1
|
Nakazawa S, Furuya Y, Sakai K, Fukai K, Sano K, Hoshi K, Kojimahara N, Toyota A, Korenaga M, Tatemichi M. Association among occupational class, alcohol consumption, and the risk of hospitalisations due to alcoholic liver diseases: a matched case-control study. BMC Public Health 2025; 25:1445. [PMID: 40247308 PMCID: PMC12004761 DOI: 10.1186/s12889-025-22715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND This study aimed to identify the occupational class and specific occupations associated with hospitalisations due to alcohol-related liver disease and alcoholic liver cirrhosis, based on the distribution of alcohol consumption. METHODS This matched case-control study used a nationwide, multicentre, inpatient dataset from the Inpatient Clinico-Occupational Database of the Rosai Hospital Group in Japan. A total of 5,490 cases with alcohol-related liver disease and 10,961 controls were included in this study. Participants were categorised according to occupational class (blue-collar, service, professional, and manager) and industrial sector (blue-collar, service, and white-collar). Professionals in white-collar industries were set as the reference group. We calculated the odds ratios (ORs) and confidence intervals (CIs) of alcohol-related liver disease and alcoholic liver cirrhosis using conditional logistic regression models. RESULTS Blue-collar workers and service workers in both the service and blue-collar industries had a higher risk of hospitalisations due to alcohol-related liver disease: The ORs (95% CIs) for alcohol-related liver disease were 1.33 (1.15-1.55) for blue-collar workers in the blue-collar industry, 1.21 (1.03-1.42) for service workers in the blue-collar industry, 1.23 (1.01-1.51) for blue-collar workers in the service industry, and 1.47 (1.25-1.72) for service workers in the service industry. Among service workers, food and drink preparatory workers and customer service workers had a higher risk of hospitalisations due to alcohol-related liver disease and alcoholic liver cirrhosis compared to professionals (reference group), with ORs of 2.28 (1.81-2.89) and 2.18 (1.64-2.89), respectively, for alcohol-related liver disease. Among blue-collar workers, skeleton construction workers had a higher risk of hospitalisations due to alcohol-related liver disease, with an OR of 2.31 (1.63-3.3). Workers in occupations with a high risk of hospitalisations due to alcohol-related liver disease had higher percentages of alcohol consumption compared to professionals. CONCLUSIONS Occupational class and specific jobs were associated with the risk of hospitalisations due to alcohol-related liver disease and alcoholic liver cirrhosis, with alcohol consumption patterns contributing to this increased risk.
Collapse
Affiliation(s)
- Shoko Nakazawa
- Department of Preventive Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yuko Furuya
- Department of Preventive Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kosuke Sakai
- Department of Preventive Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kota Fukai
- Department of Preventive Medicine, Tokai University School of Medicine, Isehara, Japan.
| | - Kei Sano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Keika Hoshi
- Center for Health Informatics Policy, National Institute of Public Health, Wako, Japan
- Department of Hygiene, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Noriko Kojimahara
- Department of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Akihiro Toyota
- Chugoku Rosai Hospital Research Center for the Promotion of Health and Employment Support, Japan Organization of Occupational Health and Safety, Hiroshima, Japan
| | - Masaaki Korenaga
- Hepatitis Information Center, The Research Center for Hepatitis and Immunology, National Institute of Global Health and Medicine, Japan Institute for Health Security, Ichikawa, Japan
| | - Masayuki Tatemichi
- Department of Preventive Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
2
|
Li G, Liu B, Yang H, Zhang D, Wang S, Zhang Z, Zhao Z, Zhang Y, Zhou H, Wang Y. Omega-3 polyunsaturated fatty acids alleviate renal fibrosis in chronic kidney disease by reducing macrophage activation and infiltration through the JAG1-NOTCH1/2 pathway. Int Immunopharmacol 2025; 152:114454. [PMID: 40090087 DOI: 10.1016/j.intimp.2025.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
In recent years, the global incidence of chronic kidney disease (CKD) has been rising. As CKD progresses, it frequently involves inflammatory cell infiltration, contributing to renal fibrosis. Current research indicates that abnormalities in lipid metabolism play a role in this fibrotic process. However, the specific effects of various dietary fatty acids on renal inflammation and fibrosis remains largely unexplored. Our study demonstrates that dietary intake of omega-3 polyunsaturated fatty acids can inhibit macrophage activation and infiltration in a mouse model of unilateral ureteral obstruction (UUO), thus reducing the severity of renal fibrosis. Omega-3 polyunsaturated fatty acids, particularly α-linolenic acid (α-LA), mitigate damage to HK-2 cells and macrophages by targeting the JAG1-NOTCH1/2 pathway and by downregulating the expression of the chemokine MCP-1 and its receptor CCR2. This modulation attenuates macrophage activation and infiltration, reducing the inflammatory response. Furthermore, these fatty acids inhibit fibroblast chemotaxis, reduce fibroblast activation, and mitigate the deposition of extracellular matrix (ECM), thus slowing the progression of renal fibrosis. Our findings underscore the protective effects of omega-3 polyunsaturated fatty acids, such as α-LA, in preventing injury, inhibiting macrophage activation, and alleviating fibrosis. These results suggests that adjusting the dietary balance of fatty acids may offer a promising strategy to enhance the efficacy of CKD treatment.
Collapse
MESH Headings
- Animals
- Fibrosis
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- Jagged-1 Protein/metabolism
- Macrophage Activation/drug effects
- Humans
- Mice
- Male
- Signal Transduction/drug effects
- Mice, Inbred C57BL
- Receptor, Notch1/metabolism
- Kidney/pathology
- Kidney/drug effects
- Kidney/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Cell Line
- Fatty Acids, Omega-3/pharmacology
- Fatty Acids, Omega-3/therapeutic use
- Ureteral Obstruction/drug therapy
- Ureteral Obstruction/pathology
- Ureteral Obstruction/complications
- Receptor, Notch2/metabolism
- Receptors, CCR2/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shangguo Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zehua Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zijian Zhao
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Luo C, Tian L, Wen Y, Zheng Z. Protective Effects of Schizochytrium Microalgal Fatty Acids on Alcoholic Liver Disease: A Network Pharmacology and In Vivo Study. Assay Drug Dev Technol 2025; 23:151-163. [PMID: 39815972 DOI: 10.1089/adt.2024.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
This study aimed to elucidate the hepatoprotective mechanisms of microalgal fatty acids (MFA) from Schizochytrium against alcoholic liver disease (ALD) through network pharmacology and in vivo analysis. Network pharmacology and molecular docking methodologies were employed to predict the potential mechanisms of MFA against ALD. To substantiate these predictions, an acute alcoholic liver injury mouse model was utilized to assess the impact of MFA on serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), total protein (TP), and albumin (ALB). Additionally, liver histopathology and the expression levels of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) protein were evaluated. Seven active ingredients and 53 potential targets (including 7 core targets) for ALD treatment were identified in MFA. Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that these seven core targets are implicated in various biological pathways, notably those associated with cancer, viral infections, and the PI3K/AKT signaling pathway. Furthermore, molecular docking studies demonstrated that docosahexaenoic acid and docosapentaenoic acid in MFA exhibited strong binding affinity for these seven crucial targets. Animal experiments demonstrated that administration of MFA significantly decreased the levels of AST, ALT, and ALP, while increasing the levels of ALB and TP in mice with acute alcoholic liver injury. Moreover, MFA ameliorated liver tissue pathology and markedly down-regulated the expression of PI3K and AKT proteins in the liver. These results suggest that MFA may possess therapeutic potential for ALD by targeting multiple pathways, with its mechanisms likely involving the inhibition of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Cailin Luo
- Department of Basic Medical Science, Quanzhou Medical College, Quanzhou, China
| | - Li Tian
- Department of Basic Medical Science, Quanzhou Medical College, Quanzhou, China
| | - Yangmin Wen
- Department of Basic Medical Science, Quanzhou Medical College, Quanzhou, China
| | - Zhihua Zheng
- Department of Basic Medical Science, Quanzhou Medical College, Quanzhou, China
| |
Collapse
|
4
|
Gao F, Ma Y, Yu C, Duan Q. miR-125b-5p regulates FFA-induced hepatic steatosis in L02 cells by targeting estrogen-related receptor alpha. Gene 2025; 959:149419. [PMID: 40113187 DOI: 10.1016/j.gene.2025.149419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND & AIMS NAFLD is a global and complex liver disease caused by multiple factors. Intrahepatocellular steatosis is the primary prerequisite for the occurrence and development of NAFLD. It has been shown that miR-125b-5p is highly correlated with NAFLD, and ESRRA is a factor that regulates lipid metabolism. The purpose of our study is to investigate whether miR-125b-5p regulates FFA-induced steatosis in L02 cells by targeting ESRRA. APPROACHES AND RESULTS Estrogen-related receptor alpha (ESRRA) was identified as a direct target of miR-125b-5p through database prediction and a dual-luciferase reporter gene assay. L02 cells were induced with free fatty acids (OA:PA, 2:1) at concentrations of 0.3 mM, 0.6 mM, 0.9 mM, 1.2 mM and 1.5 mM for 24 h, 48 h and 72 h, respectively. The degree of hepatocyte steatosis and triglyceride content were separately manifested by oil red O staining and colorimetric method. Cell viability per group was detected by CCK-8 assay. Eventually, 0.9 mM and 24 h were screened out as the optimal concentration and time for establishing the in-vitro model of hepatic steatosis. Followingly, miR-125b-5p and ESRRA were knocked down by transient transfection. We monitored the expressions of lipid metabolism factors SREBP-1c, ACC1 and FAS and determine triglyceride content within the cells per group. The data showed that knockdown of ESRRA led to down-regulation of the expressions of SREBP-1, ACC1, FAS and triglyceride content. Meanwhile, knockdown of ESRRA and miR-125b-5p resulted that the expressions of ESRRA, SREBP-1, ACC1, FAS and triglyceride content rebounded. CONCLUSIONS MiR-125b-5p down-regulates the expressions of lipid metabolism-related factors by negatively regulating ESRRA, thereby improving hepatic steatosis.
Collapse
Affiliation(s)
- Fen Gao
- Gansu University of Chinese Medicine, Gansu 730000, China.
| | - Yanhua Ma
- Gansu University of Chinese Medicine, Gansu 730000, China.
| | - Chun Yu
- Gansu University of Chinese Medicine, Gansu 730000, China
| | | |
Collapse
|
5
|
Wang Q, Yang X, Chen C, Xing Y, Chitakwa N, Jiang J, Wei H, Ding X, Wu D. Sex-specific effects of aged polystyrene microplastics on hepatic AMPK pathway activation and lipid droplet accumulation in MAFLD mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117963. [PMID: 40058092 DOI: 10.1016/j.ecoenv.2025.117963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
Microplastics (MPs) are environmental pollutants attracting widespread attention due to their environmental omnipresence and potential health effects. MPs undergo ageing in the environment and our previous research found that aged Polystyrene microplastics (PS-MPs) affected lipid metabolism in healthy female mice, but not males. In this study, we examined the effects of aged PS-MP exposure on lipid metabolism in mice with Metabolic Associated Fatty Liver Disease (MAFLD). 14 female and 14 male mice were furnished with a high-fat diet (HFD) for eight weeks to create MAFLD model mice. They were then orally administered aged PS-MPs for four weeks, and changes in the AMP-activated protein kinase signalling pathway were examined in order to determine PS-MP's effect on hepatic metabolism. The outcomes showed that though serum estradiol, inflammatory gene expression and ROS levels increased significantly in both male and female HFD-aged PS-MP groups, hepatic steatosis was attenuated only in the female group. Furthermore, serum ERα, ERβ, AMPKα, acetyl-CoA carboxylase, sterol regulatory element binding protein-1c, and Fas expressions were significantly increased in the MAFLD mice groups compared to the control group. Combining serum E2 levels, AMPK pathway changes, oxidative stress markers, and inflammatory gene levels, aged PS-MPs may stimulate E2 production and mobilize the liver AMPK signalling pathway of both male and female MAFLD mice. However, lipid metabolism is only affected in female MAFLD mice, suggesting other possible mechanisms besides the AMPK pathway may be at play. These results provide a new perspective on the potential health effects of MP exposure in individuals with metabolic disorders such as MAFLD.
