1
|
He J, Bao F, Li W, Deng J, Zhong F, Lin Q, Fang Y, Mwaikono KS. Polylactic acid amine-sensitive colorimetric indicator film loaded with eugenol/coumarin derivatives: Towards freshness indication and shelf-life extension of chilled pork. Int J Biol Macromol 2025; 305:141290. [PMID: 39984075 DOI: 10.1016/j.ijbiomac.2025.141290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The action of microorganisms can lead to a decrease in food freshness and cause food safety issues. Traditional packaging can only provide a certain antimicrobial effect and cannot indicate the freshness of food, which can no longer meet the needs of consumers. The preparation of intelligent packaging films with antimicrobial effects and freshness indication is an effective solution. In this study, A novel electrospun intelligent food packaging film based on polylactic acid/eugenol/coumarin derivatives (7-(diethylaMino)-2-oxo-2H-chroMene-3-carbaldehyde) has been constructed to achieve the dual functions of antimicrobial and freshness indication for chilled pork. The antimicrobial layer loads eugenol coaxially into the fiber, which could scavenge 82.92 % of DPPH free radicals and effectively inhibit the growth of Escherichia coli and Staphylococcus aureus. The freshness-indicating layer showed fluorescence responsiveness to biogenic amines. The freshness-indicating and antimicrobial fibrous bilayer film turned green in practical application to indicate that the refrigerated pork had spoiled and was effective in extending the shelf life by 4-6 days. This study demonstrated the effectiveness of the bilayer film for preservation and freshness non-destructive testing of chilled pork. It provided a theoretical basis for the general application of film.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feng Bao
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - FeiFei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Kilaza Samson Mwaikono
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dares Salaam. Tanzania
| |
Collapse
|
2
|
Wang L, Yu S, Wang J, Wang Q, Mao Y, Zheng L. Manganese-doped carbon nanospheres with robust peroxidase-like activity for the colorimetric detection of total antioxidant capacity. Food Chem 2025; 484:144349. [PMID: 40252442 DOI: 10.1016/j.foodchem.2025.144349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Total antioxidant capacity (TAC) assessment is vital for evaluating food nutritional quality, yet conventional methods face limitations in complex matrices, efficiency, and environmental robustness. To address this, we synthesized manganese-doped porous carbon nanospheres (Mn@CNS), which feature a high density of uniformly distributed diverse catalytic sites, creating an efficient peroxidase-like nanozyme for sensitive colorimetric detection of TAC. Kinetic analysis revealed that Mn@CNS had strong affinities for both 3,3',5,5'-tetramethylbenzidine and H2O2 substrates, with Km values of 0.15 mM and 14.63 mM, respectively. This allowed us to establish an effective colorimetric detection platform for the rapid and sensitive identification of ascorbic acid with a low detection limit of 0.17 μM. Furthermore, we used cysteine, glutathione, ferulic acid, caffeic acid, quercetin and (+)-α-tocopherol to validate the efficacy of Mn@CNS in antioxidant assessment. This assay has successfully evaluated TAC in real samples, highlighting its potential for the rapid, cost-effective, on-site detection of TAC.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Sipeng Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ju Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
3
|
Li A, Wang W, Guo S, Li C, Wang X, Fei Q. Insight into the role of antioxidant in microbial lignin degradation: Ascorbic acid as a fortifier of lignin-degrading enzymes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:16. [PMID: 39920762 PMCID: PMC11806803 DOI: 10.1186/s13068-025-02614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Microbial-driven lignin depolymerization has emerged as a promising approach for lignin degradation. However, this process is hindered by the limited activity of lignin-degrading enzymes. Antioxidants are crucial for maintaining redox homeostasis in living cells, which can impact the efficiency of enzymes. Ascorbic acid (AA) is well-known for its antioxidant properties, while Trametes versicolor is a commonly used lignin-degrading fungus capable of secreting laccase (Lac) and manganese peroxidase (MnP). Thus, AA was selected as model antioxidant and added into the culture medium of T. versicolor to examine the effect of antioxidants on the activity of lignin-degrading enzymes in the fungus. RESULTS The presence of AA resulted in a 4.9-fold increase in the Lac activity and a 3.9-fold increase in the MnP activity, reaching 10736 U/L and 8659 U/L, respectively. This increase in enzyme activity contributed to a higher lignin degradation rate from 17.5% to 35.2%, consistent with observed morphological changes in the lignin structure. Furthermore, the addition of AA led to a reduction in the molecular weights of lignin and an increase in the content of degradation products with lower molecular weight, indicating more thorough degradation of lignin. Proteomics analysis suggested that the enhancement in enzyme activity was more likely to attributed to the reinforcement of AA on oxidative protein folding and transportation, rather than changes in enzyme expression. CONCLUSIONS The addition of AA enhanced the performance of enzymes responsible for lignin degradation in terms of enzyme activity, degradation rate, lignin structural change, and product mapping. This study offers a feasible strategy for enhancing the activity of lignin-degrading enzymes in the fungus and provides insights into the role of antioxidant in microbial lignin degradation.
Collapse
Affiliation(s)
- Aipeng Li
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weimin Wang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuqi Guo
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023, China
| | - Xinying Wang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
4
|
Sui M, Zhang J, Li J, Wang L, Gao Z, Dan W, Dai J. Antibacterial activity and multi-target mechanism of harmane against Escherichia coli O157:H7 and its application on ready-to-eat leafy greens. Int J Food Microbiol 2025; 431:111084. [PMID: 39862743 DOI: 10.1016/j.ijfoodmicro.2025.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E. coli O157:H7 (MIC = 64 μg/mL). It exhibited bacteriostatic mode at 1 X and 2 X MIC treatment, and bactericidal mode at 4 X MIC treatment. Moreover, it showed good in vitro stability in sheep plasma, low in vitro hemolysis and no in vivo acute toxicity with LD50 > 50 mg/kg. Moreover, harmane significantly decreased the colony number of E. coli O157:H7 in fresh-cut lettuce samples after 5 days of storage without affecting appearance. The mechanism study elucidated that harmane significantly decomposed the mature biofilm by reducing exopolysaccharide contents, and killed the viable bacterial cells in biofilm. The cell wall was damaged by harmane via interacting with peptidoglycan. Fluorescent staining and intracellular macromolecular leakage assays showed that irreversible destruction to membrane permeability and integrity. When entering the cell, harmane could defeat the redox balance, suppress metabolic activity and target to ribosome. These findings not only revealed the application potential of harmane as new natural preservative, but also preliminarily elucidated the multi-target mechanism, providing a new strategy for controlling E. coli O157:H7 in the food industry.
Collapse
Affiliation(s)
- Meixia Sui
- College of Biology and Oceanography, Weifang University, Weifang, Shandong, China
| | - Jiaoyue Zhang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China
| | - Jingying Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China
| | - Li Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China
| | - Zhenzhen Gao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Wenjia Dan
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China.
| |
Collapse
|
5
|
Alehosseini E, McSweeney PLH, Miao S. Recent updates on plant protein-based dairy cheese alternatives: outlook and challenges. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39819182 DOI: 10.1080/10408398.2025.2452356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
In response to population growth, ethical considerations, and the environmental impacts of animal proteins, researchers are intensifying efforts to find alternative protein sources that replicate the functionality and nutritional profile of animal proteins. In this regard, plant-based cheese alternatives are becoming increasingly common in the marketplace, as one of the emerging dairy-free products. However, the dairy industry faces challenges in developing dairy-free products alternatives that meet the demands of customers with specific lifestyles or diets, ensure sustainability, and retain traditional customers. These challenges include food neophobia, the need to mimic the physicochemical, sensory, functional, and nutritional properties of dairy products, the inefficient conversion factor of plant-based proteins into animal proteins, and high production expenses. Given the distinct nature of plant-based milks, understanding their differences from cow's milk is crucial for formulating alternatives with comparable properties. Designing dairy-free cheese analogs requires overcoming electrostatic repulsion energy barriers among plant proteins to induce gelation and curd formation. Innovative approaches have substantially enhanced the physicochemical and sensory properties of these alternatives. Researchers are exploring the application of microalgae as a plant protein source and investigating new microbial fermentation methods to increase protein content in dairy-free products.
Collapse
Affiliation(s)
| | - Paul L H McSweeney
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
6
|
Capaldi G, Voss M, Tabasso S, Stefanetti V, Branciari R, Chaji S, Grillo G, Cravotto C, Tagliazucchi D, Fiego DPL, Marinucci MT, Roila R, Natalello A, Pravettoni D, Cravotto G, Forte C. Upgrading hazelnut skins: Green extraction of polyphenols from lab to semi-industrial scale. Food Chem 2025; 463:140999. [PMID: 39316937 DOI: 10.1016/j.foodchem.2024.140999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Hazelnut skins (HS) are usually managed as waste; however, this by-product is a source of bioactive compounds, with potential applications in feed and food sectors. Phenolic compounds can be extracted using green protocols combining enabling technologies and green solvents. This work investigates subcritical water extraction (SWE) of bioactive compounds from HS. A laboratory-scale study was performed on four different batches, with significant batch-to-batch heterogeneity. The evaluation of polyphenolic profiles and antioxidant activities afforded promising results compared to the benchmark of reflux maceration. To evaluate process effectiveness, the extraction protocol was replicated on a semi-industrial plant that processed 8 kg of matrix. Downstream processes have been optimized for scale-up, demonstrating the effectiveness of SWE in retaining product concentration and bioactivity avoiding excipients in spray-drying phase. Hazelnut extracts exhibited antibacterial properties against animal- and food-borne pathogens, supporting their potential use as sustainable feed ingredients for improved hazelnut production and animal farming practices.
Collapse
Affiliation(s)
- Giorgio Capaldi
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Monica Voss
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy.
