1
|
Nemzer BV, Al-Taher F, Kalita D, Yashin AY, Yashin YI. Health-Improving Effects of Polyphenols on the Human Intestinal Microbiota: A Review. Int J Mol Sci 2025; 26:1335. [PMID: 39941107 PMCID: PMC11818678 DOI: 10.3390/ijms26031335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Dietary polyphenols are garnering attention in the scientific community due to their potential health-beneficial properties and preventative effects against chronic diseases, viz. cardiovascular diseases, diabetes, obesity, and neurodegenerative diseases. Polyphenols are antioxidants that change microbial composition by suppressing pathogenic bacteria and stimulating beneficial bacteria. The interaction of polyphenols with dietary fibers affects their bioaccessibility in the upper and lower parts of the digestive tract. Dietary fibers, polyphenols, their conjugates, and their metabolites modulate microbiome population and diversity. Consuming polyphenol-rich dietary fibers such as pomegranate, cranberry, berries, and tea improves gut health. A complex relationship exists between polyphenol-rich diets and gut microbiota for functioning in human health. In this review, we provide an overview of the interactions of dietary polyphenols, fibers, and gut microbiota, improving the understanding of the functional properties of dietary polyphenols.
Collapse
Affiliation(s)
- Boris V. Nemzer
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA; (F.A.-T.); (D.K.)
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fadwa Al-Taher
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA; (F.A.-T.); (D.K.)
| | - Diganta Kalita
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA; (F.A.-T.); (D.K.)
| | - Alexander Y. Yashin
- International Analytical Center of Zelinsky Institute of Organic Chemistry of Russian Academy of Science, Moscow 119991, Russia; (A.Y.Y.); (Y.I.Y.)
| | - Yakov I. Yashin
- International Analytical Center of Zelinsky Institute of Organic Chemistry of Russian Academy of Science, Moscow 119991, Russia; (A.Y.Y.); (Y.I.Y.)
| |
Collapse
|
2
|
Gao L, Yang XN, Dong YX, Han YJ, Zhang XY, Zhou XL, Liu Y, Liu F, Fang JS, Ji JL, Gao ZR, Qin XM. The potential therapeutic strategy in combating neurodegenerative diseases: Focusing on natural products. Pharmacol Ther 2024; 264:108751. [PMID: 39522697 DOI: 10.1016/j.pharmthera.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington disease (HD), and Multiple sclerosis (MS), pose a significant global health challenge due to their intricate pathology and limited therapeutic interventions. Natural products represent invaluable reservoirs for combating these neurodegenerative diseases by targeting key pathological hallmarks such as protein aggregation, synaptic dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, inflammation, and neuronal cell death. This review provides an in-depth analysis of the mechanisms and therapeutic targets of natural products for their neuroprotective effects. Furthermore, it elucidates the current progress of clinical trials investigating the potential of natural products in delaying neurodegeneration. The objective of this review is to enhance the comprehension of natural products in the prevention and treatment of neurodegenerative diseases, offering new insights and potential avenues for future pharmaceutical research.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Xi-Na Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Yi-Xiao Dong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Yi-Jia Han
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Xin-Yue Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Xin-Le Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Ying Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Fang Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Jian-Song Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jian-Long Ji
- College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China.
| | - Zheng-Run Gao
- Songjiang Research Institute, Songjiang Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China.
| |
Collapse
|
3
|
El Rayess Y, Nehme N, Azzi-Achkouty S, Julien SG. Wine Phenolic Compounds: Chemistry, Functionality and Health Benefits. Antioxidants (Basel) 2024; 13:1312. [PMID: 39594454 PMCID: PMC11591289 DOI: 10.3390/antiox13111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Wine phenolic compounds, often known as polyphenols, are a diverse group of secondary bioactive compounds derived from grapes. They play a crucial role in defining the sensory characteristics, functionality, and health benefits of wine. This review explores the complex chemistry of these compounds, focusing on key classes such as flavonoids, which include flavanones, flavonols, anthocyanins, and flavan-3-ols, and non-flavonoids, such as hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes. The health benefits of wine phenolics, particularly their antioxidant and anti-inflammatory properties, are also discussed in relation to preventing and reducing the risk of non-communicable diseases (NCDs) such as cardiovascular diseases, cancers, and neurodegenerative conditions. Furthermore, this review summarized the most current data from human population-based research that investigated the bioactivity of these red wine phytochemicals with relevant health benefits for NCDs. Finally, this review proposes some perspectives for future research to better understand the bioavailability, metabolism, and long-term health effects of these compounds.
Collapse
Affiliation(s)
- Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
| | - Nancy Nehme
- Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Dekwaneh P.O. Box 446, Lebanon;
| | - Samar Azzi-Achkouty
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
| | - Sofi G. Julien
- Department of Nutrition and Food Sciences, Faculty of Art and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| |
Collapse
|
4
|
Wang J, Xie F, He Q, Gu R, Zhang S, Su X, Pan X, Zhang T, Karrar E, Li J, Wu W, Chen C. Hybrid nanovesicles derived from grapes and tomatoes with synergistic antioxidative activity. Biomater Sci 2024; 12:5631-5643. [PMID: 39377178 DOI: 10.1039/d4bm00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Edible plants, rich in antioxidant compounds, offer defense against oxidative stress-induced cellular damage. However, the antioxidative benefits of edible plant-derived molecules are limited due to their instability, poor solubility, and low bioavailability. Plant-derived nanovesicles (PDNVs) have emerged as the next-generation nanotherapeutics and delivery platforms; yet, challenges including low purity, significant heterogeneity, insufficient enrichment of bioactive component and compromised therapeutic efficacy limit their application. In this study, a solvent-assisted vesicle hybridization technique was developed to engineer hybrid plant-derived nanovesicles (PDNVs), exemplified by grape and tomato-derived nanovesicles (GT-HNVs), which outperform their natural counterparts. The GT-HNVs demonstrated superior stability, enhanced radical-scavenging capabilities, and greater cellular uptake efficiency. Notably, GT-HNVs significantly reduced reactive oxygen species (ROS) levels and improved antioxidative enzyme activities in L-02 cells. Moreover, they mitigated oxidative stress-induced mitochondrial damage, restoring the membrane potential and morphology. Collectively, these findings underscore the therapeutic potential of hybrid PDNVs and offer an innovative strategy for their future research.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Fangting Xie
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Qiuxia He
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Siqin Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Xueqi Su
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Xueping Pan
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Tianyu Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Emad Karrar
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Jian Li
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Weijing Wu
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian, 361018, China
| | - Chaoxiang Chen
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| |
Collapse
|
5
|
Amone F, Spina A, Perri A, Lofaro D, Zaccaria V, Insolia V, Lirangi C, Puoci F, Nobile V. Standardized Grape ( Vitis vinifera L.) Extract Improves Short- and Long-Term Cognitive Performances in Healthy Older Adults: A Randomized, Double-Blind, and Placebo-Controlled Trial. Foods 2024; 13:2999. [PMID: 39335927 PMCID: PMC11431441 DOI: 10.3390/foods13182999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Cognitive decline, a common consequence of aging, detrimentally affects independence, physical activity, and social interactions. This decline encompasses various cognitive functions, including processing speed, memory, language, and executive functioning. This trial aimed to investigate, with a double-blind, placebo-controlled clinical trial on 96 healthy older adults, the efficacy of once-daily 250 mg of a standardized grape (Vitis vinifera L.) juice extract (Cognigrape®) in improving short- and long-term cognitive functions. The results revealed significant improvements across multiple cognitive domains, notably immediate and delayed memory, visuospatial abilities, language, and attention, with improvements occurring within just 14 days, which continued to improve after 84 days of supplementation. The extract exhibited statistically significant enhancements in the Mini-Mental State Evaluation (MMSE), assessment of neuropsychological status (RBANS), "Esame Neuropsicologico Breve 2 (ENB-2), and Modified Bells Test (MBT) scores, with the latter test revealing a significant improvement in selective attention within just 90 min of the first dose. These positive results highlight the potential this natural grape extract has on improving cognitive function both acutely and chronically in a healthy aging population, which in turn supports a longer health span, at least cognitively.
