural and biological responsibilities in the human epidermis, are importantly involved in the maintenance of the skin barrier and regulate cellular processes, such as the proliferation, differentiation and apoptosis of keratinocytes (KCs). As many dermatologic diseases, including psoriasis (PsO), intricately characterized by perturbations in these cellular processes, are associated with altered composition and unbalanced metabolism of epidermal SLs, more education to precisely determine the role of SLs, especially in the pathogenesis of skin disorders, is needed. PsO is caused by a complex interplay between skin barrier disruption, immune dysregulation, host genetics and environmental triggers. The contribution of particular cellular compartments and organelles in SL metabolism, a process related to dysfunction of lysosomes in PsO, seems to have a significant impact on lysosomal signalling linked to a modulation of the immune-mediated inflammation accompanying this dermatosis and is not fully understood. It is also worth noting that a prominent skin disorder, such as PsO, has diminished levels of the main epidermal SL ceramide (Cer), reflecting altered SL metabolism, that may contribute not only to pathogenesis but also to disease severity and/or progression. This review provides a brief synopsis of the implications of SLs in PsO, aims to elucidate the roles of these molecules in complex cellular processes deregulated in diseased skin tissue and highlights the need for increased research in the field. The significance of SLs as structural and signalling molecules and their actions in inflammation, in which these components are factors responsible for vascular endothelium abnormalities in the development of PsO, are discussed.
Collapse
Affiliation(s)
- Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland;
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80–822 Gdańsk, Poland
| |
Collapse
|
3
|
Supinski GS, Alimov AP, Wang L, Song XH, Callahan LA. Neutral sphingomyelinase 2 is required for cytokine-induced skeletal muscle calpain activation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L614-24. [PMID: 26138644 DOI: 10.1152/ajplung.00141.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022] Open
Abstract
Calpain contributes to infection-induced diaphragm dysfunction but the upstream mechanism(s) responsible for calpain activation are poorly understood. It is known, however, that cytokines activate neutral sphingomyelinase (nSMase) and nSMase has downstream effects with the potential to increase calpain activity. We tested the hypothesis that infection-induced skeletal muscle calpain activation is a consequence of nSMase activation. We administered cytomix (20 ng/ml TNF-α, 50 U/ml IL-1β, 100 U/ml IFN-γ, 10 μg/ml LPS) to C2C12 muscle cells to simulate the effects of infection in vitro and studied mice undergoing cecal ligation puncture (CLP) as an in vivo model of infection. In cell studies, we assessed sphingomyelinase activity, subcellular calcium levels, and calpain activity and determined the effects of inhibiting sphingomyelinase using chemical (GW4869) and genetic (siRNA to nSMase2 and nSMase3) techniques. We assessed diaphragm force and calpain activity and utilized GW4869 to inhibit sphingomyelinase in mice. Cytomix increased cytosolic and mitochondrial calcium levels in C2C12 cells (P < 0.001); addition of GW4869 blocked these increases (P < 0.001). Cytomix also activated calpain, increasing calpain activity (P < 0.02), and the calpain-mediated cleavage of procaspase 12 (P < 0.001). Procaspase 12 cleavage was attenuated by either GW4869 (P < 0.001), BAPTA-AM (P < 0.001), or siRNA to nSMase2 (P < 0.001) but was unaffected by siRNA to nSMase3. GW4869 prevented CLP-induced diaphragm calpain activation and diaphragm weakness in mice. These data suggest that nSMase2 activation is required for the development of infection-induced diaphragm calpain activation and muscle weakness. As a consequence, therapies that inhibit nSMase2 in patients may prevent infection-induced skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Alexander P Alimov
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Xiao-Hong Song
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Leigh A Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
4
|
Liu L, Martin R, Kohler G, Chan C. Palmitate induces transcriptional regulation of BACE1 and presenilin by STAT3 in neurons mediated by astrocytes. Exp Neurol 2013; 248:482-90. [PMID: 23968646 DOI: 10.1016/j.expneurol.2013.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/09/2023]
Abstract
Deregulation of calcium has been implicated in neurodegenerative diseases, including Alzheimer's disease (AD). Previously, we showed that saturated free-fatty acid, palmitate, causes AD-like changes in primary cortical neurons mediated by astrocytes. However, the molecular mechanisms by which conditioned medium from astrocytes cultured in palmitate induce AD-like changes in neurons are unknown. This study demonstrates that this condition medium from astrocytes elevates calcium level in the neurons, which subsequently increases calpain activity, a calcium-dependent protease, leading to enhance p25/Cdk5 activity and phosphorylation and activation of the STAT3 (signal transducer and activator of transcription) transcription factor. Inhibiting calpain or Cdk5 significantly reduces the upregulation in nuclear level of pSTAT3, which we found to transcriptionally regulate both BACE1 and presenilin-1, the latter is a catalytic subunit of γ-secretase. Decreasing pSTAT3 levels reduced the mRNA levels of both BACE1 and presenilin-1 to near control levels. These data demonstrate a signal pathway leading to the activation of STAT3, and the generation of the amyloid peptide. Thus, our results suggest that STAT3 is an important potential therapeutic target of AD pathogenesis.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
5
|
Li Y, Tian D. Correlation between apoptosis and TGF-β1 expression in the mucosal epithelium of rat small intestine in a cold stress state. Exp Ther Med 2013; 5:1456-1460. [PMID: 23737898 PMCID: PMC3671846 DOI: 10.3892/etm.2013.983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/28/2013] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the correlation between the expression of transforming growth factor-β1 (TGF-β1) in the mucosal tissue of rat small intestine and the apoptosis of epithelial cells in the small intestine in a cold-restraint stress state. Immunohistochemistry was used to detect the expression of TGF-β1. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) and DNA agarose gel electrophoresis were used to detect apoptosis. After 8 and 12 h of cold-restraint stress, the positive expression rate of TGF-β1 in the rat small intestine epithelial tissue was 59.09 and 54.16%, respectively. The apoptotic index (AI) of the rat small intestine epithelial cells was 25.69±8.09 and 19.65±6.61%, respectively. The positive expression rate of TGF-β1 in the epithelial tissue of the rat small intestine was positively correlated with the AI of the epithelial cells (r=0.980, P<0.05). The epithelial cells of the rat small intestine exhibited apoptosis under cold-restraint stress. TGF-β1 is one of the key factors that induces apoptosis of the epithelial cells of the rat small intestine.
Collapse
Affiliation(s)
- Yongjun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832006
| | | |
Collapse
|
6
|
Takács M, Bubenyák M, Váradi A, Blazics B, Horváth P, Kökösi J. Synthesis of novel ceramide-like penetration enhancers. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Serebrov VY, Kuzmenko DI, Burov PG, Novitsky SV. Functional activity of sphingomyelin cycle in rat liver in chronic toxic hepatitis. Bull Exp Biol Med 2009; 146:726-9. [PMID: 19513367 DOI: 10.1007/s10517-009-0387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Activities of sphingomyelinase and ceramidase decreased in the liver in chronic toxic hepatitis and the balance between the levels of proapoptotic ceramide and antiapoptotic sphyngosine-1-phosphate shifts towards the latter substance. Pronounced changes in the qualitative and quantitative composition of fatty acids in the sphingomyelin cycle effector molecules were revealed.
Collapse
Affiliation(s)
- V Yu Serebrov
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, Russian Ministry of Health, Tomsk, Russia.
| | | | | | | |
Collapse
|
8
|
Wu D, Meydani SN. Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention. J Leukoc Biol 2008; 84:900-14. [PMID: 18596135 DOI: 10.1189/jlb.0108023] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with dysregulated immune and inflammatory responses. Declining T cell function is the most significant and best-characterized feature of immunosenescence. Intrinsic changes within T cells and extrinsic factors contribute to the age-associated decline in T cell function. T cell defect seen in aging involves multiple stages from early receptor activation events to clonal expansion. Among extrinsic factors, increased production of T cell-suppressive factor PGE(2) by macrophages (Mphi) is most recognized. Vitamin E reverses an age-associated defect in T cells, particularly naïve T cells. This effect of vitamin E is also reflected in a reduced rate of upper respiratory tract infection in the elderly and enhanced clearance of influenza infection in a rodent model. The T cell-enhancing effect of vitamin E is accomplished via its direct effect on T cells and indirectly by inhibiting PGE(2) production in Mphi. Up-regulated inflammation with aging has attracted increasing attention as a result of its implications in the pathogenesis of diseases. Increased PGE(2) production in old Mphi is a result of increased cyclooxygenase 2 (COX-2) expression, leading to higher COX enzyme activity, which in turn, is associated with the ceramide-induced up-regulation of NF-kappaB. Similar to Mphi, adipocytes from old mice have a higher expression of COX-2 as well as inflammatory cytokines IL-1beta, IL-6, and TNF-alpha, which might also be related to elevated levels of ceramide and NF-kappaB activation. This review will discuss the above age-related immune and inflammatory changes and the effect of vitamin E as nutritional intervention with a focus on the work conducted in our laboratory.