Collapse
Affiliation(s)
- Qing Wang
- Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaona Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Disease Prevention and Control Center of Linping District, Hangzhou 311100, China
| | - Chuan Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Xing
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Natasha Chitakwa
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Di Wu
- Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
6
|
Yan S, Liu Y, Zhang Y, Wang Y, Zheng S, Yao X, Yang Y, Tang Y, Long X, Luo F, Yang F. Integration of Fatty Acid-Targeted Metabolome and Transcriptomics Reveals the Mechanism of Chronic Environmental Microcystin-LR-Induced Hepatic Steatosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4240-4252. [PMID: 39927675 DOI: 10.1021/acs.jafc.4c07085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Microcystin-LR (MC-LR) is a toxin that causes hepatic steatosis. Our previous study found that exposure to 60 μg/L MC-LR for 9 months resulted in liver lipid accumulation, but the underlying mechanisms remain elusive. Herein, for the first time, fatty acid-targeted metabolome and RNA-seq were combined to probe the effect and mechanism of chronic (12-month) MC-LR treatment on mice lipid metabolism at environmental-related levels (1, 60, and 120 μg/L). It was found that MC-LR dose-dependently raised serum and liver lipid levels. The total cholesterol (TC) levels in the liver were significantly increased following treatment with 1 μg/L MC-LR (equivalent to 0.004 μ/L in human). Treatment with 60 and 120 μg/L MC-LR significantly elevated TC and triglyceride (TG) levels in both serum and liver. Serum fatty acid-targeted metabolome analysis demonstrated that exposure to 1, 60, and 120 μg/L MC-LR caused significant alterations in the fatty acid profile. Chronic 1, 60, and 120 μg/L MC-LR treatment significantly increased serum polyunsaturated fatty acids (PUFAs), including conjugated linoleic acid and eicosapentaenoic acid, which positively correlated with serum or liver TG levels. Chronic exposure to 120 μg/L MC-LR led to a significant decrease in the accumulation of saturated fatty acids, including citramalic acid, pentadecanoic acid, and docosanoic acid, which were negatively correlated with serum or liver lipid levels. These findings suggested that 1 μg/L MC-LR exposure caused mild lipid metabolism disruption, while 60 and 120 μg/L MC-LR treatment resulted in pronounced hepatic steatosis in mice. Transcriptome analysis revealed that chronic environmental MC-LR treatment regulated the expression of genes involved in the phosphatidylinositol 3-kinase (PI3K) complex and fatty acid metabolism. Western blotting and RT-qPCR confirmed that chronic environmental MC-LR exposure activated the PI3K/AKT/mTOR signaling pathway, the downstream of fads3 gene that participates in fatty acid desaturation was upregulated, fatty acid degradation-related genes, including acsl1, acsl4, and ehhadh were inhibited, and lipid transport-related genes, including slc27a4 and apol7a, were promoted. Thus, chronic environmental MC-LR exposure boosts hepatic steatosis. Our work indicated that the limit concentration of 1 μg/L MC-LR in human drinking water for safety needs to be discussed. The study provides the first evidence of the fatty acid profile and gene changes and gains new insights into the mechanisms of chronic environmental MC-LR treatment-induced hepatic steatosis.
Collapse
Affiliation(s)
- Sisi Yan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ying Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yaqi Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410083, China
| | - Xueqiong Yao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410083, China
- Nuclear Medicine Department, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
7
|
Yang F, Li X, Sun J, Pang X, Sun Q, Lu Y. Regulatory mechanisms of the probiotic-targeted gut-liver axis for the alleviation of alcohol-related liver disease: a review. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39905925 DOI: 10.1080/10408398.2025.2455954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Alcohol abuse-triggered alcohol-related liver disease (ALD) has become as a global public health concern that substantially affects the well-being and clinical status of patients. Although modern medicine provides various treatments for ALD, their effectiveness is limited and can lead to adverse side effects. Probiotics have been employed to prevent, alleviate, and even treat ALD, with promising results. However, few comprehensive reviews are available on how they mitigate ALD by targeting the gut-liver axis. This review systematically clarifies the specific mediators of the gut-liver axis in healthy states. It also describes the alterations observed in ALD. Furthermore, this review thoroughly summarizes the underlying mechanisms through which probiotics act on the gut-liver axis to relieve ALD. It also discusses the current status and challenges faced in clinical research applications. Finally, we discuss the challenges and future prospects of using probiotics to treat ALD. This review improves our understanding of ALD and supports the development and application of probiotics that target the gut-liver axis for therapeutic use.
Collapse
Affiliation(s)
- Feiyu Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
8
|
Iturbe-Rey S, Maccali C, Arrese M, Aspichueta P, Oliveira CP, Castro RE, Lapitz A, Izquierdo-Sanchez L, Bujanda L, Perugorria MJ, Banales JM, Rodrigues PM. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis 2025; 400:119053. [PMID: 39581063 DOI: 10.1016/j.atherosclerosis.2024.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver lesions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may further progress to cirrhosis. MASLD is estimated to affect more than one third of the general population and it represents a risk factor for end-stage liver failure and liver cancer, substantially contributing to liver-related morbidity and mortality. Although the pathogenesis of MASLD is incompletely understood, it is known to consist of a multifactorial process influenced by extrinsic and intrinsic factors such as metabolic, environmental and demographic features, gut microbiota and genetics. Dysregulation of both extracellular and intracellular lipid composition is known to promote the generation of toxic lipid species, thereby triggering lipotoxicity and cellular stress. These events ultimately lead to the activation of distinct cell death pathways, resulting in inflammation, fibrogenesis and, eventually, carcinogenesis. In this manuscript, we provide a comprehensive review of the role of lipotoxicity during MASLD pathogenesis, discussing the most relevant lipid species and related molecular mechanisms, summarizing the cell type-specific effects and highlighting the most promising putative therapeutic strategies for modulating lipotoxicity and lipid metabolism in MASLD.
Collapse
Affiliation(s)
- Santiago Iturbe-Rey
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Claudia Maccali
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, 8330077, Chile
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biobizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Claudia P Oliveira
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
9
|
Hitl M, Kladar N, Banović Fuentes J, Bijelić K, Đermanović M, Torović L. Knowledge and Consumption Patterns of Omega-3 Fatty Acids Among the Central Balkan Population-A Prospective Cross-Sectional Study. Nutrients 2024; 17:122. [PMID: 39796557 PMCID: PMC11723183 DOI: 10.3390/nu17010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Omega-3 fatty acids (ω-3-FAs) represent a group of essential nutrients, but modern diets often do not allow for a balanced ratio between the intakes of ω-6-FA and ω-3-FA, which is vital for health. ω-3-FA can be found primarily in algae and fish, while the intake of ω-3-FA dietary supplements can be seen as an efficient way of providing nutrients important for many physiological functions. BACKGROUND/OBJECTIVES The aim of this research was to investigate the use of ω-3-FA-rich food and supplements, as well as the knowledge and attitudes on these nutrients among residents of the central Balkans-the Republic of Serbia and the Republic of Srpska. METHODS The research was performed as a prospective, cross-section, online survey. RESULTS A total of 895 responses were collected, with relatively high usage of ω-3-FA supplements (34.2%). It was found that the respondents use these supplements due to inadequate dietary intake, but also in therapy or prevention of certain diseases and conditions. Users take the supplements on a regular basis, although for short periods of time. The respondents reported the dietary intake of food rich in ω-3-FA. It was found that more than half of parents give these supplements to their children, with similar purposes, although more frequently and for longer periods of time. The use of ω-3-FA via supplements in pregnant and breastfeeding women is also present. CONCLUSIONS The residents of the investigated territory seem to have an awareness of the importance of ω-3-FA use, with its consumption being registered in both the general population and specific subpopulations. Future steps would include further promotion and education on the given topic.
Collapse
Affiliation(s)
- Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.H.); (N.K.); (J.B.F.); (K.B.)
- Center for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.H.); (N.K.); (J.B.F.); (K.B.)
- Center for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jelena Banović Fuentes
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.H.); (N.K.); (J.B.F.); (K.B.)
| | - Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.H.); (N.K.); (J.B.F.); (K.B.)
- Center for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mirjana Đermanović
- Department of Bromatology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
- Public Health Institute, 78000 Banja Luka, Bosnia and Herzegovina
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.H.); (N.K.); (J.B.F.); (K.B.)
- Center for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
10
|
Shi X, Xu M, Li J, Deng Y, Song C, Yang Y, Liu Y, Qiao N, Jiang S, Zhang Z, Zhu Y, Meng Y. Comparative Transcriptome Analyses Provide Potential Insights into Molecular Mechanisms of Anthocyanin-Rich Blueberry Extract in Rapid Intervention Against Acute Alcohol Exposure in Mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:10. [PMID: 39666173 DOI: 10.1007/s11130-024-01269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
Alcohol-induced health damage has become an increasing global public health concern. Anthocyanins exhibit essential biological activities, including antioxidation, anti-inflammation, and lipid reduction. This study investigates the rapid intervention effects and mechanisms of anthocyanin-rich blueberry extract in mitigating acute alcohol exposure in mice, aiming to uncover its novel nutritional roles. Eight-week-old male C57BL/6J mice were fasted for 6 h and randomly assigned to three groups (CON, EOH, and EOH-BE, n = 8) for the experimental study. The results demonstrated that 1 h after alcohol exposure, BE significantly enhanced the behavioral performance of mice, lowered blood ethanol levels and liver function markers, and alleviated hepatic pathological alterations. GSEA results of KEGG pathways indicated that BE primarily affected pathways associated with nutrient digestion and absorption, energy substance metabolism, unsaturated fatty acids biosynthesis, and gastric cancer, facilitating rapid intervention in acute alcohol exposure in mice. These findings confirm that anthocyanin-rich blueberry extract effectively mitigates the health risks linked to acute alcohol exposure, providing new insights into early intervention and management strategies for alcohol-induced disorders.
Collapse
Affiliation(s)
- Xiaming Shi
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Mengjun Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Juan Li
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Ye Deng
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Changsheng Song
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Yang Yang
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Yuting Liu
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Ningning Qiao
- Department of Science and Technology, Anhui University, Hefei, 230601, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengliang Zhang
- Anhui Kemen Biological Science and Technology Co., Ltd, 230000, Hefei, China
| | - Yong Zhu
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Zhang L, Jiang X, Shi J, Zhang J, Shi X, Xie Z, Chen G, Zhang H, Mu Y, Chen J, Qi S, Liu P, Liu W. Isoastragaloside I attenuates cholestatic liver diseases by ameliorating liver injury, regulating bile acid metabolism and restoring intestinal barrier. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118649. [PMID: 39094754 DOI: 10.1016/j.jep.2024.118649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic liver diseases (CLD) are liver disorders resulting from abnormal bile formation, secretion, and excretion from various causes. Due to the lack of suitable and safe medications, liver transplantation is the ultimate treatment for CLD patients. Isoastragaloside I (IAS I) is one of the main saponin found in Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge, which has been demonstrated to obviously alleviate CLD. Nevertheless, the IAS I's specific anti-CLD mechanism remains undecipherable. AIM OF THE STUDY This study's purpose was to elucidate the protective consequence of IAS I on 0.1% 3, 5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC) diet-induced CLD mice, and to reveal its potential mechanism. MATERIALS AND METHODS In this study, mice with CLD that had been fed a 0.1% DDC diet were distributed two doses of IAS I (20 mg/kg, 50 mg/kg). The effects of IAS I on CLD models were investigated by assessing blood biochemistry, liver histology, and Hyp concentrations. We investigated markers of liver fibrosis and ductular reaction using immunohistochemistry, Western blot, and qRT-PCR. Liver inflammation indicators, arachidonic acid (ARA), and ω-3 fatty acid (FA) metabolites were also analyzed. Quantitative determination of 39 bile acids (BAs) in different organs employing UHPLC-Q-Exactive Orbitrap HRMS technology. Additionally, the H&E and Western blot analysis were used to evaluate differences in intestinal barrier function in DDC-induced mice before and after administering IAS I. RESULTS After treatment with IAS I, serum biochemical indicators and liver hydroxyproline (Hyp) increased in a dose-dependent manner in CLD mice. The IAS I group showed significant improvement in indicators of liver fibrosis and ductular response, including as α-smooth muscle actin (α-SMA) and cytokeratin 19 (CK19), and transforming growth factor-β (TGF-β)/Smads signaling pathway. And inflammatory factors: F4/80, tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), ARA and ω-3 FA metabolites showed significant improvement following IAS I treatment. Moreover, IAS I significantly ameliorated liver tau-BAs levels, particularly TCA, THCA, THDCA, TCDCA, and TDCA contents, which were associated with enhanced expression of hepatic farnesoid X receptor (FXR), small heterodimer partner (SHP), cholesterol 7α-hydroxylase (Cyp7a1), and bile-salt export pump (BSEP). Furthermore, IAS I significantly improved pathological changes and protein expression related to intestinal barrier function, including zonula occludens protein 1 (ZO-1), Muc2, and Occludin. CONCLUSIONS IAS I alleviated cholestatic liver injury, relieved inflammation, improved the altered tau-BAs metabolism and restored intestinal barrier function to protect against DDC-induced cholestatic liver diseases.