Collapse
Affiliation(s)
- Fabio Amone
- R&D Department, Nutratech S.r.l., 87036 Rende, CS, Italy
| | - Amelia Spina
- R&D Department, Nutratech S.r.l., 87036 Rende, CS, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", 88100 Catanzaro, CZ, Italy
| | - Danilo Lofaro
- de-Health Lab, Department of Mechanical, Energy, Management Engineering, University of Calabria, 87036 Rende, CS, Italy
| | | | | | | | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87100 Cosenza, CS, Italy
| | - Vincenzo Nobile
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, PV, Italy
| |
Collapse
|
6
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
7
|
Khor KL, Kumarasuriar V, Tan KW, Ooi PB, Chia YC. Effects of fruit and vegetable intake on memory and attention: a systematic review of randomized controlled trials. Syst Rev 2024; 13:151. [PMID: 38849879 PMCID: PMC11157787 DOI: 10.1186/s13643-024-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Memory and attention are important for daily functioning, and their function deteriorates due to aging. However, fruit and vegetable consumption are one of the protective factors against deterioration in memory and attention. This systematic review of randomized controlled trials (RCTs) aims to identify the effects of fruit and vegetable consumption on memory and attention. METHODS We conducted a systematic search in EBSCOhost, ProQuest, PubMed, Embase, and Web of Science from inception up to 06/09/2022. The inclusion criteria were peer-reviewed articles, fruit and vegetable intake measured using randomized controlled trials, and the outcome measures that showed the results of memory and attention scores. Two researchers independently extracted articles that met the selection criteria and evaluated the quality of each study. RESULTS There were 70 articles identified from the databases, of which 13 articles met the inclusion criteria and were included in this systematic review. There were 493 participants in total. The results show that consumption of fruit and vegetable intake improved memory and attention in longitudinal studies (10 to 12 weeks). Children showed improvement in immediate recall after supplementation with blueberries. Older adults required a higher dose of fruit and vegetable intake consumption to achieve significant improvement compared with children and younger adults. Furthermore, the effect of fruits and vegetables on memory showed better immediate memory recall than delayed recall. CONCLUSION This systematic review showed that there is an improvement in memory and attention with fruit and vegetable intake consumption. Hence, awareness of fruit and vegetable intake consumption is important to maintain cognitive health.
Collapse
Affiliation(s)
- Khai Ling Khor
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
- School of Psychology, DISTED College, Penang, Malaysia
| | - Vashnarekha Kumarasuriar
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
- School of Psychology and Clinical Language Sciences, University of Reading Malaysia, Iskandar Puteri, Malaysia
| | - Kok Wei Tan
- School of Psychology and Clinical Language Sciences, University of Reading Malaysia, Iskandar Puteri, Malaysia
| | - Pei Boon Ooi
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Yook-Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia.
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Zeb F, Naqeeb H, Osaili T, Faris ME, Ismail LC, Obaid RS, Naja F, Radwan H, Hasan H, Hashim M, AlBlooshi S, Alam I. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr Res 2024; 124:21-42. [PMID: 38364552 DOI: 10.1016/j.nutres.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
A growing body of evidence suggests that cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. In recent years, the molecular crosstalk between polyphenols and gut microbiota has emerged as a promising pathway for cancer prevention. Polyphenols, abundant in many plant-based foods, possess diverse bioactive properties, including antioxidant, anti-inflammatory, and anticancer activities. The gut microbiota, a complex microbial community residing in the gastrointestinal tract, plays a crucial role in a host's health and disease risks. This review highlights cancer suppressive and oncogenic mechanisms of gut microbiota, the intricate interplay between gut microbiota modulation and polyphenol biotransformation, and the potential therapeutic implications of this interplay in cancer prevention. Furthermore, this review explores the molecular mechanisms underpinning the synergistic effects of polyphenols and the gut microbiota, such as modulation of signaling pathways and immune response and epigenetic modifications in animal and human studies. The current review also summarizes the challenges and future directions in this field, including the development of personalized approaches that consider interindividual variations in gut microbiota composition and function. Understanding the molecular crosstalk could offer new perspectives for the development of personalized cancer therapies targeting the polyphenol-gut axis. Future clinical trials are needed to validate the potential role of polyphenols and gut microbiota as innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanam Cancer Hospital and Research Center Peshawar, Pakistan; Department of Human Nutrition and Dietetics, Women University Mardan, Pakistan
| | - Tareq Osaili
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - MoezAllslam Ezzat Faris
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Women's and Reproductive Health, University of Oxford, Nuffield, Oxford, United Kingdom
| | - Reyad Shakir Obaid
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Farah Naja
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Hadia Radwan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Hayder Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Mona Hashim
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Sharifa AlBlooshi
- College of Natural and Health Sciences, Zayed University, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Pakistan
| |
Collapse
|
9
|
Xu Z, Tan Z, Xiao J, Cheng S, Chen H. Editorial: Food-derived polyphenols: functional regulation in chronic diseases. Front Nutr 2024; 11:1333459. [PMID: 38328484 PMCID: PMC10847522 DOI: 10.3389/fnut.2024.1333459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Orense, Spain
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Hui Chen
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitation and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Vega-Galvez A, Gomez-Perez LS, Zepeda F, Vidal RL, Grunenwald F, Mejías N, Pasten A, Araya M, Ah-Hen KS. Assessment of Bio-Compounds Content, Antioxidant Activity, and Neuroprotective Effect of Red Cabbage ( Brassica oleracea var. Capitata rubra) Processed by Convective Drying at Different Temperatures. Antioxidants (Basel) 2023; 12:1789. [PMID: 37760092 PMCID: PMC10526076 DOI: 10.3390/antiox12091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, and no efficient therapy able to cure or slow down PD is available. In this study, dehydrated red cabbage was evaluated as a novel source of bio-compounds with neuroprotective capacity. Convective drying was carried out at different temperatures. Total phenolics (TPC), flavonoids (TFC), anthocyanins (TAC), and glucosinolates (TGC) were determined using spectrophotometry, amino acid profile by LC-DAD and fatty acid profile by GC-FID. Phenolic characterization was determined by liquid chromatography-high-resolution mass spectrometry. Cytotoxicity and neuroprotection assays were evaluated in SH-SY5Y human cells, observing the effect on preformed fibrils of α-synuclein. Drying kinetic confirmed a shorter processing time with temperature increase. A high concentration of bio-compounds was observed, especially at 90 °C, with TPC = 1544.04 ± 11.4 mg GAE/100 g, TFC = 690.87 ± 4.0 mg QE/100 g and TGC = 5244.9 ± 260.2 µmol SngE/100 g. TAC degraded with temperature. Glutamic acid and arginine were predominant. Fatty acid profiles were relatively stable and were found to be mostly C18:3n3. The neochlorogenic acid was predominant. The extracts had no cytotoxicity and showed a neuroprotective effect at 24 h testing, which can extend in some cases to 48 h. The present findings underpin the use of red cabbage as a functional food ingredient.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis S. Gomez-Perez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Francisca Zepeda
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - René L. Vidal
- Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Universidad de Chile, Santiago 8380000, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago 8380000, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Felipe Grunenwald
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Nicol Mejías
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Alexis Pasten
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile
| | - Kong Shun Ah-Hen
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Ciencia y Tecnología de los Alimentos, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
11
|
Xiang L, Wang Y, Liu S, Liu B, Jin X, Cao X. Targeting Protein Aggregates with Natural Products: An Optional Strategy for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11275. [PMID: 37511037 PMCID: PMC10379780 DOI: 10.3390/ijms241411275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingzhi Xiang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Pontes PB, Toscano AE, Lacerda DC, da Silva Araújo ER, Costa PCTD, Alves SM, Brito Alves JLD, Manhães-de-Castro R. Effectiveness of Polyphenols on Perinatal Brain Damage: A Systematic Review of Preclinical Studies. Foods 2023; 12:2278. [PMID: 37372488 DOI: 10.3390/foods12122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Polyphenol supplementation during early life has been associated with a reduction of oxidative stress and neuroinflammation in diseases caused by oxygen deprivation, including cerebral palsy, hydrocephaly, blindness, and deafness. Evidence has shown that perinatal polyphenols supplementation may alleviate brain injury in embryonic, fetal, neonatal, and offspring subjects, highlighting its role in modulating adaptative responses involving phenotypical plasticity. Therefore, it is reasonable to infer that the administration of polyphenols during the early life period may be considered a potential intervention to modulate the inflammatory and oxidative stress that cause impairments in locomotion, cognitive, and behavioral functions throughout life. The beneficial effects of polyphenols are linked with several mechanisms, including epigenetic alterations, involving the AMP-activated protein kinase (AMPK), nuclear factor kappa B (NF-κB), and phosphoinositide 3-kinase (PI3K) pathways. To highlight these new perspectives, the objective of this systematic review was to summarize the understanding emerging from preclinical studies about polyphenol supplementation, its capacity to minimize brain injury caused by hypoxia-ischemia in terms of morphological, inflammatory, and oxidative parameters and its repercussions for motor and behavioral functions.
