1
|
Suman, Gaurav P, Joshi M, Chaube R, Jiwatram GG. Toxicogenomic profiling of endocrine disruptor 4-Nonylphenol in male catfish Heteropneustes fossilis with respect to gonads. Sci Rep 2025; 15:14307. [PMID: 40274868 PMCID: PMC12022011 DOI: 10.1038/s41598-025-92226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
Toxicogenomics study reveals information of gene activity and proteins within the particular cells or tissue of an organism in response to toxic substances. 4-Nonylphenol is a potent environmental contaminant and endocrine disruptor. This study elucidates the toxic and xeno-estrogenic effect of 4-Nonylphenol from the cellular level to the gene level by in vivo and in silico approach. In vivo, studies show that exposure of 4-Nonylphenol at a low dose 64µgL- 1 and a high dose of 160µgL- 1 for 30 days to 60 days of duration during pre-spawning to the spawning period in testes of Heteropneustes fossilis causes cellular level toxicity i.e., dose and duration dependent clumping of spermatocytes. Dose and duration-dependent decrease in superoxide dismutase(SOD), Catalase, glutathione peroxidase(GPx) and increase in lipid peroxidase (LPO) level in testes. There was a dose and duration-dependent decrease in total antioxidant status and increased level of total oxidant status in the testicular tissue of H. fossilis along with an increase in cortisol level 0.4-NP caused alteration in antioxidant enzyme levels impedes the first line of defense mechanism in the body of an organism. There was a dose-dependent increase in necrosis percentage in testicular cells, cell death, and an increase in total ROS (reactive oxygen species) in a dose-dependent manner in testicular cells of H. fossilis. 4-NP causes gene level toxicity i.e., increased DNA migration or DNA fragmentation. Upregulation of gene expression of gonadal aromatase (CYP19a1a) and downregulation of the 3-beta-hydroxysteroid dehydrogenase (3-β HSD) gene in testes were observed. In silico studies also confirmed the interacting potency of 4-NP with steroid enzyme 3- β HSD and CYP19a1a. Present investigations shows that exposure to water bodies contaminated with xenoestrogens like 4-NP has significantly reduced reproductive parameters like fertilization, fecundity, hatching, and larval survival in numerous fish species.4-NP causes alteration in gene expression of the proteins which are very crucial for reproduction and maintenance of maleness. Due to chronic exposure to 4-NP, it becomes a toxicant causing tissue cell death. So, the harmful impact of 4-NP on reproduction in teleost fish is concerning, not just for the fish themselves but for the entire ecosystem. Therefore, efforts should be made to reduce the contamination of water bodies with xenoestrogens.
Collapse
Affiliation(s)
- Suman
- Zoology Department, M.M.V, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pratibha Gaurav
- Zoology Department, M.M.V, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Megha Joshi
- Bioinformatics Department, M.M.V, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, 221005, India
| | - Gautam Geeta Jiwatram
- Zoology Department, M.M.V, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Jităreanu A, Agoroaei L, Caba IC, Cojocaru FD, Vereștiuc L, Vieriu M, Mârțu I. The Evolution of In Vitro Toxicity Assessment Methods for Oral Cavity Tissues-From 2D Cell Cultures to Organ-on-a-Chip. TOXICS 2025; 13:195. [PMID: 40137522 PMCID: PMC11946525 DOI: 10.3390/toxics13030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
Since the oral cavity comes into contact with several xenobiotics (dental materials, oral hygiene formulations, drugs, or tobacco products), it is one major site for toxicity manifestation. Multiple parameters are assessed during toxicity testing (cell viability and proliferation, apoptosis, morphological changes, genotoxicity, oxidative stress, and inflammatory response). Due to the complexity of the oral cavity environment, researchers have made great efforts to design better in vitro models that mimic natural human anatomic and functional features. The present review describes the in vitro methods currently used to investigate the toxic potential of various agents on oral cavity tissues and their evolution from simple 2D cell culture systems to complex organ-a-chip designs.