Collapse
Affiliation(s)
- Dayong Wu
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | | |
Collapse
|
9
|
Fasano C, Niel JP, Tercé F, Miolan JP. [Nervous conduction of excitation independent of action potentials]. Med Sci (Paris) 2007; 23:1075-7. [PMID: 18154703 DOI: 10.1051/medsci/200723121075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Abeytunga DTU, Oland L, Somogyi A, Polt R. Structural studies on the neutral glycosphingolipids of Manduca sexta. Bioorg Chem 2007; 36:70-6. [PMID: 18023840 DOI: 10.1016/j.bioorg.2007.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/03/2007] [Accepted: 10/05/2007] [Indexed: 11/27/2022]
Abstract
Glycosphingolipids (GSLs) have been implicated as playing major roles in cellular interactions and control of cell proliferation in muticellular organisms. Moreover GSLs and other sphingolipids such as sphingomyelins, ceramides and sphingosines serve a variety of roles in signal transduction. Hence, identification of structures of GSLs in different biota will shed light in understanding their physiological role. During this study, the major glycosphingolipid component present in the extracts of stage-12 and stage-17/18 metamorphosing adults of Manduca sexta was identified as mactosyl ceramide. We report the isolation of several ceramide disaccharides, a ceramide trisaccharide and a ceramide tetrasaccharide. The GSL structures were confirmed by high-resolution mass spectrometry and tandem mass spectrometry. The identity of the monosaccharides was proved using exoglycosidases. The predominant sphingosine chain-length varied from C-14 (tetradecasphing-4-enine) to C-16 (hexadecasphing-4-enine) in these GSLs. Sphingosines of both chain lengths were accompanied by their doubly unsaturated counterparts tetradecasphinga-4,6-diene and hexadecasphinga-4,6-diene. It is also interesting to note the presence of tetradecasphinganine and hexadecasphinganine in minute amounts in the form of a GSL in the extracts of M. sexta. The varying degrees of unsaturation in the sphingosine moiety of GSLs in M. sexta may be biologically significant in insect metamorphosis. The ceramide trisaccharides and ceramide tetrasaccharide belong to the arthro-series, The observation of fucose in the M. sexta GSLs is the first report of the presence of fucose in an arthroseries GSL.
Collapse
|
11
|
Fasano C, Tercé F, Niel JP, Nguyen HTT, Hiol A, Bertrand-Michel J, Mallet N, Collet X, Miolan JP. Neuronal conduction of excitation without action potentials based on ceramide production. PLoS One 2007; 2:e612. [PMID: 17637828 PMCID: PMC1906860 DOI: 10.1371/journal.pone.0000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 06/18/2007] [Indexed: 01/19/2023] Open
Abstract
Background Action potentials are the classic mechanism by which neurons convey a state of excitation throughout their length, leading, after synaptic transmission, to the activation of other neurons and consequently to network functioning. Using an in vitro integrated model, we found previously that peripheral networks in the autonomic nervous system can organise an unconventional regulatory reflex of the digestive tract motility without action potentials. Methodology/Principal Findings In this report, we used combined neuropharmacological and biochemical approaches to elucidate some steps of the mechanism that conveys excitation along the nerves fibres without action potentials. This mechanism requires the production of ceramide in membrane lipid rafts, which triggers in the cytoplasm an increase in intracellular calcium concentration, followed by activation of a neuronal nitric oxide synthase leading to local production of nitric oxide, and then to guanosine cyclic monophosphate. This sequence of second messengers is activated in cascade from rafts to rafts to ensure conduction of the excitation along the nerve fibres. Conclusions/Significance Our results indicate that second messengers are involved in neuronal conduction of excitation without action potentials. This mechanism represents the first evidence—to our knowledge—that excitation is carried along nerves independently of electrical signals. This unexpected ceramide-based conduction of excitation without action potentials along the autonomic nerve fibres opens up new prospects in our understanding of neuronal functioning.
Collapse
Affiliation(s)
- Caroline Fasano
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153-INRA 1147, Institut Fédératif de Recherche Jean Roche IFR 11, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
| | - François Tercé
- Plateau Technique de Lipidomique, INSERM IFR 30/Toulouse Génopole, INSERM U563, Hôpital Purpan, Toulouse, France
| | - Jean-Pierre Niel
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153-INRA 1147, Institut Fédératif de Recherche Jean Roche IFR 11, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
| | - Hang Thi Thu Nguyen
- Laboratoire de Chimie Biologique Appliquée, UMR-INRA 1111, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
| | - Abel Hiol
- Laboratoire de Chimie Biologique Appliquée, UMR-INRA 1111, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
| | - Justine Bertrand-Michel
- Plateau Technique de Lipidomique, INSERM IFR 30/Toulouse Génopole, INSERM U563, Hôpital Purpan, Toulouse, France
| | - Nicole Mallet
- Plateau Technique de Lipidomique, INSERM IFR 30/Toulouse Génopole, INSERM U563, Hôpital Purpan, Toulouse, France
| | - Xavier Collet
- INSERM U563, Département Lipoprotéines et Médiateurs Lipidiques, IFR 30, CPTP, Hôpital Purpan, Toulouse, France
| | - Jean-Pierre Miolan
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153-INRA 1147, Institut Fédératif de Recherche Jean Roche IFR 11, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Jayasimhulu K, Hunt SM, Kaneshiro ES, Watanabe Y, Giner JL. Detection and identification of Bacteriovorax stolpii UKi2 Sphingophosphonolipid molecular species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:394-403. [PMID: 17123828 DOI: 10.1016/j.jasms.2006.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/03/2006] [Accepted: 10/05/2006] [Indexed: 05/12/2023]
Abstract
Bacteriovorax stolpii is a predator of larger gram-negative bacteria and lives as a parasite in the intraperiplasmic space of the host cell. This bacterium is unusual among prokaryotes in that sphingolipids comprise a large proportion of its lipids. We here report the presence of 18 molecular species of B. stolpii UKi2 sphingophosphonolipids (SPNLs). (31)P NMR spectroscopy and analysis of P(i) released by a differential hydrolysis protocol confirmed the phosphonyl nature of these lipids. The SPNLs were dominated by those with 1-hydroxy-2-aminoethane phosphonate (hydroxy-aminoethylphosphonate) polar head groups; aminoethylphosphonate was also detected in minor SPNL components. The long-chain bases (LCBs) were dominated by C(17) iso-branched phytosphingosine; C(17) iso-branched dihydrosphingosine was also present in some SPNLs. The N-linked fatty acids were predominantly iso-branched and most contained an alpha-hydroxy group (C(15) alpha-hydroxy fatty acid was the major fatty acid). Minor molecular species containing nonhydroxy fatty acids were also detected. The definitive iso-structures of the predominant fatty acids and LCBs present in the B. stolpii SPNLs were established using (13)C and (3)H nuclear magnetic resonance spectroscopy; less than 20% were unbranched. Detection and analyses of intact compounds by MS-MS were performed by a hybrid quadrupole time-of-flight (Q-TOF-II) MS equipped with an electrospray ionization source. Analyses of peracetylated derivatives verified the structural assignments of these lipids.
Collapse
Affiliation(s)
- Koka Jayasimhulu
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0006, USA
| | | | | | | | | |
Collapse
|
13
|
Fasano C, Hiol A, Miolan JP, Niel JP. Les sphingolipides : vecteurs d’agents pathogènes et cause de maladies génétiques. Med Sci (Paris) 2006; 22:411-5. [PMID: 16597411 DOI: 10.1051/medsci/2006224411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sphingolipids are present in all eukaryotic cells and share a sphingoid base : sphingosine. They were first discovered in 1884 and for a long time they were thought to participate to membrane structure only. Recently it has been established that they are mainly located in particular areas of the membrane called rafts which are signalling platforms. It has also been demonstrated that sphingolipids are receptors and second messengers. They play a crucial role in cellular functioning and are necessary to maintenance and developing of living organisms. However due to their receptor properties, they are also gateway for penetration of pathogenic agents such as virus (Ebola, HIV) or toxins (botulinium, tetanus). These agents first bind to glycosphingolipids or proteins mainly located in rafts. The complex so formed is required for the crossing of the membrane by the pathogenic agent. Sphingolipids metabolism is regulated by numerous enzymes. A failure in the activity of one of them induces an accumulation of sphingolipids known as sphingolipidoses. These are genetic diseases having severe consequences for the survival of the organism. The precise mechanisms of the sphingolipidoses are still mainly unknown which explains why few therapeutic strategies are available. These particular properties of lipids rafts and sphingolipids explain why a growing number of studies in the medical and scientific fields are devoted to them.