Collapse
Affiliation(s)
- Paula Brielle Pontes
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão 55608-680, Pernambuco, Brazil
| | - Diego Cabral Lacerda
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão 55608-680, Pernambuco, Brazil
| | - Eulália Rebeca da Silva Araújo
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil
| | - Swane Miranda Alves
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil
| | - Raul Manhães-de-Castro
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Department of Nutrition, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
13
|
Khan S, Hassan MI, Shahid M, Islam A. Nature's Toolbox Against Tau Aggregation: An Updated Review of Current Research. Ageing Res Rev 2023; 87:101924. [PMID: 37004844 DOI: 10.1016/j.arr.2023.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Tau aggregation is a hallmark of several neurodegenerative disorders, such as Alzheimer's disease (AD), frontotemporal dementia, and progressive supranuclear palsy. Hyperphosphorylated tau is believed to contribute to the degeneration of neurons and the development of these complex diseases. Therefore, one potential treatment for these illnesses is to prevent or counteract tau aggregation. In recent years, interest has been increasing in developing nature-derived tau aggregation inhibitors as a potential treatment for neurodegenerative disorders. Researchers have become increasingly interested in natural compounds with multifunctional features, such as flavonoids, alkaloids, resveratrol, and curcumin, since these molecules can interact simultaneously with the various targets of AD. Recent studies have demonstrated that several natural compounds can inhibit tau aggregation and promote the disassembly of pre-formed tau aggregates. Nature-derived tau aggregation inhibitors hold promise as a potential treatment for neurodegenerative disorders. However, it is important to note that more research is needed to fully understand the mechanisms by which these compounds exert their effects and their safety and efficacy in preclinical and clinical studies. Nature-derived inhibitors of tau aggregation are a promising new direction in the research of neurodegenerative complexities. This review focuses on the natural products that have proven to be a rich supply for inhibitors in tau aggregation and their uses in neurodegenerative complexities, including AD.
Collapse
|
14
|
Chan YT, Huang J, Wong HC, Li J, Zhao D. Metabolic fate of black raspberry polyphenols in association with gut microbiota of different origins in vitro. Food Chem 2023; 404:134644. [DOI: 10.1016/j.foodchem.2022.134644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
15
|
Baroi AM, Sieniawska E, Świątek Ł, Fierascu I. Grape Waste Materials-An Attractive Source for Developing Nanomaterials with Versatile Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050836. [PMID: 36903714 PMCID: PMC10005071 DOI: 10.3390/nano13050836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 05/27/2023]
Abstract
In the last decade, researchers have focused on the recycling of agro-food wastes for the production of value-added products. This eco-friendly trend is also observed in nanotechnology, where recycled raw materials may be processed into valuable nanomaterials with practical applications. Regarding environmental safety, replacing hazardous chemical substances with natural products obtained from plant wastes is an excellent opportunity for the "green synthesis" of nanomaterials. This paper aims to critically discuss plant waste, with particular emphasis on grape waste, methods of recovery of active compounds, and nanomaterials obtained from by-products, along with their versatile applications, including healthcare uses. Moreover, the challenges that may appear in this field, as well as future perspectives, are also included.
Collapse
Affiliation(s)
- Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| |
Collapse
|
16
|
Chen SK, Lin HF, Wang X, Yuan Y, Yin JY, Song XX. Comprehensive analysis in the nutritional composition, phenolic species and in vitro antioxidant activities of different pea cultivars. Food Chem X 2023; 17:100599. [PMID: 36845501 PMCID: PMC9945425 DOI: 10.1016/j.fochx.2023.100599] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, ten pea (Pisum sativum L.) varieties were compared in their nutrient composition, phenolic compounds, antioxidant properties and their diversity were deciphered by multivariate analysis of correlation analysis and principal component analysis (PCA). The ten pea cultivars are rich in nutrients with different contents in lipid (0.57 to 3.52%), dietary fiber (11.34 to 16.13%), soluble sugar (17.53 to 23.99%), protein (19.75 to 26.48%) and starch (32.56 to 48.57%). Through the UPLC-QTOF-MS and HPLC-QQQ-MS/MS analysis, the ethanol extracts of ten peas mainly included 12 kinds of phenolic substances and showed good antioxidant activities on the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). The phenolic content and protocatechuic acid showed a positive correlation with antioxidant capacity. All results provide theoretical basis for the development and rational application of different varieties of peas and their related products.
Collapse
|
17
|
Laurindo LF, Direito R, Bueno Otoboni AMM, Goulart RA, Quesada K, Barbalho SM. Grape Processing Waste: Effects on Inflammatory Bowel Disease and Colorectal Cancer. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2168281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Rosa Direito
- Department of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | - Ricardo Alvares Goulart
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, FATEC, Avenida Castro Alves, São Paulo, Brazil
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| |
Collapse
|
18
|
de Vasconcellos AC, Frazzon J, Zapata Noreña CP. Phenolic Compounds Present in Yerba Mate Potentially Increase Human Health: A Critical Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:495-503. [PMID: 36169873 PMCID: PMC9516501 DOI: 10.1007/s11130-022-01008-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Yerba Mate (YM) is a food product derived from Ilex paraguariensis whose constituents obtained from its extract, mainly the phenolic fraction, have been linked to numerous health benefits, such as cardiovascular protection, weight reduction, glucose control, and gene modulation. However, evidences linking phenolic compounds (PC) intake and human health are still limited and often contentious. Several researches have shown that key PC elements are poorly absorbed in humans and exist predominantly as conjugates, which may not be bioactive but may play a crucial role when interacting with the gut microbiota (GM). As the intestine is the largest microorganism-populated organ in the human body, GM has been regarded as a "microbial organ", acting as a second genome for modulating the host's health phenotype. For this reason, the study of intestinal microbiota has received considerable attention in recent years. Its impact on the development of nutrition-related diseases must motivate broader researches on the interaction between YM's PC and GM regarding the production of metabolites that may influence human health. This review aimed to gather and assess the available information about how PC from YM may impact host metabolism and the immune system and GM.
Collapse
Affiliation(s)
- Andreia Candal de Vasconcellos
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Jeverson Frazzon
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Caciano Pelayo Zapata Noreña
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Majeed U, Shafi A, Majeed H, Akram K, Liu X, Ye J, Luo Y. Grape (Vitis vinifera L.) phytochemicals and their biochemical protective mechanisms against leading pathologies. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Zhou DD, Li J, Xiong RG, Saimaiti A, Huang SY, Wu SX, Yang ZJ, Shang A, Zhao CN, Gan RY, Li HB. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022; 11:2755. [PMID: 36140883 PMCID: PMC9497968 DOI: 10.3390/foods11182755] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/19/2022] Open
Abstract
Grape (Vitis vinifera L.) is one of the most popular fruits worldwide. It contains various bioactive compounds, such as proanthocyanidins, anthocyanins, flavonols, phenolic acids and stilbenes, the contents of which could vary considerably in grape skin, pulp and seed. Many studies have revealed that grape possesses a variety of health benefits, such as antioxidant, anti-inflammatory, gut-microbiota-modulating, anticancer and cardioprotective effects. Grape is eaten as fresh fruit and is also used as raw material to produce various products, such as wine, grape juice and raisins. Moreover, the byproducts of grape, such as grape pomace and grape seed, have many applications in the food industry. In this paper, the bioactive compounds in grape are briefly summarized based on literature published in recent years. In addition, the health benefits of grape and its bioactive components are discussed, with special attention paid to the underlying mechanisms. Furthermore, the applications of grape in the food industry are elucidated, especially the applications of grape pomace and grape seed. This paper can contribute to understanding the health benefits and mechanisms of grape and its bioactive compounds, as well as the promotion of the use of grape in the food industry.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int J Mol Sci 2022; 23:ijms23137273. [PMID: 35806275 PMCID: PMC9266760 DOI: 10.3390/ijms23137273] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.
Collapse
|
22
|
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27:molecules27134181. [PMID: 35807426 PMCID: PMC9268254 DOI: 10.3390/molecules27134181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic.