Collapse
Affiliation(s)
- Alexandra Jităreanu
- Department of Toxicology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Luminița Agoroaei
- Department of Toxicology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Ioana-Cezara Caba
- Department of Toxicology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Florina-Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (F.-D.C.); (L.V.)
| | - Liliana Vereștiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (F.-D.C.); (L.V.)
| | - Mădălina Vieriu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Ioana Mârțu
- Department of Dental Technology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| |
Collapse
|
3
|
Mahapatra S, Shivpuje SB, Campbell HC, Wan B, Lomont J, Dong B, Ma S, Mohn KJ, Zhang C. Label-Free Quantification of Apoptosis and Necrosis Using Stimulated Raman Scattering Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.641010. [PMID: 40093126 PMCID: PMC11908225 DOI: 10.1101/2025.03.01.641010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Recombinant proteins are critical for modern therapeutics and diagnostics, with Chinese hamster ovary (CHO) cells serving as the primary production platform. However, environmental and chemical stressors in bioreactors often trigger cell death, particularly apoptosis, posing a significant challenge to recombinant protein manufacturing. Rapid, label-free methods to monitor cell death are essential for ensuring better production quality. Stimulated Raman scattering (SRS) microscopy offers a powerful, label-free approach to measure lipid and protein compositions in live cells. We demonstrate that SRS microscopy enables rapid and reagent-free analysis of apoptotic and necrotic transitions. Our results show that apoptotic cells exhibit higher protein concentrations, while necrotic cells show an opposite trend. To enhance analysis, we developed a quantitative single-cell analysis pipeline that extracts chemotypic and phenotypic signatures of apoptosis and necrosis, enabling the identification of subpopulations with varied responses to stressors or treatments. Furthermore, the cell death analysis was successfully generalized to other stressors and cell types. This study highlights SRS microscopy as a robust and non-invasive tool for rapid monitoring of live cell apoptotic and necrotic transitions. Our method and findings hold potential for improving quality control in CHO cell-based biopharmaceutical production and for evaluating cell death in diverse biological contexts.
Collapse
Affiliation(s)
- Shivam Mahapatra
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Shreya B Shivpuje
- Department of Statistics, Purdue University, 150 N University St, West Lafayette, IN 47907, USA
| | - Helen C Campbell
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | | | | | - B Dong
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
| | - Seohee Ma
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
| | - Karsten J Mohn
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Chi Zhang
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Hristova SH, Zhivkov AM. Intermolecular Electrostatic Interactions in Cytochrome c Protein Monolayer on Montmorillonite Alumosilicate Surface: A Positive Cooperative Effect. Int J Mol Sci 2024; 25:6834. [PMID: 38999945 PMCID: PMC11241403 DOI: 10.3390/ijms25136834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Montmorillonite (MM) crystal nanoplates acquire anticancer properties when coated with the mitochondrial protein cytochrome c (cytC) due to the cancer cells' capability to phagocytize cytC-MM colloid particles. The introduced exogenous cytC initiates apoptosis: an irreversible cascade of biochemical reactions leading to cell death. In the present research, we investigate the organization of the cytC layer on the MM surface by employing physicochemical and computer methods-microelectrophoresis, static, and electric light scattering-to study cytC adsorption on the MM surface, and protein electrostatics and docking to calculate the local electric potential and Gibbs free energy of interacting protein globules. The found protein concentration dependence of the adsorbed cytC quantity is nonlinear, manifesting a positive cooperative effect that emerges when the adsorbed cytC globules occupy more than one-third of the MM surface. Computer analysis reveals that the cooperative effect is caused by the formation of protein associates in which the cytC globules are oriented with oppositely charged surfaces. The formation of dimers and trimers is accompanied by a strong reduction in the electrostatic component of the Gibbs free energy of protein association, while the van der Waals component plays a secondary role.