Collapse
Affiliation(s)
- Linzhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Xiaoyu Jiang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Jiewen Shi
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Jianwei Zhang
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Xiaoli Shi
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Zhishen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Gaofeng Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Jiamei Chen
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Shenglan Qi
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
12
|
Zhang Z, Hu W, Yu A, Bi H, Wang J, Wang X, Kuang H, Wang M. Physicochemical properties, health benefits, and applications of the polysaccharides from Rosa rugosa Thunb.: A review. Int J Biol Macromol 2024; 282:136975. [PMID: 39476919 DOI: 10.1016/j.ijbiomac.2024.136975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Rosa rugosa Thunb. (R. rugosa) has been used as food and medicine and not just as ornamental plant for nearly a thousand years, its nutritional and medicinal value have been recognized by people. It contains a variety of biological active ingredients that are beneficial to the human body. R. rugosa polysaccharides are also one of the main bioactive ingredients, which have many health benefits such as anti-diabetes, antioxidation, anti-inflammation, anti-tumour, moisture-preserving and anti-alcoholic liver disease. This review summarizes the extraction, purification, structural characteristics, health benefits, and structure-activity relationships of R. rugosa polysaccharides. In addition, current and potential applications of R. rugosa polysaccharides are analyzed and supplemented, hoping to provide some valuable insights for further research and development of functional food additives, nutritional supplements, additives for daily chemical products, and even pharmaceuticals.
Collapse
Affiliation(s)
- Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haizheng Bi
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jingyuan Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Xingyu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
13
|
Yang Z, Li H, Wu HY, Zhou Y, Du JX, Hu ZX. Omega-3 polyunsaturated fatty acids alleviate hyperuricemic nephropathy by inhibiting renal pyroptosis through GPR120. Biochem Pharmacol 2024; 230:116575. [PMID: 39396646 DOI: 10.1016/j.bcp.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Hyperuricemic nephropathy (HN) is characterized by increased serum uric acid levels that incite renal inflammation. While omega-3 polyunsaturated fatty acids (PUFAs) are known for their anti-inflammatory properties, their impact on HN remains unclear. This study explored the effects of omega-3 PUFAs, specifically docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on HN. Using a mouse model induced by adenine and potassium oxonate, we treated HN mice with DHA, EPA, or both for four weeks. The results showed that omega-3 PUFAs significantly reduced serum uric acid levels and improved kidney function, with DHA, EPA, and their combination showing similar efficacy. Transcriptome sequencing and further analysis revealed that these fatty acids alleviate renal pyroptosis by reducing key markers such as NOD-like receptor pyrin containing 3 (NLRP3), cleaved gasdermin-D, caspase-1, and interleukin-1β. To further investigate the underlying mechanism, we focused on G-protein coupled receptor 120 (GPR120), a receptor activated by DHA. The use of a GPR120 antagonist (AH7614) partially blocked DHA's effects, while the agonist (TUG891) mimicked its anti-pyroptotic actions. Co-immunoprecipitation assays showed that DHA activates GPR120, leading to its internalization and interaction with β-arrestin2, ultimately inhibiting NLRP3 inflammasome formation and reducing inflammation. Overall, omega-3 PUFAs, particularly through GPR120 activation, appear to protect against renal inflammation in HN by modulating the NLRP3/caspase-1/GSDMD pathway.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Nephrology, West China Hospital, Sichuan University, Guoxue Alley 37#, Chengdu 610041, Sichuan, PR China
| | - Hao Li
- Department of Nephrology, West China Hospital, Sichuan University, Guoxue Alley 37#, Chengdu 610041, Sichuan, PR China
| | - Hong-Yan Wu
- Department of Nephrology, West China Hospital, Sichuan University, Guoxue Alley 37#, Chengdu 610041, Sichuan, PR China
| | - Yi Zhou
- Department of Nephrology, West China Hospital, Sichuan University, Guoxue Alley 37#, Chengdu 610041, Sichuan, PR China
| | - Jing-Xue Du
- Department of Nephrology, West China Hospital, Sichuan University, Guoxue Alley 37#, Chengdu 610041, Sichuan, PR China
| | - Zhang-Xue Hu
- Department of Nephrology, West China Hospital, Sichuan University, Guoxue Alley 37#, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
14
|
Song L, Huang S, Yan H, Ma Q, Luo Q, Qiu J, Chen M, Li Z, Jiang H, Chen Y, Chen F, Du Y, Fu H, Zhao L, Zhao K, Qiu P. ADRB2 serves as a novel biomarker and attenuates alcoholic hepatitis via the SIRT1/PGC-1α/PPARα pathway: integration of WGCNA, machine learning and experimental validation. Front Pharmacol 2024; 15:1423031. [PMID: 39640486 PMCID: PMC11617210 DOI: 10.3389/fphar.2024.1423031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Background Alcoholic hepatitis is a severe inflammatory liver disease. In recent years, the incidence of AH has been on the rise, leading to an increasingly severe disease burden. Currently, there is a lack of specific biomarkers for the diagnosis and prognosis of AH in clinical practice. Therefore, the main objective of this study is to identify biomarkers closely associated with the progression of AH, to address the shortcomings in pathological diagnosis, and to identify potential therapeutic targets. Methods Bioinformatics and machine learning methods were used to comparatively study the differentially expressed genes (DEGs) between AH patients and healthy individuals by analyzing four mRNA microarray data sets obtained from the GEO database. Subsequently, the role of potential biomarkers in AH and their mechanism of action were further confirmed by AH patients and in vitro and in vivo experiments. Results Using differential analysis and WGCNA of the data set, a total of 167 key genes that may be related to AH were obtained. Among 167 genes, the LASSO logistic regression algorithm identified four potential biomarkers (KCNJ10, RPL21P23, ADRB2, and AC025279.1). Notably, ADRB2 showed biomarker potential in GSE28619, GSE94397, and E-MTAB-2664 datasets, and clinical liver samples. Furthermore, AH patients and in vivo experiments demonstrated ADRB2 inhibition and suppression of SIRT1/PPARα/PGC-1α signaling pathways, accompanied by elevated inflammatory factors and lipid deposition. In vitro experiments showed that ADRB2 overexpression mitigated the inhibition of the SIRT1/PPARα/PGC-1α signaling pathway, reversing the decrease in mitochondrial membrane potential, cell apoptosis, oxidative stress, and lipid deposition induced by alcohol exposure. Besides, the results also showed that ADRB2 expression in AH was negatively correlated with the levels of inflammatory factors (e.g., CCL2, CXCL8, and CXCL10). Conclusion This study points to ADRB2 as a promising biomarker with potential diagnostic and prognostic value in clinical cohort data. In addition, in AH patients, in vivo and in vitro experiments confirmed the key role of ADRB2 in the progression of AH. These findings suggest that ADRB2 may alleviate AH by activating the SIRT1/PPARα/PGC-1α pathway. This finding provides a new perspective for the diagnosis and treatment of AH.
Collapse
Affiliation(s)
- Li Song
- Tongde Hospital of Zhejiang Province affiliated to Zhejiang Chinese Medical University, Analysis and Testing Center, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Honghao Yan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qihan Luo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Minxia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zongyuan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - He Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangming Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haozhe Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Zhao
- Tongde Hospital of Zhejiang Province affiliated to Zhejiang Chinese Medical University, Analysis and Testing Center, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Kanglu Zhao
- Zhejiang Rehabilitation Medical Center, Rehabilitation Hospital Area of the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- School of Medicine, The Fourth Affiliated Hospital Zhejiang University, Yiwu, Zhejiang, China
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Yu Y, Yao Q, Chen D, Zhang Z, Pan Q, Yu J, Cao H, Li L, Li L. Serum metabonomics reveal the effectiveness of human placental mesenchymal stem cell therapy for primary sclerosing cholangitis. Stem Cell Res Ther 2024; 15:346. [PMID: 39380092 PMCID: PMC11462665 DOI: 10.1186/s13287-024-03967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The metabolic patterns of human placental-derived mesenchymal stem cell (hP-MSC) treatment for primary sclerosing cholangitis (PSC) remain unclear, and therapeutic effects significantly vary due to individual differences. Therefore, it is crucial to investigate the serological response to hP-MSC transplantation through small molecular metabolites and identify easily detectable markers for efficacy evaluation. METHODS Using Mdr2-/- mice as a PSC model and Mdr2+/+ mice as controls, the efficacy of hP-MSC treatment was assessed based on liver pathology, liver enzymes, and inflammatory factors. Serum samples were collected for 12C-/13C-dansylation and DmPA labeling LC-MS analysis to investigate changes in metabolic pathways after hP-MSC treatment. Key metabolites and regulatory enzymes were validated by qRT-PCR and Western blotting. Potential biomarkers of hP-MSC efficacy were identified through correlation analysis and machine learning. RESULTS Collectively, the results of the liver histology, serum liver enzyme levels, and inflammatory factors supported the therapeutic efficacy of hP-MSC treatment. Based on significant differences, 41 differentially expressed metabolites were initially identified; these were enriched in bile acid, lipid, and hydroxyproline metabolism. After treatment, bile acid transport was accelerated, whereas bile acid production was reduced; unsaturated fatty acid synthesis was upregulated overall, with increased FADS2 and elongase expression and enhanced fatty acid β-oxidation; hepatic proline 4-hydroxylase expression was decreased, leading to reduced hydroxyproline production. Correlation analysis of liver enzymes and metabolites, combined with time trends, identified eight potential biomarkers: 2-aminomuconate semialdehyde, L-1-pyrroline-3-hydroxy-5-carboxylic acid, L-isoglutamine, and maleamic acid were more abundant in model mice but decreased after hP-MSC treatment. Conversely, 15-methylpalmitic, eicosenoic, nonadecanoic, and octadecanoic acids were less abundant in model mice but increased after hP-MSC treatment. CONCLUSIONS This study revealed metabolic regulatory changes in PSC model mice after hP-MSC treatment and identified eight promising biomarkers, providing preclinical evidence to support therapeutic applications of hP-MSC.
Collapse
Affiliation(s)
- Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Deying Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Zhehua Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd, Hangzhou City, 310003, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| |
Collapse
|
16
|
Duailibe JBB, Viau CM, Saffi J, Fernandes SA, Porawski M. Protective effect of long-chain polyunsaturated fatty acids on hepatorenal syndrome in rats. World J Nephrol 2024; 13:95627. [PMID: 39351184 PMCID: PMC11439093 DOI: 10.5527/wjn.v13.i3.95627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Hepatorenal syndrome (HRS) is the most prevalent form of acute kidney injury in cirrhotic patients. It is characterized by reduced renal blood flow and represents the most severe complication in cirrhotic patients with advanced disease. Previous research has indicated that antioxidants can delay the onset of a hyperdynamic circulatory state in cirrhosis and improve renal function in HRS patients. Regular omega-3 supplementation has significantly reduced the risk of liver disease. This supplementation could represent an additional therapy for individuals with HRS. AIM To evaluated the antioxidant effect of omega-3 polyunsaturated fatty acid supplementation on the kidneys of cirrhotic rats. METHODS Secondary biliary cirrhosis was induced in rats by biliary duct ligation (BDL) for 28 d. We used 24 male Wistar rats divided into the following groups: I (control); II (treated with omega-3, 1 g/kg of body weight); III (BDL treated with omega-3, 1 g/kg of body weight); and IV (BDL without treatment). The animals were killed by overdose of anesthetic; the kidneys were dissected, removed, frozen in liquid nitrogen, and stored in a freezer at -80℃ for later analysis. We evaluated oxidative stress, nitric oxide (NO) metabolites, DNA damage by the comet assay, cell viability test, and apoptosis in the kidneys. Data were analyzed by one-way analysis of variance, and means were compared using the Tukey test, with P ≤ 0.05. RESULTS Omega-3 significantly decreased the production of reactive oxygen species (P < 0.001) and lipoperoxidation in the kidneys of cirrhotic rats treated with omega-3 (P < 0.001). The activity of the antioxidant enzymes superoxide dismutase and catalase increased in the BDL+omega-3 group compared to the BDL group (P < 0.01). NO production, DNA damage, and caspase-9 cleavage decreased significantly in the omega-3-treated BDL group. There was an increase in mitochondrial electrochemical potential (P < 0.001) in BDL treated with omega-3 compared to BDL. No changes in the cell survival index in HRS with omega-3 compared to the control group (P > 0.05) were observed. CONCLUSION The study demonstrates that omega-3 can protect cellular integrity and function by increasing antioxidant enzymes, inhibiting the formation of free radicals, and reducing apoptosis.