Collapse
Affiliation(s)
- Caroline Fasano
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
14
|
Wascholowski V, Giannis A. Sphingolactones: Selective and Irreversible Inhibitors of Neutral Sphingomyelinase. Angew Chem Int Ed Engl 2006; 45:827-30. [PMID: 16365835 DOI: 10.1002/anie.200501983] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veit Wascholowski
- University of Leipzig, Institute of Organic Chemistry, 04103 Leipzig, Germany
| | | |
Collapse
|
15
|
Wascholowski V, Giannis A. Sphingolactone: selektive und irreversibel wirkende Inhibitoren der neutralen Sphingomyelinase. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200501983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Astrakas LG, Goljer I, Yasuhara S, Padfield KE, Zhang Q, Gopalan S, Mindrinos MN, Dai G, Yu YM, Martyn JAJ, Tompkins RG, Rahme LG, Tzika AA. Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma‐induced apoptosis. FASEB J 2005; 19:1431-40. [PMID: 16126910 DOI: 10.1096/fj.04-2005com] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Burn trauma triggers hypermetabolism and muscle wasting via increased cellular protein degradation and apoptosis. Proton nuclear magnetic resonance (1H NMR) spectroscopy can detect mobile lipids in vivo. To examine the local effects of burn in skeletal muscle, we performed in vivo 1H NMR on mice 3 days after burn trauma; and ex vivo, high-resolution, magic angle spinning (1)H NMR on intact excised mouse muscle samples before and 1 and 3 days after burn. These samples were then analyzed for apoptotic nuclei using a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. To confirm our NMR and cell biology results, we used transcriptome analysis to demonstrate that burn trauma alters the expression of genes involved in lipid metabolism and apoptosis. Our results demonstrate that burn injury results in a localized intramyocellular lipid accumulation, which in turn is accompanied by burn-induced apoptosis and mitochondrial dysfunction, as seen by the up-regulation of apoptotic genes and down-regulation of genes that encode lipid oxidation and the peroxisomal proliferator activator receptor gamma coactivator PGC-1beta. Moreover, the increased levels of bisallylic methylene fatty acyl protons (2.8 ppm) and vinyl protons (5.4 ppm), in conjunction with the TUNEL assay results, further suggest that burn trauma results in apoptosis. Together, our results provide new insight into the local physiological changes that occur in skeletal muscle after severe burn trauma.
Collapse
Affiliation(s)
- Loukas G Astrakas
- Department of Surgery, Massachusetts General Hospital, Shriners Burns Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Falluel-Morel A, Aubert N, Vaudry D, Basille M, Fontaine M, Fournier A, Vaudry H, Gonzalez BJ. Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J Neurochem 2005; 91:1231-43. [PMID: 15569266 DOI: 10.1111/j.1471-4159.2004.02810.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The sphingomyelin-derived messenger ceramides provoke neuronal apoptosis through caspase-3 activation, while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuronal survival and inhibits caspase-3 activity. However, the mechanisms leading to the opposite regulation of caspase-3 by C2-ceramide and PACAP are currently unknown. Here, we show that PACAP prevents C2-ceramide-induced inhibition of mitochondrial potential and C2-ceramide-evoked cytochrome c release. C2-ceramide stimulated Bax expression, but had no effect on Bcl-2, while PACAP abrogated the action of C2-ceramide on Bax and stimulated Bcl-2 expression. The effects of C2-ceramide and PACAP on Bax and Bcl-2 were blocked, respectively, by the JNK inhibitor L-JNKI1 and the MEK inhibitor U0126. L-JNKI1 prevented the alteration of mitochondria induced by C2-ceramide while U0126 suppressed the protective effect of PACAP against the deleterious action of C2-ceramide on mitochondrial potential. Moreover, L-JNKI1 inhibited the stimulatory effect of C2-ceramide on caspase-9 and -3 and prevented C2-ceramide-induced cell death. U0126 blocked PACAP-induced Bcl-2 expression, abrogated the inhibitory effect of PACAP on ceramide-induced caspase-9 activity, and promoted granule cell death. The present study reveals that C2-ceramide and PACAP exert opposite effects on Bax and Bcl-2 through, respectively, JNK- and ERK-dependent mechanisms. These data indicate that the mitochondrial pathway plays a pivotal role in the pro- and anti-apoptotic effects of C2-ceramide and PACAP.
Collapse
Affiliation(s)
- Anthony Falluel-Morel
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ito Y, Sato S, Ohashi T, Nakayama S, Shimokata K, Kume H. Reduction of airway anion secretion via CFTR in sphingomyelin pathway. Biochem Biophys Res Commun 2004; 324:901-8. [PMID: 15474513 DOI: 10.1016/j.bbrc.2004.09.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 11/22/2022]
Abstract
The present study concerns the involvement of the ceramide produced through sphingomyelinase (SMase)-mediated catalysis in airway anion secretion of Calu-3 cells. Short-circuit current (Isc) measurement revealed that isoproterenol (ISO, 0.1 microM)-induced anion secretion was prevented by pretreatment with SMase (0.3 U/ml, for 30 min) from the basolateral but not the apical side, although basal and 1-ethyl-2-benzimidazolinone (1-EBIO, a Ca2+-activated K+ channel opener)-induced Isc were unaffected. The effects of SMase were reproduced in responses to forskolin (20 microM) or 8-bromo-cAMP (2 mM). C2-ceramide, a cell-permeable analog, also repressed the 8-bromo-cAMP-induced responses. Nystatin permeabilization studies confirmed that the SMase- and C2-ceramide-induced repressions were due to hindrance of augmentation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated conductance across the apical membrane. Further, SMase failed to influence K+ conductance across the basolateral membrane. These results suggest that the ceramide originating from basolateral sphingomyelin acts on activated CFTR from the cytosolic side, hindering anion secretion.
Collapse
Affiliation(s)
- Yasushi Ito
- Division of Respiratory Medicine, Department of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Relling DP, Hintz KK, Ren J. Acute exposure of ceramide enhances cardiac contractile function in isolated ventricular myocytes. Br J Pharmacol 2004; 140:1163-8. [PMID: 14645138 PMCID: PMC1574130 DOI: 10.1038/sj.bjp.0705510] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
1. The sphingolipid ceramide, a primary building block for all other sphingolipids, is associated with growth arrest, apoptosis, and lipotoxic dysfunction. Interestingly, ceramide may attenuate high glucose-induced myocyte dysfunction, produce Ca2+ influx, and augment smooth muscle contraction. To determine the role of ceramide on cardiac excitation-contraction (E-C) coupling, electrically paced adult rat ventricular myocytes were acutely exposed to a cell-permeable ceramide analog (10 pm-100 microM) and the following indices were determined: peak shortening (PS), time-to-PS, time-to-90% relengthening, and the maximal velocity of shortening and relengthening (+/-dLdt). Intracellular Ca2+ properties were assessed using fura-2AM fluorescent microscopy. 2. Our results revealed a concentration- and time-dependent increase of PS in ventricular myocytes in response to ceramide associated with an increase in +/-dLdt. The maximal increase in PS was approximately 35% from control value and was maintained throughout the first 20 min of ceramide exposure. However, the ceramide-induced increase in PS was not maintained once the exposure time was beyond 20 min. Acute exposure of ceramide significantly enhanced intracellular Ca2+ release, although at a much lower concentration range. The ceramide-induced augmentation of PS was not significantly affected by inhibition of phosphatidylinositol (PI)-3-kinase, protein kinase C (PKC), ceramide-activated protein phosphatase (CAPP), and nitric oxide (NO) synthase. 3. Our data suggest that ceramide acutely augments the contractile function of cardiac myocytes through an alternative mechanism(s) rather than PI-3-kinase, PKC, CAPP, or NO.
Collapse
Affiliation(s)
- David P Relling
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, U.S.A
| | - Kadon K Hintz
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, U.S.A
| | - Jun Ren
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, U.S.A
- Author for correspondence:
| |
Collapse
|
20
|
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a clinically useful cytokine. TRAIL induces apoptosis in a wide variety of transformed cells, but does not cause toxicity to most normal cells. Recent studies show that death receptors (DR4 and DR5), decoy receptors (DcR1 and DcR2), and death inhibitors (FLIP, FAP-1, and IAP) are responsible for the differential sensitivity to TRAIL of normal and tumor cells. Several researchers have also shown that genotoxic agents, such as chemotherapeutic agents and ionizing radiation, enhance TRAIL-induced cytotoxicity by increasing DR5 gene expression or decreasing the intracellular level of FLIP, an antiapoptotic protein. Previous studies have shown that ceramide helps to regulate a cell's response to various forms of stress. Stress-induced alterations in the intracellular concentration of ceramide occur through the activation of a variety of enzymes that synthesize or catabolize ceramide. Increases in intracellular ceramide levels modulate apoptosis by acting through key proteases, phosphatases, and kinases. This review discusses the interaction between TRAIL and ceramide signaling pathways in regulating apoptotic death.
Collapse
Affiliation(s)
- Yong J Lee
- Department of Surgery and Pharmacology, University of Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
21
|
Escalante-Alcalde D, Hernandez L, Le Stunff H, Maeda R, Lee HS, Sciorra VA, Daar I, Spiegel S, Morris AJ, Stewart CL. The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Development 2003; 130:4623-37. [PMID: 12925589 DOI: 10.1242/dev.00635] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bioactive phospholipids, which include sphingosine-1-phosphate, lysophosphatidic acid, ceramide and their derivatives regulate a wide variety of cellular functions in culture such as proliferation, apoptosis and differentiation. The availability of these lipids and their products is regulated by the lipid phosphate phosphatases (LPPs). Here we show that mouse embryos deficient for LPP3 fail to form a chorio-allantoic placenta and yolk sac vasculature. A subset of embryos also show a shortening of the anterior-posterior axis and frequent duplication of axial structures that are strikingly similar to the phenotypes associated with axin deficiency, a critical regulator of Wnt signaling. Loss of LPP3 results in a marked increase in beta-catenin-mediated TCF transcription, whereas elevated levels of LPP3 inhibit beta-catenin-mediated TCF transcription. LPP3 also inhibits axis duplication and leads to mild ventralization in Xenopus embryo development. Although LPP3 null fibroblasts show altered levels of bioactive phospholipids, consistent with loss of LPP3 phosphatase activity, mutant forms of LPP3, specifically lacking phosphatase activity, were able to inhibit beta-catenin-mediated TCF transcription and also suppress axis duplication, although not as effectively as intact LPP3. These results reveal that LPP3 is essential to formation of the chorio-allantoic placenta and extra-embryonic vasculature. LPP3 also mediates gastrulation and axis formation, probably by influencing the canonical Wnt signaling pathway. The exact biochemical roles of LPP3 phosphatase activity and its undefined effect on beta-catenin-mediated TCF transcription remain to be determined.
