1
|
Kacemi R, Campos MG. Bee Pollen Phytochemicals and Nutrients as Unequaled Pool of Epigenetic Regulators: Implications for Age-Related Diseases. Foods 2025; 14:347. [PMID: 39941940 PMCID: PMC11816923 DOI: 10.3390/foods14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Bee pollen is characterized by an exceptional diversity and abundance of micronutrients and bioactive phytochemicals. This richness remains very sparsely investigated, but accumulating evidence strongly supports a promising future for bee pollen in human nutrition and medicine. Epigenetic regulation is among the most compelling biomedical topics that remain completely untapped in bee pollen and bee derivative research. In our current research, we identified numerous ubiquitous compounds that are consistently present in this matrix, regardless of its botanical and geographical origins, and that have been well studied and documented as epigenetic regulators in recent years. Given the relative newness of both bee pollen biomedical research and epigenetic studies within nutritional, pharmaceutical, and medical sciences, this review aims to bridge these valuable fields and advance related experimental investigations. To the best of our knowledge, this is the first work that has aimed to comprehensively investigate the epigenetic modulatory potential of bee pollen compounds. Our findings have also unveiled several intriguing phenomena, such as a dual effect of the same compound depending on the cellular context or the effect of some compounds on the cross-generational heritability of epigenetic traits. Although experimental studies of epigenetic regulation by bee pollen as a whole or by its extract are still lacking, our current study clearly indicates that this research avenue is very promising and worth further investigations. We hope that our current work constitutes a foundational cornerstone of future investigations for this avenue of research.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
2
|
Whitbread AL, Mittelmeier L, Rao RP, Mittelmeier W, Osmanski-Zenk K. Menstrual Blood as a Non-Invasive Alternative for Monitoring Vitamin Levels. J Clin Med 2024; 13:7212. [PMID: 39685671 DOI: 10.3390/jcm13237212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Menstrual blood has recently emerged as a novel specimen for diagnostics, offering a non-invasive alternative to traditional blood testing methods. Despite the importance of vitamins and monitoring their levels in preventative healthcare measures, the feasibility of measuring them in menstrual blood has yet to be explored. In this study, we aimed to assess the potential of using menstrual blood for determining vitamin levels by comparing their levels in menstrual blood to those in matched capillary blood samples. Methods: A prospective, monocentric, observational study was conducted with healthy, reproductive-aged voluntary participants. Menstrual blood was collected from 30 participants using a menstrual cup, and the corresponding capillary blood samples were obtained using a finger prick. The samples were transferred to dried blood spot (DBS) cards and analyzed using mass spectrometry to determine vitamin levels. Statistical analyses were performed to compare menstrual blood vitamin A and D levels, and hemoglobin, to those in capillary blood. Results: The vitamin levels could be ascertained from the menstrual blood, and were observed to significantly correlate with those from the capillary blood for both vitamin A (r = 0.77, p < 0.001) and vitamin D (r = 0.66, p < 0.001), despite being statistically different. Conclusions: The results of this pilot study demonstrate the potential utility of menstrual blood in estimating vitamin A and D levels, illustrating the prospect of a non-invasive menstrual blood-based vitamin test following larger clinical and analytical validation studies.
Collapse
Affiliation(s)
| | - Lucas Mittelmeier
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Rajnish P Rao
- The smart period blood GmbH, D-10119 Berlin, Germany
| | - Wolfram Mittelmeier
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Katrin Osmanski-Zenk
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, D-18057 Rostock, Germany
| |
Collapse
|
3
|
Vargas JA, Sculaccio SA, Pinto APA, Pereira HD, Mendes LFS, Flores JF, Cobos M, Castro JC, Garratt RC, Leonardo DA. Structural insights into the Smirnoff-Wheeler pathway for vitamin C production in the Amazon fruit camu-camu. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2754-2771. [PMID: 38224521 DOI: 10.1093/jxb/erae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. Mdl-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue in spinach. Finally, the structure of Mdl-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants, and the information provided should prove useful for biotechnological applications.
Collapse
Affiliation(s)
- Jhon A Vargas
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Susana A Sculaccio
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Andressa P A Pinto
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Humberto D'Muniz Pereira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Luis F S Mendes
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Jhoao F Flores
- Institute of Biology, State University of Campinas, Rua Monteiro Lobato 255, Campinas, SP 13083-862, Brazil
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Juan C Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Diego A Leonardo
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| |
Collapse
|
4
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
5
|
Martino E, D’Onofrio N, Balestrieri A, Colloca A, Anastasio C, Sardu C, Marfella R, Campanile G, Balestrieri ML. Dietary Epigenetic Modulators: Unravelling the Still-Controversial Benefits of miRNAs in Nutrition and Disease. Nutrients 2024; 16:160. [PMID: 38201989 PMCID: PMC10780859 DOI: 10.3390/nu16010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| |
Collapse
|
6
|
Guan W, Gong C, Wu S, Cui Z, Zheng Y, Li Z, Zhu S, Liu X. Instant Protection Spray for Anti-Infection and Accelerated Healing of Empyrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306589. [PMID: 37703451 DOI: 10.1002/adma.202306589] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Distinct from common injuries, deep burns often require a chronic recovery cycle for healing and long-term antibiotic treatment to prevent infection. The rise of drug-resistant bacteria has caused antibiotics to no longer be perfect, and continuous drug use can easily lead to repeated infection and even death. Inspired by wild animals that chew plants to prevent wound infection, probiotic extracts with a structure similar to the tailspike of phage are obtained from Lactobacillus casei and combined with different flavones to design a series of nonantibiotic bactericides. These novel antibacterial agents are combined with a rapid gelation spray with a novel cross-angle layout to form an instant protection spray (IPS) and provide a physical and anti-infectious barrier for burns within 30 s. This IPS is able to sterilize 100.00% and 96.14% of multidrug-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, respectively. In addition, it is found to effectively reduce inflammation in MRSA-infected burns in rats and to promote tissue healing.
