1
|
Chen M, Pan J, Song Y, Liu S, Sun P, Zheng X. Effect of inulin supplementation in maternal fecal microbiota transplantation on the early growth of chicks. MICROBIOME 2025; 13:98. [PMID: 40235010 PMCID: PMC11998286 DOI: 10.1186/s40168-025-02084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/08/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Fecal microbial transplantation (FMT) is an important technology for treating diarrhea and enteritis. Additionally, FMT has been applied to improve productivity, alter abnormal behavior, relieve stress, and reduce burdens. However, some previous studies have reported that FMT may cause stress in acceptor animals. Inulin, a prebiotic, can promote growth, enhance immunity, and balance the gut microbiota. Currently, there are limited reports on the effects of combining FMT with inulin on early growth performance in chicks. RESULTS In this study, a total of 90 1-day-old chicks were randomly divided into the control group (CON), FMT group, and inulin group (INU). The CON group was fed a basic diet, whereas the FMT and INU groups received fecal microbiota transplantation and FMT with inulin treatment, respectively. Compared with the FMT and CON groups, the INU group presented significantly greater average daily gain (ADG) and average daily feed intake (ADFI) values (P < 0.05). However, the organ indices did not significantly change (P > 0.05). The ratio of the villi to crypts in the ileum significantly differed at 21 and 35 days (P < 0.05). In addition, the cecum concentrations of acetic acid and butyric acid significantly increased in the INU group (P < 0.05). In addition, gut inflammation and serum inflammation decreased in the INU group, and immune factors increased after inulin supplementation. (P < 0.05). Firmicutes and Bacteroidetes were the dominant phyla, with more than 90% of all sequences being identified as originating from these two phyla. Inulin supplementation during mother-sourced microbial transplantation significantly increased the abundance of Rikenella, Butyricicoccus, and [Ruminococcus], which contributed positively to the promotion of early intestinal health and facilitated the early growth of chicks. CONCLUSION The results of this study suggest that inulin supplementation in maternal fecal microbiota transplantation can effectively promote early growth and probiotic colonization, which favors the health of chicks. Video Abstract.
Collapse
Affiliation(s)
- Mengxian Chen
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, 130118, China
| | - Junxing Pan
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
| | - Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
| | - Shenao Liu
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
| | - Peng Sun
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Economic and Technological Development Zone, Dalian, 116622, China.
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China.
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, 130118, China.
| |
Collapse
|
2
|
Han Y, Zhu L, Zhang H, Liu T. Polymeric saccharides: Effect on physical characteristics and creaminess perception of non-fat whipped cream analogue. Carbohydr Polym 2025; 351:123055. [PMID: 39778991 DOI: 10.1016/j.carbpol.2024.123055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
In this study, the improvement effects of different polymeric saccharides, including native starch, maltodextrin and inulin, replacing 10 % sucrose on the physical characteristics and creaminess perception of non-fat whipped cream system were investigated. Systems containing maltodextrin had more uniform particle size and bubble distribution. This resulted in higher whipping performance and lower friction characteristics. When dextrose equivalent was 39 and 19, the overrun and friction coefficient achieved best (441.69 % and 0.0554), respectively. Conversely, systems containing starch showed better mechanical characteristics. This was achieved by foaming a three-phase foam system containing air, water and gelatinized starch particles. Especially, potato starch showed the highest hardness (2.88 N), storage modulus (1570.39 Pa) and the proportion of immobilized water (96.73 %), as well as the lowest loss tangent (0.13). The rheological and tribological properties after simulated oral processing were significantly correlated with sensory attributes. Systems with low apparent viscosity were negatively correlated with smoothness, but positively correlated with mouth-coating. In contrast, systems with a low friction coefficient (at 1 mm/s) received high scores for creaminess. As a result, systems containing maltodextrin scored higher in creaminess, and also showed strongest perception (4.06) when the dextrose equivalent was 19.
Collapse
Affiliation(s)
- Yameng Han
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Tongtong Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Binzhou Zhongyu Food Company Limited, Binzhou Zhongyu Academy of Agricultural Sciences, National Industry Technical Innovation Center for Wheat Processing, Binzhou 256603, Shandong, China; Bohai Advanced Technology Institute, Binzhou 256606, Shandong, China
| |
Collapse
|
3
|
Chen P, Chen F, Hou T, Hu X, Xia C, Zhang J, Shen S, Li C, Li K. Administration time modify the anxiolytic and antidepressant effects of inulin via gut-brain axis. Int J Biol Macromol 2025; 288:138698. [PMID: 39672439 DOI: 10.1016/j.ijbiomac.2024.138698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
An imbalance in the microbiota-gut-brain axis exerts an essential effect on the pathophysiology of depressive and anxiety disorders. Our previous research revealed that the timing of inulin administration altered its effects on chronic unpredictable mild stress (CUMS)-induced anxiety and depression. However, it is still unclear if the gut-brain axis is primarily responsible for these effects. In this study, fecal microbiota transplantation (FMT) confirmed that inulin administration at different times alleviated CUMS-induced anxiety- and depression-like behaviors via the gut-brain axis. The time of administration seemed to modify the anxiolytic and antidepressant effects of inulin, and inulin intervention in the evening was more pronounced in inhibiting the inflammatory responses than that of morning inulin intervention. Serum metabolomics analysis showed that the main differential metabolites, including fenofibric acid, 4'-Hydroxyfenoprofen glucuronide and 5-(4-Hydroxybenzyl)thiazolidine-2,4-dione may be vital for the anxiolytic and antidepressant effects of different inulin treatment times. Our results suggested that inulin administration in the evening was more effective in alleviating the inflammatory responses and improving amino acids metabolism. This study provides a new potential link between the microbiota-gut-brain axis and chrono-nutrition, demonstrating that a more appropriate administration time results in a better intervention effect.
Collapse
Affiliation(s)
- Ping Chen
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Fanyang Chen
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueqin Hu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenxing Xia
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaming Zhang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Shen
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Chunmei Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China..
| |
Collapse
|
4
|
Ju C, Liu R, Ma Y, Dong H, Xu R, Hu H, Hao D. Targeted microbiota dysbiosis repair: An important approach to health management after spinal cord injury. Ageing Res Rev 2025; 104:102648. [PMID: 39725357 DOI: 10.1016/j.arr.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life. Neuron axonal disconnection and substantial apoptotic events following SCI result in signal transmission loss, profoundly impacting various organ and systems, including the gastrointestinal tract. Dysbiosis can lead to severe bowel dysfunction in patients, substantially lowering their quality of life and significantly reducing life expectancy of them. Therefore, researches focusing on the restoration of the gut microbiota hold promise for potential therapeutic strategies aimed at rehabilitation after SCI. In this paper, we explore the regulatory roles that dietary fiber, short-chain fatty acids (SCFAs), probiotics, and microbiota transplantation play in patients with SCI, summarize the potential mechanisms of post-SCI dysbiosis, and discuss possible strategies to enhance long-term survival of SCI patients. We aim to provide potential insights for future research aimed at ameliorating dysbiosis in SCI patients.
Collapse
Affiliation(s)
- Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Yanming Ma
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Hui Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Ruiqing Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Huimin Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
5
|
Chauhan DS, Vashisht P, Bebartta RP, Thakur D, Chaudhary V. Jerusalem artichoke: A comprehensive review of nutritional composition, health benefits and emerging trends in food applications. Compr Rev Food Sci Food Saf 2025; 24:e70114. [PMID: 39865639 DOI: 10.1111/1541-4337.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025]
Abstract
The Jerusalem artichoke (JA), a plantrelated to sunflowers and native to North America, has long been valued for its versatility, especially during periods of food scarcity. This resilient crop serves multiple purposes, functioning as a vegetable, medicinal herb, grazing crop, and even a biofuel source. In recent years, interest in JA has grown, largely due to its high nutritional profile and associated health benefits. This review explores JA's nutritional composition, the benefits of its consumption, and its botanical and agricultural characteristics. Additionally, the various applications of JA in the food industry are discussed, including its use in dairy products, snacks, baked goods, beverages, and functional foods. This review also examines the processing techniques involved in harvesting JA, extracting its valuable components, and incorporating it into food products. Notably, JA is a rich source of fiber and minerals, and incorporating it into food products not only enhances their nutritional value but also improves fermentation processes, lowers the glycemic index, and enhances sensory properties, all while reducing production costs. However, several challenges remain in JA production. These include optimizing growing conditions, addressing high labor costs, developing suitable machinery, determining the ideal harvesting time, increasing pest resistance, identifying suitable packaging materials, and developing sustainable production strategies. These challenges require further research to fully unlock JA's potential as a valuable crop.