Collapse
Affiliation(s)
- João Bruno Beretta Duailibe
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Cassiana Macagnan Viau
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Jenifer Saffi
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Sabrina Alves Fernandes
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Marilene Porawski
- Department of Hepatology and Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| |
Collapse
|
17
|
Bayram SŞ, Kızıltan G. The Role of Omega- 3 Polyunsaturated Fatty Acids in Diabetes Mellitus Management: A Narrative Review. Curr Nutr Rep 2024; 13:527-551. [PMID: 39031306 PMCID: PMC11327211 DOI: 10.1007/s13668-024-00561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) is a group of metabolic illnesses characterized by elevated levels of glucose in the bloodstream as a result of abnormalities in the generation or function of insulin. Medical Nutrition Therapy (MNT) is an essential component of diabetes management. Dietary fats are essential in both the prevention and progression of chronic diseases. Omega-3 polyunsaturated fatty acids are recognized for their advantageous impact on health. They assist in controlling blood sugar levels and lipid profile in patients with all types of diabetes. Furthermore, they reduce the occurrence of cardiovascular events and death linked to DM. RECENT FINDINGS After evaluating the antioxidant, anti-inflammatory, antilipidemic, and antidiabetic mechanisms of omega-3 fatty acid supplements, as well as the results from randomized controlled studies, it is clear that these supplements have positive effects in both preventing and treating diabetes, as well as preventing and treating complications related to diabetes, specifically cardiovascular diseases. However, current evidence does not support the use of omega-3 supplementation in people with diabetes for the purpose of preventing or treating cardiovascular events. People with all types of diabetes are suggested to include fatty fish and foods high in omega-3 fatty acids in their diet twice a week, as is prescribed for the general population.
Collapse
Affiliation(s)
- Sümeyra Şahin Bayram
- Faculty of Health Sciences, Nutrition and Dietetics Department, Selcuk University, Konya, Turkey.
| | - Gül Kızıltan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Baskent University, Ankara, Turkey
| |
Collapse
|
18
|
Zeng Y, Li Q, Zhang R, Wei M, Zhao X, Hao L, Zhang H, Wang Z, Guo X, Ai L. Development and application of a sensitive liquid chromatography-tandem mass spectrometry method for the quantitative analysis of 11 free fatty acids in human serum using a derivatisation strategy. J Chromatogr A 2024; 1728:465019. [PMID: 38810573 DOI: 10.1016/j.chroma.2024.465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
A stable isotope dilution-liquid chromatography-tandem mass spectrometry method based on a derivatisation strategy involving an N,N'-carbonylimidazole solution (CDI) with 4-(dimethylamino)-benzenemethanamine was developed for the determination of 11 free fatty acids (FFAs) in human blood samples. Serum samples were subjected to liquid‒liquid extraction and centrifuged, and the supernatant was collected for a two-step derivatisation reaction with a CDI and 4-(dimethylamino)-aniline acetonitrile solution. The derivatised solution was separated on a ACQUITY UPLC HSS T3 column (2.1 × 50 mm, 1.8 µm) column with a mobile phase consisting of water-acetonitrile in gradient elution and then detected by tandem mass spectrometry using electrospray ionisation (ESI) and multiple reaction monitoring (MRM) in positive ion mode and quantified using the isotope internal standard method. The effects of the derivatisation reaction time, temperature and concentration of derivatisation reagents on the response values of the analytes were investigated. The optimal conditions were as follows: 1.0 mg mL-1 CDI acetonitrile solution at 25 °C for 25 min, followed by a reaction with a 1.0 mg mL-1 4-(dimethylamino)-benzenemethanamine acetonitrile solution at 70 °C for 30 min. Under the optimal conditions, the limits of detection (LODs) of the 11 FFAs were in the range of 3.0-14.0 ng mL-1; the limits of quantification (LOQs) were in the range of 8.0-45.0 ng mL-1; and the mean recoveries ranged from 83.4 to 112.8%, with intraday and interday precisions ranging from 0.7 to 9.1% and 3.7-9.5%, respectively. The experimental method is simple in terms of the pretreatment operation, accurate and reliable, and can be applied to the sensitive determination of FFAs in human blood samples.
Collapse
Affiliation(s)
- Yongfu Zeng
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian Li
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Ruoyu Zhang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Maolin Wei
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaochan Zhao
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Liping Hao
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Haoran Zhang
- Hebei Qianye Biotechnology Co, Shijiazhuang 050000, China
| | - Ziqing Wang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiujuan Guo
- Hebei Medical University Fourth Hospital, Shijiazhuang 050011, China.
| | - Lianfeng Ai
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China.
| |
Collapse
|
19
|
Qian S, Wang X, Chen Y, Zai Q, He Y. Inflammation in Steatotic Liver Diseases: Pathogenesis and Therapeutic Targets. Semin Liver Dis 2024; 44:319-332. [PMID: 38838739 DOI: 10.1055/a-2338-9261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Alcohol-related liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), two main types of steatotic liver disease (SLDs), are characterized by a wide spectrum of several different liver disorders, including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Multiple immune cell-mediated inflammatory responses not only orchestrate the killing and removal of infected/damaged cells but also exacerbate the development of SLDs when excessive or persistent inflammation occurs. In recent years, single-cell and spatial transcriptome analyses have revealed the heterogeneity of liver-infiltrated immune cells in ALD and MASLD, revealing a new immunopathological picture of SLDs. In this review, we will emphasize the roles of several key immune cells in the pathogenesis of ALD and MASLD and discuss inflammation-based approaches for effective SLD intervention. In conclusion, the study of immunological mechanisms, especially highly specific immune cell population functions, may provide novel therapeutic opportunities for this life-threatening disease.
Collapse
Affiliation(s)
- Shengying Qian
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Zai
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Kruchinina MV, Osipenko MF, Shestov AA, Parulikova MV. Fatty acid composition of blood serum and erythrocyte membranes in men with steatosis and steatohepatitis with normal transaminase activity. SECHENOV MEDICAL JOURNAL 2024; 15:48-60. [DOI: 10.47093/2218-7332.2024.15.2.48-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim. To study the characteristics of the fatty acid (FA) profi le of blood serum and erythrocyte membranes in patients with two forms of fatty liver disease (metabolic + alcoholic): steatosis and steatohepatitis with normal transaminase activity.Materials and methods. We examined 33 men (50.7 ± 9.6 years) with fatty liver disease (metabolic and alcoholic) with fi brosis F ≤ 1 (FibroTest). According to the ActiTest results, patients were divided into groups of steatosis – with minimal (A0–1) activity (n = 17) and steatohepatitis – with moderate/severe (A2–3) necroinfl ammatory activity (n = 16). The FA composition of blood serum and erythrocyte membranes was studied using gas chromatography/mass spectrometry Agilent 7000B (Agilent Technologies, Inc., USA). Methods of unpaired statistics using volcano plot and discriminant analysis based on orthogonal least squares (Orthogonal Partial Least Squares Discriminant Analysis, OPLS-DA), ROC analysis were applied.Results. Volcano plot analysis showed that in patients with fatty liver disease (metabolic and alcoholic) with normal transaminase activity, serum levels of stearic C18:0 (p = 0.016), arachidic C20:0 (p = 0.023), ratio saturated / polyunsaturated fatty acids (PUFA) (p = 0.001) were statistically signifi cantly higher in the steatohepatitis group compared with the steatosis group. The total content in the blood serum of all PUFA (p = 0.003), margaric C17:0 (p = 0.011), the sum of two omega-3 PUFA – eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) (p = 0.04), the total content of all omega-3 PUFA (p = 0.042) were statistically signifi cantly lower in patients with steatohepatitis. OPLS-DA demonstrated fairly accurate separation of steatohepatitis and steatosis using individual FA and their ratios. When individual FA and their ratios were included in the analysis, a model was obtained with AUC = 0.827 (95% confi dence interval 0.499–1.0), sensitivity 82.2% and specifi city 80.7%.Conclusion. FA in blood serum and erythrocyte membranes appear to be promising biomarkers of steatohepatitis with normal levels of transaminases.
Collapse
Affiliation(s)
- M. V. Kruchinina
- Research Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State Medical University
| | | | - A. A. Shestov
- Perelman School of Medicine, University of Pennsylvania
| | - M. V. Parulikova
- Research Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| |
Collapse
|
21
|
Xiao C, Jia R, Li XG, Zhao M, Liao W, Zhao S, Xu F, Toldrá F. Musculus senhousei peptides alleviated alcoholic liver injury via the gut-liver axis. Food Funct 2024; 15:7124-7135. [PMID: 38881239 DOI: 10.1039/d4fo01070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Alcoholic liver injury has become a leading threat to human health, with complicated pathogenesis and limited therapeutic options. Our previous study showed that Musculus senhousei peptides (MSPs) exhibit protective potential against early-stage alcoholic liver injury, although the underlying mechanism is not yet clear. In this study, histopathological analysis, mRNA abundance of injury-associated biomarkers, the gut microbiota, and faecal metabolome were evaluated using a mouse model subjected to acute alcohol exposure, aiming to identify the mechanism by which MSP can alleviate alcoholic hepatotoxicity. The results showed that MSP intervention significantly ameliorated symptoms of liver injury (suppressed serum ALT increment, hepatic lipid accumulation, and neutrophil infiltration in liver tissue), and reversed the abnormal mRNA abundance of biomarkers associated with oxidative stress (iNOS), inflammation (TNF-α, IL-1β, MCP-1, TNF-R1, and TLR4), and apoptosis (Bax and Casp. 3) in the liver. Moreover, MSP improved intestinal barrier function by increasing the expression of tight junction proteins (Claudin-1 and Claudin-3). Further analysis of faecal microbiota and metabolome revealed that MSP promoted the growth of tryptophan-metabolizing bacteria (Clostridiales, Alistipes, and Odoribacter), leading to increased production of indole derivatives (indole-3-lactic acid and N-acetyltryptophan). These results suggested that MSPs may alleviate alcohol-induced liver injury targeting the gut-liver axis, and could be an effective option for the prevention of alcoholic liver injury.
Collapse
Affiliation(s)
- Chuqiao Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China.
| | - Ruibo Jia
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China.
| | - Xiang-Guang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mouming Zhao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Feiran Xu
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
22
|
Liu Z, Huang H, Xie J, Xu Y, Xu C. Circulating fatty acids and risk of hepatocellular carcinoma and chronic liver disease mortality in the UK Biobank. Nat Commun 2024; 15:3707. [PMID: 38697980 PMCID: PMC11065883 DOI: 10.1038/s41467-024-47960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Nuclear magnetic resonance (NMR)-based plasma fatty acids are objective biomarkers of many diseases. Herein, we aim to explore the associations of NMR-based plasma fatty acids with the risk of hepatocellular carcinoma (HCC) and chronic liver disease (CLD) mortality in 252,398 UK Biobank participants. Here we show plasma levels of n-3 poly-unsaturated fatty acids (PUFA) and n-6 PUFA are negatively associated with the risk of incident HCC [HRQ4vsQ1: 0.48 (95% CI: 0.33-0.69) and 0.48 (95% CI: 0.28-0.81), respectively] and CLD mortality [HRQ4vsQ1: 0.21 (95% CI: 0.13-0.33) and 0.15 (95% CI: 0.08-0.30), respectively], whereas plasma levels of saturated fatty acids are positively associated with these outcomes [HRQ4vsQ1: 3.55 (95% CI: 2.25-5.61) for HCC and 6.34 (95% CI: 3.68-10.92) for CLD mortality]. Furthermore, fibrosis stage significantly modifies the associations between PUFA and CLD mortality. This study contributes to the limited prospective evidence on the associations between plasma-specific fatty acids and end-stage liver outcomes.