Collapse
Affiliation(s)
- Wei Guan
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5, Beijing, 100871, China
| | - Caixin Gong
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Tianjin, 300401, China
| |
Collapse
|
7
|
Bahuguna A, Dubey SK. Overview of the Mechanistic Potential of Probiotics and Prebiotics in Cancer Chemoprevention. Mol Nutr Food Res 2023; 67:e2300221. [PMID: 37552810 DOI: 10.1002/mnfr.202300221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Indexed: 08/10/2023]
Abstract
Despite of strides in modern cancer therapeutic strategies, there has not been a successful cure for it until now and prognostic side effects and substantial toxicity to chemotherapy and subsequent homeostatic imbalance remains a major concern for professionals in this field. The significance of the human microbiome in the pathogenesis of cancer is being recognized, documented, and established worldwide. Probiotics and prebiotics are some of the most extensively researched approaches to modulate the microbiota for therapeutic purposes, and research on their potential to prevent and treat cancer has sparked an immense amount of interest. The characteristics of probiotics and prebiotics allow for an array of efficient applications in cancer preventive measures. Probiotics can also be administered coupled with chemotherapy and surgery to alleviate their side effects and help promote the effectiveness of chemotherapeutic drugs. Besides showing promising results they are accompanied by potential risks and controversies that may eventually result in clinical repercussions. This review emphasizes the mechanistic potential and oncosuppressive effects of probiotic and prebiotics through maintenance of intestinal barrier function, modifying innate immune system, immunomodulation, intestinal microbiota metabolism, inhibition of host cell proliferation, preventing pathogen colonization, and exerting selective cytotoxicity against tumor cells.
Collapse
Affiliation(s)
- Ananya Bahuguna
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Shiv Kumar Dubey
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| |
Collapse
|
8
|
Jiang J, Shi H, Jiang S, Wang A, Zou X, Wang Y, Li W, Zhang Y, Sun M, Ren Q, Xu J. Nutrition in Alzheimer's disease: a review of an underappreciated pathophysiological mechanism. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2257-2279. [PMID: 37058185 DOI: 10.1007/s11427-022-2276-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older individuals and is an escalating challenge to global public health. Pharmacy therapy of AD is one of the well-funded areas; however, little progress has been made due to the complex pathogenesis. Recent evidence has demonstrated that modifying risk factors and lifestyle may prevent or delay the incidence of AD by 40%, which suggests that the management should pivot from single pharmacotherapy toward a multipronged approach because AD is a complex and multifaceted disease. Recently, the gut-microbiota-brain axis has gained tremendous traction in the pathogenesis of AD through bidirectional communication with multiple neural, immune, and metabolic pathways, providing new insights into novel therapeutic strategies. Dietary nutrition is an important and profound environmental factor that influences the composition and function of the microbiota. The Nutrition for Dementia Prevention Working Group recently found that dietary nutrition can affect cognition in AD-related dementia directly or indirectly through complex interactions of behavioral, genetic, systemic, and brain factors. Thus, considering the multiple etiologies of AD, nutrition represents a multidimensional factor that has a profound effect on AD onset and development. However, mechanistically, the effect of nutrition on AD is uncertain; therefore, optimal strategies or the timing of nutritional intervention to prevent or treat AD has not been established.Thus, this review summarizes the current state of knowledge concerning nutritional disorders, AD patient and caregiver burden, and the roles of nutrition in the pathophysiology of AD. We aim to emphasize knowledge gaps to provide direction for future research and to establish optimal nutrition-based intervention strategies for AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
9
|
Zhu X, Zhang Y, Liu H, Yang G, Li L. Microbiome-metabolomics analysis reveals abatement effects of itaconic acid on odorous compound production in Arbor Acre broilers. BMC Microbiol 2023; 23:183. [PMID: 37438695 DOI: 10.1186/s12866-023-02914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Public complaints concerning odor emissions from intensive livestock and poultry farms continue to grow, as nauseous odorous compounds have adverse impacts on the environment and human health. Itaconic acid is a metabolite from the citric acid cycle of the host and shows volatile odor-reducing effects during animal production operations. However, the specific role of itaconic acid in decreasing intestinal odorous compound production remains unclear. A total of 360 one-day-old chicks were randomly divided into 6 treatment groups: control group (basal diet) and itaconic acid groups (basal diet + 2, 4, 6, 8 and 10 g/kg itaconic acid). The feeding experiment lasted for 42 d. RESULTS Dietary itaconic acid supplementation linearly and quadratically decreased (P < 0.05) the cecal concentrations of indole and skatole but did not affect (P > 0.05) those of lactic, acetic, propionic and butyric acids. The cecal microbial shift was significant in response to 6 g/kg itaconic acid supplementation, in that the abundances of Firmicutes, Ruminococcus and Clostridium were increased (P < 0.05), while those of Bacteroidetes, Escherichia-Shigella and Bacteroides were decreased (P < 0.05), indicative of increased microbial richness and diversity. Furthermore, a total of 35 significantly (P < 0.05) modified metabolites were obtained by metabolomic analysis. Itaconic acid decreased (P < 0.05) the levels of nicotinic acid, nicotinamide, glucose-6-phosphate, fumatic acid and malic acid and increased (P < 0.05) 5-methoxytroptomine, dodecanoic acid and stearic acid, which are connected with the glycolytic pathway, citrate acid cycle and tryptophan metabolism. Correlation analysis indicated significant correlations between the altered cecal microbiota and metabolites; Firmicutes, Ruminococcus and Clostridium were shown to be negatively correlated with indole and skatole production, while Bacteroidetes, Escherichia-Shigella and Bacteroides were positively correlated with indole and skatole production. CONCLUSIONS Itaconic acid decreased cecal indole and skatole levels and altered the microbiome and metabolome in favor of odorous compound reduction. These findings provide new insight into the role of itaconic acid and expand its application potential in broilers.