Collapse
Affiliation(s)
- Divya Singh Chauhan
- Department of Food Technology, Raja Balwant Singh Engineering Campus, Agra, Uttar Pradesh, India
| | | | - Ram Prasad Bebartta
- Department of Food Engineering and Bio-Process Technology, Asian Institute of Technology, Pathum Thani, Thailand
| | - Dhruv Thakur
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
6
|
Yang C, Liu L, Cui C, Cai H, Dai Q, Chen G, McClements DJ, Hou R. Towards healthier low-sugar and low-fat beverages: Design, production, and characterization. Food Res Int 2025; 200:115457. [PMID: 39779115 DOI: 10.1016/j.foodres.2024.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Many consumers are adopting low-sugar and low-fat beverages to avoid excessive calories and the negative impact of high trans- and/or saturated fat on health and wellbeing. This article reviews strategies to reduce sugar, fat, and high trans- and/or saturated fat content in beverages while maintaining their desirable physicochemical and sensory attributes. It assesses the impact of various sugar and fat replacers on the aroma, taste, texture, appearance, and nutritional profile of beverages. Combinations of natural sugar replacers and protein or polysaccharide-based fat replacers have shown partial success in mimicking the qualities of sucrose and fat. Future strategies for designing low-sugar and low-fat beverages include developing novel replacers and using odorants to enhance sensory profiles. The article also highlights methods for flavor detection and oral tribology methods, emphasizing their role in development of low-sugar and low-fat beverages. The information presented in this review article is intended to stimulate research into the design of healthier low-sugar and low-fat beverages in the future.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, Zhejiang Province, China
| | - Chuanjian Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qianying Dai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | | | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
7
|
Zhang QY, Lai MQ, Chen YK, Zhong MT, Gi M, Wang Q, Xie XL. Inulin alleviates GenX-induced intestinal injury in mice by modulating the MAPK pathway, cell cycle, and cell adhesion proteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124974. [PMID: 39332800 DOI: 10.1016/j.envpol.2024.124974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
GenX, a substitute for perfluorooctanoic acid, has demonstrated potential enterotoxicity. The enterotoxic effects of GenX and effective interventions need further investigation. In the present study, the mice were administered GenX (2 mg/kg/day) with or without inulin supplementation (5 g/kg/day) for 12 weeks. Histopathological assessments revealed that GenX induced colonic gland atrophy, inflammatory cell infiltration, a reduction in goblet cell numbers, and decreased mucus secretion. Furthermore, a significant decrease in the protein levels of ZO-1, occludin, and claudin-5 indicated compromised barrier integrity. Transcriptomic analysis identified 2645 DEGs, which were mapped to 39 significant pathways. The TGF-β, BMP6, and β-catenin proteins were upregulated in the intestinal mucosa following GenX exposure, indicating activation of the TGF-β pathway. Conversely, the protein expression of PAK3, CyclinD2, contactin1, and Jam2 decreased, indicating disruptions in cell cycle progression and cell adhesion. Inulin cotreatment ameliorated these GenX-induced alterations, partially through modulating the MAPK pathway, as evidenced by the upregulation of the cell cycle and cell adhesion proteins. Collectively, these findings suggested that GenX exposure triggered intestinal injury in mice by activating the TGF-β pathway and disrupting proteins crucial for the cell cycle and cell adhesion, whereas inulin supplementation mitigated this injury by modulating the MAPK pathway.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China.
| |
Collapse
|
8
|
Shen Y, Zhao H, Wang X, Wu S, Wang Y, Wang C, Zhang Y, Zhao H. Unraveling the web of defense: the crucial role of polysaccharides in immunity. Front Immunol 2024; 15:1406213. [PMID: 39524445 PMCID: PMC11543477 DOI: 10.3389/fimmu.2024.1406213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The great potential of polysaccharides in immunological regulation has recently been highlighted in pharmacological and clinical studies. Polysaccharides can trigger immunostimulatory responses through molecular identification, intra- and intercellular communication via direct or indirect interactions with the immune system. Various immunostimulatory polysaccharides or their derivative compounds interacts at cellular level to boost the immune system, including arabinogalactans, fucoidans, mannans, xylans, galactans, hyaluronans, fructans, pectin and arabinogalactans, etc. These natural polysaccharides are derived from various plants, animals and microbes. A unique structural diversity has been identified in polysaccharides, while monosaccharides and glucosidic bonds mainly confer diverse biological activities. These natural polysaccharides improve antioxidant capacity, reduce the production of pro-inflammatory mediators, strengthen the intestinal barrier, influence the composition of intestinal microbial populations and promote the synthesis of short-chain fatty acids. These natural polysaccharides are also known to reduce excessive inflammatory responses. It is crucial to develop polysaccharide-based immunomodulators that could be used to prevent or treat certain diseases. This review highlights the structural features, immunomodulatory properties, underlying immunomodulatory mechanisms of naturally occurring polysaccharides, and activities related to immune effects by elucidating a complex relationship between polysaccharides and immunity. In addition, the future of these molecules as potential immunomodulatory components that could transform pharmaceutical applications at clinical level will also be highlighted.
Collapse
Affiliation(s)
- Yu Shen
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hongbo Zhao
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Xuefeng Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shihao Wu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
9
|
Zhou Z, Sarwar A, Xue R, Hu G, Wu J, Aziz T, Alasmari AF, Yang Z, Yang Z. Metabolomics analysis of potential functional metabolites in synbiotic ice cream made with probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 and prebiotic inulin. Food Chem 2024; 454:139839. [PMID: 38810444 DOI: 10.1016/j.foodchem.2024.139839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Probiotic lactic acid bacteria have been widely studied, but much less was focused on probiotic yeasts in food systems. In this study, probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 was employed to prepare ice cream added with and without inulin (1%, w/v). Metabolomics analysis on the effect of inulin showed 84 and 147 differentially expressed metabolites identified in the ice cream samples from day 1 and day 30 of storage (-18 °C), respectively. Various potential functional metabolites were found, including citric acid, ornithine, D-glucuronic acid, sennoside A, stachyose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, cis-aconitic acid, gamma-aminobutyric acid, L-threonine, L-glutamic acid, tryptophan, benzoic acid, and trehalose. Higher expression of these metabolites suggested their possible roles through relevant metabolic pathways in improving survivability of the probiotic yeast and functionality of ice cream. This study provides further understanding on the metabolic characteristics of probiotic yeast that potentially affect the functionality of ice cream.
Collapse
Affiliation(s)
- Zengjia Zhou
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Abid Sarwar
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Rui Xue
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Gege Hu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingwei Wu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tariq Aziz
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy King, Saud University, Riyadh 11451, Saudi Arabia
| | - Zhennai Yang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 55005, China.
| |
Collapse
|
10
|
Tan X, Xue F, Zhang C, Wang T. mbDriver: identifying driver microbes in microbial communities based on time-series microbiome data. Brief Bioinform 2024; 25:bbae580. [PMID: 39526854 PMCID: PMC11551971 DOI: 10.1093/bib/bbae580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alterations in human microbial communities are intricately linked to the onset and progression of diseases. Identifying the key microbes driving these community changes is crucial, as they may serve as valuable biomarkers for disease prevention, diagnosis, and treatment. However, there remains a need for further research to develop effective methods for addressing this critical task. This is primarily because defining the driver microbe requires consideration not only of each microbe's individual contributions but also their interactions. This paper introduces a novel framework, called mbDriver, for identifying driver microbes based on microbiome abundance data collected at discrete time points. mbDriver comprises three main components: (i) data preprocessing of time-series abundance data using smoothing splines based on the negative binomial distribution, (ii) parameter estimation for the generalized Lotka-Volterra (gLV) model using regularized least squares, and (iii) quantification of each microbe's contribution to the community's steady state by manipulating the causal graph implied by gLV equations. The performance of nonparametric spline-based denoising and regularized least squares estimation is comprehensively evaluated on simulated datasets, demonstrating superiority over existing methods. Furthermore, the practical applicability and effectiveness of mbDriver are showcased using a dietary fiber intervention dataset and an ulcerative colitis dataset. Notably, driver microbes identified in the dietary fiber intervention dataset exhibit significant effects on the abundances of short-chain fatty acids, while those identified in the ulcerative colitis dataset show a significant correlation with metabolism-related pathways.
Collapse
Affiliation(s)
- Xiaoxiu Tan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Feng Xue
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Tao Wang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
11
|
Alonso-Allende J, Milagro FI, Aranaz P. Health Effects and Mechanisms of Inulin Action in Human Metabolism. Nutrients 2024; 16:2935. [PMID: 39275251 PMCID: PMC11397174 DOI: 10.3390/nu16172935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Inulin is a plant polysaccharide which, due to its chemical structure, is not digestible by human gut enzymes but by some bacteria of the human microbiota, acting as a prebiotic. Consequently, inulin consumption has been associated with changes in the composition of the intestinal microbiota related to an improvement of the metabolic state, counteracting different obesity-related disturbances. However, the specific mechanisms of action, including bacterial changes, are not exactly known. Here, a bibliographic review was carried out to study the main effects of inulin on human metabolic health, with a special focus on the mechanisms of action of this prebiotic. Inulin supplementation contributes to body weight and BMI control, reduces blood glucose levels, improves insulin sensitivity, and reduces inflammation markers, mainly through the selective favoring of short-chain fatty acid (SCFA)-producer species from the genera Bifidobacterium and Anaerostipes. These SCFAs have been shown to ameliorate glucose metabolism and decrease hepatic lipogenesis, reduce inflammation, modulate immune activity, and improve anthropometric parameters such as body weight or BMI. In conclusion, the studies collected suggest that inulin intake produces positive metabolic effects through the improvement of the intestinal microbiota and through the metabolites produced by its fermentation.
Collapse
Affiliation(s)
- Jaime Alonso-Allende
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| |
Collapse
|
12
|
Qin YQ, Fan YG, Ren JN, Wang LY, Han NF, Fan G. Structural and functional properties of whey protein isolate-inulin conjugates prepared with ultrasound or wet heating method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7281-7290. [PMID: 38655901 DOI: 10.1002/jsfa.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Whey protein isolate (WPI) generally represents poor functional properties such as thermal stability, emulsifying activity and antioxidant activity near its isoelectric point or high temperatures, which limit its application in the food industry. The preparation of WPI-polysaccharide covalent conjugates based on Maillard reaction is a promising method to improve the physical and chemical stability and functional properties of WPI. In this research, WPI-inulin conjugates were prepared through wet heating method and ultrasound method and their structural and functional properties were examined. RESULTS In conjugates, the free amino acid content was reduced, the high molecular bands were emerged at sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), new C-N bonds were formed in Fourier-transform infrared (FTIR) spectroscopy, and fluorescence intensity was reduced compared with WPI. Furthermore, the result of circular dichroism (CD) spectroscopy also showed that the secondary structure of conjugates was changed. Conjugates with ultrasound treatment had better structural properties compared with those prepared by wet heating treatment. The functional properties such as thermal stability, emulsifying activity index (EAI), emulsion stability (ES) and antioxidant activity of conjugates with wet heating treatment were significantly improved compared with WPI. The EAI and ES of conjugates with ultrasound treatment were the highest, but the thermal stability and antioxidant activity were only close to that of the conjugates with wet heating treatment for 2 h. CONCLUSION This study revealed that WPI-inulin conjugates prepared with ultrasound or wet heating method not only changed the structural characteristics of WPI but also could promote its functional properties including thermal stability, EAI, ES and antioxidant activity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Qing Qin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| | - Yan-Ge Fan
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, China
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| | - Liu-Yan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| | - Nan-Feng Han
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, China
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| |
Collapse
|
13
|
Ozcan BE, Tetik N, Aloglu HS. Polysaccharides from fruit and vegetable wastes and their food applications: A review. Int J Biol Macromol 2024; 276:134007. [PMID: 39032889 DOI: 10.1016/j.ijbiomac.2024.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Fruit and vegetables are a great source of nutrients and have numerous health benefits. The fruit and vegetable industry produces enormous amounts of waste such as peels, seeds, and stems. The amount of this waste production has increased, causing economic and environmental problems. Fruit and vegetable wastes (FVWs) have the potential to be recovered and used to produce high-value goods. Furthermore, FVWs have a large variety and quantity of polysaccharides, which makes them interesting to study for potential industrial use. Currently, the investigations on extracting polysaccharides from FVWs and examining how they affect human health are increasing. The present review focuses on polysaccharides from FVWs such as starch, pectin, cellulose, and inulin, and their various biological activities such as anti-inflammatory, anti-tumor, anti-diabetic, antioxidant, and antimicrobial. Additionally, applications as packaging material, gelling agent, emulsifier, prebiotic, and fat replacer of polysaccharides from FVWs in the food industry have been viewed in detail. As a result, FVWs can be reused as the source of polysaccharides, reducing environmental pollution and enabling sustainable green development. Further investigation of the biological activities of polysaccharides from FVWs on human health is of great importance for using these polysaccharides in food applications.