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, Perugia 06126, Italy; Department of Human Science and Promotion of Quality Life, San Raffaele Telematic University, Rome, Italy
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, Perugia 06126, Italy
| | - Salah Chaji
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Giorgio Grillo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Christian Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Amendola 2, Reggio Emilia I-42122, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Amendola 2, Reggio Emilia I-42122, Italy
| | | | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, Perugia 06126, Italy
| | - Antonio Natalello
- Department Di3A, University of Catania, via Valdisavoia 5, Catania 95123, Italy
| | - Davide Pravettoni
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Claudio Forte
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| |
Collapse
|
7
|
Paternina-Sierra K, Montero-Castillo P, Acevedo-Correa D, Duran-Lengua M, Arroyo-Salgado B. Phytochemical Screening, Antibacterial Activity, and Toxicity of Calathea lutea Leaf Extracts. Prev Nutr Food Sci 2024; 29:522-532. [PMID: 39759811 PMCID: PMC11699569 DOI: 10.3746/pnf.2024.29.4.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 01/07/2025] Open
Abstract
In Colombia, there is a long tradition of using bijao (Calathea lutea) leaves to package or wrap various foods. However, scientific studies on C. lutea are limited, and research to evaluate its toxicity and/or antibacterial activity has not yet been conducted. The objective of this research, therefore, was to evaluate the content of phytochemical compounds, levels of toxicity, and antibacterial activity of the extracts, fractions, and essential oil derived from C. lutea leaves. The plant material was subjected to extraction by maceration, Soxhlet extraction, and steam distillation, and fractions of hexane, dichloromethane, ethyl acetate, and a residual ethanol-water fraction were obtained. Preliminary phytochemical screening was performed using standard procedures with staining reagents. Estimation of the toxicity was carried out using the Caenorhabditis elegans biological model. Antibacterial activity was determined by broth microdilution against Staphylococcus aureus and Escherichia coli. The results showed that the characteristic metabolites were flavonoids, triterpenes, and tannins. At the concentrations tested, the extracts, fractions, and essential oil showed minimal toxicity levels. In terms of antibacterial activity, E. coli showed no susceptibility; meanwhile, the dichloromethane fraction had high antibacterial activity against S. aureus, with a growth inhibition rate of 81.2%. The results suggested that the of dichloromethane fraction of C. lutea has antibacterial activity against S. aureus, suggesting its potential as a possible candidate as a natural antibacterial agent in the food industry. This alternative could offer a safer and more sustainable solution compared to the conventional synthetic preservatives.
Collapse
Affiliation(s)
- Katherine Paternina-Sierra
- Food Engineering Program, Research Group in Agricultural and Agro-Industrial Innovation and Development, Faculty of Engineering, Universidad de Cartagena, Cartagena 130015, Colombia
| | - Piedad Montero-Castillo
- Food Engineering Program, Research Group in Agricultural and Agro-Industrial Innovation and Development, Faculty of Engineering, Universidad de Cartagena, Cartagena 130015, Colombia
| | - Diofanor Acevedo-Correa
- Tourism Administration Program, Research Group in Agricultural and Agro-Industrial Innovation and Development, Faculty of Economic Sciences, Universidad de Cartagena, Cartagena 130015, Colombia
| | | | - Barbara Arroyo-Salgado
- Toxicology and Environmental Research Group-BIOTOXAM, Faculty of Medicine, Universidad de Cartagena, Cartagena 130015, Colombia
| |
Collapse
|
8
|
Shen H, Chen J, Tan KB. Ethyl cellulose matrixed poly(sulfur-co-sorbic acid) composite films: Regulation of properties and application for food preservation. Int J Biol Macromol 2024; 279:135183. [PMID: 39214227 DOI: 10.1016/j.ijbiomac.2024.135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Developing non-toxic and sustainable materials with versatile and diverse functions has always been a crucial issue in food preservation packaging. Recently, inverse vulcanization has emerged as a precise and eco-friendly solution, attributed to the versatility of resulting polysulfides. In this study, a polysulfide crosslinked with sorbic acid was prepared by inverse vulcanization, and further combined with bio-macromolecular ethyl cellulose to form composite films via a casting method. Thanks to the ethanol-solubility and good compatibility of ethyl cellulose towards the polysulfide, morphology of the films can be tailored by adjusting the component ratio, thereby achieving favorable water vapor permeability (2.20 × 10-12 gs-1m-1Pa-1), oxygen permeability (4.01 × 10-4 gs-1 m-2), elasticity modulus (~400 MPa), elongation at break (~16 %), etc. Some films demonstrate remarkable antibacterial activity against a broad spectrum of bacteria and fungi, demonstrating their effectiveness in food preservation. The browning and spoilage of preserved Agaricus bisporus were inhibited, with 79.2 % of the initial firmness retained and a 5.6 % weight loss recorded on the 6th day. For the 15-day preservation of grapes, minimal changes in appearance, firmness, or TSS were observed, underscoring the promising potential of this composite for food preservation applications.
Collapse
Affiliation(s)
- Hang Shen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China.
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Kok Bing Tan
- College of Chemical Engineering, Integrated Nanocatalysts Institute, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
9
|
Lee JD, Lee J, Vang J, Pan X. Sodium Benzoate Induces Fat Accumulation and Reduces Lifespan via the SKN-1/Nrf2 Signaling Pathway: Evidence from the Caenorhabditis elegans Model. Nutrients 2024; 16:3753. [PMID: 39519584 PMCID: PMC11547805 DOI: 10.3390/nu16213753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sodium benzoate (SB) is widely used in food products, cosmetics, and medical solutions due to its antimicrobial properties. While it is generally considered safe and has potential neuroprotective benefits, SB has also been linked to adverse effects, including hepatic oxidative stress and inflammation. However, the potential effects of SB on obesity and lifespan remain poorly understood. OBJECTIVES In this study, we investigated the effects of SB on fat accumulation and lifespan using the nematode Caenorhabditis elegans (C. elegans) as a model system. METHODS Wild-type worms were exposed to various SB concentrations (0%, 0.0004%, 0.0008%, 0.004%, and 0.1%) and 0.016% glucose as a positive control for 72 h in liquid or on NGM agar plates. RESULT Fat accumulation was assessed through the Oil Red O staining, which revealed that SB induced more fat accumulation compared to vehicle control, even at low concentrations, including the dosage of 0.0004%. Lifespan analysis also demonstrated that SB significantly reduced lifespan in wild-type worms, even at low concentrations. Further investigations found that SKN-1 (an Nrf2 homolog) is necessary for SB-induced fat accumulation and lifespan reduction. Moreover, SB inhibited the nuclear localization of SKN-1 under oxidative stress conditions. CONCLUSION These findings suggest that SB may induce fat accumulation and reduce lifespan by inhibiting the oxidative stress-mediated SKN-1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA; (J.D.L.); (J.L.); (J.V.)
| |
Collapse
|
10
|
Singh AK, Itkor P, Lee M, Saenjaiban A, Lee YS. Synergistic Integration of Carbon Quantum Dots in Biopolymer Matrices: An Overview of Current Advancements in Antioxidant and Antimicrobial Active Packaging. Molecules 2024; 29:5138. [PMID: 39519777 PMCID: PMC11547712 DOI: 10.3390/molecules29215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately one-third of the world's food production, i.e., 1.43 billion tons, is wasted annually, resulting in economic losses of nearly USD 940 billion and undermining food system sustainability. This waste depletes resources, contributes to greenhouse gas emissions, and negatively affects food security and prices. Although traditional packaging preserves food quality, it cannot satisfy the demands of extended shelf life, safety, and sustainability. Consequently, active packaging using biopolymer matrices containing antioxidants and antimicrobials is a promising solution. This review examines the current advancements in the integration of carbon quantum dots (CQDs) into biopolymer-based active packaging, focusing on their antioxidant and antimicrobial properties. CQDs provide unique advantages over traditional nanoparticles and natural compounds, including high biocompatibility, tunable surface functionality, and environmental sustainability. This review explores the mechanisms through which CQDs impart antioxidant and antimicrobial activities, their synthesis methods, and their functionalization to optimize the efficacy of biopolymer matrices. Recent studies have highlighted that CQD-enhanced biopolymers maintain biodegradability with enhanced antioxidant and antimicrobial functions. Additionally, potential challenges, such as toxicity, regulatory considerations, and scalability are discussed, offering insights into future research directions and industrial applications. This review demonstrates the potential of CQD-incorporated biopolymer matrices to transform active packaging, aligning with sustainability goals and advancing food preservation technologies.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| | - Pontree Itkor
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| | - Myungho Lee
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| | - Aphisit Saenjaiban
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Youn Suk Lee
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| |
Collapse
|
11
|
Zahan I, Khan MM, Rana MS, Sahabuddin M, Rasik MR, Uddin MB. Effect of selective preservatives on shelf-life of guava juice extracted using pectinase enzyme. Heliyon 2024; 10:e37596. [PMID: 39315232 PMCID: PMC11417165 DOI: 10.1016/j.heliyon.2024.e37596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
The study investigated the feasibility of enzymatic extraction for guava juice and evaluated the effects of various preservatives on its shelf life. The crushed guava puree was undergone different pectinase enzyme concentrations over three incubation periods. The findings revealed that pectinase concentrations of 0.1 % and 0.2 %, when incubated for 1 and 2 h, were the most effective. Juice yields ranged from 65.24 % to 78.64 %, with Total Soluble Solids (TSS) varying from 9.12°Brix to 11.56°Brix. The physicochemical properties of the guava juice resulted 84.2 % moisture, 2.16 % protein, 0.77 % fat, 3.27 % fiber, 0.65 % acidity, 2.25 % reducing sugars, 8.27 % non-reducing sugars, 79.53 % antioxidant activity, 173.2 mg/100g of ascorbic acid, 10.52 TSS, 109.7 mg/100g of phenolic content, and a pH of 3.2. Eight juice samples were prepared as per formulation with sodium benzoate and potassium metabisulfite (KMS) at concentrations of 150 ppm, 200 ppm, and 250 ppm, in addition to one refrigerated sample and one control. The stability of these guava juice samples was monitored every 15 days over a 90-day period. Results showed that acidity, TSS, pH, reducing sugars, and non-reducing sugars changed over time. Samples with preservatives exhibited slower changes compared to the control. Phenolic compounds diminished more quickly at ambient temperature than in refrigerated or preservative-treated samples. Initially, phenolic content and antioxidant capacity were 44 mg GAE/100g and 44 %, respectively, but declined to 10-15 mg and 15-17 % by the end of the storage period. Color changes were more noticeable in samples stored at room temperature, whereas preservatives effectively reduced color degradation caused by enzymatic browning. Moreover, ascorbic acid retention was better in samples with preservatives and those stored under refrigeration. The ascorbic acid degradation rate was highest at room temperature (0.023 day^-1) and lowest with 250 ppm KMS (0.016 day^-1). Microbiological tests indicated that the juice remained safe for 40 days at room temperature, 90 days under refrigeration, and approximately 85 days with preservatives.