Collapse
Affiliation(s)
- Zhening Liu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hangkai Huang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiarong Xie
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yingying Xu
- Department of Geriatrics, the Third People's Hospital of Yuyao, Yuyao, 311101, China
| | - Chengfu Xu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
23
|
Wen Y, Zhou Y, Tian L, He Y. Ethanol extracts of Isochrysis zhanjiangensis alleviate acute alcoholic liver injury and modulate intestinal bacteria dysbiosis in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4354-4362. [PMID: 38318717 DOI: 10.1002/jsfa.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is responsible for 3.3 million deaths per annum. Efficacious therapeutic modalities or drug treatments for ALD have not yet been found, so it is urgent to seek new agents for preventing ALD and its related disease. Many experiments have indicated that modulating the gut microbiota and regulating the toll-like receptor 4 (TLR4)/nuclear transcription factor-κB (NF-κB) inflammatory pathway can provide a new target for prevention and treatment of ALD. Marine microalgae have their natural metabolic pathways to synthesize various of bioactive compounds as promising candidates for hepatoprotection. In this study, we investigated ethanol extracts from Isochrysis zhanjiangensis (EEIZ) to evaluate their ability to alleviate acute alcoholic liver injury, regulate TLR4/NF-κB inflammatory pathway and modulate intestinal bacteria dysbiosis in mice for ALD treatment. RESULTS In the acute ALD mouse model, EEIZ reduced levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triacylglyceride, total cholesterol and low-density lipoprotein, while increasing the level of high-density lipoprotein. Besides, TLR4, myeloid differentiation factor 88, NF-κB and tumor necrosis factor-α expression levels in liver tissue were effectively downregulated by EEIZ. Furthermore, treatment with EEIZ enhanced intestinal homeostasis and significantly alleviated the damage caused by alcohol. CONCLUSION EEIZ showed effective hepatoprotective activity against alcohol-induced acute liver injury in mice as it could alleviate hepatocyte damage, suppress the TLR4/NF-κB inflammatory pathway and regulate the intestinal flora structure. EEIZ could be a good candidate for preventing acute alcoholic liver injury. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yangmin Wen
- Department of basic medical science, Quanzhou Medical College, Quanzhou, China
| | - Youcai Zhou
- School of Food and Biological Engineering, Fujian Polytechnic Normal University, Fuqing, China
| | - Li Tian
- Department of basic medical science, Quanzhou Medical College, Quanzhou, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, China
| |
Collapse
|
24
|
Tarantino G, Citro V. What are the common downstream molecular events between alcoholic and nonalcoholic fatty liver? Lipids Health Dis 2024; 23:41. [PMID: 38331795 PMCID: PMC10851522 DOI: 10.1186/s12944-024-02031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Liver fat storage, also called hepatic steatosis, is increasingly common and represents a very frequent diagnosis in the medical field. Excess fat is not without consequences. In fact, hepatic steatosis contributes to the progression toward liver fibrosis. There are two main types of fatty liver disease, alcoholic fatty liver disease (AFLD) and nonalcoholic fatty liver disease (NAFLD). Although AFLD and NAFLD are similar in their initial morphological features, both conditions involve the same evolutive forms. Moreover, there are various common mechanisms underlying both diseases, including alcoholic liver disease and NAFLD, which are commonalities. In this Review, the authors explore similar downstream signaling events involved in the onset and progression of the two entities but not completely different entities, predominantly focusing on the gut microbiome. Downstream molecular events, such as the roles of sirtuins, cytokeratins, adipokines and others, should be considered. Finally, to complete the feature, some new tendencies in the therapeutic approach are presented.
Collapse
Affiliation(s)
| | - Vincenzo Citro
- Department of General Medicine, Umberto I Hospital, Nocera Inferiore, SA, 84014, Italy
| |
Collapse
|
25
|
Santangeli E, Abbati C, Chen R, Di Carlo A, Leoni S, Piscaglia F, Ferri S. Pathophysiological-Based Nutritional Interventions in Cirrhotic Patients with Sarcopenic Obesity: A State-of-the-Art Narrative Review. Nutrients 2024; 16:427. [PMID: 38337711 PMCID: PMC10857546 DOI: 10.3390/nu16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In recent decades, following the spread of obesity, metabolic dysfunction has come to represent the leading cause of liver disease. The classical clinical presentation of the cirrhotic patient has, therefore, greatly changed, with a dramatic increase in subjects who appear overweight or obese. Due to an obesogenic lifestyle (lack of physical activity and overall malnutrition, with an excess of caloric intake together with a deficit of proteins and micronutrients), these patients frequently develop a complex clinical condition defined as sarcopenic obesity (SO). The interplay between cirrhosis and SO lies in the sharing of multiple pathogenetic mechanisms, including malnutrition/malabsorption, chronic inflammation, hyperammonemia and insulin resistance. The presence of SO worsens the outcome of cirrhotic patients, affecting overall morbidity and mortality. International nutrition and liver diseases societies strongly agree on recommending the use of food as an integral part of the healing process in the comprehensive management of these patients, including a reduction in caloric intake, protein and micronutrient supplementation and sodium restriction. Based on the pathophysiological paths shared by cirrhosis and SO, this narrative review aims to highlight the nutritional interventions currently advocated by international guidelines, as well as to provide hints on the possible role of micronutrients and nutraceuticals in the treatment of this multifaceted clinical condition.
Collapse
Affiliation(s)
- Ernestina Santangeli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (E.S.); (C.A.); (R.C.); (F.P.)
| | - Chiara Abbati
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (E.S.); (C.A.); (R.C.); (F.P.)
| | - Rusi Chen
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (E.S.); (C.A.); (R.C.); (F.P.)
| | - Alma Di Carlo
- Division of Internal Medicine, Hepatobiliary and Immunoallergologic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.C.); (S.L.)
| | - Simona Leoni
- Division of Internal Medicine, Hepatobiliary and Immunoallergologic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.C.); (S.L.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (E.S.); (C.A.); (R.C.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergologic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.C.); (S.L.)
| | - Silvia Ferri
- Division of Internal Medicine, Hepatobiliary and Immunoallergologic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.C.); (S.L.)
| |
Collapse
|
26
|
Qiu J, Dong F, Zhuge H, Han Q, Li J, Guo R, Dou X, Li J, Li S. Preventive effect of low-carbohydrate high-fat dietary pattern on liver disease caused by alcohol consumption via a 6pgd-involved mechanism in mice. Food Funct 2024; 15:732-746. [PMID: 38117162 DOI: 10.1039/d3fo04335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A low-carbohydrate high-fat (LCHF) dietary pattern has been reported to improve chronic metabolic diseases. However, whether and how the LCHF diet affects the pathological progression in patients with alcohol-related liver diseases (ALD) is largely unknown. This study was conducted to evaluate the effect of the LCHF diet on ALD and clarify its potential mechanism(s). The ALD model was established by feeding C57BL/6N mice with a Lieber-DeCarli liquid alcohol diet with a modified carbohydrate/fat ratio under an isoenergetic pattern. After an eight-week intervention, we observed that the LCHF diet significantly reduced alcohol-induced hepatic steatosis and liver injury, along with improved lipid metabolic-related gene disorders and redox imbalance. The alcohol-stimulated increase in pro-inflammatory cytokine cytokines expression, including TNF-α, IL-1β, and IL-6, was markedly reversed by the LCHF diet. Liver transcriptome sequencing and qPCR validation showed that twenty-four alcohol-disturbed genes were significantly reversed by LCHF-diet intervention. The top differentially expressed genes were selected for further investigation. Among them, 6-phosphogluconate dehydrogenase (6PGD) was significantly up-regulated by alcohol treatment in both the liver and cultured hepatocytes. Spearman correlation analysis revealed that 6PGD was positively associated with hepatic steatosis, liver injury, and oxidative stress indexes. In vitro, the 6PGD knockdown ameliorated alcohol-induced hepatotoxicity and intracellular lipid accumulation, as well as lipid metabolic-related gene disorders, implying the involvement of 6PGD in LCHF-protected ALD. In conclusion, LCHF diet intervention alleviated chronic alcohol consumption-induced liver dysfunction in mice. 6PGD is a potential novel target for ALD prevention that contributes to LCHF-improved ALD. A LCHF diet might be a promising choice for ALD management.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China
| | - Fan Dong
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China
| | - Jiayu Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR. China
| |
Collapse
|
27
|
Tang L, Zhang S, Zhang M, Wang P, Liang G, Gan Z, Gao X. Unlocking the potential of Rosa roxburghii Tratt polyphenol: a novel approach to treating acute lung injury from a perspective of the lung-gut axis. Front Microbiol 2024; 15:1351295. [PMID: 38282971 PMCID: PMC10809152 DOI: 10.3389/fmicb.2024.1351295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
Introduction Acute lung injury (ALI) is a serious respiratory disease characterized by progressive respiratory failure with high morbidity and mortality. It is becoming increasingly important to develop functional foods from polyphenol-rich medicinal and dietary plants in order to prevent or alleviate ALI by regulating intestinal microflora. Rosa roxburghii Tratt polyphenol (RRTP) has significant preventive and therapeutic effects on lipopolysaccharide-induced ALI mice, but its regulatory effects on gut homeostasis in ALI mice remains unclear. Methods This study aims to systematically evaluate the ameliorative effects of RRTP from the perspective of "lung-gut axis" on ALI mice by intestine histopathological assessment, oxidative stress indicators detection and short-chain fatty acids (SCFAs) production, and then explore the modulatory mechanisms of RRTP on intestinal homeostasis by metabolomics and gut microbiomics of cecal contents. Results The results showed that RRTP can synergistically exert anti-ALI efficacy by significantly ameliorating intestinal tissue damage, inhibiting oxidative stress, increasing SCFAs in cecal contents, regulating the composition and structure of intestinal flora, increasing Akkermansia muciniphila and modulating disordered intestinal endogenous metabolites. Discussion This study demonstrated that RRTP has significant advantages in adjuvant therapy of ALI, and systematically clarified its comprehensive improvement mechanism from a new perspective of "lung-gut axis", which provides a breakthrough for the food and healthcare industries to develop products from botanical functional herbs and foods to prevent or alleviate ALI by regulating intestinal flora.
Collapse
Affiliation(s)
- Li Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Guiyou Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Zhitong Gan
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
28
|
Zhang YW, Song PR, Wang SC, Liu H, Shi ZM, Su JC. Diets intervene osteoporosis via gut-bone axis. Gut Microbes 2024; 16:2295432. [PMID: 38174650 PMCID: PMC10773645 DOI: 10.1080/19490976.2023.2295432] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease that seriously endangers the health of middle-aged and older adults. Recently, with the continuous deepening of research, an increasing number of studies have revealed gut microbiota as a potential target for osteoporosis, and the research concept of the gut-bone axis has gradually emerged. Additionally, the intake of dietary nutrients and the adoption of dietary patterns may affect the gut microbiota, and alterations in the gut microbiota might also influence the metabolic status of the host, thus adjusting bone metabolism. Based on the gut-bone axis, dietary intake can also participate in the modulation of bone metabolism by altering abundance, diversity, and composition of gut microbiota. Herein, combined with emerging literatures and relevant studies, this review is aimed to summarize the impacts of different dietary components and patterns on osteoporosis by acting on gut microbiota, as well as underlying mechanisms and proper dietary recommendations.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Pei-Ran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Zhong-Min Shi
- Department of Orthopaedics, Sixth People’s Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
29
|
Shen S, Shen M, Kuang L, Yang K, Wu S, Liu X, Wang Y, Wang Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199:107037. [PMID: 38070792 DOI: 10.1016/j.phrs.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Sirtuins, also called silent information regulator 2, are enzymes that rely on nicotinamide adenine dinucleotide (NAD+) to function as histone deacetylases. Further investigation is warranted to explore the advantageous impacts of Sirtuin 1 (SIRT1), a constituent of the sirtuin group, on lipid metabolism, in addition to its well-researched involvement in extending lifespan. The regulation of gene expression has been extensively linked to SIRT1. Sterol regulatory element-binding protein (SREBP) is a substrate of SIRT1 that has attracted significant interest due to its role in multiple cellular processes including cell cycle regulation, DNA damage repair, and metabolic functions. Hence, the objective of this analysis was to investigate and elucidate the correlation between SIRT1 and SREBPs, as well as assess the contribution of SIRT1/SREBPs in mitigating lipid metabolism dysfunction. The objective of this research was to investigate whether SIRT1 and SREBPs could be utilized as viable targets for therapeutic intervention in managing complications associated with diabetes.