Collapse
Affiliation(s)
- Basak Ebru Ozcan
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kırklareli 39000, Turkiye.
| | - Nurten Tetik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkiye
| | - Hatice Sanlidere Aloglu
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kırklareli 39000, Turkiye
| |
Collapse
|
14
|
Letourneau J, Neubert BC, Dayal D, Carrion VM, Durand HK, Dallow EP, Jiang S, Kirtley M, Ginsburg GS, Doraiswamy PM, David LA. Weight, habitual fibre intake, and microbiome composition predict tolerance to fructan supplementation. Int J Food Sci Nutr 2024; 75:571-581. [PMID: 38982571 PMCID: PMC11491164 DOI: 10.1080/09637486.2024.2372590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Fructans are commonly used as dietary fibre supplements for their ability to promote the growth of beneficial gut microbes. However, fructan consumption has been associated with various dosage-dependent side effects. We characterised side effects in an exploratory analysis of a randomised trial in healthy adults (n = 40) who consumed 18 g/day inulin or placebo. We found that individuals weighing more or habitually consuming higher fibre exhibited the best tolerance. Furthermore, we identified associations between gut microbiome composition and host tolerance. Specifically, higher levels of Christensenellaceae R-7 group were associated with gastrointestinal discomfort, and a machine-learning-based approach successfully predicted high levels of flatulence, with [Ruminococcus] torques group and (Oscillospiraceae) UCG-002 sp. identified as key predictive taxa. These data reveal trends that can help guide personalised recommendations for initial inulin dosage. Our results support prior ecological findings indicating that fibre supplementation has the greatest impact on individuals whose baseline fibre intake is lowest.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Benjamin C Neubert
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710
| | - Diana Dayal
- School of Medicine, University of North Carolina, Chapel Hill, NC 27516
| | | | - Heather K Durand
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Eric P Dallow
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Michelle Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Geoffrey S Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Duke University Health System, Durham, NC 27710
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - P Murali Doraiswamy
- Duke Center for Applied Genomics and Precision Medicine, Duke University Health System, Durham, NC 27710
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
- Department of Psychiatry, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
15
|
Li X, Jiang B, Gao T, Nian Y, Bai X, Zhong J, Qin L, Gao Z, Wang H, Ma X. Effects of inulin on intestinal flora and metabolism-related indicators in obese polycystic ovary syndrome patients. Eur J Med Res 2024; 29:443. [PMID: 39217395 PMCID: PMC11365155 DOI: 10.1186/s40001-024-02034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
CONTEXT Polycystic ovary syndrome (PCOS), a common endocrine disorder in women of reproductive age, is closely associated with chronic low-grade inflammation and metabolic disturbances. In PCOS mice, dietary inulin has been demonstrated to regulate intestinal flora and inflammation. However, the efficacy of dietary inulin in clinical PCOS remains unclear. OBJECTIVE The intestinal flora and related metabolic indexes of obese patients with polycystic ovary syndrome (PCOS) after 3 months of inulin treatment were analyzed. SETTING AND DESIGN To analyze the intestinal flora and related metabolic indexes in healthy controls and obese patients with polycystic ovary syndrome after 3 months of inulin treatment. RESULTS The results showed that dietary inulin improved sex hormone disorders, reduced BMI and WHR levels in obese women with PCOS. In addition, the inulin intervention reduced plasma TNF-α, IL-1β, IL-6, and MCP-1levels. Inulin intervention increased the abundance of Actinobacteria, Fusobacteria, Lachnospira, and Bifidobacterium, as well as decreased the ratio of F/B and the abundance of proteobacteria, Sutterella, and Enterobacter. Correlation analyses showed a strong relationship among plasma inflammatory factors, sex steroid hormones, and the intestinal flora of patients. CONCLUSIONS Dietary inulin may improve obese PCOS women disease through the gut flora-inflammation-steroid hormone pathway. THE CLINICAL TRIAL REGISTRATION NUMBER ChiCTR-IOR-17012281.
Collapse
Affiliation(s)
- Xiaorong Li
- Center for Reproductive Medicine, General Hospital of Ningxia Medical University, 164, Zhiping Road, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Fertility Maintenance, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Bo Jiang
- Key Laboratory of Fertility Maintenance, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Modernization of Hui Medicine, Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Ting Gao
- Chengdu Integrated, TCM&Western Medicine Hospital, 18, Wanxiang North Road, Chengdu, 610095, Sichuan, China
| | - Yan Nian
- Center for Reproductive Medicine, General Hospital of Ningxia Medical University, 164, Zhiping Road, Yinchuan, 750004, Ningxia, China
| | - Xing Bai
- Key Laboratory of Modernization of Hui Medicine, Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Jiawen Zhong
- Key Laboratory of Fertility Maintenance, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Modernization of Hui Medicine, Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Ling Qin
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Zhengzheng Gao
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Xiaohong Ma
- Center for Reproductive Medicine, General Hospital of Ningxia Medical University, 164, Zhiping Road, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
16
|
Ni D, Zhang S, Huang Z, Liu X, Xu W, Zhang W, Mu W. Multistrategy Engineering of an Inulosucrase to Enhance the Activity and Thermostability for Efficient Production of Microbial Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18100-18109. [PMID: 39090787 DOI: 10.1021/acs.jafc.4c05224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Inulin has found commercial applications in the pharmaceutical, nutraceutical, and food industries due to its beneficial health effects. The enzymatic biosynthesis of microbial inulin has garnered increasing attention. In this study, molecular modification was applied to Lactobacillus mulieris UMB7800 inulosucrase, an enzyme that specifically produces high-molecular weight inulin, to enhance its catalytic activity and thermostability. Among the 18 variable regions, R5 was identified as a crucial region significantly impacting enzymatic activity by replacing it with more conserved sequences. Site-directed mutagenesis combined with saturated mutagenesis revealed that the mutant A250 V increased activity by 68%. Additionally, after screening candidate mutants by rational design, four single-point mutants, S344D, H434P, E526D, and G531P, were shown to enhance thermostability. The final combinational mutant, M5, exhibited a 66% increase in activity and a 5-fold enhancement in half-life at 55 °C. These findings are significant for understanding the catalytic activity and thermostability of inulosucrase and are promising for the development of microbial inulin biosynthesis platforms.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
17
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
18
|
Wang P, Wang S, Wang D, Li Y, Yip RCS, Chen H. Postbiotics-peptidoglycan, lipoteichoic acid, exopolysaccharides, surface layer protein and pili proteins-Structure, activity in wounds and their delivery systems. Int J Biol Macromol 2024; 274:133195. [PMID: 38885869 DOI: 10.1016/j.ijbiomac.2024.133195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Chronic wound healing is a pressing global public health concern. Abuse and drug resistance of antibiotics are the key problems in the treatment of chronic wounds at present. Postbiotics are a novel promising strategy. Previous studies have reported that postbiotics have a wide range of biological activities including antimicrobial, immunomodulatory, antioxidant and anti-inflammatory abilities. However, several aspects related to these postbiotic activities remain unexplored or poorly known. Therefore, this work aims to outline general aspects and emerging trends in the use of postbiotics for wound healing, such as the production, characterization, biological activities and delivery strategies of postbiotics. In this review, a comprehensive overview of the physiological activities and structures of postbiotic biomolecules that contribute to wound healing is provided, such as peptidoglycan, lipoteichoic acid, bacteriocins, exopolysaccharides, surface layer proteins, pili proteins, and secretory proteins (p40 and p75 proteins). Considering the presence of readily degradable components in postbiotics, potential natural polymer delivery materials and delivery systems are emphasized, followed by the potential applications and commercialization prospects of postbiotics. These findings suggest that the treatment of chronic wounds with postbiotic ingredients will help provide new insights into wound healing and better guidance for the development of postbiotic products.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Yuanyuan Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, 411 Tower Road, Ithaca, NY 14853, USA.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| |
Collapse
|
19
|
Zhang Q, Wu W, Guo F, Li J, Jin Y, Cai G, Yang Y. Characteristics of Gut Microbiota and Fecal Metabolites in Patients with Colorectal Cancer-Associated Iron Deficiency Anemia. Microorganisms 2024; 12:1319. [PMID: 39065088 PMCID: PMC11279063 DOI: 10.3390/microorganisms12071319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with colorectal cancer (CRC) have a high prevalence of iron deficiency anemia (IDA), and the gut microbiota is closely related to iron metabolism. We performed metagenomic and metabolomic analyses of stool samples from 558 eligible samples, including IDA CRC patients (IDA, n = 69), non-anemia CRC patients (Non-Anemia, n = 245), and healthy controls (CTRL, n = 244), to explore the dynamically altered gut microbes and their metabolites. Compared with the CTRL group, fecal bacteria in both the IDA group and the Non-Anemia group showed a decrease in alpha diversity and changes in microbial communities. Flavonifractor plautii (F. plautii) increases progressively from CTRL to Non-Anemia to IDA, accompanied by decreased trimethoxyflavanone and a downregulated KO gene, megDIII. In the Non-Anemia group, Parabacteroides showed a specifically elevated abundance positively correlated with enriched 1,25-dihydroxyvitamin D3. The intricate correlations among gut microbiota, metabolites, and KO genes were uncovered and highlighted, implicating an aberrant iron metabolism vulnerable to chronic inflammation during the deterioration of the anemic condition. Furthermore, the amount of F. plautii in feces achieved independent and effective prediction performance for the poor outcome of CRC. Perturbed host-microbe interplays represent a novel prospect for explaining the pathogenesis of CRC-associated IDA. The fecal microbial features also reflect the associations between IDA and elevated CRC recurrence risk.