Collapse
Affiliation(s)
- Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Alexandar M Zhivkov
- Scientific Research Center, "St. Kliment Ohridski" Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
5
|
Sakla AP, Bazaz MR, Mahale A, Sharma P, Valapil DG, Kulkarni OP, Dandekar MP, Shankaraiah N. Development of Benzimidazole-Substituted Spirocyclopropyl Oxindole Derivatives as Cytotoxic Agents: Tubulin Polymerization Inhibition and Apoptosis Inducing Studies. ChemMedChem 2024; 19:e202400052. [PMID: 38517377 DOI: 10.1002/cmdc.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
A series of spirocyclopropyl oxindoles with benzimidazole substitutions was synthesized and tested for their cytotoxicity against selected human cancer cells. Most of the molecules exhibited significant antiproliferative activity with compound 12 p being the most potent. It exhibited significant cytotoxicity against MCF-7 breast cancer cells (IC50 value 3.14±0.50 μM), evidenced by the decrease in viable cells and increased apoptotic features during phase contrast microscopy, such as AO/EB, DAPI and DCFDA staining studies. Compound 12 p also inhibited cell migration in wound healing assay. Anticancer potential of 12 p was proved by the inhibition of tubulin polymerization with IC50 of 5.64±0.15 μM. These results imply the potential of benzimidazole substituted spirocyclopropyl oxindoles, notably 12 p, as cytotoxic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| |
Collapse
|
6
|
Baia-da-Silva DC, Mendes PFS, Silva DCBD, Chemelo VS, Bittencourt LO, Padilha PM, Oriá RB, Aschner M, Lima RR. What does scientometry tell us about mercury toxicology and its biological impairments? Heliyon 2024; 10:e27526. [PMID: 38586377 PMCID: PMC10998116 DOI: 10.1016/j.heliyon.2024.e27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Mercury is a toxic pollutant that poses risks to both human and environmental health, making it a pressing public health concern. This study aimed to summarize the knowledge on mercury toxicology and the biological impairments caused by exposure to mercury in experimental studies and/or diagnosis in humans. The research was conducted on the main collection of Web of Science, employing as a methodological tool a bibliometric analysis. The selected articles were analyzed, and extracted data such as publication year, journal, author, title, number of citations, corresponding author's country, keywords, and the knowledge mapping was performed about the type of study, chemical form of mercury, exposure period, origin of exposure, tissue/fluid of exposure measurement, mercury concentration, evaluation period (age), mercury effect, model experiments, dose, exposure pathway, and time of exposure. The selected articles were published between 1965 and 2021, with Clarkson TW being the most cited author who has also published the most articles. A total of 38% of the publications were from the USA. These studies assessed the prenatal and postnatal effects of mercury, emphasizing the impact of methylmercury on neurodevelopment, including motor and cognitive evaluations, the association between mercury and autism, and an evaluation of its protective effects against mercury toxicity. In observational studies, the blood, umbilical cord, and hair were the most frequently used for measuring mercury levels. Our data analysis reveals that mercury neurotoxicology has been extensively explored, but the association among the outcomes evaluated in experimental studies has yet to be strengthened. Providing metric evidence on what is unexplored allows for new studies that may help governmental and non-governmental organizations develop guidelines and policies.
Collapse
Affiliation(s)
- Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Diane Cleydes Baia da Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Pedro Magalhães Padilha
- School of Veterinary Medicine and Animal Science, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
7
|
Shih LJ, Hsu PC, Chuu CP, Shui HA, Yeh CC, Chen YC, Kao YH. Epigallocatechin-3-gallate Synergistically Enhanced Arecoline-Induced Cytotoxicity by Redirecting Cycle Arrest to Apoptosis. Curr Issues Mol Biol 2024; 46:1516-1529. [PMID: 38392216 PMCID: PMC10887523 DOI: 10.3390/cimb46020098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Carcinogens, such as arecoline, play a crucial role in cancer progression and continuous gene mutations by generating reactive oxygen species (ROS). Antioxidants can reduce ROS levels and potentially prevent cancer progression but may paradoxically enhance the survival of cancer cells. This study investigated whether epigallocatechin-3-gallate (EGCG), an antioxidant from green tea, could resolve this paradox. Prostate cancer cells (PC-3 cell line) were cultured and treated with arecoline combined with NAC (N-acetylcysteine) or EGCG; the combined effects on intracellular ROS levels and cell viability were examined using the MTT and DCFDA assays, respectively. In addition, apoptosis, cell cycle, and protein expression were investigated using flow cytometry and western blot analysis. Our results showed that EGCG, similar to NAC (N-acetylcysteine), reduced the intracellular ROS levels, which were elevated by arecoline. Moreover, EGCG not only caused cell cycle arrest but also facilitated cell apoptosis in arecoline-treated cells in a synergistic manner. These were evidenced by elevated levels of cyclin B1 and p27, and increased fragmentation of procaspase-3, PARP, and DNA. Our findings highlight the potential use of EGCG for cancer prevention and therapy.