Collapse
Affiliation(s)
- Diana Escalante-Alcalde
- Cancer and Developmental Biology Laboratory, Division of Basic Science, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mahmoudi M, Willgoss D, Cuttle L, Yang T, Pat B, Winterford C, Endre Z, Johnson DW, Gobé GC. In vivo and in vitro models demonstrate a role for caveolin-1 in the pathogenesis of ischaemic acute renal failure. J Pathol 2003; 200:396-405. [PMID: 12845636 DOI: 10.1002/path.1368] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated.
Collapse
Affiliation(s)
- Mitra Mahmoudi
- Department of Molecular and Cellular Pathology, School of Medicine, University of Queensland, Herston, Brisbane, Australia 4006
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nieuwenhuizen WF, van Leeuwen S, Jack RW, Egmond MR, Götz F. Molecular cloning and characterization of the alkaline ceramidase from Pseudomonas aeruginosa PA01. Protein Expr Purif 2003; 30:94-104. [PMID: 12821326 DOI: 10.1016/s1046-5928(03)00099-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ceramidase (CDase) hydrolyzes the amide bond in ceramides to yield free fatty acid and sphingosine. From a 3-L Pseudomonas aeruginosa PA01 culture, 70 microg of extracellular alkaline, Ca(2+)-dependent CDase, was purified to homogeneity, the N-terminal sequence was determined, and the CDase gene was cloned. The CDase gene encodes a 670 amino acid protein with a 26 amino acid signal peptide. CDase was expressed in five prokaryotic and eukaryotic expression systems. Small amounts of recombinant active extracellular CDase were expressed by Pseudomonas putida KT2440. In Pichia pastoris GS115 low amounts of recombinant extracellular glycosylated CDase were expressed. High levels of intracellular CDase were expressed by Escherichia coli DH5alpha and E. coli BL21 cells under control of the lac-promoter and T7-promoter, respectively. From a 3-L E. coli DH5alpha culture, 280 microg of pure CDase was obtained after a three-step purification protocol. Under control of the T7-promotor CDase, without its signal peptide, was produced in inclusion bodies in E. coli BL21 cells. After refolding, 1.8 mg of pure active CDase was obtained from a 2.4-L culture after ammonium sulfate precipitation and gel filtration. Both the recombinant and wild-type CDases have a pH optimum of 8.5. The recombinant enzyme was partially characterized. This is the first report of a high yield CDase production system allowing detailed characterization of the enzyme at the molecular level.
Collapse
Affiliation(s)
- Willem F Nieuwenhuizen
- Microbial Genetics, University of Tübingen, Waldhäuser Strasse 70/8, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
24
|
Radin NS. Designing anticancer drugs via the achilles heel: ceramide, allylic ketones, and mitochondria. Bioorg Med Chem 2003; 11:2123-42. [PMID: 12713822 DOI: 10.1016/s0968-0896(02)00609-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Published reports are reviewed as the basis of a proposal that an effective antineoplastic drug should contain several features: (a) resemblance to the natural lipid, ceramide; (b) an allylic alcohol and/or allylic ketone moiety; (c) a hydroxyl and/or a nitrogen atom near the allylic group; (d) conjugated double bonds as part of the allylic region. The drug should produce reactive oxygen species in tumor mitochondria, stimulate the generation of ceramide in the tumor, and condense with mitochondrial glutathione. It is pointed out that some antibiotics with these features are also active against cancer cells; perhaps anticancer drugs with these features will prove useful as antibiotics. Common problems in working with lipoidal substances are discussed.
Collapse
Affiliation(s)
- Norman S Radin
- Mental Health Research Institute, University of Michigan, MI, Ann Arbor, USA.
| |
Collapse
|
25
|
Fasano C, Miolan JP, Niel JP. Modulation by C2 ceramide of the nicotinic transmission within the coeliac ganglion in the rabbit. Neuroscience 2003; 116:753-9. [PMID: 12573717 DOI: 10.1016/s0306-4522(02)00760-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated the modulation by ceramide of the nicotinic activation of the prevertebral sympathetic neurons. Our study was performed in vitro in rabbit isolated coeliac ganglion, using intracellular recording techniques. We have used C(2) ceramide, a permeant analog of ceramide. The effects of C(2) ceramide were first assessed when nicotinic activation was elicited without modulatory mechanisms (fast excitatory postsynaptic potentials triggered by stimulation of the thoracic splanchnic nerves with a single pulse). In all the neurons tested, C(2) ceramide triggered an increase in the amplitude of the fast excitatory postsynaptic potentials demonstrating a direct facilitatory effect on the nicotinic activation. We then investigated the effects of C(2) ceramide on modulatory mechanisms of this activation. These mechanisms occur when a train of pulses of supramaximum intensity is applied on the splanchnic nerves. During the train, a gradual depression of fast nicotinic activation occurred: the pulses failed to systematically elicit action potentials. We have previously demonstrated that this regulatory phenomenon is partly modulated by nitric oxide which exerts a dual effect: facilitation or inhibition of the nicotinic activation. In all the neurons tested, C(2) ceramide decreased the number of action potentials fired during a train of pulses, demonstrating an indirect inhibitory effect on the nicotinic activation. The use of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (nitric oxide scavenger) suppressed the inhibitory effect of C(2) ceramide, demonstrating that this effect is mediated through the nitric oxide pathway. C(2) dihydro-ceramide, an inactive analog of ceramide, was without effect on the nicotinic activation of the ganglionic neurons. These results demonstrate that ceramide exerts a complex modulation of the nicotinic activation of the prevertebral neurons: direct facilitation and indirect inhibition involving the nitric oxide pathway. In fact, C(2) ceramide plays a key gating role in the dual effect of the nitric oxide pathway by activating the inhibitory effect. The existence of this gating mechanism involving ceramide and nitric oxide opens new perspectives in terms of our understanding of the modulation of synaptic transmission within the prevertebral ganglia. Our study demonstrates that sphingolipids are involved in complex modulations of the synaptic activation within the prevertebral ganglia, and thus contribute to their integrative properties.
Collapse
Affiliation(s)
- C Fasano
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153-INRA 1147, Université Aix-Marseille III, Faculté des Sciences et Techniques St. Jérôme, Marseille, France
| | | | | |
Collapse
|
26
|
Chen HH, Zhao S, Song JG. TGF-beta1 suppresses apoptosis via differential regulation of MAP kinases and ceramide production. Cell Death Differ 2003; 10:516-27. [PMID: 12728250 DOI: 10.1038/sj.cdd.4401171] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Serum deprivation induces apoptosis in NIH3T3 cells, which is associated with increased intracellular ceramide generation and with the activation of p38 mitogen-activated protein (MAP) kinase. Treatment of cells with transforming growth factor-beta1 (TGF-beta1) activated the extracellular signal regulated kinases 1 and 2 (ERK1/ERK2), inhibited the serum deprivation-induced p38 activation and the increase in intracellular ceramide formation, leading to the stimulation of cell proliferation and the suppression of apoptosis. Inhibition of p38 MAP kinase by SB203580 significantly reduced the serum-deprivation-induced apoptosis. Overexpression of p38 increased the cell apoptosis and reduced the antiapoptotic effect of TGF-beta1. Inhibition of ERK1/ERK2 by PD98059 completely inhibited the TGF-beta1-stimulated proliferation and partially inhibited the antiapoptotic effects of TGF-beta1. Neither SB203580 nor PD98059 has obvious effect on TGF-beta1-mediated inhibition of the increased ceramide generation. Serum-deprivation-induced apoptosis in NIH3T3 cells can also be blocked by broad-spectrum caspase inhibitor. TGF-beta1 treatment has an inhibitory effect on caspase activities. Our results indicate that ceramide, p38, and ERK1/ERK2 play critical but differential roles in cell proliferation and stress-induced apoptosis. TGF-beta1 suppresses the serum-deprivation-induced apoptosis via its distinct effects on complex signaling events involving the activation of ERK1/ERK2 and the inhibition of p38 activation and increased ceramide generation.
Collapse
Affiliation(s)
- H-H Chen
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | |
Collapse
|
27
|
Ibata-Ombetta S, Idziorek T, Trinel PA, Poulain D, Jouault T. Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J Biol Chem 2003; 278:13086-93. [PMID: 12551950 DOI: 10.1074/jbc.m210680200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The surface of the pathogenic yeast Candida albicans is coated with phospholipomannan (PLM), a phylogenetically unique glycolipid composed of beta-1,2-oligomannosides and phytoceramide. This study compared the specific contribution of PLM to the modulation of signaling pathways linked to the survival of C. albicans in macrophages in contrast to Saccharomyces cerevisiae. C. albicans endocytosis by J774 and disregulation of the ERK1/2 signal transduction pathway was associated downstream with a reduction in Bad Ser-112 phosphorylation and disappearance of free Bcl-2. This suggested an apoptotic effect, which was confirmed by staining of phosphatidylserine in the macrophage outer membrane. The addition of PLM to macrophages incubated with S. cerevisiae mimicked each of the disregulation steps observed with C. albicans and promoted the survival of S. cerevisiae. Externalization of membranous phosphatidylserine, loss of mitochondrial integrity, and DNA fragmentation induced by PLM showed that this molecule promoted yeast survival by inducing host cell death. These findings suggest strongly that PLM is a virulence attribute of C. albicans and that elucidation of the relationship between structure and apoptotic activity is an innovative field of research.