Collapse
Affiliation(s)
- Qinyuan Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen Wu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fanying Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinming Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Wang Y, Zhao Y, Tang X, Nan X, Jiang L, Wang H, Liu J, Yang L, Yao J, Xiong B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:220-231. [PMID: 38800734 PMCID: PMC11126769 DOI: 10.1016/j.aninu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
Mastitis affects almost all mammals including humans and dairy cows. In the dairy industry, bovine mastitis is a disease with a persistently high incidence, causing serious losses to the health of cows, the quality of dairy products, and the economy of dairy farms. Although local udder infection caused by the invasion of exogenous pathogens into the mammary gland was considered the main cause of mastitis, evidence has been established and continues to grow, showing that nutrition factors and gastrointestinal microbiome (GM) as well as their metabolites are also involved in the development of mammary inflammatory response. Suboptimal nutrition is recognized as a risk factor for increased susceptibility to mastitis in cattle, in particular the negative energy balance. The majority of data regarding nutrition and bovine mastitis involves micronutrients. In addition, the dysbiotic GM can directly trigger or aggravate mastitis through entero-mammary gland pathway. The decreased beneficial commensal bacteria, lowered bacterial diversity, and increased pathogens as well as proinflammatory metabolites are found in both the milk and gastrointestinal tract of mastitic dairy cows. This review discussed the relationship between the nutrition (energy and micronutrient levels) and mastitis, summarized the role of GM and metabolites in regulating mastitis. Meanwhile, several non-antibiotics strategies were provided for the prevention and alleviation of mastitis, including micronutrients, probiotics, short-chain fatty acids, high-fiber diet, inulin, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
21
|
Vega-Sagardía M, Cabezón EC, Delgado J, Ruiz-Moyano S, Garrido D. Screening Microbial Interactions During Inulin Utilization Reveals Strong Competition and Proteomic Changes in Lacticaseibacillus paracasei M38. Probiotics Antimicrob Proteins 2024; 16:993-1011. [PMID: 37227689 PMCID: PMC11126519 DOI: 10.1007/s12602-023-10083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Competition for resources is a common microbial interaction in the gut microbiome. Inulin is a well-studied prebiotic dietary fiber that profoundly shapes gut microbiome composition. Several community members and some probiotics, such as Lacticaseibacillus paracasei, deploy multiple molecular strategies to access fructans. In this work, we screened bacterial interactions during inulin utilization in representative gut microbes. Unidirectional and bidirectional assays were used to evaluate the effects of microbial interactions and global proteomic changes on inulin utilization. Unidirectional assays showed the total or partial consumption of inulin by many gut microbes. Partial consumption was associated with cross-feeding of fructose or short oligosaccharides. However, bidirectional assays showed strong competition from L. paracasei M38 against other gut microbes, reducing the growth and quantity of proteins found in the latter. L. paracasei dominated and outcompeted other inulin utilizers, such as Ligilactobacillus ruminis PT16, Bifidobacterium longum PT4, and Bacteroides fragilis HM714. The importance of strain-specific characteristics of L. paracasei, such as its high fitness for inulin consumption, allows it to be favored for bacterial competence. Proteomic studies indicated an increase in inulin-degrading enzymes in co-cultures, such as β-fructosidase, 6-phosphofructokinase, the PTS D-fructose system, and ABC transporters. These results reveal that intestinal metabolic interactions are strain-dependent and might result in cross-feeding or competition depending on total or partial consumption of inulin. Partial degradation of inulin by certain bacteria favors coexistence. However, when L. paracasei M38 totally degrades the fiber, this does not happen. The synergy of this prebiotic with L. paracasei M38 could determine the predominance in the host as a potential probiotic.
Collapse
Affiliation(s)
- Marco Vega-Sagardía
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Eva Cebrián Cabezón
- Facultad de Veterinaria, Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003, Cáceres, Spain
| | - Josué Delgado
- Facultad de Veterinaria, Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003, Cáceres, Spain
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007, Badajoz, Spain.
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006, Badajoz, Spain.
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
22
|
Melilli MG, Buzzanca C, Di Stefano V. Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review. Carbohydr Polym 2024; 332:121918. [PMID: 38431396 DOI: 10.1016/j.carbpol.2024.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Vegetables, cereals and fruit are foods rich in fibre with beneficial and nutritional effects as their consumption reduces the onset of degenerative diseases, especially cardiovascular ones. Among fibres, inulin, oligofructose or fructooligosaccharide (FOS) are the best-studied. Inulin is a generic term to cover all linear β(2-1) fructans, with a variable degree of polymerization. In this review a better understanding of the importance of the degree of polymerization of inulin as a dietary fibre, functions, health benefits, classifications, types and its applications in the food industry was considered in different fortified foods. Inulin has been used to increase the nutritional and healthy properties of the product as a sweetener and as a substitute for fats and carbohydrates, improving the nutritional value and decreasing the glycemic index, with the advantage of not compromising taste and consistency of the product. Bifidogenic and prebiotic effects of inulin have been well established, inulin-type fructans are fermented by the colon to produce short-chain fatty acids, with important local and systemic actions. Addition of inulin with different degrees of polymerization to daily foods for the production of fortified pasta and bread was reviewed, and the impact on sensorial, technological and organoleptic characteristics even of gluten-free bread was also reported.
Collapse
Affiliation(s)
- Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy.
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy.
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy; National Biodiversity Future Center (NBFC), 90123, Palermo, Italy.
| |
Collapse
|
23
|
Zhang W, Yu L, Yang Q, Zhang J, Wang W, Hu X, Li J, Zheng G. Smilax China L. polysaccharide prevents HFD induced-NAFLD by regulating hepatic fat metabolism and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155478. [PMID: 38452696 DOI: 10.1016/j.phymed.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The increasing incidence of nonalcoholic fatty liver disease (NAFLD) has urged the development of new therapeutics. NAFLD is intimately linked to gut microbiota due to the hepatic portal system, and utilizing natural polysaccharides as prebiotics has become a prospective strategy for preventing NAFLD. Smilax china L. polysaccharide (SCP) possesses excellent hepatoprotective and anti-inflammatory activity. However, its protective effects on NAFLD remains unclear. PURPOSE The goal of this study was to explore the protective effects of SCP on high-fat diet (HFD)-induced NAFLD mice by regulating hepatic fat metabolism and gut microbiota. METHODS Extraction and isolation from Smilax china L. rhizome to obtain SCP. C57BL/6 J mice were distributed to six groups: Control (normal chow diet), HFD-fed mice were assigned to HFD, simvastatin (SVT), and low-, medium-, high-doses of SCP for 12 weeks. The body, liver, and different adipose tissues weights were detected, and lipids in serum and liver were assessed. RT-PCR and Western blot were used to detect the hepatic fat metabolism-related genes and proteins. Gut microbiota of cecum contents was profiled through 16S rRNA gene sequencing. RESULTS SCP effectively reversed HFD-induced increase weights of body, liver, and different adipose tissues. Lipid levels of serum and liver were also significantly reduced after SCP intervention. According to the results of RT-PCR and western blot analysis, SCP treatment up-regulated the genes and proteins related to lipolysis were up-regulated, while lipogenesis-related genes and proteins were down-regulated. Furthermore, the HFD-induced dysbiosis of intestinal microbiota was similarly repaired by SCP intervention, including enriching beneficial bacteria and depleting harmful bacteria. CONCLUSION SCP could effectively prevent HFD-induced NAFLD, might be considered as a prebiotic agent due to its excellent effects on altering hepatic fat metabolism and maintaining gut microbiota homeostasis.
Collapse
Affiliation(s)
- Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Longhui Yu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinru Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinfeng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Wenjing Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xinru Hu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jingen Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
24
|
Li Q, Wang Z, Zhu M, Zhao W, Yu S. Metabolism of Inulin via Difructose Anhydride I Pathway in Microbacterium flavum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9647-9655. [PMID: 38629750 DOI: 10.1021/acs.jafc.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Difructose anhydride I (DFA-I) can be produced from inulin, with DFA-I-forming inulin fructotransferase (IFTase-I). However, the metabolism of inulin through DFA-I remains unclear. To clarify this pathway, several genes of enzymes related to this pathway in the genome of Microbacterium flavum DSM 18909 were synthesized, and the corresponding enzymes were encoded, purified, and investigated in vitro. After inulin is decomposed to DFA-I by IFTase-I, DFA-I is hydrolyzed to inulobiose by DFA-I hydrolase. Inulobiose is then hydrolyzed by β-fructofuranosidase to form fructose. Finally, fructose enters glycolysis through fructokinase. A β-fructofuranosidase (MfFFase1) clears the byproducts (sucrose and fructo-oligosaccharides), which might be partially hydrolyzed by fructan β-(2,1)-fructosidase/1-exohydrolase and another fructofuranosidase (MfFFase2). Exploring the DFA-I pathway of inulin and well-studied enzymes in vitro extends our basic scientific knowledge of the energy-providing way of inulin, thereby paving the way for further investigations in vivo and offering a reference for further nutritional investigation of inulin and DFA-I in the future.