Collapse
|
23
|
Milenkovic D, Capel F, Combaret L, Comte B, Dardevet D, Evrard B, Guillet C, Monfoulet LE, Pinel A, Polakof S, Pujos-Guillot E, Rémond D, Wittrant Y, Savary-Auzeloux I. Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Crit Rev Food Sci Nutr 2022; 63:11185-11210. [PMID: 35730212 DOI: 10.1080/10408398.2022.2089870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Frédéric Capel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Lydie Combaret
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Blandine Comte
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Bertrand Evrard
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Guillet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Alexandre Pinel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sergio Polakof
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Didier Rémond
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Yohann Wittrant
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | |
Collapse
|
24
|
Vasilakopoulou PB, Fanarioti Ε, Tsarouchi M, Kokotou MG, Dermon CR, Karathanos VT, Chiou A. Polar phenol detection in rat brain: Development and validation of a versatile UHPLC-MS method and application on the brain tissues of Corinthian currant (Vitis vinifera L.,var. Apyrena) fed rats. Food Chem 2022; 390:133131. [PMID: 35551023 DOI: 10.1016/j.foodchem.2022.133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022]
Abstract
This study aimed to validate a rapid and selective bioanalytical method, using UHPLC-Orbitrap MS, for the determination of brain polar phenolics and to apply it in rats that orally consumed Corinthian currant for 38 days. Corinthian currant, is a dried vine fruit rich in polar phenolics that potentially penetrate the brain. During method optimization fresh and lyophilized tissues were comparatively studied along with different solid-phase extraction cartridges; satisfactory recoveries (>80%) for almost all analytes were attained using fresh tissues and Oasis® HLB cartridges. Brain regional levels in phenol concentrations were then determined; isoquercetin showed higher concentrations in frontal cortex, hippocampus and cerebellum (14.0 ± 5.5, 6.6 ± 2.0, and 2.9 ± 1.3 ng/g tissue, respectively); rutin and gallic acid in cerebellum and isorhamnetin, quercetin and rutin in hippocampus of the Corinthian currant supplemented rat group compared to the control. This is the first study investigating polar phenolics' accumulation in rat brain after Corinthian currant supplementation.
Collapse
Affiliation(s)
- Paraskevi B Vasilakopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Εleni Fanarioti
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Patras, Greece
| | - Martha Tsarouchi
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Patras, Greece
| | - Maroula G Kokotou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Catherine R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Patras, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece; Agricultural Cooperatives' Union of Aeghion, Corinthou 201, 25100, Aeghion, Greece
| | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece.
| |
Collapse
|
25
|
Lu Z, Chan YT, Lo KKH, Wong VWS, Ng YF, Li SY, Ho WW, Wong MS, Zhao D. Levels of polyphenols and phenolic metabolites in breast milk and their association with plant-based food intake in Hong Kong lactating women. Food Funct 2021; 12:12683-12695. [PMID: 34825914 DOI: 10.1039/d1fo02529e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary polyphenols are phytonutrients exhibiting multiple health benefits in humans including those in infants. However, data on breast milk (poly)phenolic composition are limited, especially among Asian populations. This study aimed to assess the levels of dietary polyphenols and their microbial-derived metabolites in the breast milk of Hong Kong lactating women, and how maternal diet correlated with the phenolic composition in breast milk. Breast milk samples from 89 healthy Hong Kong lactating women (aged 19-40 years) were collected. Maternal intake of plant-based foods and polyphenols was estimated through 3-day dietary records and the Phenol-Explorer database. Twelve commonly consumed polyphenols including their microbial-derived metabolites in breast milk were quantified using an optimized and validated UHPLC-MS/MS method. The effect of maternal intake on breast milk phenolic levels was then examined via the Pearson correlation test. The mean concentrations of individual phenolic compounds ranged from 5.1 nmol L-1 (chlorogenic acid) to 731.5 nmol L-1 (3,4-dihydroxybenzoic acid). Despite suboptimal intake of fruits and vegetables among our participants, breast milk phenolic levels were comparable to those of foreign populations. Significant correlations were found between dietary intake and multiple phenolics, particularly legume and daidzein (r = 0.33, P = 0.001), and tea and epicatechin (r = 0.30, P = 0.03). Regarding phenolic metabolites, 3,4-dihydroxyphenylacetic acid was significantly correlated with several polyphenols, particularly quercetin (r = 0.34, P = 0.002), and equol was exclusively correlated with daidzein (r = 0.46, P < 0.001). Our findings support that intake of plant-based foods significantly affects breast milk phenolic composition. Future investigation on the bioavailability and health outcomes in infants is warranted to substantiate the transferability of these bioactive phytonutrients from mother to child through lactation, and to promote maternal intake of polyphenol-rich foods.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Yat-Tin Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Kenneth Ka-Hei Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Vincy Wing-Si Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Yuk-Fan Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Shi-Ying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wing-Wa Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Danyue Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
26
|
Yan Y, Pico J, Sun B, Pratap-Singh A, Gerbrandt E, Diego Castellarin S. Phenolic profiles and their responses to pre- and post-harvest factors in small fruits: a review. Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34766521 DOI: 10.1080/10408398.2021.1990849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The consumption of small fruits has increased in recent years. Besides their appealing flavor, the commercial success of small fruits has been partially attributed to their high contents of phenolic compounds with multiple health benefits. The phenolic profiles and contents in small fruits vary based on the genetic background, climate, growing conditions, and post-harvest handling techniques. In this review, we critically compare the profiles and contents of phenolics such as anthocyanins, flavonols, flavan-3-ols, and phenolic acids that have been reported in bilberries, blackberries, blueberries, cranberries, black and red currants, raspberries, and strawberries during fruit development and post-harvest storage. This review offers researchers and breeders a general guideline for the improvement of phenolic composition in small fruits while considering the critical factors that affect berry phenolics from cultivation to harvest and to final consumption.
Collapse
Affiliation(s)
- Yifan Yan
- Wine Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joana Pico
- Wine Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bohan Sun
- Wine Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Gerbrandt
- British Columbia Blueberry Council, Abbotsford, British Columbia, Canada
| | | |
Collapse
|
27
|
Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, Jeong YJ, Goh SH, Kim CS, Lee KJ. Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges. Molecules 2021; 26:5327. [PMID: 34500759 PMCID: PMC8433718 DOI: 10.3390/molecules26175327] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Natural products derived from plants, as well as their bioactive compounds, have been extensively studied in recent years for their therapeutic potential in a variety of neurodegenerative diseases (NDs), including Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease. These diseases are characterized by progressive dysfunction and loss of neuronal structure and function. There has been little progress in designing efficient treatments, despite impressive breakthroughs in our understanding of NDs. In the prevention and therapy of NDs, the use of natural products may provide great potential opportunities; however, many clinical issues have emerged regarding their use, primarily based on the lack of scientific support or proof of their effectiveness and patient safety. Since neurodegeneration is associated with a myriad of pathological processes, targeting multi-mechanisms of action and neuroprotection approaches that include preventing cell death and restoring the function of damaged neurons should be employed. In the treatment of NDs, including AD and PD, natural products have emerged as potential neuroprotective agents. This current review will highlight the therapeutic potential of numerous natural products and their bioactive compounds thatexert neuroprotective effects on the pathologies of NDs.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Johny Bajgai
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Ailyn Fadriquela
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Subham Sharma
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Thuy Thi Trinh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Rokeya Akter
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Yun Ju Jeong
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Seong Hoon Goh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| |
Collapse
|
28
|
Shabbir U, Tyagi A, Elahi F, Aloo SO, Oh DH. The Potential Role of Polyphenols in Oxidative Stress and Inflammation Induced by Gut Microbiota in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1370. [PMID: 34573002 PMCID: PMC8472599 DOI: 10.3390/antiox10091370] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Gut microbiota (GM) play a role in the metabolic health, gut eubiosis, nutrition, and physiology of humans. They are also involved in the regulation of inflammation, oxidative stress, immune responses, central and peripheral neurotransmission. Aging and unhealthy dietary patterns, along with oxidative and inflammatory responses due to gut dysbiosis, can lead to the pathogenesis of neurodegenerative diseases, especially Alzheimer's disease (AD). Although the exact mechanism between AD and GM dysbiosis is still unknown, recent studies claim that secretions from the gut can enhance hallmarks of AD by disturbing the intestinal permeability and blood-brain barrier via the microbiota-gut-brain axis. Dietary polyphenols are the secondary metabolites of plants that possess anti-oxidative and anti-inflammatory properties and can ameliorate gut dysbiosis by enhancing the abundance of beneficial bacteria. Thus, modulation of gut by polyphenols can prevent and treat AD and other neurodegenerative diseases. This review summarizes the role of oxidative stress, inflammation, and GM in AD. Further, it provides an overview on the ability of polyphenols to modulate gut dysbiosis, oxidative stress, and inflammation against AD.
Collapse
Affiliation(s)
| | | | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (U.S.); (A.T.); (F.E.); (S.O.A.)
| |
Collapse
|
29
|
Sridhar K, Charles AL. Fortification using grape extract polyphenols – a review on functional food regulations. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kandi Sridhar
- Department of Tropical Agriculture and International Cooperation National Pingtung University of Science and Technology 1 Shuefu Road Neipu Pingtung912 01Taiwan
| | - Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation National Pingtung University of Science and Technology 1 Shuefu Road Neipu Pingtung912 01Taiwan
| |
Collapse
|
30
|
A Brief Updated Review of Advances to Enhance Resveratrol's Bioavailability. Molecules 2021; 26:molecules26144367. [PMID: 34299642 PMCID: PMC8305180 DOI: 10.3390/molecules26144367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Resveratrol (RES) has a low bioavailability. This limitation was addressed in an earlier review and several recommendations were offered. A literature search was conducted in order to determine the extent of the research that was conducted in line with these recommendations, along with new developments in this field. Most of the identified studies were pre-clinical and confirmed the heightened activity of RES analogues compared to their parent compound. Although this has provided additional scientific kudos for these compounds and has strengthened their potential to be developed into phytopharmaceutical products, clinical trials designed to confirm this increased activity remain lacking and are warranted.