Collapse
Affiliation(s)
- Xin Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yinhang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Haiying Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Guiqin Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
10
|
Gómez de Cedrón M, Moreno Palomares R, Ramírez de Molina A. Metabolo-epigenetic interplay provides targeted nutritional interventions in chronic diseases and ageing. Front Oncol 2023; 13:1169168. [PMID: 37404756 PMCID: PMC10315663 DOI: 10.3389/fonc.2023.1169168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Epigenetic modifications are chemical modifications that affect gene expression without altering DNA sequences. In particular, epigenetic chemical modifications can occur on histone proteins -mainly acetylation, methylation-, and on DNA and RNA molecules -mainly methylation-. Additional mechanisms, such as RNA-mediated regulation of gene expression and determinants of the genomic architecture can also affect gene expression. Importantly, depending on the cellular context and environment, epigenetic processes can drive developmental programs as well as functional plasticity. However, misbalanced epigenetic regulation can result in disease, particularly in the context of metabolic diseases, cancer, and ageing. Non-communicable chronic diseases (NCCD) and ageing share common features including altered metabolism, systemic meta-inflammation, dysfunctional immune system responses, and oxidative stress, among others. In this scenario, unbalanced diets, such as high sugar and high saturated fatty acids consumption, together with sedentary habits, are risk factors implicated in the development of NCCD and premature ageing. The nutritional and metabolic status of individuals interact with epigenetics at different levels. Thus, it is crucial to understand how we can modulate epigenetic marks through both lifestyle habits and targeted clinical interventions -including fasting mimicking diets, nutraceuticals, and bioactive compounds- which will contribute to restore the metabolic homeostasis in NCCD. Here, we first describe key metabolites from cellular metabolic pathways used as substrates to "write" the epigenetic marks; and cofactors that modulate the activity of the epigenetic enzymes; then, we briefly show how metabolic and epigenetic imbalances may result in disease; and, finally, we show several examples of nutritional interventions - diet based interventions, bioactive compounds, and nutraceuticals- and exercise to counteract epigenetic alterations.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- Cell Metabolism Unit, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| | - Rocío Moreno Palomares
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- FORCHRONIC S.L, Avda. Industria, Madrid, Spain
| | | |
Collapse
|
11
|
Max BL, Angolile CM, Raymond VG, Mashauri HL. The dawn of repurposing vitamins as potential novel antimicrobial agents: A call for global emergency response amidst AMR crisis. Health Sci Rep 2023; 6:e1276. [PMID: 37216052 PMCID: PMC10199457 DOI: 10.1002/hsr2.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Amidst, the global pandemic of antimicrobial resistance (AMR), the rate at which AMR increases overwhelms the increased efforts to discover new effective antimicrobials. There is a persistent need for alternative treatment modalities so as to keep up with the pace. AMR is the leading cause of death in the world and its health and economic consequences suggest the urgent need for sustainable interventions. Vitamins have consistently proven to have antimicrobial activity as well as slowing down the AMR rate by influencing the AMR genes even towards extensive multidrug resistant strains. Evidences suggest that the use of some vitamins on their own or in combination with existing antimicrobial agents could be a breakthrough towards combating AMR. This will widen the antimicrobial agents' options in the treatment arena, preserve the antimicrobial agents susceptible to develop resistant so that they can be used in severe infections only, reduce the tension and burden of the AMR crisis significantly and give enough room for development of new antimicrobial agents. Moreover, almost all viral, fungal, parasitic and bacterial resistant strains of concern as listed by World Health Organization have been found to be sensitive to several vitamins either synergistically with other antimicrobials or independently. Considering their widened spectrum of immunomodulatory and antimicrobial effect, some vitamins can further be repositioned as prophylactic antimicrobial agents in clinical situations like in presurgeries prophylaxis so as to avoid unnecessary use of antimicrobials especially antibiotics. Various relevant AMR stakeholders should invest in clinical trials and systematic reviews with available data to enable quick repositioning of some potential vitamins as antimicrobial agents as an emergency rapid response towards AMR Crisis. This includes the preparation of guidelines containing specificity of which vitamin to be used for treatment of which type of infection.
Collapse
Affiliation(s)
- Baraka L. Max
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Community Medicine, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Cornel M. Angolile
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Community Medicine, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of PhysiologyKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Vicky G. Raymond
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Internal MedicineKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Harold L. Mashauri
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of PhysiologyKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Internal MedicineKilimanjaro Christian Medical University CollegeMoshiTanzania
| |
Collapse
|
12
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
13
|
Boughanem H, Kompella P, Tinahones FJ, Macias-Gonzalez M. An overview of vitamins as epidrugs for colorectal cancer prevention. Nutr Rev 2023; 81:455-479. [PMID: 36018754 DOI: 10.1093/nutrit/nuac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression altering epigenomic modifications such as DNA methylation, histone modification, and chromosome remodeling is crucial to regulating many biological processes. Several lifestyle factors, such as diet and natural, bioactive food compounds, such as vitamins, modify epigenetic patterns. However, epigenetic dysregulation can increase the risk of many diseases, including cancer. Various studies have provided supporting and contrasting evidence on the relationship between vitamins and cancer risk. Though there is a gap in knowledge about whether dietary vitamins can induce epigenetic modifications in the context of colorectal cancer (CRC), the possibility of using them as epidrugs for CRC treatment is being explored. This is promising because such studies might be informative about the most effective way to use vitamins in combination with DNA methyltransferase inhibitors and other approved therapies to prevent and treat CRC. This review summarizes the available epidemiological and observational studies involving dietary, circulating levels, and supplementation of vitamins and their relationship with CRC risk. Additionally, using available in vitro, in vivo, and human observational studies, the role of vitamins as potential epigenetic modifiers in CRC is discussed. This review is focused on the action of vitamins as modifiers of DNA methylation because aberrant DNA methylation, together with genetic alterations, can induce the initiation and progression of CRC. Although this review presents some studies with promising results, studies with better study designs are necessary. A thorough understanding of the underlying molecular mechanisms of vitamin-mediated epigenetic regulation of CRC genes can help identify effective therapeutic targets for CRC prevention and treatment.
Collapse
Affiliation(s)
- Hatim Boughanem
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Pallavi Kompella
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,is with the Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Francisco J Tinahones
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Macias-Gonzalez
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Yang W, Zhou J, Gu Q, Harindintwali JD, Yu X, Liu X. Combinatorial Enzymatic Catalysis for Bioproduction of Ginsenoside Compound K. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3385-3397. [PMID: 36780449 DOI: 10.1021/acs.jafc.2c08773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ginsenoside compound K (CK) is an emerging functional food or pharmaceutical product. To date, there are still challenges to exploring effective catalytic enzymes for enzyme-catalyzed manufacturing processes and establishing enzyme-catalyzed processes. Herein, we identified three ginsenoside hydrolases BG07 (glucoamylase), BG19 (β-glucosidase), and BG23 (β-glucosidase) from Aspergillus tubingensis JE0609 by transcriptome analysis and peptide mass fingerprinting. Among them, BG23 was expressed in Komagataella phaffii with a high volumetric activity of 235.73 U mL-1 (pNPG). Enzymatic property studies have shown that BG23 is an acidic (pH adaptation range of 4.5-7.0) and mesophilic (thermostable < 50 °C) enzyme. Moreover, a one-pot combinatorial enzyme-catalyzed strategy based on BG23 and BGA35 (β-galactosidase from Aspergillus oryzae) was established, with a high CK yield of 396.7 mg L-1 h-1. This study explored the ginsenoside hydrolases derived from A. tubingensis at the molecular level and provided a reference for the efficient production of CK.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550003, Guizhou, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| |
Collapse
|
15
|
Bottaccioli AG, Bottaccioli F. Come gli stati psichici si traducono in molecole biologiche e come questo cambia la medicina e la psicologia. PSICOTERAPIA E SCIENZE UMANE 2023. [DOI: 10.3280/pu2023-001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Nell'aprile del 2022 abbiamo pubblicato, su invito di una rivista internazionale di biologia molecolare, un'ampia review che riporta le principali evidenze scientifiche sul tema delle relazioni tra vita psichica e biologia, traendone alcune conclusioni di carattere generale sulla psicologia e la medicina (Bottaccioli, Bologna & Bottaccioli, 2022). Il presente articolo riprende alcuni dei passaggi fondamentali presentati in quella review e si collega a un precedente articolo pubblicato sul n. 4/2014 di Psicoterapia e Scienze Umane (Bottaccioli, 2014b), di cui rappresenta un aggiornamento. Dalla pubblicazione di quell'articolo le evidenze sperimentali e cliniche sull'influenza della psiche sui sistemi biologici si sono moltiplicate. Al tempo stesso, conosciamo meglio le vie e i meccanismi con cui gli stati psichici si traducono in biologia.