Collapse
Affiliation(s)
- Stella Ibata-Ombetta
- Laboratoire de Mycologie Fondamentale et Appliquée, Inserm EMI0360, Université de Lille II, and Inserm U459, Faculté de Médecine H. Warembourg, Place Verdun, 59037 Lille Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Sato M, Markiewicz M, Yamanaka M, Bielawska A, Mao C, Obeid LM, Hannun YA, Trojanowska M. Modulation of transforming growth factor-beta (TGF-beta) signaling by endogenous sphingolipid mediators. J Biol Chem 2003; 278:9276-82. [PMID: 12515830 DOI: 10.1074/jbc.m211529200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that plays a critical role in tissue repair and fibrosis. Sphingolipid signaling has been shown to regulate a variety of cellular processes and has been implicated in collagen gene regulation. The present study was undertaken to determine whether endogenous sphingolipids are involved in the TGF-beta signaling pathway. TGF-beta treatment induced endogenous ceramide levels in a time-dependent manner within 5-15 min of cell stimulation. Using human fibroblasts transfected with a alpha2(I) collagen promoter/reporter gene construct (COL1A2), C(6)-ceramide (10 microm) exerted a stimulatory effect on basal and TGF-beta-induced activity of this promoter. Next, to define the effects of endogenous sphingolipids on TGF-beta signaling we employed ectopic expression of enzymes involved in sphingolipid metabolism. Sphingosine 1-phosphate phosphatase (YSR2) stimulated basal COL1A2 promoter activity and cooperated with TGF-beta in activation of this promoter. Furthermore, overexpression of YSR2 resulted in the pronounced increase of COL1A1 and COL1A2 mRNA levels. Conversely, overexpression of sphingosine kinase (SPHK1) inhibited basal and TGF-beta-stimulated COL1A2 promoter activity. These results suggest that endogenous ceramide, but not sphingosine or sphingosine 1-phosphate, is a positive regulator of collagen gene expression. Mechanistically, we demonstrate that Smad3 is a target of YSR2. TGF-beta-induced Smad3 phosphorylation was elevated in the presence of YSR2. Cotransfection of YSR2 with wild-type Smad3, but not with the phosphorylation-deficient mutant of Smad3 (Smad3A), resulted in a dramatic increase of COL1A2 promoter activity. In conclusion, this study demonstrates a direct role for the endogenous sphingolipid mediators in regulating the TGF-beta signaling pathway.
Collapse
Affiliation(s)
- Madoka Sato
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu G, Ghahremani MH, Banihashemi B, Albert PR. Diacylglycerol and ceramide formation induced by dopamine D2S receptors via Gbeta gamma -subunits in Balb/c-3T3 cells. Am J Physiol Cell Physiol 2003; 284:C640-8. [PMID: 12431910 DOI: 10.1152/ajpcell.00190.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diacylglycerol (DAG) and ceramide are important second messengers affecting cell growth, differentiation, and apoptosis. Balb/c-3T3 fibroblast cells expressing dopamine-D2S (short) receptors (Balb-D2S cells) provide a model of G protein-mediated cell growth and transformation. In Balb-D2S cells, apomorphine (EC(50) = 10 nM) stimulated DAG and ceramide formation by 5.6- and 4.3-fold, respectively, maximal at 1 h and persisting over 6 h. These actions were blocked by pretreatment with pertussis toxin (PTX), implicating G(i)/G(o) proteins. To address which G proteins are involved, Balb-D2S clones expressing individual PTX-insensitive Galpha(i) proteins were treated with PTX and tested for apomorphine-induced responses. Neither PTX-insensitive Galpha(i2) nor Galpha(i3) rescued D2S-induced DAG or ceramide formation. Both D2S-induced DAG and ceramide signals required Gbetagamma-subunits and were blocked by inhibitors of phospholipase C [1-(6-[([17beta]-3-methoxyestra-1,2,3[10]-trien- 17yl)amino]hexyl)-1H-pyrrole-2,5-dione (U-73122) and partially by D609]. The similar G protein specificity of D2S-induced calcium mobilization, DAG, and ceramide formation indicates a common Gbetagamma-dependent phospholipase C-mediated pathway. Both D2 agonists and ceramide specifically induced mitogen-activated protein kinase (ERK1/2), suggesting that ceramide mediates a novel pathway of D2S-induced ERK1/2 activation, leading to cell growth.
Collapse
Affiliation(s)
- Gele Liu
- Ottawa Health Research Institute (Neuroscience), University of Ottawa, Canada K1H 8M5
| | | | | | | |
Collapse
|
30
|
Cavalli AL, O'Brien NW, Barlow SB, Betto R, Glembotski CC, Palade PT, Sabbadini RA. Expression and functional characterization of SCaMPER: a sphingolipid-modulated calcium channel of cardiomyocytes. Am J Physiol Cell Physiol 2003; 284:C780-90. [PMID: 12421694 DOI: 10.1152/ajpcell.00382.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium channels are important in a variety of cellular events including muscle contraction, signaling, proliferation, and apoptosis. Sphingolipids have been recognized as mediators of intracellular calcium release through their actions on a calcium channel, sphingolipid calcium release-mediating protein of the endoplasmic reticulum (SCaMPER). The current study investigates the expression and function of SCaMPER in cardiomyocytes. Northern analyses and RT-PCR cloning and sequencing revealed SCaMPER expression in both human and rat cardiac tissue. Immunofluorescence and Western blot analyses demonstrated that SCaMPER is abundant in cardiac tissue and is localized to the sarcotubular junction. This was confirmed by the colocalization of SCaMPER with dihydropyridine and ryanodine receptors by confocal microscopy. Purified T tubules were shown to contain SCaMPER and immunoelectron micrographs suggested that SCaMPER is located to the junctional T tubules, but a junctional SR localization cannot be ruled out. The sphingolipid ligand for SCaMPER, sphingosylphosphorylcholine (SPC), initiated calcium release from the cardiomyocyte SR. Importantly, antisense knockdown of SCaMPER mRNA produced a substantial reduction of sphingolipid-induced calcium release, suggesting that SCaMPER is a potentially important calcium channel of cardiomyocytes.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/genetics
- Cell Membrane/genetics
- Cell Membrane/metabolism
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Dimerization
- Immunohistochemistry
- Intracellular Membranes/metabolism
- Intracellular Membranes/ultrastructure
- Microscopy, Electron
- Microtubules/genetics
- Microtubules/metabolism
- Microtubules/ultrastructure
- Molecular Sequence Data
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Protein Structure, Quaternary/genetics
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Rats
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum/genetics
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/ultrastructure
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sphingolipids/metabolism
Collapse
Affiliation(s)
- Amy L Cavalli
- SDSU Heart Institute and Department of Biology, San Diego State University, California 92182-4614, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Voss KA, Howard PC, Riley RT, Sharma RP, Bucci TJ, Lorentzen RJ. Carcinogenicity and mechanism of action of fumonisin B1: a mycotoxin produced by Fusarium moniliforme (= F. verticillioides). CANCER DETECTION AND PREVENTION 2003; 26:1-9. [PMID: 12088196 DOI: 10.1016/s0361-090x(02)00011-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fumonisins are fungal metabolites and suspected human carcinogens. They inhibit ceramide synthase in vitro, enhance tumor necrosis factor alpha (TNFalpha) production, and cause apoptosis. Fumonisin B1 (FB1) was fed to rats and mice for 2 years or, in separate studies, given to rats or mice for up to 4 weeks. Kidney tubule adenomas and carcinomas were found in male rats fed > or = 50 ppm, whereas liver adenomas and carcinomas were found in female mice fed > or = 50 ppm for 2 years. In the short-term studies, increases in tissue concentration of the ceramide synthase substrate sphinganine (Sa) and the Sa to sphingosine (So) ratio were correlated with apoptosis. Further, hepatotoxicity was ameliorated in mice lacking either the TNFR1 or the TNFR2 TNFalpha receptors. Thus, FB1 was carcinogenic to rodents and thefindings support the hypothesis that disrupted sphingolipid metabolism and TNFalpha play important roles in its mode of action.