Collapse
|
31
|
Van Doren WW, Iqbal UH, Helmer DA, Litke DR, Simon JE, Wu Q, Zhao D, Yin Z, Ho L, Osinubi O, Pasinetti GM. Changes in polyphenol serum levels and cognitive performance after dietary supplementation with Concord grape juice in veterans with Gulf War Illness. Life Sci 2021; 292:119797. [PMID: 34237311 DOI: 10.1016/j.lfs.2021.119797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
AIMS We investigated whether the consumption of Concord grape juice (CGJ) was associated with increased bioavailability of serum metabolites and their potential impact on cognitive performance in Veterans with Gulf War Illness (GWI). MAIN METHODS Twenty-six veterans were selected from a cohort of 36 enrolled in a 24-week randomized, double-blind, Phase I/IIA clinical trial exploring whether the consumption of Concord grape juice (CGJ) was tolerable and safe in Veterans with GWI and improved cognitive function and fatigue. These 26 veterans were selected based on their completion of the entire 24-week protocol and documented adherence to the study beverage ≥80%. Differences in serum metabolite levels between CGJ and placebo at midpoint and endpoint were evaluated using two-way repeated measures ANOVA with post hoc Sidak's multiple comparison test. Bivariate correlations to assess for possible relationships between change in serum metabolite levels and change in cognitive function as measured by the Halstead Category Test-Russell Revised Version (RCAT) were also conducted. KEY FINDINGS Seventy-six metabolites were identified and quantified in this study, with three (cyanidin-glucuronide, me-cyanidin-glucuronide, and me-malvidin-glucuronide) found to be significantly higher (p < 0.05) in the CGJ group compared to placebo at 24 weeks. Significant associations between changes in cognitive function and changes in serum levels of epicatechin-sulphate (r = 0.48, p = 0.01) and petunidin-glucuronide (r = 0.53, p < 0.01) from baseline to 24 weeks were also observed. SIGNIFICANCE Our data suggest that dietary supplementation with CGJ is associated with increased bioavailability of specific phenolic metabolites, some of which may be correlated with cognitive performance.
Collapse
Affiliation(s)
- William W Van Doren
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, USA.
| | - Umar Haris Iqbal
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | - Drew A Helmer
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, USA; Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, 2002 Holcombe Boulevard, Houston, TX 77030, USA.
| | - David R Litke
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, USA; Department of Rehabilitation Medicine, New York University School of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Danyue Zhao
- New Use Agriculture and Natural Plant Products Program, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Zhiya Yin
- New Use Agriculture and Natural Plant Products Program, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Lap Ho
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | - Omowunmi Osinubi
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, USA; Department of Environmental & Occupational Health, Rutgers University School of Public Health, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| | - Giulio Maria Pasinetti
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| |
Collapse
|
32
|
Ajit A, Vishnu AG, Varkey P. Incorporation of grape seed extract towards wound care product development. 3 Biotech 2021; 11:261. [PMID: 33996373 DOI: 10.1007/s13205-021-02826-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Naturally derived ingredients are becoming more prevalent in therapeutic drug formulations due to consumers' concerns about chemical side effects. In the context of wound care, despite the impressive progress in therapeutic product development, drugs dispensed to treat impaired healing challenged by biofilms; excessive inflammation and oxidation are not yet really effective. Thus, the hunts for improved drug formulations preferably using natural ingredients that are cost-effective in accelerating the wound-healing process are of constant demand. The grape seed extract is extensively studied and is reported to be rich in phenolic compounds, unsaturated fatty acids and vitamins which exhibit numerous therapeutic benefits owing to their anti-inflammatory, anti-microbial, and anti-oxidative properties that support its potential use in the development of wound-healing products. We conducted a literature study using Scopus, PubMed, and Google Scholar including the keywords "grape seed extract" and "wound healing". We also scanned all the references cited by the retrieved articles. Accordingly, this review is aimed to (i) explore the various phytochemical constituents found in grape seed extracts along with their mechanism of action that instigate wound healing, (ii) to highlight the latest pre-clinical and clinical assessments of grape seed extract in wound models, and (iii) to encourage innovation scientists in the field to address current limitations and to effectively develop grape seed extract-based wound care product formulations for commercialization.
Collapse
Affiliation(s)
- Amita Ajit
- Research and Development, Zum Heilen Diagnostic and Therapeutics Pvt. Ltd, Office No. 12/1543-C, SB Center, 2nd Floor, Museum Road, Thrissur, Kerala 680020 India
| | - A G Vishnu
- Research and Development, Zum Heilen Diagnostic and Therapeutics Pvt. Ltd, Office No. 12/1543-C, SB Center, 2nd Floor, Museum Road, Thrissur, Kerala 680020 India
| | - Prashanth Varkey
- Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, P.B.No.737, Thrissur, Kerala 680 005 India
| |
Collapse
|
33
|
Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. Cells 2021; 10:1309. [PMID: 34070275 PMCID: PMC8225186 DOI: 10.3390/cells10061309] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Joshua Drew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wren Berney
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325, USA
| |
Collapse
|
34
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
35
|
Plant Foods Rich in Antioxidants and Human Cognition: A Systematic Review. Antioxidants (Basel) 2021; 10:antiox10050714. [PMID: 33946461 PMCID: PMC8147117 DOI: 10.3390/antiox10050714] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress can compromise central nervous system integrity, thereby affecting cognitive ability. Consumption of plant foods rich in antioxidants could thereby protect cognition. We systematically reviewed the literature exploring the effects of antioxidant-rich plant foods on cognition. Thirty-one studies were included: 21 intervention, 4 cross-sectional (one with a cohort in prospective observation as well), and 6 prospective studies. Subjects belonged to various age classes (young, adult, and elderly). Some subjects examined were healthy, some had mild cognitive impairment (MCI), and some others were demented. Despite the different plant foods and the cognitive assessments used, the results can be summarized as follows: 7 studies reported a significant improvement in all cognitive domains examined; 19 found significant improvements only in some cognitive areas, or only for some food subsets; and 5 showed no significant improvement or no effectiveness. The impact of dietary plant antioxidants on cognition appears promising: most of the examined studies showed associations with significant beneficial effects on cognitive functions-in some cases global or only in some specific domains. There was typically an acute, preventive, or therapeutic effect in young, adult, and elderly people, whether they were healthy, demented, or affected by MCI. Their effects, however, are not attributable only to anti-oxidation.
Collapse
|
36
|
Quero J, Mármol I, Cerrada E, Rodríguez-Yoldi MJ. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct 2021; 11:2805-2825. [PMID: 32134090 DOI: 10.1039/d0fo00216j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent times, a great number of plants have been studied in order to identify new components with nutraceutical properties, among which are polyphenols. Dietary polyphenols represent a large group of bioactive molecules widely found in the food of plant origin and they have been found able to prevent the onset and progression of degenerative diseases, and to reduce and control their symptoms. These health protective effects have been mainly related to their antioxidant and anti-inflammatory properties. However, it must be considered that the application of isolated polyphenols as nutraceuticals is quite limited due to their poor systemic distribution and relative bioavailability. The present review highlights the potential effect of dietary intervention with polyphenol-rich food and plant extracts in patients with cancer, diabetes and neurodegenerative, autoimmune, cardiovascular and ophthalmic diseases, as well as the possible molecular mechanisms of action suggested in numerous studies with animal models.