Collapse
Affiliation(s)
- Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325208, Taiwan
| | - Po-Chi Hsu
- Department of Life Sciences, National Central University, Jhongli, Taoyuan 320317, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli 350401, Taiwan
| | - Hao-Ai Shui
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114201, Taiwan
| | - Chien-Chih Yeh
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325208, Taiwan
| | - Yueh-Chung Chen
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital, Renai Branch, Taipei 106243, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Jhongli, Taoyuan 320317, Taiwan
| |
Collapse
|
8
|
Haque S, Tripathy S, Chandra Y, Muralidharan K, Patra CR. Toxicity study of pro-angiogenic casein manganese oxide nanoparticles: an in vitro and in vivo approach. Nanotoxicology 2023; 17:604-627. [PMID: 38105710 DOI: 10.1080/17435390.2023.2291788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Recently, we have demonstrated casein manganese oxide nanoparticles (CMnNP) that exhibit pro-angiogenic property established through different in vitro and in vivo experiments. The CMnNP was explored for therapeutic angiogenesis for treatment of wounds and recovery of hindlimb ischemia in pre-clinical mouse prototypical. It is well known that to translate any therapeutic nanoparticle for future clinical applications, their biosafety evaluation in small and large animals is essential. Herein, in the current study, the biosafety and bioavailability of the CMnNP have been explored by a systematic toxicity profiling study in C57BL/6J mice model. Initially, the in vitro cytotoxic effects of CMnNP were validated in RAW 264.7 cells. Later, the CMnNP was administered intraperitoneally with different doses (50, 300, and 2000 mg/kg b.wt./day) at different time points of exposure (acute: 2 weeks, sub-chronic: 4 weeks as well as chronic exposure: 8 and 20 weeks) with reference to the maximum tolerable dose (MTD) of CMnNP as per the OECD guidelines. The blood hematological and serum biochemical parameters of CMnNP treatment groups indicate negligible changes similar to untreated group. The histopathological examination of CMnNP-treated vital organs (lung, spleen, liver, brain, kidney, and heart) illustrates no major changes even at higher doses. Further, the biodistribution and excretion study depicts normal clearance of CMnNP. Additionally, the serum cytokine levels were normal in the therapeutic dose of CMnNP. The results altogether indicate that the non-toxic nature of CMnNP makes them useful as future therapeutic angiogenic agent for the treatment of various diseases where angiogenesis plays an important role.