Collapse
|
16
|
Munteanu C, Berindean I, Mihai M, Pop B, Popa M, Muntean L, Petrescu O, Ona A. E, K, B5, B6, and B9 vitamins and their specific immunological effects evaluated by flow cytometry. Front Med (Lausanne) 2023; 9:1089476. [PMID: 36687400 PMCID: PMC9849766 DOI: 10.3389/fmed.2022.1089476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
It has been proven that vitamins play an essential role in preventing certain diseases since ancient times. It is thus fruitless to approach the roles of vitamins without making reference to the techniques used in evaluating the effects of these micronutrients. Therefore, the aim of this paper was to summarize the immunological effects of E, K, B5, B6, and B9 vitamins evaluated by flow cytometry. Some of these significant effects were presented and discussed: (a) The role of vitamins E in the prevention and treatment of different types of cancer. (b) The properties of K vitamins in the development and maintenance of pheochromocytoma Cell Line 12 (PC12) cells in Parkinson's disease; (c) The improvement effect of vitamin B5 on the loss of bone mass in low estrogen conditions; (d) The anticancer role of vitamins B6. (e) The role of Vitamin B9 in the regulation of Treg cells. As such, the flow cytometry technique used to assess these properties is essential to evaluate the immunomodulatory effects of certain vitamins. The technique undergoes constant improvement which makes it possible to determine several parameters with a role in the modulation of the immune function and at the same time increase the accuracy of the methods that highlight them.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ioana Berindean
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihaela Mihai
- Department of Transversal Competencies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Bianca Pop
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Popa
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Leon Muntean
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Olivia Petrescu
- Department of Applied Modern Languages, Faculty of Letters, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Andreea Ona
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania,*Correspondence: Andreea Ona,
| |
Collapse
|
17
|
Jamal QMS. Antiviral Potential of Plants against COVID-19 during Outbreaks-An Update. Int J Mol Sci 2022; 23:13564. [PMID: 36362351 PMCID: PMC9655040 DOI: 10.3390/ijms232113564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 12/01/2023] Open
Abstract
Several human diseases are caused by viruses, including cancer, Type I diabetes, Alzheimer's disease, and hepatocellular carcinoma. In the past, people have suffered greatly from viral diseases such as polio, mumps, measles, dengue fever, SARS, MERS, AIDS, chikungunya fever, encephalitis, and influenza. Recently, COVID-19 has become a pandemic in most parts of the world. Although vaccines are available to fight the infection, their safety and clinical trial data are still questionable. Social distancing, isolation, the use of sanitizer, and personal productive strategies have been implemented to prevent the spread of the virus. Moreover, the search for a potential therapeutic molecule is ongoing. Based on experiences with outbreaks of SARS and MERS, many research studies reveal the potential of medicinal herbs/plants or chemical compounds extracted from them to counteract the effects of these viral diseases. COVID-19's current status includes a decrease in infection rates as a result of large-scale vaccination program implementation by several countries. But it is still very close and needs to boost people's natural immunity in a cost-effective way through phytomedicines because many underdeveloped countries do not have their own vaccination facilities. In this article, phytomedicines as plant parts or plant-derived metabolites that can affect the entry of a virus or its infectiousness inside hosts are described. Finally, it is concluded that the therapeutic potential of medicinal plants must be analyzed and evaluated entirely in the control of COVID-19 in cases of uncontrollable SARS infection.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| |
Collapse
|
18
|
Peralta I, Marrassini C, Saint Martin M, Plantamura YS, Cogoi L, Pellegrino N, Alonso MR, Anesini C. Anti-hyperglycaemic effect and nutritional properties of an aqueous extract of Larrea divaricata Cav. (jarilla) in streptozotocin-induced diabetes in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115429. [PMID: 35659916 DOI: 10.1016/j.jep.2022.115429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Larrea divaricata Cav. (Zygophyllaceae) (jarilla) is a native plant of South America widely distributed across Argentina and used in popular medicine to treat diabetes and hypercholesterolemia by the Diaguita-Calchaquí, Amaichas, and Quilmes indigenous communities and by non-indigenous population (criollos) of Calamuchita, in the province of Córdoba, Argentina. L. divaricata has also proved to have anti-inflammatory properties. However, the antidiabetic effects and the nutritional properties of the aqueous extract (AE) of this plant remain to be scientifically determined. AIM OF THE STUDY The aim of the present work was to evaluate the capacity of an aqueous extract of L. divaricata (AE) and its main compound nordihydroguaiaretic acid (NDGA) to modulate the glucose, cholesterol, triglycerides and oxidative stress levels in STZ-induced diabetes in mice. The general objective of the present work was to search for extracts that can be used as adjuvant therapy in for diabetes. The suitability of the extract to be used as a dietary supplement was also assessed by determining the proximate amount of fibre, lipids, proteins, and minerals. MATERIALS AND METHODS Diabetes was induced in mice by administration of streptozotocin (STZ). AE and NDGA were administered by the oral route. The animals' glycaemia was periodically monitored in blood samples obtained from the tail vein. The glucose dehydrogenase method was used. The effect of the AE on cholesterol, triglycerides, oxidative stress, lipid peroxidation and reduced glutathione (GSH) levels were determined in plasma samples by spectrophotometric assays. RESULTS In STZ-treated mice, AE significantly decreased glucose (33%, ****p < 0.0001) and cholesterol levels (32%, **p < 0.01). AE and NDGA decreased lipid peroxidation (30% and 38%, respectively, ****p < 0.0001), and increased GSH levels (20%, **p < 0.01). The effects of AE on glucose and lipid levels could not be ascribed to NDGA; however, this compound was involved in the extract antioxidant effects. The overall effects of AE were probably related to its antioxidant activity and to the anti-hyperglycaemic effect mainly mediated by flavonoids, fibre (carbohydrates) and mineral elements such as potassium, calcium, magnesium, and zinc. The AE protein content also confers the extract nutritional properties. CONCLUSIONS These results support the hypothesis that AE could be used as a therapeutic adjuvant or as a nutritional supplement to control glucose levels and lipid metabolism in metabolic syndrome-associated diseases. Moreover, these results scientifically reinforce the popular use of the plant.