Collapse
Affiliation(s)
- Javier Quero
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Inés Mármol
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| |
Collapse
|
37
|
Casani-Cubel J, Benlloch M, Sanchis-Sanchis CE, Marin R, Lajara-Romance JM, de la Rubia Orti JE. The Impact of Microbiota on the Pathogenesis of Amyotrophic Lateral Sclerosis and the Possible Benefits of Polyphenols. An Overview. Metabolites 2021; 11:120. [PMID: 33672485 PMCID: PMC7923408 DOI: 10.3390/metabo11020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between gut microbiota and neurodegenerative diseases is becoming clearer. Among said diseases amyotrophic lateral sclerosis (ALS) stands out due to its severity and, as with other chronic pathologies that cause neurodegeneration, gut microbiota could play a fundamental role in its pathogenesis. Therefore, polyphenols could be a therapeutic alternative due to their anti-inflammatory action and probiotic effect. Thus, the objective of our narrative review was to identify those bacteria that could have connection with the mentioned disease (ALS) and to analyze the benefits produced by administering polyphenols. Therefore, an extensive search was carried out selecting the most relevant articles published between 2005 and 2020 on the PubMed and EBSCO database on research carried out on cell, animal and human models of the disease. Thereby, after selecting, analyzing and debating the main articles on this topic, the bacteria related to the pathogenesis of ALS have been identified, among which we can positively highlight the presence mainly of Akkermansia muciniphila, but also Lactobacillus spp., Bifidobacterium spp. or Butyrivibrio fibrisolvens. Nevertheless, the presence of Escherichia coli or Ruminococcus torques stand out negatively for the disease. In addition, most of these bacteria are associated with molecular changes also linked to the pathogenesis of ALS. However, once the main polyphenols related to improvements in any of these three ALS models were assessed, many of them show positive results that could improve the prognosis of the disease. Nonetheless, epigallocatechin gallate (EGCG), curcumin and resveratrol are the polyphenols considered to show the most promising results as a therapeutic alternative for ALS through changes in microbiota.
Collapse
Affiliation(s)
- Julia Casani-Cubel
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Benlloch
- Department of Health Science, Catholic University San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Raquel Marin
- Laboratory of Cellular Neurobiology, School of Medicine, Faculty of Health Sciences, University of La Laguna, 38190 Tenerife, Spain;
| | | | | |
Collapse
|
38
|
Cheng X, Wang X, Zhang A, Wang P, Chen Q, Ma T, Li W, Liang Y, Sun X, Fang Y. Foliar Phenylalanine Application Promoted Antioxidant Activities in Cabernet Sauvignon by Regulating Phenolic Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15390-15402. [PMID: 33319992 DOI: 10.1021/acs.jafc.0c05565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effects of foliar phenylalanine application during veraison (FPV) on phenolic biosynthesis and correlation between phenolic compositions and antioxidant activities in Cabernet Sauvignon grown in field and greenhouse were investigated. Solutions with 69 and 138 mg N/vine phenylalanine (Pe1 and Pe2, respectively) and an aqueous solution without nitrogen (CK) were sprayed three times during veraison. FPV significantly improved antioxidant activities in grapes using the two culture methods. The most contributory phenolic compositions to antioxidant activities were anthocyanins and stilbenes following FPV compared with CK. Phenylalanine metabolism, abscisic acid content, and expression levels of VvPAL, VvCHS, VvF3H, VvUFGT, and VvSTS in the phenolic synthesis pathway were increased from the first FPV to harvest. Although Pe2 significantly increased total phenolic contents than Pe1, antioxidant parameters were not markedly affected by the phenylalanine dose. Our finding revealed that FPV was a useful fertilization method to enhance antioxidant activities in grapes in nitrogen-deficient vineyards.
Collapse
Affiliation(s)
- Xianghan Cheng
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Xuefei Wang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Ang Zhang
- Technology Centre of Qinhuangdao Customs, Qinhuangdao, Hebei 066004, China
| | - Panpan Wang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Qianyi Chen
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Tingting Ma
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Wanping Li
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Yanying Liang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
39
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
40
|
Massaoudi Y, Anissi J, Lefter R, Lobiuc A, Sendide K, Ciobica A, Hassouni ME. Protective Effects of Two Halophilic Crude Extracts from Pseudomonas zhaodongensis and Bacillus stratosphericus against Memory Deficits and Anxiety- and Depression-Like Behaviors in Methionine-Induced Schizophrenia in Mice Focusing on Oxidative Stress Status. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8852418. [PMID: 33299461 PMCID: PMC7707988 DOI: 10.1155/2020/8852418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/03/2020] [Accepted: 11/13/2020] [Indexed: 12/04/2022]
Abstract
Recently, the implication of oxidative stress in behavioral-like disorders has received a lot of attention. Many studies were interested in searching for new natural compounds with protective effects on behavioral-like disorders by focusing on oxidative stress as the main causal factor. Here, we assess the potential effect of cell-free extracts from halophilic bacteria on memory, anxiety, and depression-related behaviors in mice, as well as on cognitive deficits, negative symptoms, and some oxidative stress biomarkers in methionine-induced mice models of schizophrenia. Firstly, crude extracts of bacteria isolated from the Dead Sea were screened for their effects on memory and anxiety- and depression-like behaviors through Y-maze, elevated plus maze, and forced swimming test, respectively, using two doses 60 mg/kg and 120 mg/kg. Then, 120 mg/kg of two bacterial crude extracts, from two strains designated SL22 and BM20 and identified as Bacillus stratosphericus and Pseudomonas zhaodongensis, respectively, with significant contents of phenolic and flavonoid-like compounds, were selected for the assessment of cognitive and negative symptom improvement, as well as for their effects on oxidative stress status in methionine-induced mice models of schizophrenia using six groups (controls, methionine, crude extracts solely, and combinations of crude extracts and methionine). Results showed that the administration of the crude extracts caused a significant increase in the spontaneous alternations in the Y-maze task, the time spent in open arms of the elevated plus maze, and a decrease in immobility time in the forced swimming test in comparison with the control group. Furthermore, the administration of bacterial extracts seemed to diminish disorders related to cognitive and negative symptoms of schizophrenia and to improve the oxidative state in the temporal lobes, in comparison with the methionine group. Our findings suggest substantial antioxidant and anti-neuropsychiatric effects of the crude extracts prepared from Pseudomonas zhaodongensis strain BM20 and Bacillus stratosphericus strain SL22 and that further studies are needed to purify and to determine the active fraction from the extracts.
Collapse
Affiliation(s)
- Yousra Massaoudi
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
| | - Jaouad Anissi
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
- School of Engineering BIOMEDTECH, Euro-Mediterranean University of Fez, Rond-point Bensouda, Route de Meknès BP 51, Fez, Morocco
| | - Radu Lefter
- Romanian Academy, Iasi Branch, Center of Biomedical Research, B dul Carol I, 8, 700506 Iasi, Romania
| | - Andrei Lobiuc
- CERNESIM Research Centre, L2, Alexandru Ioan Cuza University, 700505 Carol I Bd., Iasi, Romania
- Human Health and Development Department, Stefan Cel Mare University, 720229 Universitatii Str., Suceava, Romania
| | - Khalid Sendide
- Laboratory of Biotechnology, School of Science and Engineering, Al Akhawayn University in Ifrane, P.O. Box 104, Ifrane, Morocco
| | - Alin Ciobica
- Department of Research, Alexandru Ioan Cuza University of Iasi, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania
| | - Mohammed El Hassouni
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
| |
Collapse
|
41
|
Moreno-Arribas MV, Bartolomé B, Peñalvo JL, Pérez-Matute P, Motilva MJ. Relationship between Wine Consumption, Diet and Microbiome Modulation in Alzheimer's Disease. Nutrients 2020; 12:E3082. [PMID: 33050383 PMCID: PMC7600228 DOI: 10.3390/nu12103082] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to the most common form of dementia in elderly people. Modifiable dietary and lifestyle factors could either accelerate or ameliorate the aging process and the risk of developing AD and other age-related morbidities. Emerging evidence also reports a potential link between oral and gut microbiota alterations and AD. Dietary polyphenols, in particular wine polyphenols, are a major diver of oral and gut microbiota composition and function. Consequently, wine polyphenols health effects, mediated as a function of the individual's oral and gut microbiome are considered one of the recent greatest challenges in the field of neurodegenerative diseases as a promising strategy to prevent or slow down AD progression. This review highlights current knowledge on the link of oral and intestinal microbiome and the interaction between wine polyphenols and microbiota in the context of AD. Furthermore, the extent to which mechanisms bacteria and polyphenols and its microbial metabolites exert their action on communication pathways between the brain and the microbiota, as well as the impact of the molecular mediators to these interactions on AD patients, are described.