Collapse
Affiliation(s)
- Imroze Zahan
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Momin Khan
- Department of Food Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology, University, Gopalganj, 8100, Bangladesh
| | - Md Suman Rana
- Department of Ago Product Processing Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Sahabuddin
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology, University, Gopalganj, 8100, Bangladesh
| | - Md Rezwan Rasik
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - M. Burhan Uddin
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
12
|
Almeida HHS, Fernandes IP, Amaral JS, Rodrigues AE, Barreiro MF. Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources. Molecules 2024; 29:4660. [PMID: 39407589 PMCID: PMC11477756 DOI: 10.3390/molecules29194660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The global demand for sustainable and non-toxic alternatives across various industries is driving the exploration of naturally derived solutions. Hydrosols, also known as hydrolates, represent a promising yet underutilised byproduct of the extraction process of essential oils (EOs). These aqueous solutions contain a complex mixture of EO traces and water-soluble compounds and exhibit significant biological activity. To fully use these new solutions, it is necessary to understand how factors, such as distillation time and plant-to-water ratio, affect their chemical composition and biological activity. Such insights are crucial for the standardisation and quality control of hydrosols. Hydrosols have demonstrated noteworthy properties as natural antimicrobials, capable of preventing biofilm formation, and as antioxidants, mitigating oxidative stress. These characteristics position hydrosols as versatile ingredients for various applications, including biopesticides, preservatives, food additives, anti-browning agents, pharmaceutical antibiotics, cosmetic bioactives, and even anti-tumour agents in medical treatments. Understanding the underlying mechanisms of these activities is also essential for advancing their use. In this context, this review compiles and analyses the current literature on hydrosols' chemical and biological properties, highlighting their potential applications and envisioning future research directions. These developments are consistent with a circular bio-based economy, where an industrial byproduct derived from biological sources is repurposed for new applications.
Collapse
Affiliation(s)
- Heloísa H. S. Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Isabel P. Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| |
Collapse
|
13
|
Wang H, Bai J, Miao P, Wei Y, Chen X, Lan H, Qing Y, Zhao M, Li Y, Tang R, Yang X. The key to intestinal health: a review and perspective on food additives. Front Nutr 2024; 11:1420358. [PMID: 39360286 PMCID: PMC11444971 DOI: 10.3389/fnut.2024.1420358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
In this review, we explore the effects of food additives on intestinal health. Food additives, such as preservatives, antioxidants and colorants, are widely used to improve food quality and extend shelf life. However, their effects on intestinal microecology May pose health risks. Starting from the basic functions of food additives and the importance of intestinal microecology, we analyze in detail how additives affect the diversity of intestinal flora, oxidative stress and immune responses. Additionally, we examine the association between food additives and intestinal disorders, including inflammatory bowel disease and irritable bowel syndrome, and how the timing, dosage, and individual differences affect the body's response to additives. We also assess the safety and regulatory policies of food additives and explore the potential of natural additives. Finally, we propose future research directions, emphasizing the refinement of risk assessment methods and the creation of safer, innovative additives.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Junyi Bai
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Pengyu Miao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Wei
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | | - Haibo Lan
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yong Qing
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Meizhu Zhao
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yanyu Li
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Rui Tang
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | |
Collapse
|
14
|
Dang Y, Li Z, Yu F. Recent Advances in Astaxanthin as an Antioxidant in Food Applications. Antioxidants (Basel) 2024; 13:879. [PMID: 39061947 PMCID: PMC11273418 DOI: 10.3390/antiox13070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, astaxanthin as a natural substance has received widespread attention for its potential to replace traditional synthetic antioxidants and because its antioxidant activity exceeds that of similar substances. Based on this, this review introduces the specific forms of astaxanthin currently used as an antioxidant in foods, both in its naturally occurring forms and in artificially added forms involving technologies such as emulsion, microcapsule, film, nano liposome and nano particle, aiming to improve its stability, dispersion and bioavailability in complex food systems. In addition, research progress on the application of astaxanthin in various food products, such as whole grains, seafood and poultry products, is summarized. In view of the characteristics of astaxanthin, such as insolubility in water and sensitivity to light, heat, oxygen and humidity, the main research trends of astaxanthin-loaded systems with high encapsulation efficiency, good stability, good taste masking effect and cost-effectiveness are also pointed out. Finally, the possible sensory effects of adding astaxanthin to food aresummarized, providing theoretical support for the development of astaxanthin-related food.
Collapse
Affiliation(s)
- Yimeng Dang
- Haide College, Ocean University of China, Qingdao 266100, China; (Y.D.); (Z.L.)
| | - Zhixi Li
- Haide College, Ocean University of China, Qingdao 266100, China; (Y.D.); (Z.L.)
| | - Fanqianhui Yu
- Haide College, Ocean University of China, Qingdao 266100, China; (Y.D.); (Z.L.)
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
15
|
Li W, Chen Y, Li X, Zhong Y, Xu P, Teng Y. Ultrasensitive SERS quantitative detection of antioxidants via diazo derivatization reaction and deep learning for signal fluctuation mitigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124086. [PMID: 38442618 DOI: 10.1016/j.saa.2024.124086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/20/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Synthetic antioxidants serve as essential protectors against oxidation and deterioration of edible oils, however, prudent evaluation is necessary regarding potential health risks associated with excessive intake. The direct adsorption of antioxidants onto conventional surface-enhanced Raman scattering (SERS) substrates is challenging due to the presence of phenolic hydroxyl groups in their molecular structures, resulting in weak Raman scattering signals and rendering direct SERS detection difficult. In this study, a diazo derivatization reaction was employed to enhance SERS signals by converting antioxidant molecules into azo derivatives, enabling the amplification of the weak Raman scattering signals through the strong vibrational modes induced by the N = N double bond. The resulting diazo derivatives were characterized using UV-visible absorption and infrared spectroscopy, confirming the occurrence of diazo derivatization of the antioxidants. The proposed method successfully achieved the rapid detection of three commonly used synthetic antioxidants, namely butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), and propyl gallate (PG) on interfacial self-assembled gold nanoparticles. Furthermore, rapid predictions of BHA, PG, and TBHQ within the concentration range of 1 × 10-6 to 2 × 10-3 mol/L were achieved by integrating a convolutional neural network model. The predictive range of this model surpassed the traditional quantitative method of manually selecting characteristic peaks, with linear coefficients (R2) of 0.9992, 0.9997, and 0.9997, respectively. The recovery of antioxidants in real soybean oil samples ranged from 73.0 % to 126.4 %. Based on diazo derivatization, the proposed SERS method eliminates the need for complex substrates and enables the analysis and determination of synthetic antioxidants in edible oils within 20 min, providing a convenient analytical approach for quality control in the food industry.
Collapse
Affiliation(s)
- Wenhui Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yingxin Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xin Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yi Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Pei Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanjie Teng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
16
|
Atter A, Diaz M, Tano-Debrah K, Parry-Hanson Kunadu A, Mayer MJ, Sayavedra L, Misita C, Amoa-Awua W, Narbad A. The predominant lactic acid bacteria and yeasts involved in the spontaneous fermentation of millet during the production of the traditional porridge Hausa koko in Ghana. BMC Microbiol 2024; 24:163. [PMID: 38745280 PMCID: PMC11092135 DOI: 10.1186/s12866-024-03317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Spontaneous fermentation of cereals like millet involves a diverse population of microbes from various sources, including raw materials, processing equipment, fermenting receptacles, and the environment. Here, we present data on the predominant microbial species and their succession at each stage of the Hausa koko production process from five regions of Ghana. The isolates were enumerated using selective media, purified, and phenotypically characterised. The LAB isolates were further characterised by 16S rRNA Sanger sequencing, typed using (GTG)5 repetitive-PCR, and whole genome sequencing, while 28S rRNA Sanger sequencing was performed for yeast identification. The pH of the millet grains ranged from mean values of 6.02-6.53 to 3.51-3.99 in the final product, depending on the processors. The mean LAB and yeast counts increased during fermentation then fell to final counts of log 2.77-3.95 CFU/g for LAB and log 2.10-2.98 CFU/g for yeast in Hausa koko samples. At the various processing stages, the counts of LAB and yeast revealed significant variations (p < 0.0001). The species of LAB identified in this study were Limosilactobacillus pontis, Pediococcus acidilactici, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Pediococcus pentosaceus, Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, Schleiferilactobacillus harbinensis, and Weissella confusa. The yeasts were Saccharomyces cf. cerevisiae/paradoxus, Saccharomyces cerevisiae, Pichia kudriavzevii, Clavispora lusitaniae and Candida tropicalis. The identification and sequencing of these novel isolates and how they change during the fermentation process will pave the way for future controlled fermentation, safer starter cultures, and identifying optimal stages for starter culture addition or nutritional interventions. These LAB and yeast species are linked to many indigenous African fermented foods, potentially acting as probiotics in some cases. This result serves as the basis for further studies into the technological and probiotic potential of these Hausa koko microorganisms.