Collapse
Affiliation(s)
- Ignacio Peralta
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina; Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Marrassini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina; Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Malen Saint Martin
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina; Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yanina Santander Plantamura
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Cogoi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina; Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Néstor Pellegrino
- Cátedra de Bromatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Rosario Alonso
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Claudia Anesini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina; Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Imran Khan M. Exploration of metabolic responses towards hypoxia mimetic DMOG in cancer cells by using untargeted metabolomics. Saudi J Biol Sci 2022; 29:103426. [PMID: 36091722 PMCID: PMC9460158 DOI: 10.1016/j.sjbs.2022.103426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Hypoxia is considered as one of the most crucial elements of tumor microenvironment. The hypoxia inducible transcription factors (HIF-1/2) are used by the cancer cells to adapt hypoxic microenvironment through regulating the expression of various target genes, including metabolic enzymes. Dimethyloxalylglycine (DMOG), a hypoxic mimetic used for HIF stabilisation in cell and animal models, also demonstrates multiple metabolic effects. In past, it was shown that in cancer cells, DMOG treatment alters mitochondrial ATP production, glycolysis, respiration etc. However, a global landscape of metabolic level alteration in cancer cells during DMOG treatment is still not established. In the current work, the metabolic landscape of cancer cells during DMOG treatment is explored by using untargeted metabolomics approach. Results showed that DMOG treatment primarily alters the one carbon and lipid metabolism. The levels of one-carbon metabolism related metabolites like serine, ornithine, and homomethionine levels significantly altered during DMOG treatment. Further, DMOG treatment reduces the global fatty acyls like palmitic acids, stearic acids, and arachidonic acid levels in cancer cell lines. Additionally, we found an alteration in glycolytic metabolites known to be regulated by hypoxia in cancer cell lines. Collectively, the results provided novel insights into the metabolic impact of DMOG on cancer cells and showed that the use of DMOG to induce hypoxia yields similar metabolic features relative to physiological hypoxia.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Youness RA, Dawoud A, ElTahtawy O, Farag MA. Fat-soluble vitamins: updated review of their role and orchestration in human nutrition throughout life cycle with sex differences. Nutr Metab (Lond) 2022; 19:60. [PMID: 36064551 PMCID: PMC9446875 DOI: 10.1186/s12986-022-00696-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Age and Gender are vital determinants for the micronutrient demands of normal indviduals. Among these micronutrients are vitamins that are required in small amounts for optimum metabolism, homeostasis, and a healthy lifestyle, acting as coenzymes in several biochemical reactions. The majority of previous studies have examined such issues that relates to a specific vitamin or life stage, with the majority merely reporting the effect of either excess or deficiency. Vitamins are classified into water-soluble and fat-soluble components. The fat-soluble vitamins include vitamins (A, D, E, and K). Fat-soluble vitamins were found to have an indisputable role in an array of physiological processes such as immune regulation, vision, bone and mental health. Nonetheless, the fat-soluble vitamins are now considered a prophylactic measurement for a multitude of diseases such as autism, rickets disease, gestational diabetes, and asthma. Herein, in this review, a deep insight into the orchestration of the four different fat-soluble vitamins requirements is presented for the first time across the human life cycle beginning from fertility, pregnancy, adulthood, and senility with an extensive assessment ofthe interactions among them and their underlying mechanistic actions. The influence of sex for each vitamin is also presented at each life stage to highlight the different daily requirements and effects.
Collapse
Affiliation(s)
- Rana A Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt.
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Omar ElTahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| |
Collapse
|
21
|
Vargas JA, Leonardo DA, D’Muniz Pereira H, Lopes AR, Rodriguez HN, Cobos M, Marapara JL, Castro JC, Garratt RC. Structural Characterization of L-Galactose Dehydrogenase: An Essential Enzyme for Vitamin C Biosynthesis. PLANT & CELL PHYSIOLOGY 2022; 63:1140-1155. [PMID: 35765894 PMCID: PMC9381564 DOI: 10.1093/pcp/pcac090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In plants, it is well-known that ascorbic acid (vitamin C) can be synthesized via multiple metabolic pathways but there is still much to be learned concerning their integration and control mechanisms. Furthermore, the structural biology of the component enzymes has been poorly exploited. Here we describe the first crystal structure for an L-galactose dehydrogenase [Spinacia oleracea GDH (SoGDH) from spinach], from the D-mannose/L-galactose (Smirnoff-Wheeler) pathway which converts L-galactose into L-galactono-1,4-lactone. The kinetic parameters for the enzyme are similar to those from its homolog from camu camu, a super-accumulator of vitamin C found in the Peruvian Amazon. Both enzymes are monomers in solution and have a pH optimum of 7, and their activity is largely unaffected by high concentrations of ascorbic acid, suggesting the absence of a feedback mechanism acting via GDH. Previous reports may have been influenced by changes of the pH of the reaction medium as a function of ascorbic acid concentration. The structure of SoGDH is dominated by a (β/α)8 barrel closely related to aldehyde-keto reductases (AKRs). The structure bound to NAD+ shows that the lack of Arg279 justifies its preference for NAD+ over NADP+, as employed by many AKRs. This favors the oxidation reaction that ultimately leads to ascorbic acid accumulation. When compared with other AKRs, residue substitutions at the C-terminal end of the barrel (Tyr185, Tyr61, Ser59 and Asp128) can be identified to be likely determinants of substrate specificity. The present work contributes toward a more comprehensive understanding of structure-function relationships in the enzymes involved in vitamin C synthesis.