Collapse
Affiliation(s)
- Qiting Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Zhenlong Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Mengyan Zhu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Zhao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Shuhuai Yu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
25
|
Li XW, Qiu F, Liu Y, Yang JZ, Chen LJ, Li JH, Liu JL, Hsu C, Chen L, Zeng JH, Xie XL, Wang Q. Inulin alleviates perinatal 2-ethylhexyl diphenyl phosphate (EHDPHP) exposure-induced intestinal toxicity by reshaping the gut microbiota and suppressing the enteric-origin LPS/TLR4/NF-κb pathway in dams and pups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123659. [PMID: 38417603 DOI: 10.1016/j.envpol.2024.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Organophosphorus flame retardants (OPFRs), such as 2-ethylhexyl diphenyl phosphate (EHDPHP), are ubiquitously used, leading to pervasive environmental contamination and human health risks. While associations between EHDPHP and health issues such as disruption of hormones, neurotoxic effects, and toxicity to reproduction have been recognized, exposure to EHDPHP during perinatal life and its implications for the intestinal health of dams and their pups have largely been unexplored. This study investigated the intestinal toxicity of EHDPHP and the potential for which inulin was effective. Dams were administered either an EHDPHP solution or a corn oil control from gestation day 7 (GD7) to postnatal day 21 (PND21), with inulin provided in their drinking water. Our results indicate that inulin supplementation mitigates damage to the intestinal epithelium caused by EHDPHP, restores mucus-secreting cells, suppresses intestinal hyperpermeability, and abates intestinal inflammation by curtailing lipopolysaccharide leakage through reshaping of the gut microbiota. A reduction in LPS levels concurrently inhibited the inflammation-associated TLR4/NF-κB pathway. In conclusion, inulin administration may ameliorate intestinal toxicity caused by EHDPHP in dams and pups by reshaping the gut microbiota and suppressing the LPS/TLR4/NF-κB pathway. These findings underscore the efficacy of inulin as a therapeutic agent for managing health risks linked to EHDPHP exposure.
Collapse
Affiliation(s)
- Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Feng Qiu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
26
|
Tang Y, Zhu Y, Wang X, Peng H, Wang Z, Yue C, Wang L, Bai Z, Li P, Luo D. Study of the structural characterization, physicochemical properties and antioxidant activities of phosphorylated long-chain inulin with different degrees of substitution. Int J Biol Macromol 2024; 263:130139. [PMID: 38354927 DOI: 10.1016/j.ijbiomac.2024.130139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
In this study, phosphorylated derivatives of long-chain inulin with different substitution degrees were prepared. The synthesized samples were named PFXL-1, PFXL-2, PFXL-3, and PFXL-4 according to their degree of substitution (from low to high). The structures of FXL and PFXL were characterized by infrared spectroscopy and nuclear magnetic resonance spectroscopy, and the results indicated the successful introduction of phosphate groups. FXL and PFXL were composed of two types of sugar, fructose and glucose, with a molar ratio of 0.977:0.023. The SEM results showed that phosphorylation changed the morphology of FXL from an irregular mass to small spherical aggregates. The XRD pattern showed that the crystallinity was reduced by the introduction of phosphate groups. The Mw of FXL was 2649 g/mol, and the Mw of PFXL-4 increased the most (2965 g/mol). Additionally, PFXL was more stable and uniform, and the absolute value of the PFXL potential reached 7.83 mV. Phosphorylation decreased the weight loss rate of FXL and improved the viscoelastic properties and antioxidant activity of FXL. This study presents a method for the modification of FXL, demonstrating that phosphorylation can enhance its physicochemical properties and physiological activity and suggesting its potential as a functional food and quality modifier.
Collapse
Affiliation(s)
- Yu Tang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Zhu
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaojing Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Huainan Peng
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ziyu Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chonghui Yue
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China.
| | - Libo Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Zhouya Bai
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Peiyan Li
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Denglin Luo
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
27
|
Aslan Çİn NN, Açik M, Tertemİz OF, Aktan Ç, Akçali DT, Çakiroğlu FP, Özçelİk AÖ. Effect of prebiotic and probiotic supplementation on reduced pain in patients with fibromyalgia syndrome: a double-blind, placebo-controlled randomized clinical trial. PSYCHOL HEALTH MED 2024; 29:528-541. [PMID: 37224267 DOI: 10.1080/13548506.2023.2216464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
It has recently been observed that microorganisms in the gut can regulate brain processes through the gut microbiota-brain axis, affecting pain, depression, and sleep quality. Consequently, prebiotics and probiotics may potentially improve physical, psychological, and cognitive states in those with fibromyalgia syndrome (FMS) who have an altered microbiota balance. In a randomised, double-blind, placebo-controlled clinical trial to determine the effects of probiotic and prebiotic treatments on pain, sleep, quality of life, and psychological distress (depression and anxiety) in FMS, 53 female participants with FMS were randomised to receive either: 1) 4 × 1010 CFUs per day for the 18 patients in the probiotics group; 2) 10 g dose inulin per day for the 17 patients in the prebiotic group; or 3) a placebo for 8 weeks for the 18 patients in this group. The mean ages of the groups were similar and there was no significant difference between the groups. The impact of FMS on pain, sleep quality, quality of life, anxiety, and depressive symptoms were measured at baseline, 4 weeks, and 8 weeks post-intervention. Probiotic supplementation significantly decreased the Beck Depression Index (BDI), Beck Anxiety Index (BAI), and Pittsburgh Sleep Quality Index (PSQI) scores compared to baseline, while prebiotic supplementation only significantly decreased PSQI scores. Moreover, participants who received probiotic treatment presented a significantly reduced Visual Analogue Scale (VAS) score compared with those who received placebo treatment, after the interventions. Probiotic supplementation significantly improved sleep quality, depression, anxiety, and pain scores compared to those at baseline in FMS patients, while prebiotic supplementation significantly improved pain scores and sleep quality. The potential benefits of using probiotics for treatment management in FMS patients is supported by the results of the current study and might provide an important strategy to combat FMS-associated diseases.
Collapse
Affiliation(s)
- Nazlı Nur Aslan Çİn
- Department of Nutrition and Dietetics, Karadeniz Technical University Faculty of Health Sciences, Trabzon, TURKEY
| | - Murat Açik
- Department of Nutrition and Dietetics, Fırat University Faculty of Health Sciences, Elazığ, TURKEY
| | - Oktay Faysal Tertemİz
- Department of Algology, İzmir Health Sciences University Tepecik Education and Research Hospital, İzmir, TURKEY
| | - Çile Aktan
- Department of Algology, Gazi University Hospital, Ankara, TURKEY
| | | | - Funda Pınar Çakiroğlu
- Department of Nutrition and Dietetics, Ankara University Faculty of Health Sciences, Ankara, TURKEY
| | - Ayşe Özfer Özçelİk
- Department of Nutrition and Dietetics, Ankara University Faculty of Health Sciences, Ankara, TURKEY
| |
Collapse
|
28
|
Lin X, Zhang X, Xu B. Differences in physicochemical, rheological, and prebiotic properties of inulin isolated from five botanical sources and their potential applications. Food Res Int 2024; 180:114048. [PMID: 38395565 DOI: 10.1016/j.foodres.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
This study compares the physicochemical and prebiotic properties of inulin isolated from five botanical sources. The average degree of polymerization (DP) for inulin ranged from 5.00 to 13.33. Notably, inulin from Dahlia tubers (DP = 13) and Platycodonis Radix (DP = 8) demonstrated granular, clustered morphology under SEM, semi-crystalline structures via X-ray diffraction, and exhibited shear-thinning behaviors from shear rate 1 s-1 to 500 s-1. In contrast, inulin from Jerusalem artichoke (DP = 5), chicory root (DP = 7), and Asparagi Radix (DP = 5) showcased rough flake morphologies under SEM, amorphous structures in X-ray patterns, and similar shear-thinning behaviors. All inulin types showed acid stability at pH levels below 2.0, with a reducing sugar conversion ratio (RRS) under 1 %. Furthermore, the isolated inulin from the different sources presented prebiotic capacity when added as a sole carbon source in the culture media of the probiotics Lactobacillus paracasei and Bifidobacterium longum. This study provides the properties of inulin from various sources, thereby offering a reference for the selection of appropriate inulin in industrial applications based on the desired characteristics of the final product.
Collapse
Affiliation(s)
- Xiaojun Lin
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Xuanyi Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
29
|
Sun Y, Zhang S, He H, Chen H, Nie Q, Li S, Cheng J, Zhang B, Zheng Z, Pan S, Huang P, Lian L, Hu J, Nie S. Comprehensive evaluation of the prebiotic properties of Dendrobium officinale polysaccharides, β-glucan, and inulin during in vitro fermentation via multi-omics analysis. Int J Biol Macromol 2023; 253:127326. [PMID: 37820907 DOI: 10.1016/j.ijbiomac.2023.127326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Dietary fiber is crucial for human health mainly due to its impact on gut microbiota structure and metabolites. This study aimed to investigate the impact of Dendrobium officinale polysaccharides (DOP) and two common fibers (β-glucan and inulin) on the gut microbiome structure and metabolic profile in vitro. Fecal samples were obtained from 30 healthy volunteers, which were then individually subjected to fermentation with each type of fiber. The results revealed that all fibers were efficiently degraded by gut microbiota, with DOP exhibiting a slower fermentation rate compared to β-glucan and inulin. The fermentation of all fibers led to a significant increase in the production of short-chain fatty acids (SCFAs) and a reduction in branched-chain fatty acids (BCFAs), sulfides, phenols, and indole. Moreover, the abundance of unclassified Enterobacteriaceae, which was positively correlated with sulfide, phenols, and indole levels, was significantly reduced by all fibers. Additionally, DOP specifically promoted the growth of Parabacteroides, while β-glucan and inulin promoted the growth of Bifidobacterium and Faecalibacterium. Taken together, these findings enhance our understanding of the role of DOP, β-glucan, and inulin in modulating gut microbiota and metabolites, where the fermentation with fecal bacteria from different volunteers could provide valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Huijun He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Haihong Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jiaobo Cheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Baojie Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Zhitian Zheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shijie Pan
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| |
Collapse
|
30
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
31
|
Morais R, Soares PI, Morais SK, Oriente S, Nascimento A, Melo MO, Sousa FM, Cavalcanti-Mata M, Lisboa HM, Gusmão RP, Abrantes T. Development and Characterization of Symbiotic Buffalo Petit Suisse Cheese Utilizing Whey Retention and Inulin Incorporation. Foods 2023; 12:4343. [PMID: 38231859 DOI: 10.3390/foods12234343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
This study presents the development and characterization of a novel buffalo Petit Suisse cheese, enhanced with symbiotic properties through an innovative whey retention method and incorporating inulin and xanthan gum. The research focused on assessing the cheese's physicochemical properties, shelf life, lactic acid bacteria viability, syneresis behavior, and the impact of varying concentrations of functional ingredients. The addition of inulin and xanthan gum, following a design of experiments, significantly influenced the cheese's texture and consistency. Higher inulin concentrations were associated with increased fermentation activity, as indicated by total titratable acidity, which showed an increase from 1.22% to 1.50% over a 28-day period, and pH levels that decreased from 3.33 to 2.96. The syneresis index varied across trials, with the highest reduction observed in trials with increased xanthan gum concentrations, effectively reducing syneresis to 0%. Lactic acid bacteria viability also showed notable variations, with the highest cell survival percentage reaching 107.89% in formulations with higher inulin and xanthan gum concentrations. These results underscore the importance of inulin and xanthan gum in enhancing the cheese's microbial stability and textural quality. The study concludes that the strategic use of inulin and xanthan gum improves the nutritional profile of buffalo Petit Suisse cheese and optimizes its textural and sensory attributes.