Collapse
Affiliation(s)
- Amy Atter
- Food Microbiology and Mushroom Research Division, CSIR-Food Research Institute, Accra, Ghana.
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana.
- Food and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Maria Diaz
- Food and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Kwaku Tano-Debrah
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | | | - Melinda J Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lizbeth Sayavedra
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Collins Misita
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Wisdom Amoa-Awua
- Food Microbiology and Mushroom Research Division, CSIR-Food Research Institute, Accra, Ghana
- Department of Agro-Processing Technology and Food Bio-Sciences, CSIR College of Science and Technology, Accra, Ghana
| | - Arjan Narbad
- Food and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
17
|
McClements DJ. Designing healthier and more sustainable ultraprocessed foods. Compr Rev Food Sci Food Saf 2024; 23:e13331. [PMID: 38517032 DOI: 10.1111/1541-4337.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
The food industry has been extremely successful in creating a broad range of delicious, affordable, convenient, and safe food and beverage products. However, many of these products are considered to be ultraprocessed foods (UPFs) that contain ingredients and are processed in a manner that may cause adverse health effects. This review article introduces the concept of UPFs and briefly discusses food products that fall into this category, including beverages, baked goods, snacks, confectionary, prepared meals, dressings, sauces, spreads, and processed meat and meat analogs. It then discusses correlations between consumption levels of UPFs and diet-related chronic diseases, such as obesity and diabetes. The different reasons for the proposed ability of UPFs to increase the risk of these chronic diseases are then critically assessed, including displacement of whole foods, high energy densities, missing phytochemicals, contamination with packaging chemicals, hyperpalatability, harmful additives, rapid ingestion and digestion, and toxic reaction products. Then, potential strategies to overcome the current problems with UPFs are presented, including reducing energy density, balancing nutritional profile, fortification, increasing satiety response, modulating mastication and digestion, reengineering food structure, and precision processing. The central argument is that it may be possible to reformulate and reengineer many UPFs to improve their healthiness and sustainability, although this still needs to be proved using rigorous scientific studies.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
18
|
Mira NP, Marshall R, Pinheiro MJF, Dieckmann R, Dahouk SA, Skroza N, Rudnicka K, Lund PA, De Biase D. On the potential role of naturally occurring carboxylic organic acids as anti-infective agents: opportunities and challenges. Int J Infect Dis 2024; 140:119-123. [PMID: 38325748 DOI: 10.1016/j.ijid.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Carboxylic organic acids are intermediates of central carbon metabolic pathways (e.g. acetic, propionic, citric, and lactic acid) long known to have potent antimicrobial potential, mainly at acidic pHs. The food industry has been leveraging those properties for years, using many of these acids as preservatives to inhibit the growth of pathogenic and/or spoilage fungal and bacterial species. A few of these molecules (the most prominent being acetic acid) have been used as antiseptics since Hippocratic medicine, mainly to treat infected wounds in patients with burns. With the growth of antibiotic therapy, the use of carboxylic acids (and other chemical antiseptics) in clinical settings lost relevance; however, with the continuous emergence of multi-antibiotic/antifungal resistant strains, the search for alternatives has intensified. This prospective article raises awareness of the potential of carboxylic acids to control infections in clinical settings, considering not only their previous exploitation in this context (which we overview) but also the positive experience of their safe use in food preservation. At a time of great concern with antimicrobial resistance and the slow arrival of new antimicrobial therapeutics to the market, further exploration of organic acids as anti-infective molecules may pave the way to more sustainable prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Nuno Pereira Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Robert Marshall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Joana F Pinheiro
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ralf Dieckmann
- German Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
| | - Sascha Al Dahouk
- German Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
| | - Nevena Skroza
- Unit of Dermatology, Department of Medico-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Latina, Italy
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Peter A Lund
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Goli SAH, Keramat S, Soleimanian-Zad S, Ghasemi Baghabrishami R. Antioxidant and antimicrobial efficacy of microencapsulated mustard essential oil against Escherichia coli and Salmonella Enteritidis in mayonnaise. Int J Food Microbiol 2024; 410:110484. [PMID: 37977079 DOI: 10.1016/j.ijfoodmicro.2023.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The aim of this study was to investigate the effect of pure and encapsulated mustard essential oil (MEO) on the shelf life of mayonnaise and its ability to be an alternative for synthetic preservatives. Determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) indicated higher sensitivity of Escherichia coli O157:H7 (E. coli O157:H7) (MIC: 512 ppm, MBC: 1024 ppm) than Salmonella Enteritidis (S. enteritidis) (MIC: 1024 ppm, MBC: 2048 ppm) to MEO. Mayonnaise samples, were subsequently prepared according to the determined MIC and MBC of MEO for microbial analysis and physicochemical analysis. The antimicrobial activity of MEO in mayonnaise over 40-day storage indicated that the application of free and encapsulated MEO could inhibit the growth of target bacteria. In addition, the oxidative stability of mayonnaise samples exhibited decreasing trends over the storage time. At the end of the storage, the control sample without any preservatives revealed the highest peroxide value (3.59 meq O2 /kg of oil) whereas the sample containing 4096 ppm encapsulated MEO (2 meq O2/kg of oil) exhibited better oxidative stability, following t-butyl-hydroxyquinone (TBHQ) (1.84 meq O2 /kg of oil) as commercial antioxidant. Interestingly, the application of 2048 and 4096 ppm encapsulated essential oil had no undesirable effect on overall acceptance of mayonnaise, while the application of pure MEO at the same concentrations negatively affected the color, odor, taste and overall acceptability.
Collapse
Affiliation(s)
- Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran.
| | - Sara Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Reyhaneh Ghasemi Baghabrishami
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| |
Collapse
|
20
|
Rais N, Ved A, Ahmad R, Kumar M. Valorization potential of custard apple seeds. VALORIZATION OF FRUIT SEED WASTE FROM FOOD PROCESSING INDUSTRY 2024:249-284. [DOI: 10.1016/b978-0-443-15535-2.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Tammina SK, Priyadarshi R, Rhim JW. Carboxymethylcellulose/Agar-Based Multifunctional Films Incorporated with Zn-Doped SnO 2 Nanoparticles for Active Food Packaging Application. ACS APPLIED BIO MATERIALS 2023; 6:4728-4739. [PMID: 37946463 DOI: 10.1021/acsabm.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
SnO2 and Zn-SnO2 nanoparticles were prepared by chemical precipitation, and the rutile phase of SnO2 was confirmed through X-ray diffraction studies. X-ray photoelectron spectroscopy (XPS) confirmed the doping of SnO2 with Zn and elucidated the surface chemistry before and after doping. The average sizes of SnO2 and Zn-SnO2 nanoparticles determined using TEM were 3.96 ± 0.85 and 3.72 ± 0.9 nm, respectively. UV-visible and photoluminescence spectrophotometry were used to evaluate the optical properties of SnO2 and Zn-SnO2 nanoparticles, and their energy gaps (Eg) were 3.8 and 3.9 eV, respectively. The antibacterial activity of these nanoparticles against Salmonella enterica and Staphylococcus aureus was evaluated under dark and light conditions. Antibacterial activity was higher in light, showing the highest activity (99.5%) against S. enterica. Carboxymethylcellulose (CMC)/agar-based functional composite films were prepared by adding different amounts of SnO2 and Zn-SnO2 nanoparticles (1 and 3 wt % of polymers). The composite film showed significantly increased UV barrier properties while maintaining the mechanical properties, water vapor barrier, and transparency compared to the neat CMC/agar film. These composite films showed significant antibacterial activity; however, the Zn-SnO2-added film showed stronger antibacterial activity (99.2%) than the SnO2-added film (15%).
Collapse
Affiliation(s)
- Sai Kumar Tammina
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
22
|
de Souza Lopes A, Elisabete Costa Antunes A, Idelça Aires Machado K, Sartoratto A, Cristina Teixeira Duarte M. The impact of antimicrobial food additives and sweeteners on the growth and metabolite production of gut bacteria. Folia Microbiol (Praha) 2023; 68:813-821. [PMID: 37480433 DOI: 10.1007/s12223-023-01076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
Metabolic disorders caused by the imbalance of gut microbiota have been associated with the consumption of processed foods. Thus, this study aimed to evaluate the effects of antimicrobial food additives (benzoate, sorbate, nitrite, and bisulfite) and sweeteners (saccharin, stevia, sucralose, aspartame, and cyclamate) on the growth and metabolism of some gut and potentially probiotic bacterial species. The effects on the growth of Bifidobacterium longum, Enterococcus faecium, Lactobacillus acidophilus, and Lactococcus lactis subsp. lactis cultures were investigated using a turbidimetric test and by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). To evaluate the metabolic activity, the cultures were exposed to compounds with the highest antimicrobial activity, subjected to cultivation with inulin (1.5%), and analyzed by liquid chromatography for the production of short-chain fatty acids (acetate, propionate, and butyrate). The results showed that potassium sorbate (25 mg/mL), sodium bisulfite (0.7 mg/mL), sodium benzoate, and saccharin (5 mg/mL) presented greater antimicrobial activity against the studied species. L. lactis and L. acidophilus bacteria had reduced short-chain fatty acid production after exposure to saccharin and sorbate, and B. longum after exposure to sorbate, in comparison to controls (acetic acid reduction 1387 μg/mL and propionic 23 μg/mL p < 0.05).