Collapse
Affiliation(s)
- Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Mingyang Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
30
|
Eganyan R, Kulikova M. Impact of alcohol consumption on nature of nutrition, metabolism and human target organs. Part 2. Basic principles of nutritional intervention. RUSSIAN JOURNAL OF PREVENTIVE MEDICINE 2024; 27:131. [DOI: 10.17116/profmed202427101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Liu P, Li M, Wu W, Liu A, Hu H, Liu Q, Yi C. Protective effect of omega-3 polyunsaturated fatty acids on sepsis via the AMPK/mTOR pathway. PHARMACEUTICAL BIOLOGY 2023; 61:306-315. [PMID: 36694426 PMCID: PMC9879202 DOI: 10.1080/13880209.2023.2168018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 06/02/2023]
Abstract
CONTEXT Sepsis is a systemic inflammatory response caused by infection, with high morbidity and mortality. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have reported biological activities. OBJECTIVE This study explored the signaling pathways through which ω-3 PUFAs protect against sepsis-induced multiorgan failure. MATERIALS AND METHODS Septic Sprague-Dawley (SD) rat model was established by the cecum ligation perforation (CLP) method. Rats were divided into control, sham, model, parenteral ω-3 PUFAs (0.5 g/kg) treatment, ω-3 PUFAs (0.5 g/kg) + AMPK inhibitor Compound C (30 mg/kg) treatment, and ω-3 PUFAs (0.5 g/kg) + mTOR activator MHY1485 (10 mg/kg) treatment groups. The serum inflammatory cytokines were measured using ELISA. Organ damage-related markers cTnI, CK, CK-MB, Cr, BUN, ALT, and AST were measured using an automated chemical analyzer. The AMPK/mTOR pathway in liver, kidney, and myocardial tissues was detected using western blot and qRT-PCR methods. RESULTS CLP treatment enhanced the secretion of pro-inflammatory cytokines and multi-organ related markers, along with increased p-AMPK/AMPK ratio (from 0.47 to 0.87) and decreased p-mTOR/mTOR ratio (from 0.33 to 0.12) in rats. The inflammation response and multi-organ injury induced by CLP treatment could be partially counteracted by 0.5 g/kg parenteral ω-3 PUFA treatment. The activated AMPK/mTOR pathway in CLP-induced rats was further promoted. Finally, Compound C and MHY1485 could reverse the effects of parenteral ω-3 PUFA treatment on sepsis rats. DISCUSSION AND CONCLUSION ω-3 PUFAs ameliorated sepsis development by activating the AMPK/mTOR pathway, serving as a potent therapeutic agent for sepsis. Further in vivo studies may validate potential clinical use.
Collapse
Affiliation(s)
- Peng Liu
- Wuhan Fourth Hospital, Wuhan, China
| | - Ming Li
- Wuhan Fourth Hospital, Wuhan, China
| | - Wei Wu
- Wuhan Fourth Hospital, Wuhan, China
| | - Anjie Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Qin Liu
- Wuhan Fourth Hospital, Wuhan, China
| | | |
Collapse
|
32
|
Yao Z, Liu N, Lin H, Zhou Y. Proanthocyanidin Alleviates Liver Ischemia/Reperfusion Injury by Suppressing Autophagy and Apoptosis via the PPARα/PGC1α Signaling Pathway. J Clin Transl Hepatol 2023; 11:1329-1340. [PMID: 37719964 PMCID: PMC10500287 DOI: 10.14218/jcth.2023.00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 09/19/2023] Open
Abstract
Background and Aims Hepatic ischemia-reperfusion injury (IRI) is a common pathophysiological phenomenon in clinical practice, which usually occurs in liver transplantation, liver resection, severe trauma, and hemorrhagic shock. Proanthocyanidin (PC), exerted from various plants with antioxidant, antitumor, and antiaging activity, were administrated in our study to investigate the underlying mechanism of its protective function on IRI. Methods Two doses of PC (50 mg/kg, 100 mg/kg) were given to BALB/c mice by intragastric administration for 7 days before partial (70%) warm IR surgery. Serum and liver tissues were collected 2, 8, and 24 h after reperfusion for relevant experiments. Results The results of transaminase and hematoxylin and eosin staining indicated that PC pretreatment significantly alleviated IRI in mice. Serum total superoxide dismutase increased and malondialdehyde decreased in PC pretreatment groups. Enzyme-linked immunosorbent assays, western blotting, quantitative real-time polymerase chain reaction, and immunohistochemistry showed that inflammation, apoptosis, and autophagy in PC preprocessing groups were significantly inhibited and were dose-dependent. The protein, mRNA expression, and immunohistochemical staining results of peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) in the PC pretreatment groups were significantly upregulated compared with the IR group in a dose-dependent manner. Conclusions PC pretreatment suppressed inflammation, apoptosis, and autophagy via the PPAR-α signaling pathway to protect against IRI of the liver in mice.
Collapse
Affiliation(s)
- Zhilu Yao
- Department of Gastroenterology, Jingan District Zhabei Central Hospital, Shanghai, China
- Clinical Medical College of Shanghai Tenth People’s Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Liu
- Department of Gastroenterology, Changzhou Maternal and Child Health Hospital, Changzhou, Jiangsu, China
| | - Hui Lin
- Department of Gastroenterology, Jingan District Zhabei Central Hospital, Shanghai, China
| | - Yingqun Zhou
- Clinical Medical College of Shanghai Tenth People’s Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Yang RJ, Zou J, Liu JY, Dai JK, Wan JB. Click chemistry-based enrichment strategy for tracing cellular fatty acid metabolism by LC-MS/MS. J Pharm Anal 2023; 13:1221-1231. [PMID: 38024853 PMCID: PMC10657974 DOI: 10.1016/j.jpha.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 12/01/2023] Open
Abstract
Fatty acids (FAs), which were initially recognized as energy sources and essential building blocks of biomembranes, serve as the precursors of important signaling molecules. Tracing FA metabolism is essential to understanding the biochemical activity and role of FAs in physiological and pathological events. Inspired by the advances in click chemistry for protein enrichment, we herein established a click chemistry-based enrichment (CCBE) strategy for tracing the cellular metabolism of eicosapentaenoic acid (EPA, 20:5 n-3) in neural cells. Terminal alkyne-labeled EPA (EPAA) used as a surrogate was incubated with N2a, mouse neuroblastoma cells, and alkyne-labeled metabolites (ALMs) were selectively captured by an azide-modified resin via a Cu(I)-catalyzed azide-alkyne cycloaddition reaction for enrichment. After removing unlabeled metabolites, ALMs containing a triazole moiety were cleaved from solid-phase resins and subjected to liquid chromatography mass spectrometry (LC-MS) analysis. The proposed CCBE strategy is highly selective for capturing and enriching alkyne-labeled metabolites from the complicated matrices. In addition, this method can overcome current detection limits by enhancing MS sensitivity of targets, improving the chromatographic separation of sn-position glycerophospholipid regioisomers, facilitating structural characterization of ALMs by a specific MS/MS fragmentation signature, and providing versatile fluorescence detection of ALMs for cellular distribution. This CCBE strategy might be expanded to trace the metabolism of other FAs, small molecules, or drugs.
Collapse
Affiliation(s)
- Ru-Jie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jia-Yue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
34
|
Mishra S, Premkumar M. Nutritional Management of a Liver Transplant Candidate. J Clin Exp Hepatol 2023; 13:878-894. [PMID: 37693267 PMCID: PMC10483011 DOI: 10.1016/j.jceh.2023.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/28/2023] [Indexed: 09/12/2023] Open
Abstract
Nearly two-thirds of patients with cirrhosis suffer from malnutrition resulting from multiple contributory factors such as poor intake, accelerated starvation, catabolic milieu, and anabolic resistance. Nutritional assessment and optimization are integral to adequate management of a liver transplant (LT) candidate. A detailed nutritional assessment should be done at baseline in all potential transplant candidates with periodic reassessments. Sarcopenia is defined as a reduction in muscle mass, function, and/or performance. Skeletal muscle index at 3rd lumbar vertebra determined by computed tomography is the most objective tool to assess muscle mass. Hand-grip strength and gait speed are simple tools to gauge muscle strength and performance, respectively. Sarcopenia, sarcopenic obesity, and myosteatosis portend poor outcomes. Sarcopenia contributes greatly to frailty, which is a syndrome of reduced physiological reserve and impaired response to stressors. Dietary interventions must ensure adequate calorie (35-40 kcal/kg/day) and protein (1.2-1.5 gm/kg/day) intake via multiple frequent meals and late-evening calorie-dense snack. Micronutrient supplementation is essential, keeping in mind the etiology of cirrhosis. Individualized, gradually up-titrated exercise prescription consisting of both aerobic and resistance training of 150 min/week is advisable after appropriate risk assessment. Early initiation of enteral nutrition within 12-24 h of LT is recommended. Data with respect to immune-nutrition, monomeric formulas, and hormone replacement remain conflicting at present. A multidisciplinary team comprising of hepatologists, transplant surgeons, intensivists, dieticians, and physiotherapists is vital to improve overall nutrition and outcomes in this vulnerable group.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Gastroenterology and Hepatology, Paras Health, Sector-22, Panchkula, Haryana, 134109, India
| | - Madhumita Premkumar
- Departments of Hepatology, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012, India
| |
Collapse
|
35
|
Zou J, Yang R, Feng R, Liu J, Wan JB. Ginsenoside Rk2, a dehydroprotopanaxadiol saponin, alleviates alcoholic liver disease via regulating NLRP3 and NLRP6 inflammasome signaling pathways in mice. J Pharm Anal 2023; 13:999-1012. [PMID: 37842661 PMCID: PMC10568107 DOI: 10.1016/j.jpha.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heavy alcohol consumption results in alcoholic liver disease (ALD) with inadequate therapeutic options. Here, we first report the potential beneficial effects of ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin isolated from streamed ginseng, against alcoholic liver injury in mice. Chronic-plus-single-binge ethanol feeding caused severe liver injury, as manifested by significantly elevated serum aminotransferase levels, hepatic histological changes, increased lipid accumulation, oxidative stress, and inflammation in the liver. These deleterious effects were alleviated by the treatment with Rk2 (5 and 30 mg/kg). Acting as an nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inhibitor, Rk2 ameliorates alcohol-induced liver inflammation by inhibiting NLRP3 inflammasome signaling in the liver. Meanwhile, the treatment with Rk2 alleviated the alcohol-induced intestinal barrier dysfunction via enhancing NLRP6 inflammasome in the intestine. Our findings indicate that Rk2 is a promising agent for the prevention and treatment of ALD and other NLPR3-driven diseases.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Rujie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
36
|
Grigorova N, Ivanova Z, Vachkova E, Petrova V, Penev T. DHA-Provoked Reduction in Adipogenesis and Glucose Uptake Could Be Mediated by Gps2 Upregulation in Immature 3T3-L1 Cells. Int J Mol Sci 2023; 24:13325. [PMID: 37686130 PMCID: PMC10487817 DOI: 10.3390/ijms241713325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The signaling pathway of fatty acids in the context of obesity is an extensively explored topic, yet their primary mechanism of action remains incompletely understood. This study aims to examine the effect of docosahexaenoic acid (DHA) on some crucial aspects of adipogenesis in differentiating 3T3-L1 cells, using palmitic acid-treated (PA), standard differentiated, and undifferentiated adipocytes as controls. Employing 60 µM DHA or PA, 3T3-L1 preadipocytes were treated from the onset of adipogenesis, with negative and positive controls included. After eight days, we performed microscopic observations, cell viability assays, the determination of adiponectin concentration, intracellular lipid accumulation, and gene expression analysis. Our findings demonstrated that DHA inhibits adipogenesis, lipolysis, and glucose uptake by suppressing peroxisome proliferator-activated receptor gamma (Pparg) and G-protein coupled receptor 120 (Gpr120) gene expression. Cell cytotoxicity was ruled out as a causative factor, and β-oxidation involvement was suspected. These results challenge the conventional belief that omega-3 fatty acids, acting as Pparg and Gpr120 agonists, promote adipogenesis and enhance insulin-dependent glucose cell flux. Moreover, we propose a novel hypothesis suggesting the key role of the co-repressor G protein pathway suppressor 2 in mediating this process. Additional investigations are required to elucidate the molecular mechanisms driving DHA's anti-adipogenic effect and its broader health implications.