Collapse
Affiliation(s)
- M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - José L. Peñalvo
- Institute of Tropical Medicine, Unit Noncommunicable Diseases, Natl Str 155, B-2000 Antwerp, Belgium;
| | | | - Maria José Motilva
- Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, Autovía del Camino de Santiago LO-20 Exit 13, 26007 Logroño, Spain;
| |
Collapse
|
42
|
Interactions of Aβ1-42 Peptide and Its Three Fragments (Aβ8-12, Aβ8-13, and Aβ5-16) with Selected Nonsteroidal Drugs and Compounds of Natural Origin. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the following paper, we present the results of our studies on the interactions of the Aβ1-42 peptide and its three short fragments, namely Aβ5-16 (RHDSGYEVHHQK; HZ1), Aβ8-13 (SGYEVH; HZ2), and Aβ8-12 (SGYEV; HZ3) with selected painkillers (ibuprofen and aspirin) and compounds of natural origin (anabasine and epinephrine). Steady-state fluorescence spectroscopy was used to study the binding properties of the selected systems. Additionally, based on molecular dynamics (MD) calculations supported by NMR-derived restrains, we have proposed the most likely area of the interactions of Aβ1-42 and Aβ5-16 peptides with the investigated compounds. The influence of symmetrically oriented side chains of amino acid residues present in the first part of the Aβ1-42 sequence on the stability of the resulting complexes has been discussed. Finally, the changes in the peptide structures on account of complex formation were analyzed.
Collapse
|
43
|
Wu X, Yu H, Zhou H, Li Z, Huang H, Xiao F, Xu S, Yang Y. Proanthocyanidin B2 inhibits proliferation and induces apoptosis of osteosarcoma cells by suppressing the PI3K/AKT pathway. J Cell Mol Med 2020; 24:11960-11971. [PMID: 32914567 PMCID: PMC7579710 DOI: 10.1111/jcmm.15818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumour in children and adolescents. The long‐term survival rate of OS patients is stubbornly low mainly due to the chemotherapy resistance. We therefore aimed to investigate the antitumoral effects and underlying mechanisms of proanthocyanidin B2 (PB2) on OS cells in the current study. The effect of PB2 on the proliferation and apoptosis of OS cell lines was assessed by CCK‐8, colony formation, and flow cytometry assays. The target gene and protein expression levels were measured by qRT‐PCR and Western blotting. A xenograft mouse model was established to assess the effects of PB2 on OS proliferation and apoptosis in vivo. Results from in vitro experiments showed that PB2 inhibited the proliferation and induced apoptosis of OS cells, and also increased the expression levels of apoptosis‐related proteins. Moreover, PB2 induced OS cell apoptosis through suppressing the PI3K/AKT signalling pathway. The in vivo experiments further confirmed that PB2 could inhibit OS tumour growth and induce its apoptosis. Taken together, these results suggested that PB2 inhibited the proliferation and induced apoptosis of OS cells through the suppression of the PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Xinbo Wu
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Yu
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haichao Zhou
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zihua Li
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Huang
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fajiao Xiao
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaochen Xu
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunfeng Yang
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Sandoval-Ramírez BA, Catalán Ú, Fernández-Castillejo S, Pedret A, Llauradó E, Solà R. Cyanidin-3-glucoside as a possible biomarker of anthocyanin-rich berry intake in body fluids of healthy humans: a systematic review of clinical trials. Nutr Rev 2020; 78:597-610. [PMID: 31858139 PMCID: PMC7279666 DOI: 10.1093/nutrit/nuz083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Context Anthocyanins are phenolic compounds found in berries. They exhibit promising health benefits in humans, but no accurate biomarkers of berry intake have been identified thus far. Objective The aim of this systematic review is to propose a biomarker of anthocyanin-rich berry intake in human plasma and urine. Data Sources PubMed and Cochrane databases were searched from January 2008 to January 2019. Study Selection Databases were searched for human intervention studies that assessed the presence of anthocyanins in human body fluids using high-throughput techniques. Non-English articles and studies publishing targeted analyses were excluded. Data Extraction Ten clinical trials, in which 203 phenolic compounds were identified, were included and assessed qualitatively. The following criteria were used to identify biomarkers of berry intake: frequency, plausibility, dose-response, time response, robustness, reliability, stability, analytical performance, and reproducibility. Sensitivity and specificity of potential biomarkers were determined by the receiver operating characteristic curve. Results Of the 203 phenolic compounds identified in human samples, the anthocyanin cyanidin-3-glucoside was the molecule found most frequently in urine (58.06%) and plasma (69.49%). Cyanidin-3-glucoside fulfills the essential criterion of plausibility as well as the dose-response, time response, stability, and analytical performance criteria. Its positive predictive value is 74% (P = 0.210) in plasma, which is acceptable, and 61.7% (P = 0.402) in urine. Conclusions Current evidence suggests that cyanidin-3-glucoside is a potential biomarker of anthocyanin-rich berry intake in plasma and urine of healthy humans. PROSPERO registration number CRD42018096796.
Collapse
Affiliation(s)
- Berner Andrée Sandoval-Ramírez
- Department of Medicine and Surgery, the Functional Nutrition, Oxidation, and Cardiovascular Diseases Research Group, Universitat Rovira i Virgili, Reus, Spain
| | - Úrsula Catalán
- Department of Medicine and Surgery, the Functional Nutrition, Oxidation, and Cardiovascular Diseases Research Group, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Sara Fernández-Castillejo
- Department of Medicine and Surgery, the Functional Nutrition, Oxidation, and Cardiovascular Diseases Research Group, Universitat Rovira i Virgili, Reus, Spain.,Fundació EURECAT-Centre Technològic de Nutrició Salut, Reus, Spain
| | - Anna Pedret
- Department of Medicine and Surgery, the Functional Nutrition, Oxidation, and Cardiovascular Diseases Research Group, Universitat Rovira i Virgili, Reus, Spain.,Fundació EURECAT-Centre Technològic de Nutrició Salut, Reus, Spain
| | - Elisabet Llauradó
- Department of Medicine and Surgery, the Functional Nutrition, Oxidation, and Cardiovascular Diseases Research Group, Universitat Rovira i Virgili, Reus, Spain
| | - Rosa Solà
- Department of Medicine and Surgery, the Functional Nutrition, Oxidation, and Cardiovascular Diseases Research Group, Universitat Rovira i Virgili, Reus, Spain.,Hospital Universitari Sant Joan de Reus, Reus, Spain
| |
Collapse
|
45
|
Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 2020; 44:e13394. [PMID: 32691460 DOI: 10.1111/jfbc.13394] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
In this review, the concept of phenolic antioxidants, mechanisms of action, and applications have been reviewed. Phenolic compounds (PCs) acts as an antioxidant by reacting with a variety of free radicals. The mechanism of antioxidant actions involved either by hydrogen atom transfer, transfer of a single electron, sequential proton loss electron transfer, and chelation of transition metals. In foods, the PCs act as antioxidants which are measured with several in vitro spectroscopic methods. The PCs have been found in milk and a wide range of dairy products with sole purposes of color, taste, storage stability, and quality enhancement. The role of PCs in three types of food additives, that is, antimicrobial, antioxidant, and flavoring agents have been critically reviewed. The literature revealed that PCs present in a variety of foods possess several health benefits such as antibacterial, antihyperlipidemic, anticancer, antioxidants, cardioprotective, neuroprotective, and antidiabetic properties. PRACTICAL APPLICATIONS: Phenolic compounds are strong antioxidants and are safer than synthetic antioxidants. The wide occurrence in plant foods warranted continuous review applications. This review, therefore, presented an updated comprehensive overview of the concept, mechanism, and applications of phenolic antioxidants in foods.
Collapse
Affiliation(s)
- Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
46
|
Samaniego I, Espin S, Cuesta X, Arias V, Rubio A, Llerena W, Angós I, Carrillo W. Analysis of Environmental Conditions Effect in the Phytochemical Composition of Potato ( Solanum tuberosum) Cultivars. PLANTS 2020; 9:plants9070815. [PMID: 32610590 PMCID: PMC7412447 DOI: 10.3390/plants9070815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Crop productivity and food quality are affected by environmental conditions. The objective of this work was to evaluate the effect of the environment on the concentration of phytochemical components in several potato (Solanum tuberosum) cultivars. The content of vitamin C (ascorbic acid, AA), the total carotenoids content (TCC), the total polyphenols content (TPC), and the total anthocyanins content (TAC) of 11 potatoes varieties grown in Ecuador (Cutuglahua, Pujilí, and Pilahuín) was measured by the spectrophotometric method. The antioxidant capacity (AC) of potato cultivars was evaluated by the ABTS method. The AA concentration ranged between 12.67 to 39.49 mg/100g fresh weight (FW), the TCC ranged between 50.00 and 1043.50 μg/100g FW, the TPC ranged between 0.41 and 3.25 g of gallic acid equivalents (GAE)/kg dry weight (DW), the TAC ranged between 2.74 and 172.53 μg/g FW and finally the AC ranged between 36.80 and 789.19 μg of trolox equivalents (TE)/g FW. Genotypes (G), location (L), and interaction (G x L) were significant at p < 0.01. The genotype (G) showed a greater variation in the phytochemical contents. AA and TPC showed the highest correlation with the AC. A selection of genotypes with these characteristics can be used to develop germplasms with a high AC.