Collapse
Affiliation(s)
- Aline de Souza Lopes
- Food Engineering and Technology Department, School of Food Engineering, Microbiological Analysis Laboratory, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, ZIP Code: 13083-862, Campinas, SP, Brazil.
| | | | - Karla Idelça Aires Machado
- Federal Institute of Education, Science and Technology of Piauí (IFPI), Portal Dos Cerrados, ZIP Code, PI-247, Uruçui, PI, 64860-000, Brazil
| | - Adilson Sartoratto
- Organic and Pharmaceutical Chemical Division, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, State University of Campinas (UNICAMP), Alexandre Cazellato, 999, SP, 13148-218,, Paulinia, Brazil
| | - Marta Cristina Teixeira Duarte
- Microbiology Division, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, State University of Campinas (UNICAMP), Alexandre Cazellato, 999, SP, ZIP code 13148-218,, Paulinia, Brazil
| |
Collapse
|
23
|
Tan L, Ni Y, Xie Y, Zhang W, Zhao J, Xiao Q, Lu J, Pan Q, Li C, Xu B. Next-generation meat preservation: integrating nano-natural substances to tackle hurdles and opportunities. Crit Rev Food Sci Nutr 2023; 64:12720-12743. [PMID: 37702757 DOI: 10.1080/10408398.2023.2256013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The increasing global meat demand raises concerns regarding the spoilage of meat caused by microbial invasion and oxidative decomposition. Natural substances, as a gift from nature to humanity, possess broad-spectrum bioactivity and have been utilized for meat preservation. However, their limited stability, solubility, and availability hinder their further development. To address this predicament, advanced organic nanocarriers provide an effective shelter for the formation of nano-natural substances (NNS). This review comprehensively presents various natural substances derived from plants, animals, and microorganisms, along with the challenges they face. Subsequently, the potential of organic nanocarriers is explored, highlighting their distinct features and applicability, in addressing these challenges. The review methodically examines the application of NNS in meat preservation, with a focus on their pathways of action and preservation mechanisms. Furthermore, the outlook and future trends for NNS applications in meat preservation are concluded. The theory and practice summary of NNS is expected to serve as a catalyst for advancements that enhance meat security, promote human health, and contribute to sustainable development.
Collapse
Affiliation(s)
- Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qing Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jingnan Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qiong Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
24
|
Arvinte OM, Senila L, Becze A, Amariei S. Rowanberry-A Source of Bioactive Compounds and Their Biopharmaceutical Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:3225. [PMID: 37765389 PMCID: PMC10536293 DOI: 10.3390/plants12183225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
After a period of intense development in the synthesis pharmaceutical industry, plants are making a comeback in the public focus as remedies or therapeutic adjuvants and in disease prevention and ensuring the wellbeing and equilibrium of the human body. Plants are being recommended more and more in alimentation, in their natural form, or as extracts, supplements or functional aliments. People, in general, are in search of new sources of nutrients and phytochemicals. As a result, scientific research turns to lesser known and used plants, among them being rowanberries, a species of fruit very rich in nutrients and underused due to their bitter astringent taste and a lack of knowledge regarding the beneficial effects of these fruit. Rowan fruits (rowanberries) are a rich source of vitamins, polysaccharides, organic acids and minerals. They are also a source of natural polyphenols, which are often correlated with the prevention and treatment of modern world diseases. This article presents the existing data regarding the chemical composition, active principles and biopharmaceutical properties of rowan fruits and the different opportunities for their usage.
Collapse
Affiliation(s)
- Ofelia Marioara Arvinte
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Lăcrimioara Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (A.B.)
| | - Anca Becze
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (A.B.)
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
25
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
26
|
Fakhri LA, Ghanbarzadeh B, Falcone PM. New Healthy Low-Sugar and Carotenoid-Enriched/High-Antioxidant Beverage: Study of Optimization and Physicochemical Properties. Foods 2023; 12:3265. [PMID: 37685198 PMCID: PMC10486365 DOI: 10.3390/foods12173265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Lutein is a prominent biologically active carotenoid pigment with a polyene skeleton that has great benefits for human health. The study examined the synergistic effects of potentially functional components, including lutein carotenoid (LC), Mentha × Piperita extract (MPE), and Citrus × aurantifolia essential oil (CAEO), all three as bioactive components and antioxidants (AOs), on the physicochemical characteristics of a new low-sugar and carotenoid-enriched high-antioxidant beverage. Sucralose was utilized as a non-nutritive sweetener. Polynomial equations obtained by combined design methodology (CDM) were fitted to the experimental data of total phenolic and flavonoid contents (TPC and TFC, respectively) and antioxidant potential of the beverages using multiple regression analysis with R2 (determination coefficient) values of 0.87, 0.89, and 0.97, respectively. Estimated response values for the TPC, TFC, and antioxidant potential (determined as 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH•) scavenging activity) of the optimum beverage formulation were 41.90 mg gallic acid equivalent (GAE) per L-1, 27.51 mg quercetin equivalent (QE) per L-1, and 34.06%, respectively, with a desirability value of 0.74. The potentially functional components had a synergistic effect on the antioxidant potential. This healthy beverage can have the potential to enhance health benefits and may have therapeutic potential for diabetic patients.
Collapse
Affiliation(s)
- Leila Abolghasemi Fakhri
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran;
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran;
| | - Pasquale M. Falcone
- Department of Agricultural, Food, and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| |
Collapse
|
27
|
Potărniche IA, Saroși C, Terebeș RM, Szolga L, Gălătuș R. Classification of Food Additives Using UV Spectroscopy and One-Dimensional Convolutional Neural Network. SENSORS (BASEL, SWITZERLAND) 2023; 23:7517. [PMID: 37687972 PMCID: PMC10490620 DOI: 10.3390/s23177517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Food additives are utilized in countless food products available for sale. They enhance or obtain a specific flavor, extend the storage time, or obtain a desired texture. This paper presents an automatic classification system for five food additives based on their absorbance in the ultraviolet domain. Solutions with different concentrations were created by dissolving a measured additive mass into distilled water. The analyzed samples were either simple (one additive solution) or mixed (two additive solutions). The substances presented absorbance peaks between 190 nm and 360 nm. Each substance presents a certain number of absorbance peaks at specific wavelengths (e.g., acesulfame potassium presents an absorbance peak at 226 nm, whereas the peak associated with potassium sorbate is at 254 nm). Therefore, each additive has a distinctive spectrum that can be used for classification. The sample classification was performed using deep learning techniques. The samples were associated with numerical labels and divided into three datasets (training, validation, and testing). The best classification results were obtained using CNN (convolutional neural network) models. The classification of the 404 spectra with a CNN model with three convolutional layers obtained a mean testing accuracy of 92.38% ± 1.48%, whereas the mean validation accuracy was 93.43% ± 2.01%.
Collapse
Affiliation(s)
- Ioana-Adriana Potărniche
- Basis of Electronics Department, Faculty of Electronics, Telecommunication and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (L.S.); (R.G.)
| | - Codruța Saroși
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, Babes-Bolyai University, 400294 Cluj-Napoca, Romania;
| | - Romulus Mircea Terebeș
- Communications Department, Faculty of Electronics, Telecommunication and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
| | - Lorant Szolga
- Basis of Electronics Department, Faculty of Electronics, Telecommunication and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (L.S.); (R.G.)
| | - Ramona Gălătuș
- Basis of Electronics Department, Faculty of Electronics, Telecommunication and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (L.S.); (R.G.)
| |
Collapse
|
28
|
Development of organic-inorganic hybrid antimicrobial materials by mechanical force and application for active packaging. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
29
|
Esimbekova EN, Asanova AA, Kratasyuk VA. Alternative Enzyme Inhibition Assay for Safety Evaluation of Food Preservatives. Life (Basel) 2023; 13:1243. [PMID: 37374029 DOI: 10.3390/life13061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
While food additives are widely used in the modern food industry and generally are important in maintaining the ability to provide food for the increasing world population, the progress occurring in this field is much ahead of the evaluation of their possible consequences for human health. The present study suggests a set of single- and multi-enzyme assay systems for revealing toxic effects of the most widely spread food preservatives, such as sorbic acid (E200), potassium sorbate (E202), and sodium benzoate (E211) at the primary molecular level of their interaction with enzymes. The assay is based on the inhibition of enzyme activity by toxic substances proportional to the amount of the toxicants in the sample. The single-enzyme assay system based on NAD(P)H:FMN oxidoreductase (Red) proved to be most sensitive to the impact of food additives, with the IC50 values being 29, 14, and 0.02 mg/L for sodium benzoate, potassium sorbate, and sorbic acid, respectively, which is considerably lower than their acceptable daily intake (ADI). No reliable change in the degree of inhibition of the enzyme assay systems by food preservatives was observed upon elongating the series of coupled redox reactions. However, the inhibition of activity of the multi-enzyme systems by 50% was found at a preservative concentration below the maximum permissible level for food. The inhibition effect of food preservatives on the activity of butyrylcholinesterase (BChE), lactate dehydrogenase (LDH), and alcohol dehydrogenase (ADH) was either absent or found in the presence of food preservatives at concentrations significantly exceeding their ADI. Among the preservatives under study, sodium benzoate is considered to be the safest in terms of the inhibiting effect on the enzyme activity. The results show that the negative effect of the food preservatives at the molecular level of organization of living things is highly pronounced, while at the organismal level it may not be obvious.
Collapse
Affiliation(s)
- Elena N Esimbekova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Photobiology, Institute of Biophysics of Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | - Anastasia A Asanova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Valentina A Kratasyuk
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Photobiology, Institute of Biophysics of Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| |
Collapse
|
30
|
Hashemi SMB, Gholamhosseinpour A, Barba FJ. Rosmarinus officinalis L. Essential Oils Impact on the Microbiological and Oxidative Stability of Sarshir (Kaymak). Molecules 2023; 28:molecules28104206. [PMID: 37241946 DOI: 10.3390/molecules28104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated the effect of Rosmarinus officinalis L. essential oil, REO (one, two and three percent) on the microbiological and oxidative stability of Sarshir during 20 days of refrigerated storage (4 °C). Initially, the chemical composition (gas chromatography/mass spectrometry, GC/MS), antimicrobial (paper disc diffusion) and antioxidant (DPPH) properties of REO were evaluated. Then, the microbial safety, oxidative stability (peroxide and anisidine values) and overall acceptability of the product after addition of REO to Sarshir and the subsequent storage period were determined. According to GC/MS analysis, the major components of REO were α-pinene (24.6%), 1,8-cineole (14.1%), camphor (13.5%), camphene (8.1%) and limonene (6.1%), respectively. Moreover, it was also found that Limosilactobacillus fermentum (inhibition zone (IZ) of 23.5 mm) and Salmonella Typhi (IZ of 16.4 mm) were the most sensitive and resistant spoilage and pathogenic bacteria against REO, respectively. In addition, the half-maximal inhibitory concentration (IC50) of the REO was measured at 24.8 mg/mL, while the IC50 value of butylated hydroxytoluene (BHT) was 16.6 mg/mL. The highest and lowest bacterial populations were detected in the control and the sample containing 3% REO, respectively. The control had the highest extent of lipid oxidation, while the lowest peroxide and anisidine values were measured in Sarshir containing 3% REO.