Collapse
Affiliation(s)
- Kenneth A Voss
- Toxicology and Mycotoxin Research Unit, Richard B. Russell Agricultural Research Center, US Department of Agriculture, Athens, GA 30604-5677, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Latorre E, Collado MP, Fernández I, Aragonés MD, Catalán RE. Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:36-46. [PMID: 12492473 DOI: 10.1046/j.1432-1033.2003.03356.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ceramide is a lipid second messenger that acts on multiple-target enzymes, some of which are involved in other signal-transduction systems. We have previously demonstrated that endogenous ceramide modifies the metabolism of brain ethanolamine plasmalogens. The mechanism involved was studied. On the basis of measurements of breakdown products, specific inhibitor effects, and previous findings, we suggest that a plasmalogen-selective phospholipase A2 is the ceramide target. Arachidonate-rich pools of the diacylphosphatidylethanolamine subclass were also affected by ceramide, but the most affected were plasmalogens. Concomitantly with production of free arachidonate, increased 1-O-arachidonoyl ceramide formation was observed. Quinacrine (phospholipase A2 inhibitor) and 1-O-octadecyl-2-O-methyl-rac-glycerol-3-phosphocholine (CoA-independent transacylase inhibitor) prevented all of these ceramide-elicited effects. Therefore, phospholipase and transacylase activities are tightly coupled. Okadaic acid (phosphatase 2A inhibitor) and PD 98059 (mitogen-activated protein kinase inhibitor) modified basal levels of ceramide and sphingomyelinase-induced accumulation of ceramide, respectively. Therefore, they provided no evidence to determine whether there is a sensitive enzyme downstream of ceramide. The evidence shows that there are serine-dependent and thiol-dependent enzymes downstream of ceramide generation. Furthermore, experiments with Ac-DEVD-CMK (caspase-3 specific inhibitor) have led us to conclude that caspase-3 is downstream of ceramide in activating the brain plasmalogen-selective phospholipase A2.
Collapse
Affiliation(s)
- Eduardo Latorre
- Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
33
|
Liu G, Robillard L, Banihashemi B, Albert PR. Growth hormone-induced diacylglycerol and ceramide formation via Galpha i3 and Gbeta gamma in GH4 pituitary cells. Potentiation by dopamine-D2 receptor activation. J Biol Chem 2002; 277:48427-33. [PMID: 12376552 DOI: 10.1074/jbc.m202130200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) secretion is regulated by indirect negative feedback mechanisms. To address whether GH has direct actions on pituitary cells, lipid signaling in GH(4)ZR(7) somatomammotroph cells was examined. GH (EC(50) = 5 nm) stimulated diacylglycerol (DAG) and ceramide formation in parallel by over 10-fold within 15 min and persisting for >3 h. GH-induced DAG/ceramide formation was blocked by pertussis toxin (PTX) implicating G(i)/G(o) proteins and was potentiated 1.5-fold by activation of G(i)/G(o)-coupled dopamine-D2S receptors, which had no effect alone. Following PTX pretreatment, only PTX-resistant Galpha(i)3, not Galpha(o) or Galpha(i)2, rescued GH-induced DAG/ceramide signaling. GH-induced DAG/ceramide formation was also blocked in cells expressing Gbetagamma blocker GRK-ct. In GH(4)ZR(7) cells, GH induced phosphorylation of JAK2 and STAT5, which was blocked by PTX and mimicked by ceramide analogue C2-ceramide or sphingomyelinase treatment to increase endogenous ceramide. We conclude that in GH(4) pituitary cells, GH induces formation of DAG/ceramide via a novel Galpha(i)3/Gbetagamma-dependent pathway. This novel pathway suggests a mechanism for autocrine feedback regulation by GH of pituitary function.
Collapse
Affiliation(s)
- Gele Liu
- Ottawa Health Research Institute, Neuroscience 451 Smyth Road, Room 2464, University of Ottawa, Canada K1H 8M5
| | | | | | | |
Collapse
|
34
|
Li H, Junk P, Huwiler A, Burkhardt C, Wallerath T, Pfeilschifter J, Förstermann U. Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase. Circulation 2002; 106:2250-6. [PMID: 12390956 DOI: 10.1161/01.cir.0000035650.05921.50] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Generation of the second-messenger molecule ceramide by stimulated sphingomyelinase activity has been implicated in the inflammatory processes contributing to the pathogenesis of atherosclerosis. However, reports of stimulatory effects of ceramide on endothelial NO production in animal models suggest antiatherosclerotic effects of the molecule. Therefore, we investigated long-term effects of ceramide on NO generation in human endothelial cells. METHODS AND RESULTS In human umbilical vein endothelial cells (HUVECs) and in HUVEC-derived EA.hy 926 endothelial cells, C6-ceramide (N-hexanoyl-D-erythro-sphingosine) reduced the generation of bioactive NO (RFL-6 reporter-cell assay). At the same time, the signaling molecule increased endothelial NO synthase (eNOS) mRNA (RNase protection assay) and protein expression (Western blot). C6-ceramide stimulated eNOS transcription by a signaling mechanism involving protein phosphatase PP2A but did not modify the stability of the eNOS mRNA. Endothelial generation of reactive oxygen species (ROS) was increased by C6-ceramide [5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate (CM-H(2)DCFDA) oxidation-based fluorescence assay], and this effect was partially reversed by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). On the other hand, (6R)-5,6,7,8-tetrahydro-L-biopterin (BH(4)) normalized in part the ceramide-induced reduction in bioactive NO. CONCLUSIONS Ceramide produces oxidative stress in human endothelial cells, thereby reducing bioactive NO. The partial reversal of this reduction by BH(4) and the diminution of ROS generation by L-NAME suggest that ceramide promotes NADPH oxidase activity of eNOS, leading to ROS formation at the expense of NO synthesis. The ceramide-induced upregulation of eNOS gene transcription can be considered an ineffective compensatory mechanism. The decreased bioavailability of NO is likely to favor a proatherogenic role of ceramide.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhao S, Du XY, Chen JS, Zhou YC, Song JG. Secretory Phospholipase A2 Inhibits Epidermal Growth Factor-Induced Receptor Activation. Exp Cell Res 2002; 279:354-64. [PMID: 12243760 DOI: 10.1006/excr.2002.5622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretory phospholipase A(2) (sPLA(2)) plays important roles in mediating various cellular processes, including cell proliferation, differentiation, apoptosis, and inflammatory response. In this study, we demonstrated that a basic sPLA(2) inhibits epidermal growth factor (EGF)-induced EGF receptor activation, as determined by autophosphorylation of EGF receptor, EGF-activated phospholipase D (PLD) activity, and phospholipase C-gamma(1) (PLC-gamma(1)) tyrosine phosphorylation in a human epidermoid carcinoma cell line, A-431. Treatment of cells with exogenous neutral sphingomyelinase (SMase) or a cell permeable ceramide analog, C(2)-ceramide, also caused similar inhibitory effects on EGF-induced activation of EGF receptor, tyrosine phosphorylation of PLC-gamma(1), and the activation of PLD. sPLA(2)-induced inhibition of EGF receptor was associated with arachidonic acid release, which was followed by an increase in intracellular ceramide formation. Both sPLA(2) and exogenous C(2)-ceramide are able to inhibit the proliferation of A-431. The data presented indicate for the first time that sPLA(2) downregulates the EGF receptor-mediated intracellular signal transduction that may be mediated by arachidonic acid and/or ceramide.
Collapse
Affiliation(s)
- Sheng Zhao
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Box 25, 320 Yue-Yang Road, Shanghai, 200031, Peoples' Republic of China
| | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Norman S Radin
- Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
37
|
López-Marure R, Gutiérrez G, Mendoza C, Ventura JL, Sánchez L, Reyes Maldonado E, Zentella A, Montaño LF. Ceramide promotes the death of human cervical tumor cells in the absence of biochemical and morphological markers of apoptosis. Biochem Biophys Res Commun 2002; 293:1028-36. [PMID: 12051763 DOI: 10.1016/s0006-291x(02)00315-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
C8-ceramide, a synthetic cell-permeable analog of endogenous ceramides, interfered with cell proliferation, and was cytotoxic to papilloma virus-containing human cervix carcinoma cells, CALO, INBL, and HeLa, that match two clinical stages of tumor progression. C8-ceramide (3 microM) markedly reduced the tumor cell number after 48 h of treatment, an effect that endured even after the removal of C8-ceramide. The carcinoma cells showed morphologic changes, characteristic of necrosis and released lactate dehydrogenase (LDH). A biologically inactive analog C8-dihydro-ceramide had no effect on cell viability in any of the cell lines tested. Seventy-two hours after C8-ceramide treatment none of the biochemical and morphological markers characteristic of apoptosis: (a) nuclear chromatin condensation, (b) DNA fragmentation, (c) proteolysis of the caspase-3 substrate poly-(ADP-ribose)-polymerase (PARP), and (d) appearance of phosphatidylserine on the external cell membrane, were observed. C8-ceramide had no effect on human cervix fibroblasts and induced a mild reduction (30%) in the proliferation of normal human cervix epithelia and HeLa cells (IV-B metastatic stage). The cytotoxicity of C8-ceramide was restricted to CALO (early II-B) and INBL (IV-A non-metastatic) carcinoma cells. The possible application of ceramide in the treatment of early stages of cervical cancer is discussed.