Collapse
Affiliation(s)
| | | | - Humberto D’Muniz Pereira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Adriana R Lopes
- Laboratory of Biochemistry, Instituto Butantan, Av. Vital Brasil, São Paulo 1500, Brazil
| | - Hicler N Rodriguez
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Av. Abelardo Quiñones km 2.5, Iquitos 16006, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria - Zungarococha, San Juan Bautista 16000, Peru
| | - Jorge L Marapara
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria - Zungarococha, San Juan Bautista 16000, Peru
| | - Juan C Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria - Zungarococha, San Juan Bautista 16000, Peru
| | | |
Collapse
|
22
|
Bennour I, Haroun N, Sicard F, Mounien L, Landrier JF. Recent insights into vitamin D, adipocyte, and adipose tissue biology. Obes Rev 2022; 23:e13453. [PMID: 35365943 DOI: 10.1111/obr.13453] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Several studies bring strong evidence for an active role of vitamin D and its metabolites in physiological adipocyte and adipose tissue processes in adulthood. This role includes effects of vitamin D on key adipose tissue and adipocyte biology parameters, including adipogenesis, energy metabolism, and inflammation. Interestingly, recent data also point to a role of maternal vitamin D deficiency in adipocyte and adipose tissue metabolic programming in offspring. This review summarizes the current state of knowledge on the biological effect of vitamin D on adipocyte/adipose tissue physiology.
Collapse
Affiliation(s)
- Imene Bennour
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Nicole Haroun
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Flavie Sicard
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France.,PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France.,PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France.,PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| |
Collapse
|
23
|
Rauf A, Akram M, Anwar H, Daniyal M, Munir N, Bawazeer S, Bawazeer S, Rebezov M, Bouyahya A, Shariati MA, Thiruvengadam M, Sarsembenova O, Mabkhot YN, Islam MN, Emran TB, Hodak S, Zengin G, Khan H. Therapeutic potential of herbal medicine for the management of hyperlipidemia: latest updates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40281-40301. [PMID: 35320475 DOI: 10.1007/s11356-022-19733-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Hyperlipidemia, the most common form of dyslipidemia, is the main source of cardiovascular disorders, characterized by elevated level of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) with high-density lipoprotein cholesterol (HDL-C) in peripheral blood. It is caused by a defect in lipid metabolism in the surface of Apoprotein C-II or a defect in lipoprotein lipase activity as well as reported in genetic, dietary and environmental factors. Several electronic databases were investigated as information sources, including Google Scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE and CNKI Scholar. The current review focused on the risk factors of dyslipidemia, synthetic medication with their side effects and different types of medicinal plants having significant potential for the management of hyperlipidemia. The management of hyperlipidemia mostly involves a constant decrease in lipid level using different remedial drugs like statin, fibrate, bile acid sequestrates and niacin. However, this extensive review suggested that the consequences of these drugs are arguable, due to their numerous adverse effects. The selected parts of herb plants are used intact or their extracts containing active phytoconstituents to regulate the lipids in blood level. It was also noted that the Chinese herbal medicine and combination therapy is promising for the lowering of hyperlipidemia. This review intends to provide a scientific base for future endeavors, such as in-depth biological and chemical investigations into previously researched topics.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23430, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hina Anwar
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sami Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 42, Makkah, Saudi Arabia
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 42, Makkah, Saudi Arabia
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, and Genomic Center of Human Pathology, Mohammed V University, Rabat, Morocco
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | | | | | - Yahia N Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sergey Hodak
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| |
Collapse
|
24
|
Pi X, Sun Y, Cheng J, Fu G, Guo M. A review on polyphenols and their potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2022; 63:10014-10031. [PMID: 35603705 DOI: 10.1080/10408398.2022.2078273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review summarized recent studies about the effects of polyphenols on the allergenicity of allergenic proteins, involving epigallocatechin gallate (EGCG), caffeic acid, chlorogenic acid, proanthocyanidins, quercetin, ferulic acid and rosmarinic acid, etc. Besides, the mechanism of polyphenols for reducing allergenicity was discussed and concluded. It was found that polyphenols could noncovalently (mainly hydrophobic interactions and hydrogen bonding) and covalently (mainly alkaline, free-radical grafting, and enzymatic method) react with allergens to induce the structural changes, resulting in the masking or/and destruction of epitopes and the reduction of allergenicity. Oral administration in murine models showed that the allergic reaction might be suppressed by regulating immune cell function, changing the levels of cytokines, suppressing of MAPK, NF-κb and allergens-presentation pathway and improving intestine function, etc. The outcome of reduced allergenicity and suppressed allergic reaction was affected by many factors such as polyphenol types, polyphenol concentration, allergen types, pH, oral timing and dosage. Moreover, the physicochemical and functional properties of allergenic proteins were improved after treatment with polyphenols. Therefore, polyphenols have the potential to produce hypoallergenic food. Further studies should focus on active concentrations and bioavailability of polyphenols, confirming optimal intake and hypoallergenic of polyphenols based on clinical trials.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Mingruo Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, United States
| |
Collapse
|
25
|
Khan M, Nur S, Abdulaal W. A study on DNA methylation modifying natural compounds identified EGCG for induction of IFI16 gene expression related to the innate immune response in cancer cells. Oncol Lett 2022; 24:218. [PMID: 35707762 PMCID: PMC9178671 DOI: 10.3892/ol.2022.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/25/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mohammad Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Suza Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wesam Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Bennour I, Haroun N, Sicard F, Mounien L, Landrier JF. Vitamin D and Obesity/Adiposity—A Brief Overview of Recent Studies. Nutrients 2022; 14:nu14102049. [PMID: 35631190 PMCID: PMC9143180 DOI: 10.3390/nu14102049] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Observational studies classically find an inverse relationship between human plasma 25-hydroxyvitamin D concentration and obesity. However, interventional and genetic studies have failed to provide clear conclusions on the causal effect of vitamin D on obesity/adiposity. Likewise, vitamin D supplementation in obese rodents has mostly failed to improve obesity parameters, whereas several lines of evidence in rodents and prospective studies in humans point to a preventive effect of vitamin D supplementation on the onset of obesity. Recent studies investigating the impact of maternal vitamin D deficiency in women and in rodent models on adipose tissue biology programming in offspring further support a preventive metabolically driven effect of vitamin D sufficiency. The aim of this review is to summarize the state of the knowledge on the relationship between vitamin D and obesity/adiposity in humans and in rodents and the impact of maternal vitamin D deficiency on the metabolic trajectory of the offspring.