Collapse
Affiliation(s)
| | - Aliakbar Gholamhosseinpour
- Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom 74131-88941, Iran
| | - Francisco J Barba
- Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
31
|
Yildiz A, Ozhan O, Ulu A, Dogan T, Bakar B, Ugur Y, Taslidere E, Gokbulut I, Polat S, Parlakpinar H, Ates B, Vardi N. Effects of the apricot diets containing sulfur dioxide at different concentrations on rat testicles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27692-w. [PMID: 37204578 DOI: 10.1007/s11356-023-27692-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Due to its antioxidant and antimicrobial properties, sulfur dioxide (SO2) is widely used in foods and beverages to prevent the growth of microorganisms and to preserve the color and flavor of fruits. However, the amount of SO2 used in fruit preservation should be limited due to its possible adverse effects on human health. The present study was designed to investigate the effects of different SO2 concentrations in apricot diets on rat testes. Animals were randomly divided into six groups. The control group was fed a standard diet, and the other groups were fed apricot diet pellets prepared with (w/w) 10% dried apricots containing SO2 at different concentrations (1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, and 3500 ppm/kg) for 24 weeks. After sacrification, testicles were evaluated biochemically, histopathologically, and immunohistopathologically. Our results showed that an apricot diet containing 1500 ppm and 2000 ppm SO2 did not cause significant changes in testis. However, it was determined that tissue testosterone levels decreased as the amount of SO2 (2500 ppm and above) increased. Apricot diet containing 3500 ppm SO2 caused a significant increase in spermatogenic cell apoptosis, oxidative damage, and histopathological changes. In addition, a decrease in the expression of connexin-43, vimentin, and 3β-hydroxysteroid dehydrogenase (3β-HSD) was observed in the same group. In summary, the results show that sulfurization of apricot at high concentrations such as 3500 ppm may lead to male fertility problems in the long term through mechanisms such as oxidative stress, spermatogenic cell apoptosis, and inhibition of steroidogenesis.
Collapse
Affiliation(s)
- Azibe Yildiz
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey.
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Tugba Dogan
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Busra Bakar
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Yilmaz Ugur
- Vocational School of Health Service, Inonu University, Malatya, Turkey
| | - Elif Taslidere
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Incilay Gokbulut
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280, Malatya, Turkey
| | - Seyhan Polat
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Nigar Vardi
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
32
|
Boy FR, Casquete R, Gudiño I, Merchán AV, Peromingo B, Benito MJ. Antifungal Effect of Autochthonous Aromatic Plant Extracts on Two Mycotoxigenic Strains of Aspergillus flavus. Foods 2023; 12:foods12091821. [PMID: 37174358 PMCID: PMC10178858 DOI: 10.3390/foods12091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
This study identified the compounds obtained from four native Dehesa plants, which were holm oak, elm, blackberry and white rockrose, and evaluated their ability to inhibit the growth and production of aflatoxins B1 and B2 of two strains of mycotoxigenic Aspergillus flavus. For this purpose, phenolic compounds present in the leaves and flowers of the plants were extracted and identified, and subsequently, the effect on the growth of A. flavus, aflatoxin production and the expression of a gene related to its synthesis were studied. Cistus albidus was the plant with the highest concentration of phenolic compounds, followed by Quercus ilex. Phenolic acids and flavonoids were mainly identified, and there was great variability among plant extracts in terms of the type and quantity of compounds. Concentrated and diluted extracts were used for each individual plant. The influence on mold growth was not very significant for any of the extracts. However, those obtained from plants of the genus Quercus ilex, followed by Ulmus sp., were very useful for inhibiting the production of aflatoxin B1 and B2 produced by the two strains of A. flavus. Expression studies of the gene involved in the aflatoxin synthesis pathway did not prove to be effective. The results indicated that using these new natural antifungal compounds from the Dehesa for aflatoxin production inhibition would be desirable, promoting respect for the environment by avoiding the use of chemical fungicides. However, further studies are needed to determine whether the specific phenolic compounds responsible for the antifungal activity of Quercus ilex and Ulmus sp. produce the antifungal activity in pure form, as well as to verify the action mechanism of these compounds.
Collapse
Affiliation(s)
- Francisco Ramiro Boy
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Iris Gudiño
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Almudena V Merchán
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Belén Peromingo
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
33
|
van Staden D, Haynes RK, Viljoen JM. The Science of Selecting Excipients for Dermal Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041293. [PMID: 37111778 PMCID: PMC10145052 DOI: 10.3390/pharmaceutics15041293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Self-emulsification is considered a formulation technique that has proven capacity to improve oral drug delivery of poorly soluble drugs by advancing both solubility and bioavailability. The capacity of these formulations to produce emulsions after moderate agitation and dilution by means of water phase addition provides a simplified method to improve delivery of lipophilic drugs, where prolonged drug dissolution in the aqueous environment of the gastro-intestinal (GI) tract is known as the rate-limiting step rendering decreased drug absorption. Additionally, spontaneous emulsification has been reported as an innovative topical drug delivery system that enables successful crossing of mucus membranes as well as skin. The ease of formulation generated by the spontaneous emulsification technique itself is intriguing due to the simplified production procedure and unlimited upscaling possibilities. However, spontaneous emulsification depends solely on selecting excipients that complement each other in order to create a vehicle aimed at optimizing drug delivery. If excipients are not compatible or unable to spontaneously transpire into emulsions once exposed to mild agitation, no self-emulsification will be achieved. Therefore, the generalized view of excipients as inert bystanders facilitating delivery of an active compound cannot be accepted when selecting excipients needed to produce self-emulsifying drug delivery systems (SEDDSs). Hence, this review describes the excipients needed to generate dermal SEDDSs as well as self-double-emulsifying drug delivery systems (SDEDDSs); how to consider combinations that complement the incorporated drug(s); and an overview of using natural excipients as thickening agents and skin penetration enhancers.
Collapse
Affiliation(s)
- Daniélle van Staden
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, North-West Province, South Africa
| | - Richard K Haynes
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, North-West Province, South Africa
| | - Joe M Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, North-West Province, South Africa
| |
Collapse
|
34
|
Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061217. [PMID: 36986905 PMCID: PMC10053535 DOI: 10.3390/plants12061217] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Polyphenol has been used in treatment for some health disorders due to their diverse health promoting properties. These compounds can reduce the impacts of oxidation on the human body, prevent the organs and cell structure against deterioration and protect their functional integrity. The health promoting abilities are attributed to their high bioactivity imparting them high antioxidative, antihypertensive, immunomodulatory, antimicrobial, and antiviral activity, as well as anticancer properties. The application of polyphenols such as flavonoids, catechin, tannins, and phenolic acids in the food industry as bio-preservative substances for foods and beverages can exert a superb activity on the inhibition of oxidative stress via different types of mechanisms. In this review, the detailed classification of polyphenolic compunds and their important bioactivity with special focus on human health are addressed. Additionally, their ability to inhibit SARS-CoV-2 could be used as alternative therapy to treat COVID patients. Inclusions of polyphenolic compounds in various foods have demonstrated their ability to extend shelf life and they positive impacts on human health (antioxidative, antihypertensive, immunomodulatory, antimicrobial, anticancer). Additionally, their ability to inhibit the SARS-CoV-2 virus has been reported. Considering their natural occurrence and GRAS status they are highly recommended in food.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post-Graduate Institute of Post-Harvest Technology and Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha 402 116, India
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 77-1054 Amilcar, Carthage 1054, Tunisia
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemoson University, Clemosn, SC 29634, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang University, ERICA Campus, Ansan 11558, Republic of Korea
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
35
|
Gutierrez-Montiel D, Guerrero-Barrera AL, Chávez-Vela NA, Avelar-Gonzalez FJ, Ornelas-García IG. Psidium guajava L .: From byproduct and use in traditional Mexican medicine to antimicrobial agent. Front Nutr 2023; 10:1108306. [PMID: 36761221 PMCID: PMC9902774 DOI: 10.3389/fnut.2023.1108306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Mexico is one of the largest guava producers in the world, so it has access to a huge amount of waste and byproducts obtained after the industrial processing of the fruit. This review discusses the potential recovery of this residue for its application as an antimicrobial agent, considering the phytochemical composition, the bioactivity reported in-vivo and in-vitro, and the toxicology of the plant. Nowadays there is a growing demand for more natural and safer products, so the use of guava extracts is an interesting initiative, especially due to its availability in the country, its wide variety of traditional uses, and its phytochemical profile. This review highlights the importance and potential antimicrobial use of this plant in today's world.