Collapse
Affiliation(s)
- Rebeca Morais
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Pedro Ivo Soares
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Sinthya Kelly Morais
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Suelma Oriente
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Amanda Nascimento
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Mylena Olga Melo
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Francisca Moises Sousa
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Mario Cavalcanti-Mata
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Hugo M Lisboa
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Rennan Pereira Gusmão
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Thaisa Abrantes
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| |
Collapse
|
32
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023; 65:575-611. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
33
|
Wang C, Lan T, Chen Z, Wang X, Han Y, Yang N, Xu Z, Li H, Tao M, Song Y. The preventive effects of inulin, cellulose, and their mixture on colorectal cancer liver metastasis in mice by regulating gut microbiota. J Food Sci 2023; 88:4705-4717. [PMID: 37815692 DOI: 10.1111/1750-3841.16772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Abstract
Many studies have found that dietary fiber can protect against colorectal cancer (CRC). Survival in CRC patients is significantly reduced due to metastasis. However, little is known regarding the impact of dietary fiber on the CRC metastasis. In this study, we analyzed the effects of inulin, cellulose, and their mixture on CRC metastasis in a murine orthotopic transplantation model. BALB/C male mice were divided into the normal control (NC) (AIN-93 M diet), MOD (AIN-93 M diet), INU (10% w/w inulin), CEL (10% w/w cellulose), and MIX (5% w/w inulin + 5% w/w cellulose) groups. Dietary fiber intake inhibited the weights of the orthotopic tumors, liver weights, and liver metastasis area (p < 0.05) and improved the survival rate of tumor-bearing mice. Compared to the NC, the expression of β-catenin and the epithelial marker E-cadherin were lower, and that of mesenchymal markers, such as N-cadherin, MMP-9, and VEGF, were higher in the MOD group. All inulin, cellulose, and their mixture restored the gut microbiota diversity, and they, respectively, increased the relative abundance of Bifidobacteriales, Lactobacillus, and Lachnospiraceae. Inulin restored the levels of acetic acid, propionic acid, isobutyric acid, and butyric acid. Spearman correlation analysis results showed that there was a positive correlation between five genera and six short-chain fatty acids (SCFAs) (adjusted p < 0.05). In conclusion, all inulin, cellulose, and their mixture have inhibitory effects on CRC metastasis, which may be achieved by the regulation of gut microbiota, the production of SCFAs, and the inhibition of the epithelial-to-mesenchymal transition process. Among the three dietary fiber intervention groups, the inhibitory effect of inulin is more significant.
Collapse
Affiliation(s)
- Chuhui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Xiaowen Wang
- Qingdao Institute for Food and Drug Control, National Medical Products Administration, Qingdao, China
| | - Yisa Han
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Ning Yang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Meng Tao
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Liang C, Fu R, Chen D, Tian G, He J, Zheng P, Mao X, Yu B. Effects of mixed fibres and essential oils blend on growth performance and intestinal barrier function of piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Physiol Anim Nutr (Berl) 2023; 107:1356-1367. [PMID: 37555469 DOI: 10.1111/jpn.13866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
This study was to evaluate the effects of supplementing mixed dietary fibres (MDF) and essential oils blend (EOB) either alone or in combination on growth performance and intestinal barrier function in weaned piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). Forty-two piglets (28 days old) were randomly allocated into six treatments in a 25-day experiment, and fed the basal diet (CON or ETEC) either with antibiotics (AT), MDF, EOB or MDF + EOB. On Day 22 of the experiment, pigs in CON and challenged groups (ETEC, AT, MDF, EOB and MDF + EOB) were orally administered sterile saline and ETEC containing 6 × 1010 CFU/kg body weight respectively. On Day 26, all pigs were euthanized to collect samples. Before ETEC challenge, piglets in MDF and EOB had lower diarrhoea incidence (p < 0.01) than others. After ETEC challenge, piglets in ETEC had lower average daily gain and higher diarrhoea incidence (p < 0.05) than those of CON. Furthermore, compared to CON, ETEC group increased the serum lipopolysaccharide concentration and diamine oxidase activity, and decreased mRNA levels of genes relating to barrier function (aquaporin 3, AQP3; mucin1, MUC1; zonula occludens-1, ZO-1; Occludin), and increased the concentration of cytokines (interleukin-1β/4/6/10, IL-1β/4/6/10) and secretory immunoglobulin A (sIgA) in jejunal mucosa (p < 0.05). However, these deleterious effects induced by ETEC were partly alleviated by MDF, EOB, MDF + EOB and AT. Additionally, compared to ETEC group, MDF increased Bifidobacterium abundance in cecal digesta and butyrate concentration in colonic digesta (p < 0.05). Also, EOB improved propionate concentration in cecal digesta, and MDF + EOB decreased IL-10 concentration in jejunal mucosa (p < 0.05) compared with ETEC. Conclusively, MDF and EOB either alone or in combination can improve growth performance and alleviate diarrhoea via improving intestinal barrier function of piglets after ETEC challenge, and all may serve as potential alternatives to AT for piglets.
Collapse
Affiliation(s)
- Chan Liang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Runqi Fu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Li XW, Qiu F, Liu Y, Chen LJ, Li JH, Liu JL, Yang JZ, Hsu C, Chen L, Zeng JH, Xie XL, Wang Q. Inulin alleviates neuroinflammation and oxidative stress induced by perinatal 2-ethylhexyl diphenyl phosphate (EHDPHP) exposure in female mice and offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115396. [PMID: 37625336 DOI: 10.1016/j.ecoenv.2023.115396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Organophosphorus flame retardants (OPFRs), including 2-ethylhexyl diphenyl phosphate (EHDPHP), are prevalent in everyday life due to their broad usage in fields such as healthcare, electronics, industry, and sports. These compounds, added to polymers through physical mixing, can leach into the environment, posing a risk to humans through direct contact or the food chain. Despite known associations with health issues like endocrine disruption, neurotoxicity, and reproductive toxicity, the implications of perinatal EHDPHP exposure on both mothers and offspring are still unclear. This study aimed to investigate the neuroinflammatory effects of EHDPHP and the potential mitigating role of inulin. Pregnant C57 mice were administered either a corn oil control or an EHDPHP solution (300 μg/kg bw/d) from gestation day 7 (GD7) to postnatal day 21 (PND21). Concurrently, mice were provided either regular drinking water or water supplemented with 1% inulin. We found that EHDPHP significantly increased the serum levels of IL-1β, IL-6, and MDA, but decreased SOD levels in both mothers and pups. These effects were reversed by inulin supplementation. RNA-sequencing revealed that EHDPHP induced inflammation and oxidative stress through the TLR4/NF-κB pathway, which was mitigated by inulin. In conclusion, inulin ameliorated EHDPHP-induced neuroinflammation and oxidative stress in both mothers and offspring, highlighting its potential therapeutic role.
Collapse
Affiliation(s)
- Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feng Qiu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China.
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
36
|
Shi Y, Si D, Zhang X, Chen D, Han Z. Plant fructans: Recent advances in metabolism, evolution aspects and applications for human health. Curr Res Food Sci 2023; 7:100595. [PMID: 37744554 PMCID: PMC10517269 DOI: 10.1016/j.crfs.2023.100595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
Fructans, fructose polymers, are one of the three major reserve carbohydrate in plants. The nutritional and therapeutic benefits of natural fructans in plants have attracted increasing interest by consumers and food industry. In the course of evolution, many plants have developed the ability of regulating plant fructans metabolism to produce fructans with different structures and chain lengths, which are strongly correlated with their survival in harsh environments. Exploring these evolution-related genes in fructans biosynthesis and de novo domestication of fructans-rich plants based on genome editing is a viable and promising approach to improve human dietary quality and reduce the risk of chronic disease. These advances will greatly facilitate breeding and production of tailor-made fructans as a healthy food ingredient from wild plants such as huangjing (Polygonatum cyrtonema). The purpose of this review is to broaden our knowledge on plant fructans biosynthesis, evolution and benefits to human health.