Collapse
Affiliation(s)
- Imene Bennour
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
| | - Nicole Haroun
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
| | - Flavie Sicard
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, 13000 Marseille, France
| | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, 13000 Marseille, France
| | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, 13000 Marseille, France
- Correspondence: ; Tel.: +33-4-9129-4275
| |
Collapse
|
27
|
Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C. Superheated steam processing: An emerging technology to improve food quality and safety. Crit Rev Food Sci Nutr 2022; 63:8720-8736. [PMID: 35389273 DOI: 10.1080/10408398.2022.2059440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
Collapse
Affiliation(s)
- Jiajia Fang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China)
| | - Chongxin Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China)
| | - Chung-Lim Law
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - Chunjiang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China)
| |
Collapse
|
28
|
Bottaccioli AG, Bologna M, Bottaccioli F. Psychic Life-Biological Molecule Bidirectional Relationship: Pathways, Mechanisms, and Consequences for Medical and Psychological Sciences-A Narrative Review. Int J Mol Sci 2022; 23:3932. [PMID: 35409300 PMCID: PMC8999976 DOI: 10.3390/ijms23073932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Today, it is possible to investigate the biological paths and mechanisms that link mental life to biological life. Emotions, feelings, desires, and cognitions influence biological systems. In recent decades, psychoneuroendocrinoimmunology research has highlighted the routes linking the psyche-brain-immune systems. Recently, epigenetics research has shown the molecular mechanisms by which stress and mental states modulate the information contained in the genome. This research shapes a new paradigm considering the human being as a whole, integrating biology and psychology. This will allow us to progress towards personalized precision medicine, deeply changing medical and psychological sciences and clinical practice. In this paper, we recognize leading research on both bidirectional relations between the psyche-brain-immunity and molecular consequences of psychological and mental states.
Collapse
Affiliation(s)
- Anna Giulia Bottaccioli
- Department of Psychology, University “Vita e Salute”, San Raffaele, 20132 Milan, Italy
- Italian Society of Psycho-Neuro-Endocrine-Immunology (SIPNEI), 00195 Rome, Italy; (M.B.); (F.B.)
| | - Mauro Bologna
- Italian Society of Psycho-Neuro-Endocrine-Immunology (SIPNEI), 00195 Rome, Italy; (M.B.); (F.B.)
- Department of Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesco Bottaccioli
- Italian Society of Psycho-Neuro-Endocrine-Immunology (SIPNEI), 00195 Rome, Italy; (M.B.); (F.B.)
- Department of Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
29
|
Qin Y, Zhang H, Jiang B, Chen J, Zhang T. Food bioactives lowering risks of chronic diseases induced by fine particulate air pollution: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7811-7836. [PMID: 35317688 DOI: 10.1080/10408398.2022.2051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Airborne particulate matter (PM) exerts huge negative impacts on human health worldwide, not only targeting the respiratory system but more importantly inducing and aggravating associated chronic diseases like asthma, lung cancer, atherosclerosis, diabetes mellitus and Alzheimer diseases. Food-derived bioactive compounds like vitamins, dietary polyphenols, omega-3 polyunsaturated fatty acids and sulforaphane are feasible alternative therapeutic approaches against PM-mediated potential health damages, drawing great attention in recent years. In this review, the association between PM exposure and risks of developing chronic diseases, and the detailed mechanisms underlying the detrimental effects of PM will be discussed. Subsequently, principal food-derived bioactive compounds, with emphasize on the preventative or protective effects against PM, along with potential mechanisms will be elucidated. This comprehensive review will discuss and present current research findings to reveal the nutritional intervention as a preventative or therapeutic strategy against ambient air pollution, thereby lowering the risk of developing chronic diseases.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
30
|
Boye TL, Steenholdt C, Jensen KB, Nielsen OH. Molecular manipulations and intestinal stem cell-derived organoids in inflammatory bowel disease. Stem Cells 2022; 40:447-457. [DOI: 10.1093/stmcls/sxac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Abstract
The pathogenesis of inflammatory bowel diseases (IBD) involves genetic predisposition, environmental factors, and a broadly dysregulated intestinal immune response to the commensal intestinal microflora. The interface between genetic predisposition and environmental factors is reflected in the epigenetic regulation at the transcriptional level. Treatment targets now involve mucosal and histological healing, but the future might additionally include normalization of intestinal cellular functions also at the molecular level, for example comprising complete restoration of phenotypic, genotypic, and epigenetic states. Recent developments in patient-derived epithelial intestinal stem cell (ISC) organoid technologies have opened exciting new therapeutic opportunities to potentially attain molecular healing by combining stem cell therapy with molecular manipulations using (epi)drugs and/or CRISPR/Cas9 genome editing. Here, we are the first to discuss the possibility for phenotypic, genotypic, and epigenetic restoration via molecular manipulations and stem cell therapy in IBD from a clinical perspective.
Collapse
Affiliation(s)
- Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Casper Steenholdt
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
31
|
Choi MR. Inside the pathophysiological mechanisms of cardiometabolic diseases: the other pandemic to fight. Pflugers Arch 2022; 474:1-4. [PMID: 34961913 DOI: 10.1007/s00424-021-02658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Marcelo R Choi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Buenos Aires, Argentina.
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
- Instituto Universitario de Ciencias de La Salud, Fundación H.A. Barceló, Buenos Aires, Argentina.
| |
Collapse
|
32
|
NAD Modulates DNA Methylation and Cell Differentiation. Cells 2021; 10:cells10112986. [PMID: 34831209 PMCID: PMC8616462 DOI: 10.3390/cells10112986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus. In addition to the molecular events, NAD- treated cells exhibit significant morphological and phenotypical changes that correspond to myeloid differentiation. Collectively, these results delineate a novel role for NAD in cell differentiation, and indicate novel nutri-epigenetic strategies to regulate and control gene expression in human cells.
Collapse
|
33
|
Aguilera-Méndez A, Boone-Villa D, Nieto-Aguilar R, Villafaña-Rauda S, Molina AS, Sobrevilla JV. Role of vitamins in the metabolic syndrome and cardiovascular disease. Pflugers Arch 2021; 474:117-140. [PMID: 34518916 DOI: 10.1007/s00424-021-02619-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
The prevalence of metabolic syndrome and cardiovascular disease has increased and continues to be the leading cause of mortality worldwide. The etiology of these diseases includes a complex phenotype derived from interactions between genetic, environmental, and nutritional factors. In this regard, it is common to observe vitamin deficiencies in the general population and even more in patients with cardiometabolic diseases due to different factors. Vitamins are essential micronutrients for cellular metabolism and their deficiencies result in diseases. In addition to its role in nutritional functions, increasingly, vitamins are being recognized as modulators of genetics expression and signals transduction, when consumed at pharmacological concentrations. Numerous randomized preclinical and clinical trials have evaluated the use of vitamin supplementation in the prevention and treatment of metabolic syndrome and cardiovascular disease. However, it is controversy regarding its efficacy in the treatment and prevention of these diseases. In this review, we investigated chemical basics, physiological effect and recommended daily intake, problems with deficiency and overdose, preclinical and clinical studies, and mechanisms of action of vitamin supplementation in the treatment and prevention of metabolic syndrome and cardiovascular disease.