Collapse
Affiliation(s)
- Daniela Gutierrez-Montiel
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico,*Correspondence: Alma L. Guerrero-Barrera ✉
| | - Norma A. Chávez-Vela
- Laboratorio de Biotecnología, Departamento Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Francisco J. Avelar-Gonzalez
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Ingrid G. Ornelas-García
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
36
|
Naveed M, Wang Y, Yin X, Chan MWH, Aslam S, Wang F, Xu B, Ullah A. Purification, Characterization and Bactericidal Action of Lysozyme, Isolated from Bacillus subtillis BSN314: A Disintegrating Effect of Lysozyme on Gram-Positive and Gram-Negative Bacteria. Molecules 2023; 28:1058. [PMID: 36770725 PMCID: PMC9919333 DOI: 10.3390/molecules28031058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In the present study, lysozyme was purified by the following multi-step methodology: salt (ammonium sulfate) precipitation, dialysis, and ultrafiltration. The lysozyme potential was measured by enzymatic activity after each purification step. However, after ultrafiltration, the resulting material was considered extra purified. It was concentrated in an ultrafiltration centrifuge tube, and the resulting protein/lysozyme was used to determine its bactericidal potential against five bacterial strains, including three gram-positive (Bacillus subtilis 168, Micrococcus luteus, and Bacillus cereus) and two gram-negative (Salmonella typhimurium and Pseudomonas aeruginosa) strains. The results of ZOI and MIC/MBC showed that lysozyme had a higher antimicrobial activity against gram-positive than gram-negative bacterial strains. The results of the antibacterial activity of lysozyme were compared with those of ciprofloxacin (antibiotic). For this purpose, two indices were applied in the present study: antimicrobial index (AMI) and percent activity index (PAI). It was found that the purified lysozyme had a higher antibacterial activity against Bacillus cereus (AMI/PAI; 1.01/101) and Bacillus subtilis 168 (AMI/PAI; 1.03/103), compared to the antibiotic (ciprofloxacin) used in this study. Atomic force microscopy (AFM) was used to determine the bactericidal action of the lysozyme on the bacterial cell. The purified protein was further processed by gel column chromatography and the eluate was collected, its enzymatic activity was 21.93 U/mL, while the eluate was processed by native-PAGE. By this analysis, the un-denatured protein with enzymatic activity of 40.9 U/mL was obtained. This step shows that the protein (lysozyme) has an even higher enzymatic potential. To determine the specific peptides (in lysozyme) that may cause the bactericidal potential and cell lytic/enzymatic activity, the isolated protein (lysozyme) was further processed by the SDS-PAGE technique. SDS-PAGE analysis revealed different bands with sizes of 34 kDa, 24 kDa, and 10 kDa, respectively. To determine the chemical composition of the peptides, the bands (from SDS-PAGE) were cut, enzymatically digested, desalted, and analyzed by LC-MS (liquid chromatography-mass spectrometry). LC-MS analysis showed that the purified lysozyme had the following composition: the number of proteins in the sample was 56, the number of peptides was 124, and the number of PSMs (peptide spectrum matches) was 309. Among them, two peptides related to lysozyme and bactericidal activities were identified as: A0A1Q9G213 (N-acetylmuramoyl-L-alanine amidase) and A0A1Q9FRD3 (D-alanyl-D-alanine carboxypeptidase). The corresponding protein sequence and nucleic acid sequence were determined by comparison with the database.
Collapse
Affiliation(s)
- Muhammad Naveed
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yadong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Malik Wajid Hussain Chan
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Campus Gulshan-e-Iqbal, Karachi 75300, Pakistan
| | - Sadar Aslam
- Department of Biological Science, University of Baltistan, Skardu 16400, Pakistan
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Baocai Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Asad Ullah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi 75280, Pakistan
| |
Collapse
|
37
|
Saraiva DPM, Braga DV, Bossard B, Bertotti M. Multiple Pulse Amperometry-An Antifouling Approach for Nitrite Determination Using Carbon Fiber Microelectrodes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010387. [PMID: 36615580 PMCID: PMC9824076 DOI: 10.3390/molecules28010387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Nitrite is a ubiquitous pollutant in modern society. Developing new strategies for its determination is very important, and electroanalytical methods present outstanding performance on this task. However, the use of bare electrodes is not recommended because of their predisposition to poisoning and passivation. We herein report a procedure to overcome these limitations on carbon fiber microelectrodes through pulsed amperometry. A three-pulse amperometry approach was used to reduce the current decay from 47% (after 20 min under constant potential) to virtually 0%. Repeatability and reproducibility were found to have an RSD lower than 0.5% and 7%, respectively. Tap water and synthetic inorganic saliva samples were fortified with nitrite, and the results obtained with the proposed sensor were in good agreement with the amount added.
Collapse
|
38
|
Recent advances in biomolecule-based films and coatings for active and smart food packaging applications. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish-A Review. Foods 2022; 11:3669. [PMID: 36429260 PMCID: PMC9689683 DOI: 10.3390/foods11223669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The global population has rapidly expanded in the last few decades and is continuing to increase at a rapid pace. To meet this growing food demand fish is considered a balanced food source due to their high nutritious value and low cost. Fish are rich in well-balanced nutrients, a good source of polyunsaturated fatty acids and impose various health benefits. Furthermore, the most commonly used preservation technologies including cooling, freezing, super-chilling and chemical preservatives are discussed, which could prolong the shelf life. Non-thermal technologies such as pulsed electric field (PEF), fluorescence spectroscopy, hyperspectral imaging technique (HSI) and high-pressure processing (HPP) are used over thermal techniques in marine food industries for processing of most economical fish products in such a way as to meet consumer demands with minimal quality damage. Many by-products are produced as a result of processing techniques, which have caused serious environmental pollution. Therefore, highly advanced technologies to utilize these by-products for high-value-added product preparation for various applications are required. This review provides updated information on the nutritional value of fish, focusing on their preservation technologies to inhibit spoilage, improve shelf life, retard microbial and oxidative degradation while extending the new applications of non-thermal technologies, as well as reconsidering the values of by-products to obtain bioactive compounds that can be used as functional ingredients in pharmaceutical, cosmetics and food processing industries.
Collapse
Affiliation(s)
- Ahtisham Ali
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Adnan Ali
- Livestock & Dairy Development Department, Abbottabad 22080, Pakistan
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
40
|
Seed Waste from Custard Apple (Annona squamosa L.): A Comprehensive Insight on Bioactive Compounds, Health Promoting Activity and Safety Profile. Processes (Basel) 2022. [DOI: 10.3390/pr10102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Annona squamosa L. (custard apple or sugar apple), belonging to the Annonaceae family, is a small tree or shrub that grows natively in subtropical and tropical regions. Seeds of the custard apple have been employed in folk medicines because of the presence of bioactive chemicals/compounds such as alkaloids, flavonoids and phenolic compounds and acetogenins and cyclopeptides that are responsible for various biological activities. The seeds also show the presence of tannins, vitamin C, vitamin E and a higher content of amino acids. From investigations, it has been shown that the seeds of A. squamosa have considerable potential to be used as an antibacterial, hepatoprotective, antioxidant and antitumor/anticancer agent. Cyclosquamosin B, extracted from the custard apple seed, possesses vasorelaxant properties. Tocopherols and fatty acids, notably oleic acid and linoleic acid, are also found in the seed oil. A. squamosa seeds contain a high amount of annonaceous acetogenins compounds, which are potent mitochondrial complex I inhibitors and have high cytotoxicity. A survey primarily based on the nutritional, phytochemical and biological properties showed that A. squamosa seeds can be used for the discovery of novel products, including pharmaceutical drugs. Although there are sufficient in vitro and in vivo experimental investigations supporting the benefits of seeds, clinical investigations/trials are still needed to determine the health contributing benefits of A. squamosa seeds.
Collapse
|
41
|
Sekhavatizadeh SS, Banisaeed K, Hasanzadeh M, Khalatbari-Limaki S, Amininezhad H. Physicochemical properties of kashk supplemented with encapsulated lemongrass extract. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Kashk is a perishable fermented dairy product. Since chemical preservatives are harmful for human health, we aimed to study lemongrass (Cymbopogon citratus L.) as a natural preservative.
First, we assessed the phytochemical properties of lemongrass extract. Then, we added lemongrass extract and microencapsulated lemongrass extract to kashk samples. Finally, we analyzed their physicochemical and sensorial properties during 60 days of storage.
Catechin (419.04 ± 0.07 mg/L), gallic acid (319.67 ± 0.03 mg/L), and chloregenic acid (4.190 ± 0.002 mg/L) were found to be the predominant phenolic constituents in lemongrass. Total phenolics, total flavonoids, and antioxidant activity (IC50) values of the lemongrass extract were 26.73 mg GA/g, 8.06 mg Quercetin/g, and 2751.331 mg/L, respectively. The beads were spherical in shape with a 35.03-nm average particle diameter and 47.81% microencapsulation efficiency. The pH of the supplemented kashks decreased during the storage time. They showed lower acid degree values than the control at the end of storage. The peroxide, p-anisidine, and thiobarbituric acid values of the sample fortified with microencapsulated lemongrass extract were 6.15, 4.76, and 44.12%, respectively, being the lowest among the samples. This kashk sample had the highest hardness (570.62 ± 21.87 g), adhesiveness (18.10 ± 4.36 mJ), and cohesiveness (0.56 ± 0.25) but the lowest chewiness (72.66 ± 3.08 mJ) among the samples. It also had a better sensory profile than the control samples.
Our results indicated that microencapsulated lemongrass extract could be incorporated into kashk to ensure suitable sensorial and textural properties. Furthermore, it may delay fat oxidation and lipolysis during storage.
Collapse
|
42
|
Kakoei H, Mortazavian AM, Mofid V, Gharibzahedi SMT, Hosseini H. Single and combined hydrodistillation techniques of microwave and ultrasound for extracting bio-functional hydrosols from Iranian Eryngium caucasicum Trautv. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Systematic evaluation of antimicrobial food preservatives on glucose metabolism and gut microbiota in healthy mice. NPJ Sci Food 2022; 6:42. [PMID: 36100593 PMCID: PMC9470552 DOI: 10.1038/s41538-022-00158-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Certain antimicrobial preservatives (APs) have been shown to perturb gut microbiota. So far, it is not yet fully known that whether similar effects are observable for a more diverse set of APs. It also remains elusive if biogenic APs are superior to synthetic APs in terms of safety. To help fill these knowledge gaps, the effects of eleven commonly used synthetic and biogenic APs on the gut microbiota and glucose metabolism were evaluated in the wild-type healthy mice. Here, we found that APs induced glucose intolerance and perturbed gut microbiota, irrespective of their origin. In addition, biogenic APs are not always safer than synthetic ones. The biogenic AP nisin unexpectedly induced the most significant effects, which might be partially mediated by glucagon-like peptide 1 related glucoregulatory hormones secretion perturbation.