Collapse
Affiliation(s)
- Natalia Grigorova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Valeria Petrova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Toncho Penev
- Department of Ecology and Animal Hygiene, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
37
|
Jin X, Li Z, Zhang Y, Zhu Y, Su L, Song J, Hao J, Wang D. Protection of Inonotus hispidus (Bull.) P. Karst. against Chronic Alcohol-Induced Liver Injury in Mice via Its Relieving Inflammation Response. Nutrients 2023; 15:3530. [PMID: 37630721 PMCID: PMC10458315 DOI: 10.3390/nu15163530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Alcoholic liver disease (ALD) can be induced by excessive alcohol consumption, and has a worldwide age-standardized incidence rate (ASIR) of approximately 5.243%. Inonotus hispidus (Bull.) P. Karst. (IH) is a mushroom with pharmacological effects. In ALD mice, the hepatoprotective effects of IH were investigated. IH strongly ameliorated alcohol-induced pathological changes in the liver, including liver structures and its function-related indices. Intestinal microbiota and serum metabolomics analysis showed that IH altered the associated anti-inflammatory microbiota and metabolites. According to results obtained from Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA), IH downregulated the levels of pro-inflammation factors interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), enhanced the expressions of peroxisome proliferator-activated receptor alpha (PPARα) and 15-hydroxprostaglandin dehydrogenase (15-PGDH), and inhibited the phosphorylated activation of Janus kinase (JAK) 1 and signal transducer and activator of transcription (STAT) 3, confirming the hepatoprotection of IH against alcohol damage via anti-inflammation. This study provides the experimental evidence for the hepatoprotective effects of IH in chronic ALD.
Collapse
Affiliation(s)
- Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| | - Jiyu Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China;
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.J.); (Z.L.); (Y.Z.); (Y.Z.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
38
|
Jian F, Zhang Z, Li D, Luo F, Wu Q, Lu F, Dai Z, Nie M, Xu Y, Feng L, Gu Q. Evaluation of the digestibility and antioxidant activity of protein and lipid after mixing nuts based on in vitro and in vivo models. Food Chem 2023; 414:135706. [PMID: 36821922 DOI: 10.1016/j.foodchem.2023.135706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
This study aimed to evaluate the change of digestibility and antioxidant activity of protein and lipid after mixing walnuts, cashews, and pistachios using in vitro and in vivo models. The results showed that mixed nuts significantly reduced the digested particle size and the degree of hydrolysis of protein and triacylglycerol compared to single nuts in vitro. As a consequence of co-digestion, bioaccessibility and antioxidant activity for amino acids and fatty acids were increased by 1.12-1.87 fold and 1.62-3.81 fold, respectively. In vivo studies, the mixed nuts diet increased the concentration of amino acids and fatty acids in the small intestine by 27.69%-158.26% and 18.13%-152.09%, respectively, and enhanced levels of antioxidant enzymes in the liver and serum, all without causing weight gain. These findings highlight the positive interaction between single and mixed nuts, where mixed nuts enhanced the digestibility and antioxidant activity of single nuts both in vitro and in vivo.
Collapse
Affiliation(s)
- Fangfang Jian
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China.
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fangjian Luo
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qihui Wu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fengqin Lu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qianhui Gu
- Three Squirrels Co., Ltd, Wuhu 241001, China
| |
Collapse
|
39
|
Valner A, Müller R, Kull M, Põlluste K, Lember M, Kallikorm R. Does Dietary Polyunsaturated Fatty Acid Intake Associate With Bone Mineral Density and Limb Structural Changes in Early Rheumatoid Arthritis? Nutr Metab Insights 2023; 16:11786388231176169. [PMID: 37383545 PMCID: PMC10293524 DOI: 10.1177/11786388231176169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 06/30/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an inflammatory disease that can result in bone erosion, lean mass lowering, and increase of fat mass without changes in body weight. The dietary consumption of polyunsaturated fatty acids (PUFAs) has been assessed in many studies due to their potential anti-inflammatory effect. Aim The aim of this research was to identify if dietary intake of PUFAs associates with bone mineral density (BMD) and limb structural changes in early rheumatoid arthritis (ERA) compared to a population-based control group. The study was conducted because previous results have been insufficient. Methods The study group consisted of 83 ERA patients and 321 control subjects. A dual-energy X-Ray absorptiometry (DXA) machine was used to measure hip, lumbar spine, and radius BMD, as well as arm and leg fat, lean, and bone mass. Dietary habits and inflammatory markers were assessed to evaluate the effects to BMD and limb structural changes. Results In ERA subjects, higher dietary consumption of PUFAs was associated with a decrease in arm fat mass (b -28.17, P = .02) and possibly with higher lumbar BMD (b 0.008, P = .058). Limb bone and lean mass changes were not associated with dietary intake of PUFAs. Conclusion Balanced nutrition is essential. Consuming PUFAs could be beneficial in ERA preventing structural changes to hands, but additional research is needed.
Collapse
Affiliation(s)
- Annika Valner
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Raili Müller
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mart Kull
- Viljandi County Hospital, Viljandi County, Estonia
| | - Kaja Põlluste
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Margus Lember
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Riina Kallikorm
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
40
|
Cho AR, Kwon YJ, Lee JH. Oxidative balance score is inversely associated with the incidence of non-alcoholic fatty liver disease. Clin Nutr 2023; 42:1292-1300. [PMID: 37352819 DOI: 10.1016/j.clnu.2023.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND & AIMS The contribution of the balance between overall oxidative stress and antioxidant status in non-alcoholic fatty liver disease (NAFLD) is unclear. The oxidative balance score (OBS) comprises dietary and lifestyle pro- and antioxidant components that indicate the overall oxidative stress burden. We investigated the association between OBS and the incidence of NAFLD in middle-aged and older Korean adults. METHODS Among the 10,030 participants of the Korean Genome and Epidemiology Study_Ansan and Ansung cohort, 5065 without NAFLD at baseline were selected for secondary analysis. OBS was categorized into quartiles. Multiple Cox proportional hazard regression analyses were performed to estimate the hazard ratio (HR) and 95% confidence interval (CI) for NAFLD incidence by sex-specific OBS quartile groups after adjusting for confounders. RESULTS During the follow-up period (median 13.4 years), 913 (43.2%) men and 1288 (43.9%) women were newly diagnosed with NAFLD. Compared with that of the lowest quartile (Q1) group, the adjusted HR (95% CI) for NAFLD incidence in Q2, Q3, and Q4 groups was 0.85 (0.71-1.00), 0.65 (0.54-0.78), and 0.50 (0.40-0.62) in men, and 0.85 (0.73-0.99), 0.66 (0.56-0.77), and 0.48 (0.40-0.59) in women, respectively, and for NAFLD incidence, per incremental change in OBS, was 0.90 (0.87-0.92) in men and 0.88 (0.86-0.90) in women. CONCLUSIONS A higher OBS was significantly associated with a lower risk for NAFLD incidence. Maintaining a healthy lifestyle and an antioxidant-rich diet is a potentially viable strategy for preventing NAFLD.
Collapse
Affiliation(s)
- A-Ra Cho
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, 16995, Republic of Korea
| | - Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, 01830, Republic of Korea; Department of Medicine, Graduate School of Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
41
|
Gao Y, Zheng B, Xu S, Zhao Z, Liu W, Wang T, Yuan M, Sun X, Tan Y, Xu Q, Wu X. Mitochondrial folate metabolism-mediated α-linolenic acid exhaustion masks liver fibrosis resolution. J Biol Chem 2023:104909. [PMID: 37307917 PMCID: PMC10344950 DOI: 10.1016/j.jbc.2023.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Sustainable TGF-β1 signaling drives organ fibrogenesis. However, the cellular adaptation to maintain TGF-β1 signaling remains unclear. In this study, we revealed that dietary folate restriction promoted the resolution of liver fibrosis in mice with nonalcoholic steatohepatitis (NASH). In activated hepatic stellate cells (HSCs), folate shifted toward mitochondrial metabolism to sustain TGF-β1 signaling. Mechanistically, nontargeted metabolomics screening identified that α-linolenic acid (ALA) is exhausted by mitochondrial folate metabolism in activated HSCs. Knocking down serine hydroxymethyltransferase 2 (SHMT2) increases the bioconversion of ALA to docosahexaenoic acid (DHA) which inhibits TGF-β1 signaling. Finally, blocking mitochondrial folate metabolism promoted liver fibrosis resolution in NASH mice. In conclusion, mitochondrial folate metabolism/ALA exhaustion/TGF-βR1 reproduction is a feedforward signaling to sustain profibrotic TGF-β1 signaling and targeting mitochondrial folate metabolism is a promising strategy to enforce liver fibrosis resolution.
Collapse
Affiliation(s)
- Yanjie Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bingfeng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shuaiqi Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhibo Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wanyue Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tingyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Manman Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xueqing Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
42
|
Yuan T, Xia Y, Li B, Yu W, Rao T, Ye Z, Yan X, Song B, Li L, Lin F, Cheng F. Gut microbiota in patients with kidney stones: a systematic review and meta-analysis. BMC Microbiol 2023; 23:143. [PMID: 37208622 DOI: 10.1186/s12866-023-02891-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Mounting evidence indicates that the gut microbiome (GMB) plays an essential role in kidney stone (KS) formation. In this study, we conducted a systematic review and meta-analysis to compare the composition of gut microbiota in kidney stone patients and healthy individuals, and further understand the role of gut microbiota in nephrolithiasis. RESULTS Six databases were searched to find taxonomy-based comparison studies on the GMB until September 2022. Meta-analyses were performed using RevMan 5.3 to estimate the overall relative abundance of gut microbiota in KS patients and healthy subjects. Eight studies were included with 356 nephrolithiasis patients and 347 healthy subjects. The meta-analysis suggested that KS patients had a higher abundance of Bacteroides (35.11% vs 21.25%, Z = 3.56, P = 0.0004) and Escherichia_Shigella (4.39% vs 1.78%, Z = 3.23, P = 0.001), and a lower abundance of Prevotella_9 (8.41% vs 10.65%, Z = 4.49, P < 0.00001). Qualitative analysis revealed that beta-diversity was different between the two groups (P < 0.05); Ten taxa (Bacteroides, Phascolarctobacterium, Faecalibacterium, Flavobacterium, Akkermansia, Lactobacillus, Escherichia coli, Rhodobacter and Gordonia) helped the detection of kidney stones (P < 0.05); Genes or protein families of the GMB involved in oxalate degradation, glycan synthesis, and energy metabolism were altered in patients (P < 0.05). CONCLUSIONS There is a characteristic gut microbiota dysbiosis in kidney stone patients. Individualized therapies like microbial supplementation, probiotic or synbiotic preparations and adjusted diet patterns based on individual gut microbial characteristics of patients may be more effective in preventing stone formation and recurrence.