Collapse
Affiliation(s)
- Asdrubal Aguilera-Méndez
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Mújica, Edificio B3, Ciudad Universitaria, CP, 58030, Morelia, Michoacán, México.
| | - Daniel Boone-Villa
- School of Medicine, North Section, Universidad Autónoma de Coahuila, Piedras Negras, 26090, Coahuila, México
| | - Renato Nieto-Aguilar
- University Center for Postgraduate Studies and Research, School of Dentistry, Universidad Michoacana de San Nicolás de Hidalgo, 58337, Morelia, Michoacán, México
| | - Santiago Villafaña-Rauda
- Postgraduate Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Alfredo Saavedra Molina
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Mújica, Edificio B3, Ciudad Universitaria, CP, 58030, Morelia, Michoacán, México
| | - Janeth Ventura Sobrevilla
- School of Medicine, North Section, Universidad Autónoma de Coahuila, Piedras Negras, 26090, Coahuila, México
| |
Collapse
|
34
|
Franzago M, Sabovic I, Franchi S, De Santo M, Di Nisio A, Luddi A, Piomboni P, Vitacolonna E, Stuppia L, Foresta C. Sperm DNA Methylation at Metabolism-Related Genes in Vegan Subjects. Front Endocrinol (Lausanne) 2021; 12:633943. [PMID: 33767672 PMCID: PMC7985526 DOI: 10.3389/fendo.2021.633943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Objective To investigate if epigenome of sperm cells could be dynamically affected by nutrition. Design and Methods We assessed 40 healthy volunteers with different dietary habits and collected their demographic characteristics, as well as clinical and anthropometric parameters. We compared methylation profiles in sperm quantified by bisulfite pyrosequencing, at promoter-associated CpG sites of genes involved in metabolism including fat mass and obesity-associated (FTO) and melanocortin-4 receptor (MC4R) from six vegans and 34 omnivores. In addition, the FTO rs9939609 (T>A) was genotyped. Results Higher DNA methylation levels were detected in the sperm of vegan at FTO gene CpG1 (p=0.02), CpG2 (p=0.001), CpG3 (p=0.004), and CpG4 (p=0.003) sites and at MC4R-CpG2 site [p=0.016] as compared to sperm of omnivores. This association was not related to FTO genotype. Conclusions Although limited by the small number of investigated cases, our data provide insight into the role of diet on sperm DNA methylation in genes involved in metabolism.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Iva Sabovic
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Sara Franchi
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
| | | | - Andrea Di Nisio
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
35
|
Alhabeeb H, Kord-Varkaneh H, Tan SC, Găman MA, Otayf BY, Qadri AA, Alomar O, Salem H, Al-Badawi IA, Abu-Zaid A. The influence of omega-3 supplementation on vitamin D levels in humans: a systematic review and dose-response meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 62:3116-3123. [PMID: 33356450 DOI: 10.1080/10408398.2020.1863905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inconsistencies exist with regard to the influence of omega-3 supplementation on 25-hydroxyvitamin D (25(OH)D) levels, which could be attributed to many factors, such as the duration and dose of omega-3 supplementation, and individuals' baseline 25(OH)D levels. Therefore, to address the inconsistencies, we conducted a systematic review and dose-response meta-analysis to accurately determine the effect of omega-3 supplementation on 25(OH)D levels in humans. METHODS We performed a comprehensive literature search in Web of Science, PubMed/Medline, Scopus, and Embase databases from inception up to January 2020. We included only randomized controlled trials (RCTs). We used weighted mean difference (WMD) with 95% confidence interval (CI) to assess the influence of omega-3 supplementation on serum 25(OH)D levels using the random-effects model. RESULTS Our pooled results of 10 RCTs demonstrated an overall significant increase in 25(OH)D levels following omega-3 intake (WMD = 3.77 ng/ml, 95% CI: 1.29, 6.25). In addition, 25(OH)D levels were significantly increased when the intervention duration lasted >8 weeks and when the baseline serum 25(OH)D level was ˂20 ng/ml. Moreover, omega-3 intake ≤1000 mg/day resulted in higher 25(OH)D levels compared to omega-3 intake >1000 mg/day. CONCLUSION In conclusion, omega-3 supplementation increased 25(OH)D concentrations, particularly with dosages ≤1000 mg/day and intervention durations >8 weeks.
Collapse
Affiliation(s)
- Habeeb Alhabeeb
- Clinical Research, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hamed Kord-Varkaneh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | - Osama Alomar
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hany Salem
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed Abu-Zaid
- Department of Pharmacology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Liang Y, Cao D, Li Y, Liu Z, Wu J. MicroRNA-302a is involved in folate deficiency-induced apoptosis through the AKT-FOXO1-BIM pathway in mouse embryonic stem cells. Nutr Metab (Lond) 2020; 17:103. [PMID: 33372619 PMCID: PMC7720404 DOI: 10.1186/s12986-020-00530-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
Abstract
Background Our previous study had shown that microRNA (miR)-302a played a key role in folate deficiency-induced apoptosis in mouse embryonic stem cells. However, details regarding the mechanism remain unclear. Transcription factors (TFs) and miRNAs are two key elements in gene regulation. The aim of this study is to construct the TF-miRNA gene regulation network and demonstrate its possible mechanism. Methods The TF-miRNA gene regulation network was constructed via bioinformatics methods. Chromatin immuno-coprecipitation PCR was selected to confirm the binding between miR-302a and TF. mRNA and protein levels were detected by Real-time quantitative PCR and western blotting. TargetScan prediction and Dual-Luciferase Reporter Assay system were used to confirm whether the miRNA binded directly to the predicted target gene. Results FOXO1 and miR-302a were selected as the key TF and miRNA, respectively. FOXO1 was confirmed to bind directly to the upstream promoter region of miR-302a. Real-time quantitative PCR and immunoblotting showed that in folate-free conditions, miR-302a and AKT were down regulated, while FOXO1 and Bim were up-regulated significantly. Additionally, treatment with LY294002 inhibitor revealed the involvement of the Akt/FOXO1/Bim signaling pathway in folate deficiency-induced apoptosis, rather than the ERK pathway. Finally, TargetScan prediction and double luciferase reporting experiments illustrated the ability of miR-302a to target the Bim 3′UTR region. Conclusion The involvement of miR-302a in folate deficiency-induced apoptosis through the AKT-FOXO1-BIM pathway in mESCs is a unique demonstration of the regulation mechanism of nutrient expression in embryonic development.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pediatric Respiratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dingding Cao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yuanyuan Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jianxin Wu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
37
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|