Collapse
|
44
|
Thbayh DK, Reizer E, Kahaly MU, Viskolcz B, Fiser B. Antioxidant Potential of Santowhite as Synthetic and Ascorbic Acid as Natural Polymer Additives. Polymers (Basel) 2022; 14:polym14173518. [PMID: 36080595 PMCID: PMC9460313 DOI: 10.3390/polym14173518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
A wide variety of additives are used to improve specific characteristics of the final polymeric product. Antioxidant additives (AAs) can prevent oxidative stress and thus the damage of polymeric materials. In this work, the antioxidant potential and thus the applicability of Santowhite (SW) as synthetic and ascorbic acid (Asc) as natural AAs were explored by using computational tools. Two density functional theory (DFT) methods, M05-2X and M06-2X, have been applied in combination with the 6-311++G(2d,2p) basis set in gas phase. Three antioxidant mechanisms have been considered: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) have been computed for each potential hydrogen donor site. The results indicate that the antioxidant potential of Asc is higher than SW. Furthermore, some of the C-H bonds, depending on their position in the structures, are potent radical scavengers, but O-H groups are more prone to donate H-atoms to free radicals. Nonetheless, both additives can be potentially applied to safeguard common polymers and prohibit oxidative stress-induced material deterioration.
Collapse
Affiliation(s)
- Dalal K. Thbayh
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
- Polymer Research Center, University of Basrah, 61004 Basrah, Iraq
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Edina Reizer
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
| | - Mousumi U. Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, 6728 Szeged, Hungary
- Institute of Physics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Ukraine
- Correspondence:
| |
Collapse
|
45
|
Liu C, Zhang C. Mass transfer kinetics study for improving the uniform quality of lactic acid marinated pork (
longissimus dorsi muscle
). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chongxin Liu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro‐Products Processing, Ministry of Agriculture, Beijing 100193 China
| | - Chunjiang Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro‐Products Processing, Ministry of Agriculture, Beijing 100193 China
| |
Collapse
|
46
|
Chemical Composition and Antibacterial and Antioxidant Activities of Stem Bark Essential Oil and Extracts of Solanecio gigas. Biochem Res Int 2022; 2022:4900917. [PMID: 35855890 PMCID: PMC9288319 DOI: 10.1155/2022/4900917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Herbal medication developed from natural resources has to have antibacterial and antioxidant effects. The aim of this research is to look at the chemical makeup of Solanecio gigas (S. gigas) stem bark essential oil (EO), as well as the effectiveness of EO and extracts (chloroform, ethyl acetate, and methanol) against human pathogenic bacteria and their antioxidant activity. The GC-MS analysis identified 23 components, accounting for 98.7% of the total oil containing Methylene chloride (49.2%), sabinene (10.5%), 1-nonene (11.3%), Terpinen-4-ol (6.9%), Camphene (4.3%), γ-terpinene (3.6%), α-phellandrene (2.9%) β-myrcene (2.6%), 1,2,5-Oxadiazol-3-carboxamide, 4,4′-azobis-2,2′-dioxide (2.4%), α-terpinene (1.9%), 1-Octanamine, N-methyl- (1.9%), ρ-cymene (1.6%) as major components. The antibacterial efficacy of the EO and extracts (25, 50, 100, and 200 mg/ml) was demonstrated by the inhibitory zones (8.5 ± 0.47–23.3 ± 0.36 and 7.2 ± 0.25–22.0 ± 0.45 mm), respectively. The MIC values of the extracts and the EO were 120–150 and 240 to <1100 μg/ml, respectively. The EO also demonstrated a significant antibacterial impact. The EO and methanolic extract had free radical scavenging activities with IC50 value, 13.8 ± 0.48 and 4.2 ± 0.04 μg/ml, respectively. In comparison to the other extracts, the methanolic extract had the greatest phenolics (100.2 ± 0.13 μg GAE/mg of dry extract) and flavonoid contents (112.1 ± 0.18 μg CE/mg of dry extract).
Collapse
|
47
|
Boukoufi C, Boudier A, Maincent P, Vigneron J, Clarot I. Food-inspired innovations to improve the stability of active pharmaceutical ingredients. Int J Pharm 2022; 623:121881. [PMID: 35680111 DOI: 10.1016/j.ijpharm.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Food-processing and pharmaceutical industries share a lot of stability issues against the same physical, chemical, and microbiological phenomena. They also share some solutions to improve the stability as the use of preservatives and packaging. Ecological concerns lead to the development of tremendous innovations in food. Some of these innovations could also be beneficial in the pharmaceutical domain. The objective of this review is to evaluate the potential application of these findings in the pharmaceutical field and the main limits in terms of toxicity, environmental, economic and regulatory issues. The principal factors influencing the shelf-life were highlighted through the description of the stability studies usually performed in the pharmaceutical industry (according to European guidelines). To counter those factors, different solutions are currently available as preservatives and specific packaging. They were described and debated with an overview of recent food innovations in each field. The limits of the current solutions in the pharmaceutical field and the innovation in the food field have inspired a critical pharmaceutical outlook. The active and intelligent packaging for active pharmaceutical ingredients of the future is imagined.
Collapse
Affiliation(s)
- Célia Boukoufi
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | | | | | - Jean Vigneron
- Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| |
Collapse
|
48
|
Bertéli MBD, de Souza MMM, Barros L, Ferreira ICFR, Glamočlija J, Soković M, Dragunski DC, do Valle JS, de Souza Ferreira E, Pinto LC, de Souza CO, Ruiz SP, Linde GA, Colauto NB. Basidiocarp structures of Lentinus crinitus: an antimicrobial source against foodborne pathogens and food spoilage microorganisms. World J Microbiol Biotechnol 2022; 38:74. [PMID: 35298734 DOI: 10.1007/s11274-022-03257-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
Lentinus crinitus basidiocarps are an alternative to antimicrobials, but the stipe (24% basidiocarp) is discarded even with potential antimicrobial activity. This study evaluated the antimicrobial activity of L. crinitus basidiocarp pileus and stipe extracts against foodborne pathogens and food spoilage microorganisms. Basidiocarps of L. crinitus were grown in sugarcane bagasse and rice husks and the pileus and stipe methanolic extract was analyzed by broth microdilution method for antimicrobial activity against eight bacteria and eight fungi. The minimum bactericidal concentration values for pileus and stipe ranged from 0.40 to 0.50 mg mL- 1, for streptomycin from 0.10 to 0.50 mg mL- 1, and for ampicillin from 0.40 to 1.20 mg mL- 1. The minimum fungicidal concentration values for pileus and stipe ranged from 0.06 to 0.60 mg mL- 1, for bifonazole from 0.20 to 0.25 mg mL- 1, and for ketoconazole from 0.30 to 3.50 mg mL- 1. Extracts had bacteriostatic, bactericidal, fungistatic and fungicidal activity against all microorganisms, but with greater efficiency and specificity for some microorganisms. Both pileus and stipe are promising and sustainable alternatives for use in food, agricultural, and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Jasmina Glamočlija
- Mycological Laboratory, Mycology, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000, Belgrade, Serbia
| | - Marina Soković
- Mycological Laboratory, Mycology, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000, Belgrade, Serbia
| | | | | | | | - Laise Cedraz Pinto
- Universidade Federal da Bahia, Rua Augusto Viana, s/n, 40110-909, Salvador, BA, Brazil
| | | | - Suelen Pereira Ruiz
- Universidade Paranaense, Praça Mascarenhas de Moraes, 4282, 87502-210, Umuarama, PR, Brazil
| | - Giani Andrea Linde
- Universidade Federal da Bahia, Rua Augusto Viana, s/n, 40110-909, Salvador, BA, Brazil
| | - Nelson Barros Colauto
- Universidade Federal da Bahia, Rua Augusto Viana, s/n, 40110-909, Salvador, BA, Brazil.
| |
Collapse
|
49
|
Novais C, Molina AK, Abreu RMV, Santo-Buelga C, Ferreira ICFR, Pereira C, Barros L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2789-2805. [PMID: 35201759 PMCID: PMC9776543 DOI: 10.1021/acs.jafc.1c07533] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The looming urgency of feeding the growing world population along with the increasing consumers' awareness and expectations have driven the evolution of food production systems and the processes and products applied in the food industry. Although substantial progress has been made on food additives, the controversy in which some of them are still shrouded has encouraged research on safer and healthier next generations. These additives can come from natural sources and confer numerous benefits for health, beyond serving the purpose of coloring or preserving, among others. As limiting factors, these additives are often related to stability, sustainability, and cost-effectiveness issues, which justify the need for innovative solutions. In this context, and with the advances witnessed in computers and computational methodologies for in silico experimental aid, the development of new safer and more efficient natural additives with dual functionality (colorant and preservative), for instance by the copigmentation phenomena, may be achieved more efficiently, circumventing the current difficulties.
Collapse
Affiliation(s)
- Cláudia Novais
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui M. V. Abreu
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santo-Buelga
- Grupo
de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia,
Campus Miguel de Unamuno s/n, Universidad
de Salamanca, 37007 Salamanca, Spain
| | - Isabel C. F. R. Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
50
|
Synthesis, antibacterial, antioxidant, and molecular docking studies of 6-methylpyrimidin-4(3H)-one and oxo-1,2,4-triazolo[4,3-a]pyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|