Collapse
Affiliation(s)
- Tianhui Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinzhou Yan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
43
|
Tang Q, Li W, Ren Z, Ding Q, Peng X, Tang Z, Pang J, Xu Y, Sun Z. Different Fatty Acid Supplementation in Low-Protein Diets Regulate Nutrient Utilization and Lipid and Amino Acid Metabolism in Weaned Pigs Model. Int J Mol Sci 2023; 24:ijms24108501. [PMID: 37239844 DOI: 10.3390/ijms24108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This study was conducted to evaluate the effects of a low-protein (LP) diet supplemented with sodium butyrate (SB), medium-chain fatty acids (MCFAs) and n-3 polyunsaturated fatty acids (PUFAs) on nutrient utilization and lipid and amino acid metabolism in weaned pigs. A total of 120 Duroc × Landrace × Yorkshire pigs (initial body weight: 7.93 ± 0.65 kg) were randomly assigned to five dietary treatments, including the control diet (CON), LP diet, LP + 0.2% SB diet (LP + SB), LP + 0.2% MCFA diet (LP + MCFA) and LP + 0.2% n-3 PUFA diet (LP + PUFA). The results show that the LP + MCFA diet increased (p < 0.05) the digestibility of dry matter and total P in pigs compared with the CON and LP diets. In the liver of the pigs, the metabolites involved in sugar metabolism and oxidative phosphorylation significantly changed with the LP diet compared with the CON diet. Compared with the LP diet, the altered metabolites in the liver of the pigs fed with the LP + SB diet were mainly associated with sugar metabolism and pyrimidine metabolism; the altered metabolites in the liver of pigs fed with the LP + MCFA and LP + PUFA diets were mainly associated with lipid metabolism and amino acid metabolism. In addition, the LP + PUFA diet increased (p < 0.05) the concentration of glutamate dehydrogenase in the liver of pigs compared with the LP diet. Furthermore, the LP + MCFA and LP + PUFA diets increased (p < 0.05) the mRNA abundance of sterol regulatory element-binding protein 1 and acetyl-CoA carboxylase in the liver compared with the CON diet. The LP + PUFA diet increased (p < 0.05) mRNA abundances of fatty acid synthase in the liver compared with the CON and LP diets. Collectively, the LP diet supplemented with MCFAs improved nutrient digestibility, and the LP diet supplemented with MCFAs and n-3 PUFAs promoted lipid and amino acid metabolisms.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhongxiang Ren
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qi Ding
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
44
|
Del Bo' C, Perna S, Allehdan S, Rafique A, Saad S, AlGhareeb F, Rondanelli M, Tayyem RF, Marino M, Martini D, Riso P. Does the Mediterranean Diet Have Any Effect on Lipid Profile, Central Obesity and Liver Enzymes in Non-Alcoholic Fatty Liver Disease (NAFLD) Subjects? A Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients 2023; 15:nu15102250. [PMID: 37242133 DOI: 10.3390/nu15102250] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The effectiveness of the Mediterranean diet (MD) in non-alcoholic fatty liver disease (NAFLD) subjects has been evaluated in several randomized controlled trials (RCTs). This systematic review and meta-analysis aimed to evaluate the overall effects of MD intervention in a cohort of NAFLD patients targeting specific markers such as central obesity, lipid profile, liver enzymes and fibrosis, and intrahepatic fat (IHF). Google Scholar, PubMed, and Scopus were explored to collect relevant studies from the last 10 years. RCTs with NAFLD subjects were included in this systematic review with a mean intervention duration from 6 weeks to 1 year, and different intervention strategies, mainly including energy restriction MD (normal or low glycaemic index), low-fat MD with increased monounsaturated and polyunsaturated fatty acids, and increased exercise expenditure. The outcomes measured in this meta-analysis were gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), total cholesterol (TC), waist circumference (WC), and liver fibrosis. Ten randomized controlled trials, which involved a total of 737 adults with NAFLD, were included. According to the results, the MD seems to decrease the liver stiffness (kPa) by -0.42 (CI95% -0.92, 0.09) (p = 0.10) and significantly reduce the TC by -0.46 mg/dl (CI95% -0.55, -0.38) (p = 0.001), while no significant findings were documented for liver enzymes and WC among patients with NAFLD. In conclusion, the MD might reduce indirect and direct outcomes linked with NAFLD severity, such as TC, liver fibrosis, and WC, although it is important to consider the variations across trials. Further RCTs are necessary to corroborate the findings obtained and provide further evidence on the role of the MD in the modulation of other disorders related to NAFLD.
Collapse
Affiliation(s)
- Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Simone Perna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Sabika Allehdan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Ayesha Rafique
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Sara Saad
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Fahad AlGhareeb
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Reema F Tayyem
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
45
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
46
|
Gao H, Li Z, Liu Y, Zhao YK, Cheng C, Qiu F, Gao Y, Lu YW, Song XH, Wang JB, Ma ZT. A clinical experience-based Chinese herbal formula improves ethanol-induced drunken behavior and hepatic steatohepatitis in mice models. Chin Med 2023; 18:47. [PMID: 37127639 PMCID: PMC10150545 DOI: 10.1186/s13020-023-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Bao-Gan-Xing-Jiu-Wan (BGXJW) is a clinical experience-based Chinese herbal formula. Its efficacy, pharmacological safety, targeted function, process quality, and other aspects have met the evaluation standards and the latest requirements of preparations. It could prevent and alleviate the symptoms of drunkenness and alcoholic liver injury clinically. The present work aims to elucidate whether BGXJW could protect against drunkenness and alcoholic liver disease in mice and explore the associated mechanism. MATERIAL AND METHODS We used acute-on-chronic (NIAAA) mice model to induce alcoholic steatosis, and alcohol binge-drinking model to reappear the drunk condition. BGXJW at indicated doses were administered by oral gavage respectively to analyze its effects on alcoholic liver injury and the associated molecular mechanisms. RESULTS BGXJW had no cardiac, hepatic, renal, or intestinal toxicity in mice. Alcoholic liver injury and steatosis in the NIAAA mode were effectively prevented by BGXJW treatment. BGXJW increased the expression of alcohol metabolizing enzymes ADH, CYP2E1, and ALDH2 to enhance alcohol metabolism, inhibited steatosis through regulating lipid metabolism, counteracted alcohol-induced upregulation of lipid synthesis related proteins SREBP1, FASN, and SCD1, meanwhile it enhanced fatty acids β-oxidation related proteins PPAR-α and CPT1A. Alcohol taken enhanced pro-inflammatory TNF-α, IL-6 and down-regulated the anti-inflammatory IL-10 expression in the liver, which were also reversed by BGXJW administration. Moreover, BGXJW significantly decreased the blood ethanol concentration and alleviated drunkenness in the alcohol binge-drinking mice model. CONCLUSIONS BGXJW could effectively relieve drunkenness and prevent alcoholic liver disease by regulating lipid metabolism, inflammatory response, and alcohol metabolism.
Collapse
Affiliation(s)
- Han Gao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Department of Hepatology, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China
| | - Zhen Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Henan, 450046, Zhengzhou, China
| | - Yao Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Department of Infectious Disease, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yong-Kang Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Cheng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Department of Pharmacy, Jincheng General Hospital, Jincheng, 048006, Shanxi, China
| | - Feng Qiu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Ya-Wen Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xin-Hua Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jia-Bo Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Zhi-Tao Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
47
|
Xie P, Xie JB, Xiao MY, Guo M, Qi YS, Li FF, Piao XL. Liver lipidomics analysis reveals the anti-obesity and lipid-lowering effects of gypnosides from heat-processed Gynostemma pentaphyllum in high-fat diet fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154834. [PMID: 37094422 DOI: 10.1016/j.phymed.2023.154834] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In traditional Chinese medicine, Gynostemma pentaphyllum (G. pentaphyllum) is widely used to treat conditions associated with hyperlipidemia, and its therapeutic potential has been demonstrated in numerous studies. However, the mechanism of lipid metabolism in hyperlipidemic by G. pentaphyllum, especially heat-processed G. pentaphyllum is not yet clear. PURPOSE The aim of this study was to investigate the therapeutic mechanism of gypenosides from heat-processed G. pentaphyllum (HGyp) in hyperlipidemic mice by means of a lipidomics. METHODS The content of the major components of HGyp was determined by ultra-performance liquid chromatography-electrospray ionization ion trap mass spectrometry (UPLC-ESI-MS). An animal model of hyperlipidaemia was constructed using C57BL/6J mice fed with high-fat diet. HGyp was also administered at doses of 50, 100 and 200 mg/kg, all for 12 weeks. Serum parameters were measured, histological sections were prepared and liver lipidome analysis using UPLC-MS coupled with multivariate statistical analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to analyze the genes and proteins associated with lipid lowering in HGyp. RESULTS HGyp reduced body weight, serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) and hepatic lipid accumulation in hyperlipidemic obese mice. To explore specific changes in lipid metabolism in relation to HGyp administration, lipid analysis of the liver was performed. Orthogonal partial least squares discriminant analysis (OPLS-DA) score plots showed that HGyp altered lipid metabolism in HFD mice. In particular, fatty acids (FA), triglycerides (DG), TG and ceramides (CER) were significantly altered. Eleven lipids were identified as potential lipid biomarkers, namely TG (18:2/20:5/18:2), TG (18:2/18:3/20:4), DG (18:3/20:0/0:0), Cer (d18:1/19:0), Cer (d16:1/23:0), Ceramide (d18:1/9Z-18:1), PS (19:0/18:3), PS (20:2/0:0), LysoPC (22:5), LysoPE (0:0/18:0), PE (24:0/16:1). Western blot and qRT-PCR analysis showed that these metabolic improvements played a role by down-regulating genes and proteins related to fat production (SREBP1, ACC1, SCD1), up-regulating genes and proteins related to lipid oxidation (CPTA1, PPARα) and lipid transport decomposition in the bile acid pathway (LXRα, PPARγ, FXR, BSEP). CONCLUSION The lipid-lowering effect of gypenosides from heat-processed G. pentaphyllum is regulate lipid homeostasis and metabolism.
Collapse
Affiliation(s)
- Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jin-Bo Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Mei Guo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yan-Shuang Qi
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
48
|
Wu J, Zhang C, He T, Zhang S, Wang Y, Xie Z, Xu W, Ding C, Shuai Y, Hao H, Cao L. Polyunsaturated fatty acids drive neutrophil extracellular trap formation in nonalcoholic steatohepatitis. Eur J Pharmacol 2023; 945:175618. [PMID: 36841284 DOI: 10.1016/j.ejphar.2023.175618] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome. Non-resolving inflammation, triggered by sustained accumulation of lipids, is an important driving force of NASH. Thus, unveiling metabolic immune regulation could help better understand the pathology and intervention of NASH. In this study, we found the recruitment of neutrophils is an early inflammatory event in NASH mice, following the formation of neutrophil extracellular traps (NETs). NET is an initiating factor which exacerbates inflammatory responses in macrophages. Inhibition of NETs using DNase I significantly alleviated inflammation in NASH mice. We further carried out a metabolomic study to identify possible metabolic triggers of NETs, and linoleic acid (LA) metabolic pathway was the most altered pathway. We re-analyzed published clinical data and validated that LA metabolism was highly correlated with NASH. Consistently, both LA and γ-linolenic acid (GLA) were active in triggering NETs formation by oxidative burst. Furthermore, we identified silybin, a hepatoprotective agent, as a potent NETosis inhibitor, which effectively blocked NETs formation both in vitro and in vivo. Together, this study not only provide new insights into metabolism-immune causal link in NASH progression, but also demonstrate silybin as an important inhibitor of NETs and its therapeutical potential in treating NETosis-related diseases.
Collapse
Affiliation(s)
- Jiawei Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Chuan Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Tianyu He
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Shule Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Ziqing Xie
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Wanfeng Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Chujie Ding
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Yubing Shuai
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China.
| | - Lijuan Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
49
|
Chen W, Li T, Du S, Chen H, Wang Q. Microalgal polyunsaturated fatty acids: Hotspots and production techniques. Front Bioeng Biotechnol 2023; 11:1146881. [PMID: 37064250 PMCID: PMC10102661 DOI: 10.3389/fbioe.2023.1146881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Algae play a crucial role in the earth’s primary productivity by producing not only oxygen but also a variety of high-value nutrients. One such nutrient is polyunsaturated fatty acids (PUFAs), which are accumulated in many algae and can be consumed by animals through the food chain and eventually by humans. Omega-3 and omega-6 PUFAs are essential nutrients for human and animal health. However, compared with plants and aquatic sourced PUFA, the production of PUFA-rich oil from microalgae is still in the early stages of exploration. This study has collected recent reports on algae-based PUFA production and analyzed related research hotspots and directions, including algae cultivation, lipids extraction, lipids purification, and PUFA enrichment processes. The entire technological process for the extraction, purification and enrichment of PUFA oils from algae is systemically summarized in this review, providing important guidance and technical reference for scientific research and industrialization of algae-based PUFA production.
Collapse
Affiliation(s)
- Weixian Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianpei Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuwen Du
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Qiang Wang,
| |
Collapse
|
50
|
Tadokoro T, Morishita A, Himoto T, Masaki T. Nutritional Support for Alcoholic Liver Disease. Nutrients 2023; 15:nu15061360. [PMID: 36986091 PMCID: PMC10059060 DOI: 10.3390/nu15061360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Malnutrition is a common finding in alcohol use disorders and is associated with the prognosis of patients with alcoholic liver disease (ALD). These patients also frequently show deficiencies in vitamins and trace elements, increasing the likelihood of anemia and altered cognitive status. The etiology of malnutrition in ALD patients is multifactorial and complex and includes inadequate dietary intake, abnormal absorption and digestion, increased skeletal and visceral protein catabolism, and abnormal interactions between ethanol and lipid metabolism. Most nutritional measures derive from general chronic liver disease recommendations. Recently, many patients with ALD have been diagnosed with metabolic syndrome, which requires individualized treatment via nutritional therapy to avoid overnutrition. As ALD progresses to cirrhosis, it is frequently complicated by protein–energy malnutrition and sarcopenia. Nutritional therapy is also important in the management of ascites and hepatic encephalopathy as liver failure progresses. The purpose of the review is to summarize important nutritional therapies for the treatment of ALD.
Collapse
Affiliation(s)
- Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
- Correspondence: ; Tel.: +81-87-891-2156
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu 761-0123, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| |
Collapse
|