Collapse
Affiliation(s)
- Rebeca López-Marure
- Departamento de Biología Celular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección 16, Tlalpan, C.P. 14080, Mexico DF, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhao S, Du XY, Chai MQ, Chen JS, Zhou YC, Song JG. Secretory phospholipase A(2) induces apoptosis via a mechanism involving ceramide generation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1581:75-88. [PMID: 12020635 DOI: 10.1016/s1388-1981(02)00122-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Secretory phospholipase A(2) (sPLA(2)) plays important roles in cellular signaling and various biological events. In this study, we examined the biological effects and the potential signaling mechanism of purified sPLA(2) in MV1Lu cells. Three types of snake venom sPLA(2) were purified and their enzymatic activities were characterized by using various lipid substrates prepared from [3H]-myristate-labeled cells and by determining their effects on the induction of arachidonic acid (AA) release. The purified sPLA(2) induced apoptosis in Mv1Lu cells in a dose- and time-dependent manner, and was associated with a rapid increase in the intracellular ceramide level. Similar apoptotic effects were observed in Mv1Lu cells treated with exogenous ceramide analog, C(2)- and C(8)-ceramide. Moreover, treatment of cells with sphingomyelinase (SMase), which reduced the intracellular SM level, enhanced the apoptotic response to sPLA(2)s. sPLA(2)s also displayed an inhibitory effect on bradykinin-induced phospholipase D (PLD) activity, which can be imitated by exogenous ceramide. Our data indicate that sPLA(2) induces cell apoptosis via a mechanism involving increased ceramide generation.
Collapse
Affiliation(s)
- Sheng Zhao
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Box 25, 320 Yue-Yang Road, Shanghai 200031, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Nieuwenhuizen WF, van Leeuwen S, Götz F, Egmond MR. Synthesis of a novel fluorescent ceramide analogue and its use in the characterization of recombinant ceramidase from Pseudomonas aeruginosa PA01. Chem Phys Lipids 2002; 114:181-91. [PMID: 11934399 DOI: 10.1016/s0009-3084(01)00206-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ceramidase (CDase) hydrolyses the N-acyl linkage of the sphingolipid ceramide. We synthesized the non-fluorescent ceramide analogue (4E,2S,3R)-2-N-(10-pyrenedecanoyl)-1,3,17-trihydroxy-17-(3,5-dinitrobenzoyl)-4-heptadecene (10) that becomes fluorescent upon hydrolysis of its N-acyl bond. This novel substrate was used to study several kinetic aspects of the recombinant CDase from the pathogenic bacterium Pseudomonas aeruginosa PA01. Maximum CDase activity was observed above 1.5 microM substrate, with an apparent K(m) of 0.5+/-0.1 microM and a turnover of 5.5 min(-1). CDase activity depends on divalent cations without a strong specificity. CDase is inhibited by sphingosine and by several sphingosine analogues. The lack of inhibition by several mammalian CDase inhibitors such as D-erythro-MAPP, L-erythro-MAPP or N-oleoylethanolamine points to a novel active site and/or substrate binding region. The CDase assay described here offers the opportunity to develop and screen for specific bacterial CDase inhibitors of pharmaceutical interest.
Collapse
Affiliation(s)
- Willem F Nieuwenhuizen
- Microbial Genetics, University of Tübingen, Waldhäuser Strasse 70/8, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
40
|
Kleine L, Liu G, Leblanc N, Hébert RL. Bradykinin stimulates ceramide production by activating specific BK-B(1) receptor in rat small artery. Am J Physiol Heart Circ Physiol 2002; 282:H175-83. [PMID: 11748061 DOI: 10.1152/ajpheart.00379.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradykinin (BK), a proinflammatory factor and vasodilator, causes functional change of the small artery. However, it is not clear whether any of these changes induced by BK are mediated by N-acetyl-D-sphingosine (ceramide). Therefore, we investigated whether BK affects the hydrolysis of sphingomyelin and generation of ceramide in the intact rat small artery. Our results suggest that BK induces sphingomyelin hydrolysis and increases ceramide production in a time- and dose-dependent manner. Relative to controls, BK causes a 50% decrease in sphingomyelin levels. Ceramide levels increase in response to BK with the highest level being obtained with 10(-8) M BK as well as similar amounts of ceramide are generated when exogenous sphingomyelinase (SMase) is added. We then determined which of the two BK receptors (BK-B(1) antagonist Lys-Des-Arg(9)-Leu(8)-BK or the BK-B(2) antagonist HOE-140) are implicated in the BK-induced generation of ceramide. The BK-B(2) antagonist did not alter the effect of BK on ceramide generation, whereas the BK-B(1) antagonist blocked the BK-induced production of ceramide. Although ceramide had no effect on KCl-induced constrictions, ceramide dilated preconstricted (phenylephrine) small pressurized rat mesenteric arteries by approximately 40%. These results suggest that the activation of the BK-B(1) receptor mediates the BK-induced activation of SMase and of the production of ceramide. In conclusion, BK-mediated effects on vascular tone may be due, at least in part, to the increased production of ceramide.
Collapse
Affiliation(s)
- Leonard Kleine
- Department of Biochemistry, Microbiology, and Immunology, Montreal Heart Institute, University of Montreal, Quebec H3C 3J7, Canada
| | | | | | | |
Collapse
|
41
|
Philippoussis F, Przybytkowski E, Fortin M, Arguin C, Pande SV, Steff AM, Hugo P. Derivatives of monoglycerides as apoptotic agents in T-cells. Cell Death Differ 2001; 8:1103-12. [PMID: 11687888 DOI: 10.1038/sj.cdd.4400917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2001] [Revised: 06/01/2001] [Accepted: 06/12/2001] [Indexed: 11/08/2022] Open
Abstract
Recently, lipids have received considerable attention for their potential to induce apoptosis when added exogenously to cells. In this study, we directly demonstrate that murine T-cells undergo rapid apoptosis following treatment with various forms of monoglycerides, which are a family of naturally occurring lipids consisting of a single fatty acid moiety attached to a glycerol backbone. The potency of these lipids varied depending on their chemical structure, whereas glycerol backbone or corresponding fatty acids alone were ineffective. Moreover, monoglyceride-mediated apoptosis was suppressed either by Bcl-2 overexpression, treatment with a broad inhibitor of caspases, or RNA and protein synthesis inhibitors. In addition, treatment of cells with derivatives of monoglycerides induced a calcium flux, which could be inhibited by both extracellular (EGTA) or intracellular (EGTA-AM) calcium chelators. To our knowledge, this is the first report demonstrating a role for derivatives of monoglycerides as inducers of apoptosis in mammalian cells.
Collapse
Affiliation(s)
- F Philippoussis
- PROCREA BioSciences Inc., Division of Research & Development, 6100 Royalmount, Montréal, Québec, Canada, H4P 2R2
| | | | | | | | | | | | | |
Collapse
|
42
|
Kanto T, Kalinski P, Hunter OC, Lotze MT, Amoscato AA. Ceramide mediates tumor-induced dendritic cell apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3773-84. [PMID: 11564794 DOI: 10.4049/jimmunol.167.7.3773] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Induction of apoptosis in dendritic cells (DC) is one of the escape mechanisms of tumor cells from the immune surveillance system. This study aimed to clarify the underlying mechanisms of tumor-induced DC apoptosis. The supernatants (SN) of murine tumor cell lines B16 (melanoma), MCA207, and MCA102 (fibrosarcoma) increased C16 and C24 ceramide as determined by electrospray mass spectrometry and induced apoptosis in bone marrow-derived DC. N-oleoylethanolamine or D-L-threo 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), which inhibits acid ceramidase or glucosylceramide synthase and then increases endogenous ceramide, enhanced DC apoptosis and ceramide levels in the presence of tumor SN. Pretreatment with L-cycloserine, an inhibitor of de novo ceramide synthesis, or phorbol ester, 12-O-tetradecanoylphorbol-13-acetate reduced endogenous ceramide levels and protected DC from tumor-induced apoptosis. However, other DC survival factors, including LPS and TNF-alpha, failed to do so. The protective activity of 12-O-tetradecanoylphorbol-13-acetate is abrogated by pretreatment with phosphoinositide 3-kinase (PI3K) inhibitor, LY294002. Therefore, down-regulation of PI3K is the major facet of tumor-induced DC apoptosis. Tumor SN, N-oleoylethanolamine, or PDMP suppressed Akt, NF-kappaB, and bcl-x(L) in DC, suggesting that the accumulation of ceramide impedes PI3K-mediated survival signals. Taken together, ceramide mediates tumor-induced DC apoptosis by down-regulation of the PI3K pathway.
Collapse
Affiliation(s)
- T Kanto
- Department of Surgery, Division of Biologic Therapeutics and Surgical Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Rodriguez-Lafrasse C, Alphonse G, Broquet P, Aloy MT, Louisot P, Rousson R. Temporal relationships between ceramide production, caspase activation and mitochondrial dysfunction in cell lines with varying sensitivity to anti-Fas-induced apoptosis. Biochem J 2001; 357:407-16. [PMID: 11439090 PMCID: PMC1221967 DOI: 10.1042/0264-6021:3570407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To clarify the chronology of events leading to anti-Fas-induced apoptosis, and the mechanisms of resistance to this death effector, we compared the response kinetics of three tumour cell lines that display varying sensitivity to anti-Fas (based on levels of apoptosis), in terms of ceramide release, mitochondrial function and the caspase-activation pathway. In the highly sensitive Jurkat cell line, early caspase-8 activation, observed from 2 h after treatment, was chronologically associated with an acute depletion of glutathione and the cleavage of caspase-3 and poly-ADP ribosyl polymerase (PARP), followed by a progressive fall in the mitochondrial transmembrane potential (Delta(psi)m), between 4 and 48 h after treatment. Ceramide levels began to increase 2 h after the addition of anti-Fas (with no increase during the first hour), and increased continuously to 640% of control cells at 48 h. In the moderately sensitive SCC61 adherent cells, comparable results were observed, though with lower levels of ceramide and a delay in the response kinetics, with apoptotic cells becoming flotant. Finally, despite early cleavage of caspase-8 at 2 h, and a sustained level of activation until 48 h, no apoptotic response was observed in anti-Fas-resistant SQ20B cells. This was confirmed by a lack of ceramide generation and mitochondrial changes, and by the absence of any detectable cleavage of caspase-3 or PARP. Inhibition of caspase processing, and amplification of endogenous ceramide signalling by pharmacological agents, allowed us to establish the order of cellular events, locating ceramide release after caspase-8 activation and before caspase-3 activation, and demonstrating a direct involvement for ceramide release in mitochondrial dysfunction. Furthermore, these experiments provide strong arguments for the role of endogenous ceramide as a key executor of apoptosis, rather than as a consequence of membrane alterations.