Collapse
Affiliation(s)
- Iván Samaniego
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Susana Espin
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Xavier Cuesta
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Verónica Arias
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Armando Rubio
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Wilma Llerena
- Facultad de Ciencias Pecuarias, Ingeniería en Alimentos, Universidad Técnica Estatal de Quevedo, Km 7 1/2 vía Quevedo-El Empalme, Los Ríos 120313, Ecuador;
| | - Ignacio Angós
- Departamento de Agronomía, Biotecnología y Alimentación, Edificio Los Olivos, Campus Arrosadia, Universidad Pública de Navarra (UPNA), Pamplona 31006, Espana;
| | - Wilman Carrillo
- Department of Research, Universidad Técnica de Babahoyo, Av. Universitaria Km 21/2 Av. Montalvo., Babahoyo 120301, Ecuador
- Correspondence: ; Tel.: +593-980288016
| |
Collapse
|
47
|
Lossi L, Merighi A, Novello V, Ferrandino A. Protective Effects of Some Grapevine Polyphenols against Naturally Occurring Neuronal Death. Molecules 2020; 25:E2925. [PMID: 32630488 PMCID: PMC7356852 DOI: 10.3390/molecules25122925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
The interest in the biological properties of grapevine polyphenols (PPs) in neuroprotection is continuously growing in the hope of finding translational applications. However, there are several concerns about the specificity of action of these molecules that appear to act non-specifically on the permeability of cellular membranes. Naturally occurring neuronal death (NOND) during cerebellar maturation is a well characterized postnatal event that is very useful to investigate the death and rescue of neurons. We here aimed to establish a baseline comparative study of the potential to counteract NOND of certain grapevine PPs of interest for the oenology. To do so, we tested ex vivo the neuroprotective activity of peonidin- and malvidin-3-O-glucosides, resveratrol, polydatin, quercetin-3-O-glucoside, (+)-taxifolin, and (+)-catechin. The addition of these molecules (50 μM) to organotypic cultures of mouse cerebellum explanted at postnatal day 7, when NOND reaches a physiological peak, resulted in statistically significant (two-tailed Mann-Whitney test-p < 0.001) reductions of the density of dead cells (propidium iodide+ cells/mm2) except for malvidin-3-O-glucoside. The stilbenes were less effective in reducing cell death (to 51-60%) in comparison to flavanols, (+)-taxifolin and quercetin 3-O-glucoside (to 69-72%). Thus, molecules with a -OH group in ortho position (taxifolin, quercetin 3-O-glucoside, (+)-catechin, and peonidin 3-O-glucoside) have a higher capability to limit death of cerebellar neurons. As NOND is apoptotic, we speculate that PPs act by inhibiting executioner caspase 3.
Collapse
Affiliation(s)
- Laura Lossi
- Department of Veterinary Sciences (DSV), University of Turin, 10095 Grugliasco (TO), Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences (DSV), University of Turin, 10095 Grugliasco (TO), Italy
| | - Vittorino Novello
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco (TO), Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco (TO), Italy
| |
Collapse
|
48
|
Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T. Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research. Nutrients 2020; 12:E1344. [PMID: 32397145 PMCID: PMC7285205 DOI: 10.3390/nu12051344] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It has been thought that caloric restriction favors longevity and healthy aging where autophagy plays a vital role. However, autophagy decreases during aging and that can lead to the development of aging-associated diseases such as cancer, diabetes, neurodegeneration, etc. It was shown that autophagy can be induced by mechanical or chemical stress. In this regard, various pharmacological compounds were proposed, including natural polyphenols. Apart from the ability to induce autophagy, polyphenols, such as resveratrol, are capable of modulating the expression of pro- and anti-apoptotic factors, neutralizing free radical species, affecting mitochondrial functions, chelating redox-active transition metal ions, and preventing protein aggregation. Moreover, polyphenols have advantages compared to chemical inducers of autophagy due to their intrinsic natural bio-compatibility and safety. In this context, polyphenols can be considered as a potential therapeutic tool for healthy aging either as a part of a diet or as separate compounds (supplements). This review discusses the epigenetic aspect and the underlying molecular mechanism of polyphenols as an anti-aging remedy. In addition, the recent advances of studies on NAD-dependent deacetylase sirtuin-1 (SIRT1) regulation of autophagy, the role of senescence-associated secretory phenotype (SASP) in cells senescence and their regulation by polyphenols have been highlighted as well. Apart from that, the review also revised the latest information on how polyphenols can help to improve mitochondrial function and modulate apoptosis (programmed cell death).
Collapse
Affiliation(s)
- Assylzhan Yessenkyzy
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Timur Saliev
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Marina Zhanaliyeva
- Department of Human Anatomy, NSC “Medical University of Astana”, Nur-Sultan 010000, Kazakhstan;
| | - Abdul-Razak Masoud
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Elena Krivykh
- Khanty-Mansiysk State Medical Academy, Tyumen Region, Khanty-Mansiysk Autonomous Okrug—Ugra, Khanty-Mansiysk 125438, Russia;
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Talgat Nurgozhin
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| |
Collapse
|
49
|
Zhao D, Yuan B, Kshatriya D, Polyak A, Simon JE, Bello NT, Wu Q. Influence of Diet-Induced Obesity on the Bioavailability and Metabolism of Raspberry Ketone (4-(4-Hydroxyphenyl)-2-Butanone) in Mice. Mol Nutr Food Res 2020; 64:e1900907. [PMID: 32052560 PMCID: PMC7329366 DOI: 10.1002/mnfr.201900907] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/20/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Raspberry ketone (RK) is the primary aroma compound in red raspberries and a dietary supplement for weight loss. This work aims to 1) compare RK bioavailability in male versus female, normal-weight versus obese mice; 2) characterize RK metabolic pathways. METHODS Study 1: C57BL/6J male and female mice fed a low-fat diet (LFD; 10% fat) receive a single oral gavage dose of RK (200 mg kg-1 ). Blood, brain, and white adipose tissue (WAT) are collected over 12 h. Study 2: Male mice are fed a LFD or high-fat diet (45% fat) for 8 weeks before RK dosing. Samples collected are analyzed by UPLC-MS/MS for RK and its metabolites. RESULTS RK is rapidly absorbed (Tmax ≈ 15 min), and bioconverted into diverse metabolites in mice. Total bioavailability (AUC0-12 h ) is slightly lower in females than males (566 vs 675 nmol mL-1 min-1 ). Total bioavailability in obese mice is almost doubled that of control mice (1197 vs 679 nmol mL-1 min-1 ), while peaking times and elimination half-lives are delayed. Higher levels of RK and major metabolites are found in WAT of the obese than normal-weight animals. CONCLUSIONS RK is highly bioavailable, rapidly metabolized, and exhibits significantly different pharmacokinetic behaviors between obese and control mice. Lipid-rich tissues, especially WAT, can be a direct target of RK.
Collapse
Affiliation(s)
- Danyue Zhao
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences , Rutgers University, New Brunswick, NJ, 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Bo Yuan
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences , Rutgers University, New Brunswick, NJ, 08901, USA
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Dushyant Kshatriya
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Andrew Polyak
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences , Rutgers University, New Brunswick, NJ, 08901, USA
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences , Rutgers University, New Brunswick, NJ, 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Nicholas T Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences , Rutgers University, New Brunswick, NJ, 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| |
Collapse
|
50
|
Pogačnik L, Ota A, Poklar Ulrih N. An Overview of Crucial Dietary Substances and Their Modes of Action for Prevention of Neurodegenerative Diseases. Cells 2020; 9:E576. [PMID: 32121302 PMCID: PMC7140513 DOI: 10.3390/cells9030576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases, namely Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis are becoming one of the main health concerns due to the increasing aging of the world's population. These diseases often share the same biological mechanisms, including neuroinflammation, oxidative stress, and/or protein fibrillation. Recently, there have been many studies published pointing out the possibilities to reduce and postpone the clinical manifestation of these deadly diseases through lifelong consumption of some crucial dietary substances, among which phytochemicals (e.g., polyphenols) and endogenous substances (e.g., acetyl-L-carnitine, coenzyme Q10, n-3 poysaturated fatty acids) showed the most promising results. Another important issue that has been pointed out recently is the availability of these substances to the central nervous system, where they have to be present in high enough concentrations in order to exhibit their neuroprotective properties. As so, such the aim of this review is to summarize the recent findings regarding neuroprotective substances, their mechanisms of action, as well as to point out therapeutic considerations, including their bioavailability and safety for humans.
Collapse
Affiliation(s)
| | | | - Nataša Poklar Ulrih
- Department of Food Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.P.); (A.O.)
| |
Collapse
|