Collapse
Affiliation(s)
| | | | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
37
|
Wang L, Wang Z, Lan Y, Tuo Y, Ma S, Liu X. Inulin Attenuates Blood-Brain Barrier Permeability and Alleviates Behavioral Disorders by Modulating the TLR4/MyD88/NF-κB Pathway in Mice with Chronic Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13325-13337. [PMID: 37642581 DOI: 10.1021/acs.jafc.3c03568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Depression and vulnerability to chronic stress are associated with inflammatory responses and the loss of blood-brain barrier (BBB) integrity. Dietary fiber and its short-chain fatty acid (SCFAs) metabolites have been reported to affect neuropsychiatric disorders. Here, a 9-week treatment course of inulin (0.037 g of inulin/kcal) exhibited in chronic unpredictable mild stress (CUMS) mice led to antidepressant and anxiolytic effects, as well as improved neurogenesis and synaptic plasticity by enhancing CREB/BDNF signaling. Importantly, inulin inhibited CUMS-induced decreased BBB permeability, reduced lipopolysaccharide (LPS) brain penetration, and modulated TLR4/MyD88/NF-κB signaling to alleviate neuroinflammatory responses. Furthermore, inulin protected the gut barrier integrity and led to the increased formation of SCFAs. Enhanced SCFAs formation was strongly positively correlated with behavioral improvements, BBB integrity, and neuroinflammatory responses. We speculate that dietary fiber may be a promising nutritional intervention to reverse the effects of chronic stress by regulating metabolites and protecting the BBB integrity.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning 810016, China
| | - Yanliang Tuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
38
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
39
|
Arab M, Yousefi M, Khanniri E, Azari M, Ghasemzadeh-Mohammadi V, Mollakhalili-Meybodi N. A comprehensive review on yogurt syneresis: effect of processing conditions and added additives. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1656-1665. [PMID: 37187980 PMCID: PMC10169984 DOI: 10.1007/s13197-022-05403-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/23/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Yogurt, produced by the lactic fermentation of milk base, is an important dairy product worldwide. One of the essential sensory properties of yogurt is the texture, and some textural defects such as weak gel firmness and syneresis likely occur in various types of yogurts, affecting consumer acceptance. In this regard, various strategies such as enrichment of milk-based with different additives and ingredients such as protein-based components (skimmed milk powder (SMP), whey protein-based powders (WP), casein-based powders (CP), and suitable stabilizers, as well as modification of processing conditions (homogenization, fermentation, and cooling), can be applied in order to reduce syneresis. The most effective proteins and stabilizers in syneresis reduction are CP and gelatin, respectively. Furthermore, yogurt's water holding capacity and syneresis can be affected by the type of starter cultures, the protolithic activity, production of extracellular polysaccharides, and inoculation rate. Moreover, optimizing the heat treatment process (85 °C/30 min and 95 °C/5 min), homogenization (single or dual-stage), incubation temperature (around 40 °C), and two-step cooling process can decrease yogurt syneresis. This review is aimed to investigate the effect of fortification of the milk base with various additives and optimization of process conditions on improving texture and preventing syneresis in yogurt.
Collapse
Affiliation(s)
- Masoumeh Arab
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Elham Khanniri
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azari
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Ghasemzadeh-Mohammadi
- Department of Nutrition and Food Safety, School of Medicine, Hamadan University of Medical Sciences, P.O.Box 65176-19654, Hamadan, Iran
| | - Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
40
|
Kang M, Jung JH, Kim JY, Hong SH, Her Y. Therapeutic and Preventive Effect of Orally Administered Prebiotics on Atopic Dermatitis in a Mouse Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:303-315. [PMID: 37075794 DOI: 10.4168/aair.2023.15.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 05/17/2023]
Abstract
PURPOSE Recently, interest is increasing in using prebiotics, which are nutrient ingredients of live microorganism that improve the intestinal environments by promoting the growth of beneficial gut microflora. Although numerous studies have demonstrated the beneficial effects of probiotics on atopic dermatitis (AD) development, few have examined preventive and therapeutic effects of prebiotics on the onset and progression of AD. METHODS In this study, we investigated therapeutic and preventive effect of prebiotics, including β-glucan and inulin, using an oxazolone (OX)-induced AD-like mouse model. Prebiotics were orally administered 2 weeks after the end of sensitization period (therapeutic study) and 3 weeks before the initial sensitization (prevention study). The physiological and histological alterations in the skin and gut of the mice were investigated. RESULTS In the therapeutic study, the severity of skin lesions and inflammatory responses were effectively reduced after administering β-glucan and inulin, respectively. The expression level of calprotectin was significantly decreased by approximately 2-fold (P < 0.05) in the skin and gut of prebiotics-treated mice compared to the control. In addition, epidermal thickness and the number of infiltrated immune cells were markedly reduced in the dermis of prebiotics-treated mice compared <strike>with</strike> to those in the OX-induced mice (P < 0.05). These findings were same as in the prevention study. Importantly, pre-administration of β-glucan and inulin prevented the progression of AD by promoting the growth of good bacteria in the gut of OX-induced AD mice. However, the co-administration of β-glucan and inulin did not show enhanced preventive effects on these alterations. CONCLUSIONS Prebiotics has a therapeutic effect on AD in OX-induced AD mouse model. Moreover, our study suggests that prebiotics prevents the development of AD and this effect is associated with a change in gut microbiome.
Collapse
Affiliation(s)
- Minje Kang
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea.
| | - Young Her
- Department of Dermatology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Korea.
| |
Collapse
|
41
|
Corrêa RO, Castro PR, Fachi JL, Nirello VD, El-Sahhar S, Imada S, Pereira GV, Pral LP, Araújo NVP, Fernandes MF, Matheus VA, de Souza Felipe J, Dos Santos Pereira Gomes AB, de Oliveira S, de Rezende Rodovalho V, de Oliveira SRM, de Assis HC, Oliveira SC, Dos Santos Martins F, Martens E, Colonna M, Varga-Weisz P, Vinolo MAR. Inulin diet uncovers complex diet-microbiota-immune cell interactions remodeling the gut epithelium. MICROBIOME 2023; 11:90. [PMID: 37101209 PMCID: PMC10131329 DOI: 10.1186/s40168-023-01520-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/16/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND The continuous proliferation of intestinal stem cells followed by their tightly regulated differentiation to epithelial cells is essential for the maintenance of the gut epithelial barrier and its functions. How these processes are tuned by diet and gut microbiome is an important, but poorly understood question. Dietary soluble fibers, such as inulin, are known for their ability to impact the gut bacterial community and gut epithelium, and their consumption has been usually associated with health improvement in mice and humans. In this study, we tested the hypothesis that inulin consumption modifies the composition of colonic bacteria and this impacts intestinal stem cells functions, thus affecting the epithelial structure. METHODS Mice were fed with a diet containing 5% of the insoluble fiber cellulose or the same diet enriched with an additional 10% of inulin. Using a combination of histochemistry, host cell transcriptomics, 16S microbiome analysis, germ-free, gnotobiotic, and genetically modified mouse models, we analyzed the impact of inulin intake on the colonic epithelium, intestinal bacteria, and the local immune compartment. RESULTS We show that the consumption of inulin diet alters the colon epithelium by increasing the proliferation of intestinal stem cells, leading to deeper crypts and longer colons. This effect was dependent on the inulin-altered gut microbiota, as no modulations were observed in animals deprived of microbiota, nor in mice fed cellulose-enriched diets. We also describe the pivotal role of γδ T lymphocytes and IL-22 in this microenvironment, as the inulin diet failed to induce epithelium remodeling in mice lacking this T cell population or cytokine, highlighting their importance in the diet-microbiota-epithelium-immune system crosstalk. CONCLUSION This study indicates that the intake of inulin affects the activity of intestinal stem cells and drives a homeostatic remodeling of the colon epithelium, an effect that requires the gut microbiota, γδ T cells, and the presence of IL-22. Our study indicates complex cross kingdom and cross cell type interactions involved in the adaptation of the colon epithelium to the luminal environment in steady state. Video Abstract.
Collapse
Affiliation(s)
- Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA.
| | - Pollyana Ribeiro Castro
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - José Luís Fachi
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Vinícius Dias Nirello
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Salma El-Sahhar
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Shinya Imada
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Gabriel Vasconcelos Pereira
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laís Passariello Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Nathália Vitoria Pereira Araújo
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Valquíria Aparecida Matheus
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Jaqueline de Souza Felipe
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Arilson Bernardo Dos Santos Pereira Gomes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Vinícius de Rezende Rodovalho
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Samantha Roberta Machado de Oliveira
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Helder Carvalho de Assis
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Flaviano Dos Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eric Martens
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Patrick Varga-Weisz
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- São Paulo Excellence Chair, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster, Campinas, SP, 13083-862, Brazil.
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, 13083-864, Brazil.
| |
Collapse
|
42
|
Cai M, Zhu H, Xu L, Wang J, Xu J, Li Z, Yang K, Wu J, Sun P. Structure, anti-fatigue activity and regulation on gut microflora in vivo of ethanol-fractional polysaccharides from Dendrobium officinale. Int J Biol Macromol 2023; 234:123572. [PMID: 36754265 DOI: 10.1016/j.ijbiomac.2023.123572] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
This study was to investigate the antifatigue, prebiotic effects and their relationships to the structure properties of three ethanol precipitated polysaccharides from Dendrobium officinale (EPDO), as EPDO-40, EPDO-60 and EPDO-80. EPDOs with anti-fatigue activity were screened out by forced swimming test, and blood lactic acid (BLA), blood urea nitrogen (BUN), superoxide dismutase (SOD), liver glycogen, muscle glycogen, and intestinal microflora were investigated. Results showed that purified EPDO-60, 277.3 kDa, with a backbone consisted of 4-Manp and 4-Glcp. EPDO-60 had the best anti-fatigue activity, because it could significantly prolong the forced swimming time, as well as down-regulating the levels of BLA and BUN, increasing SOD. Proportions of Bacteroidetes and Firmicutes and abundance of Lactobacillus and Bifidobacterium in gut microflora increased after treated with EPDO-60. Accordingly, EPDO-60 could affect the community structure of gut microflora, leading to promote the balance of oxidation and antioxidation, and accelerated the fatigue metabolism in vivo.