Collapse
Affiliation(s)
- C Rodriguez-Lafrasse
- INSERM U189, Department of Biochemistry, Lyon-Sud Medical School, BP12, 69921 Oullins Cedex, France.
| | | | | | | | | | | |
Collapse
|
45
|
Watanabe Y, Nakajima M, Hoshino T, Jayasimhulu K, Brooks EE, Kaneshiro ES. A novel sphingophosphonolipid head group 1-hydroxy-2-aminoethyl phosphonate in Bdellovibrio stolpii. Lipids 2001; 36:513-9. [PMID: 11432465 DOI: 10.1007/s11745-001-0751-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Members of the bacterial genus Bdellovibrio include strains that are free-living, whereas others are known to invade and parasitize larger Gram-negative bacteria. The bacterium can synthesize several sphingophospholipid compounds including those with phosphoryl bonds as well as phosphonyl bonds. In the present study, the dominant sphingophosphonolipid component was isolated by column chromatography, and the long-chain bases, fatty acids, and polar head groups were identified by thin-layer and gas-liquid chromatographic procedures. The definitive structural identity of the sphingolipid was established by nuclear magnetic resonance and mass spectrometry of hydrolysis products and the intact compound. The compound was identified as N-2'-hydroxypentadecanoyl-2-amino-3,4-dihydroxyheptadecan-1-phosphono-(1-hydroxy-2-aminoethane).
Collapse
Affiliation(s)
- Y Watanabe
- Department of Medical Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Sarna J, Miranda SR, Schuchman EH, Hawkes R. Patterned cerebellar Purkinje cell death in a transgenic mouse model of Niemann Pick type A/B disease. Eur J Neurosci 2001; 13:1873-80. [PMID: 11403680 DOI: 10.1046/j.0953-816x.2001.01564.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Niemann Pick disease is a family of autosomal recessive disorders characterized by cholesterol accumulation. The most common type is Niemann Pick type A/B (NPA/B), resulting from deficient acid sphingomyelinase activity, which leads to sphingomyelin and cholesterol accumulation. The neuropathology of NPA/B includes widespread neuronal degeneration. An acid sphingomyelinase knockout mouse model of NPA/B (ASMKO) has been developed by the targeted deletion of the acid sphingomyelinase gene. When cerebellar morphology was examined in the ASMKO mouse at postnatal day 60 (P60), a dramatic pattern of longitudinal stripes was revealed in which roughly half the Purkinje cells had died, leaving a highly stereotyped, bilaterally symmetrical array of stripes. Antizebrin II immunocytochemistry revealed that the absent Purkinje cells corresponded exactly to the zebrin II-negative subset, leaving the zebrin II-positive subset apparently intact. By P120, some of the zebrin II-positive Purkinje cells had also been eliminated from the posterior vermis and hemispheres. By P180, all Purkinje cells had been lost from the anterior lobe. Finally at P240, almost all Purkinje cells had disappeared to leave a stereotyped distribution in lobules VI, IX-X and the flocculus and paraflocculus. The temporal pattern of Purkinje cell death demonstrates differential susceptibility of morphologically identical cells that appear to be linked to their molecular phenotypes.
Collapse
Affiliation(s)
- J Sarna
- Department of Cell Biology and Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
47
|
|
48
|
Condrescu M, Reeves JP. Inhibition of sodium-calcium exchange by ceramide and sphingosine. J Biol Chem 2001; 276:4046-54. [PMID: 11058589 DOI: 10.1074/jbc.m006862200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Na(+)/Ca(2+) exchange activity in Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger was inhibited by the short chain ceramide analogs N-acetylsphingosine and N-hexanoylsphingosine (5-15 micrometer). The sphingolipids reduced exchange-mediated Ba(2+) influx by 50-70% and also inhibited the Ca(2+) efflux mode of exchange activity. The biologically inactive ceramide analog N-acetylsphinganine had only modest effects on exchange activity. Cells expressing the Delta(241-680) and Delta(680-685) deletion mutants of the Na(+)/Ca(2+) exchanger were not inhibited by ceramide; these mutants show defects in both Na(+)-dependent and Ca(2+)-dependent regulatory behavior. Another mutant, which was defective only in Na(+)-dependent regulation, was as sensitive to ceramide inhibition as the wild-type exchanger. Inhibition of exchange activity by ceramide was time-dependent and was accelerated by depletion of internal Ca(2+) stores. Sphingosine (2.5 micrometer) also inhibited the Ca(2+) influx and efflux modes of exchange activity in cells expressing the wild-type exchanger; sphingosine did not affect Ba(2+) influx in the Delta(241-680) mutant. The effects of the exogenous sphingolipids were reproduced by blocking cellular ceramide utilization pathways, suggesting that exchange activity is inhibited by increased levels of endogenous ceramide and/or sphingosine. We propose that sphingolipids impair Ca(2+)-dependent activation of the exchanger and that in cardiac myocytes, this process serves as a feedback mechanism that links exchange activity to the diastolic concentration of cytosolic Ca(2+).
Collapse
Affiliation(s)
- M Condrescu
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, The New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
49
|
Radin NS. Killing cancer cells by poly-drug elevation of ceramide levels: a hypothesis whose time has come? EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:193-204. [PMID: 11168352 DOI: 10.1046/j.1432-1033.2001.01845.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many papers have shown that sphingolipids control the balance in cells between growth and proliferation, and cell death by apoptosis. Sphingosine-1-phosphate (Sph1P) and glucosylceramide (GlcCer) induce proliferation processes, and ceramide (Cer), a metabolic intermediate between the two, induces apoptosis. In cancers, the balance seems to have come undone and it should be possible to kill the cells by enhancing the processes that lead to ceramide accumulation. The two control systems are intertwined, modulated by a variety of agents affecting the activities of the enzymes in Cer-GlcCer-Sph1P interdependence. It is proposed that successful cancer chemotherapy requires the use of many agents to elevate ceramide levels adequately. This review updates current knowledge of sphingolipid metabolism and some of the evidence showing that ceramide plays a causal role in apoptosis induction, as well as a chemotherapeutic agent.
Collapse
Affiliation(s)
- N S Radin
- Mental Health Research Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Rao AM, Hatcher JF, Dempsey RJ. Lipid alterations in transient forebrain ischemia: possible new mechanisms of CDP-choline neuroprotection. J Neurochem 2000; 75:2528-35. [PMID: 11080206 DOI: 10.1046/j.1471-4159.2000.0752528.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that cytidine 5'-diphosphocholine (CDP-choline or citicoline) attenuated arachidonic acid (ArAc) release and provided significant protection for the vulnerable hippocampal CA(1) neurons of the cornu ammonis after transient forebrain ischemia of gerbil. ArAc is released by the activation of phospholipases and the alteration of phosphatidylcholine (PtdCho) synthesis. Released ArAc is metabolized by cyclooxygenases/lipoxygenases to form eicosanoids and reactive oxygen species (ROS). ROS contribute to neurotoxicity through generation of lipid peroxides and the cytotoxic byproducts 4-hydroxynonenal and acrolein. ArAc can also stimulate sphingomyelinase to produce ceramide, a potent pro-apoptotic agent. In the present study, we examined the changes and effect of CDP-choline on ceramide and phospholipids including PtdCho, phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), sphingomyelin, and cardiolipin (an exclusive inner mitochondrial membrane lipid essential for electron transport) following ischemia/1-day reperfusion. Our studies indicated significant decreases in total PtdCho, PtdIns, PtdSer, sphingomyelin, and cardiolipin and loss of ArAc from PtdEtn in gerbil hippocampus after 10-min forebrain ischemia/1-day reperfusion. CDP-choline (500 mg/kg i.p. immediately after ischemia and at 3-h reperfusion) significantly restored the PtdCho, sphingomyelin, and cardiolipin levels as well as the ArAc content of PtdCho and PtdEtn but did not affect PtdIns and PtdSer. These data suggest multiple beneficial effects of CDP-choline: (1) stabilizing the cell membrane by restoring PtdCho and sphingomyelin (prominent components of outer cell membrane), (2) attenuating the release of ArAc and limiting its oxidative metabolism, and (3) restoring cardiolipin levels.
Collapse
Affiliation(s)
- A M Rao
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792-3232, USA.
| | | | | |
Collapse
|