Collapse
Affiliation(s)
- Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| | - Hua Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Lei Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jian Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jing Xu
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jianyong Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| |
Collapse
|
43
|
Djekkoun N, Depeint F, Guibourdenche M, Sabbouri HEKE, Corona A, Rhazi L, Gay-Queheillard J, Rouabah L, Biendo M, Al-Salameh A, Lalau JD, Bach V, Khorsi-Cauet H. Perigestational exposure of a combination of a high-fat diet and pesticide impacts the metabolic and microbiotic status of dams and pups; a preventive strategy based on prebiotics. Eur J Nutr 2023; 62:1253-1265. [PMID: 36510012 DOI: 10.1007/s00394-022-03063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Metabolic changes during the perinatal period are known to promote obesity and type-2 diabetes in adulthood via perturbation of the microbiota. The risk factors for metabolic disorders include a high-fat diet (HFD) and exposure to pesticide residues. The objective of the present study was to evaluate the effects of perigestational exposure to a HFD and chlorpyrifos (CPF) on glycemia, lipid profiles, and microbial populations in Wistar dams and their female offspring. We also tested a preventive strategy based on treatment with the prebiotic inulin. METHODS From 4 months before gestation to the end of the lactation period, six groups of dams were exposed to either a standard diet, a HFD alone, CPF alone, a combination of a HFD and CPF, and/or inulin supplementation. All female offspring were fed a standard diet from weaning to adulthood. We measured the impacts of these exposures on glycemia, the lipid profile, and the microbiota (composition, metabolite production, and translocation into tissues). RESULTS HFD exposure and CPF + HFD co-exposure induced dysmetabolism and an imbalance in the gut flora in both the dams and the female offspring. Inulin mitigated the impact of exposure to a HFD alone but not that of CPF + HFD co-exposure. CONCLUSION Our results provide a better understanding of the complex interactions between environmental pollutants and diet in early life, including in the context of metabolic diseases.
Collapse
Affiliation(s)
- Narimane Djekkoun
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
- Laboratoire de Biologie Cellulaire Et Moléculaire, Mentouri Brothers University of Constantine 1, 2500, Constantine, Algeria
| | - Flore Depeint
- Transformations Et Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle - Université d'Artois, 60026, Beauvais, France
| | - Marion Guibourdenche
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Hiba El Khayat Et Sabbouri
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Aurélie Corona
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Larbi Rhazi
- Transformations Et Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle - Université d'Artois, 60026, Beauvais, France
| | - Jerome Gay-Queheillard
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Leila Rouabah
- Laboratoire de Biologie Cellulaire Et Moléculaire, Mentouri Brothers University of Constantine 1, 2500, Constantine, Algeria
| | - Maurice Biendo
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Abdallah Al-Salameh
- Service Endocrinologie-Diabétologie et Nutrition, CHU Amiens-Picardie, 80000, Amiens, France
| | - Jean-Daniel Lalau
- Service Endocrinologie-Diabétologie et Nutrition, CHU Amiens-Picardie, 80000, Amiens, France
| | - Véronique Bach
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Hafida Khorsi-Cauet
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France.
| |
Collapse
|
44
|
Corrêa RO, Cerf-Bensussan N. Can Psyllium Alleviate Colitis? Cell Mol Gastroenterol Hepatol 2023; 15:1530-1532. [PMID: 36924798 DOI: 10.1016/j.jcmgh.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Affiliation(s)
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Imagine Institute INSERM 1163, Laboratory of Intestinal Immunity, Paris, France.
| |
Collapse
|
45
|
Qin YQ, Wang LY, Yang XY, Xu YJ, Fan G, Fan YG, Ren JN, An Q, Li X. Inulin: properties and health benefits. Food Funct 2023; 14:2948-2968. [PMID: 36876591 DOI: 10.1039/d2fo01096h] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Inulin, a soluble dietary fiber, is widely found in more than 36 000 plant species as a reserve polysaccharide. The primary sources of inulin, include Jerusalem artichoke, chicory, onion, garlic, barley, and dahlia, among which Jerusalem artichoke tubers and chicory roots are often used as raw materials for inulin production in the food industry. It is universally acknowledged that inulin as a prebiotic has an outstanding effect on the regulation of intestinal microbiota via stimulating the growth of beneficial bacteria. In addition, inulin also exhibits excellent health benefits in regulating lipid metabolism, weight loss, lowering blood sugar, inhibiting the expression of inflammatory factors, reducing the risk of colon cancer, enhancing mineral absorption, improving constipation, and relieving depression. In this review paper, we attempt to present an exhaustive overview of the function and health benefits of inulin.
Collapse
Affiliation(s)
- Yu-Qing Qin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Liu-Yan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xin-Yu Yang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yi-Jie Xu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yan-Ge Fan
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
46
|
Dotsenko A, Denisenko J, Zorov I, Wasserman L, Semenova M, Korolev A, Rozhkova A, Sinitsyn A. Single substitution in α-helix of active center enhanced thermostability of Aspergillus awamori exo-inulinase. J Mol Graph Model 2023; 119:108381. [PMID: 36473387 DOI: 10.1016/j.jmgm.2022.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Exo-inulinases are applied in inulin hydrolysis and production of feed additives and need to be stable at temperatures of 60-95 °C. Aspergillus awamori exo-inulinase Inu1 is considerably thermostable, with a Tm of 73.2 °C. However, the thermostability of the enzyme should be improved. A single substitution G338A in α-helix in the active center of the enzyme provided a 3.5 °C improvement in Tm. The time of half-life at 70 °C and 80 °C was increased in 5.7- and 2.7-times, respectively, compared to wild-type. Molecular dynamics simulations demonstrated that the substitution G338A caused a decrease in RMSF not only for the α-helix 337-YAANI-341, but also for the catalytically active residues D41 and E241 and the amino acid residues forming the cleft of the active center. Calculations with Constraint Network Analysis for the variant G338A showed the increase in the stability of intramolecular clusters.
Collapse
Affiliation(s)
- Anna Dotsenko
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Jury Denisenko
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Ivan Zorov
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Luybov Wasserman
- Emanuel Institute of Biochemical Physics RAS, Moscow, 119334, Russia.
| | - Margarita Semenova
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Andrei Korolev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Aleksandra Rozhkova
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Arkady Sinitsyn
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
47
|
Chen N, Liu Y, Wei S, Zong X, Zhou G, Lu Z, Wang F, Wang Y, Jin M. Dynamic changes of inulin utilization associated with longitudinal development of gut microbiota. Int J Biol Macromol 2023; 229:952-963. [PMID: 36596372 DOI: 10.1016/j.ijbiomac.2022.12.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Inulin is a typical kind of fermentable polysaccharide and has emerged as a promising dietary supplement due to its multiple health-promoting effects. This study aimed to unveil the dynamic change pattern of inulin utilizability as a fermentation substrate during gut microbiota development and illuminate its potential association with gut microbiota in Chinese Jinhua native pig models via longitudinal analyses. Herein, fresh feces were collected at one week pre- and post-weaning as well as 3rd month post-weaning, respectively. Targeted metabolomics and in vitro simulated fermentation revealed increasing concentrations of fecal short-chain fatty acids (SCFAs) and elevating utilizability of inulin as a fermentation substrate. Microbiomic analyses demonstrated the conspicuous longitudinal alteration in gut microbial composition and a significant rise in microbial community diversity during gut microbiota development. Furthermore, gut microbial functional analyses showed a remarkable increase in the relative abundances of carbohydrate metabolism pathways, including pentose phosphate pathway, galactose metabolism pathway, butanoate metabolism pathway as well as fructose and mannose metabolism pathway. Notably, relative abundances of bacterial genera Bifidobacterium, Roseburia, Faecalibacterium and Enterococcus displayed significantly positive correlations with the production of microbial fermentation-derived SCFAs. Collectively, these findings offer novel insights into understanding inulin utilizability variations from the perspective of gut microbiota development.
Collapse
Affiliation(s)
- Nana Chen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yalin Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Siyu Wei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Guilian Zhou
- Weifang Newhope Liuhe Feed Technology Co. Ltd, Weifang 261000, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
48
|
Dimov I, Mollova D, Vasileva T, Bivolarski V, Nikolova M, Bivolarska A, Iliev I. Metabolic profiling of probiotic strain Lactobacillus delbrueckii subsp. bulgaricus L14 cultivated in presence of prebiotic oligosaccharides and polysaccharides in simulating in vitro gastrointestinal tract system. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2023.2178825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Affiliation(s)
- Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Daniela Mollova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| |
Collapse
|
49
|
Ruskovska T, Konic-Ristic A, Mazur A, Milenkovic D. Molecular mechanisms underlying hypertensive effect of fructose and the preventive properties of inulin - Global transcriptomic analysis in rat aorta. Nutr Metab Cardiovasc Dis 2023; 33:441-456. [PMID: 36604264 DOI: 10.1016/j.numecd.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND AIMS Excessive intake of fructose is a significant contributor in the development of hypertension and pathogenesis of cardiometabolic diseases. We previously showed that dietary inulin can prevent fructose-induced hypertension in rats. Nevertheless, molecular mechanisms of both fructose and inulin in aorta remain unknown. The aim of this study was to identify global transcriptomic changes in aorta in rats on fructose-based diet or partial substitution of dietary fructose with inulin. METHODS AND RESULTS At the end of study periods, aortas were isolated, RNA extracted, and transcriptomics performed using microarrays followed by in-dept bioinformatic analyses. We observed that fructose-based diet affected the expression of over 1700 genes involved in the regulation of vascular functions, cell signaling, and cellular metabolism. Partial substitution of dietary fructose with inulin affected the expression of over 1300 genes regulating endothelial and vascular functions, including relaxin signaling pathway, immune/inflammatory response, or cellular metabolism. Bioinformatic analyses revealed transcription factors, such as Junb or Nr4a2, and miRNAs, such as miR-206, miR-137 or miR-375, as potential transcriptional and post-transcriptional regulators of identified differentially expressed genes. Genes identified following both diets are associated with development of cardiovascular diseases, hypertension, immune system diseases and metabolic diseases. Moreover, a negative correlation between the expression profiles obtained by fructose-based diet and that by partial substitution of dietary fructose with inulin was observed. CONCLUSION Our study showed that fructose can significantly impact global transcriptomic profile in aorta, changes that can be counteracted by inulin and which present relevant molecular mechanisms underlying its anti-hypertensive property.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia
| | | | - Andrzej Mazur
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
50
|
Physicochemical characterization of a functional chestnut sweet cream enriched with carotenoids and fiber. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|