Collapse
Affiliation(s)
- Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kathirvel Muralidharan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Ranjbary AG, Bagherzadeh A, Sabbaghi SS, Faghihi A, Karimi DN, Naji S, Kardani M. Chlorogenic acid induces apoptosis and cell-cycle arrest in colorectal cancer cells. Mol Biol Rep 2023; 50:9845-9857. [PMID: 37847443 DOI: 10.1007/s11033-023-08854-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Apoptotic agents from natural products like phenolic compounds can be used effectively in the treatment of cancer. Chlorogenic acid (CGA) is one of the phenolic compounds in medicinal plants with anti-cancer properties. In this research, we aimed to explore the anti-cancer mode of action of CGA on colorectal cancer (CRC) cells in vitro conditions. METHODS HT-29 and HEK-293 cells were cultured after MTT assay for 24 h with CGA 100 µM, and without CGA. Then, flow cytometry assays and the expression of apoptosis-related genes including caspase 3 and 9, Bcl-2 and Bax, and cell cycle-related genes including P21, P53 and NF-κB at mRNA and protein levels were examined. Finally, we measured the amount of intracellular reactive oxygen species (ROS). RESULTS The cell viability of all two-cell lines decreased in a dose-dependent manner. Moreover, CGA induces cell cycle arrest in HT-29 cells by increasing the expression of P21 and P53. It also induces apoptosis in HT-29 cells by mitigating Bcl-2 and NF-κB expression and elevating caspase 3 and 9 expression and ROS levels. CONCLUSIONS Considering the cytotoxicity and cell cycle arrest and induction of apoptosis in the colon cancer cell line by CGA, it can be concluded that CGA is a suitable option for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ali Ghorbani Ranjbary
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Ali Bagherzadeh
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| | - Seyed Sina Sabbaghi
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| | - Arshida Faghihi
- Department of Chemistry, Faculty of Science Shiraz University, Shiraz, Iran
| | - Delaram Nassaj Karimi
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| | - Shahryar Naji
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Kardani
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| |
Collapse
|
10
|
de Aguiar GC, Souza ACF, de Souza DV, Neto MM, Le Sueur-Maluf L, de Moraes Malinverni AC, Antunes HKM, Ribeiro DA. Degenerative changes induced by paradoxical sleep deprivation in rat sublingual glands. Eur Arch Otorhinolaryngol 2023; 280:4261-4269. [PMID: 37256344 DOI: 10.1007/s00405-023-08041-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE The aim of this study was to evaluate whether sleep deprivation can induce degenerative changes in rat sublingual glands. METHODS For this purpose, a total of 24 males were distributed into three groups: control (n = 8), in which the animals were not subjected to any procedure; sleep deprivation (n = 8) in which the animals were submitted to sleep deprivation for 96 h; recovery (n = 8), in which the animals were subjected to paradoxical sleep deprivation for 96 consecutive hours followed by 96 h without intervention. Morphological changes in sublingual glands as well as the immunoexpressions of some proteins, such as Ki-67, p16, cleaved caspase-3 and BCL-2 were investigated in this setting. RESULTS The results showed that paradoxical sleep deprivation induced tissue degeneration as a result of the presence of pyknosis, vacuoles and areas of salivary retention, in the experimental groups. Expression of cleaved caspase 3 and BCL-2 were increased in both sleep deprivation and recovery groups. The analysis of Ki-67 showed an increase in expression only in the recovery group, associated with a decrease in p16 levels. CONCLUSION Sleep deprivation can induce a degenerative process in the parenchyma of sublingual gland by means of dysregulation of apoptosis associated with proliferative activity.
Collapse
Affiliation(s)
- Gabriel Carvalhal de Aguiar
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Ana Carolina Flygare Souza
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Vitor de Souza
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Marcos Monico Neto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Luciana Le Sueur-Maluf
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | | | - Hanna Karen Moreira Antunes
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
11
|
Ewunkem AJ, Deve M, Harrison SH, Muganda PM. Diepoxybutane induces the p53-dependent transactivation of the CCL4 gene that mediates apoptosis in exposed human lymphoblasts. J Biochem Mol Toxicol 2023; 37:e23316. [PMID: 36775894 PMCID: PMC10175094 DOI: 10.1002/jbt.23316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 02/14/2023]
Abstract
Diepoxybutane (DEB) is the most toxic metabolite of the environmental chemical 1,3-butadiene. We previously demonstrated the occurrence of DEB-induced p53-mediated apoptosis in human lymphoblasts. The p53 protein functions as a master transcriptional regulator in orchestrating the genomic response to a variety of stress signals. Transcriptomic analysis indicated that C-C chemokine ligand 4 (CCL4) gene expression was elevated in a p53-dependent manner in DEB-exposed p53-proficient TK6 cells, but not in DEB-exposed p53-deficient NH32 cells. Thus, the objective of this study was to determine whether the CCL4 gene is a transcriptional target of p53 and deduce its role in DEB-induced apoptosis in human lymphoblasts. Endogenous and exogenous wild-type p53 transactivated the activity of the CCL4 promoter in DEB-exposed lymphoblasts, but mutant p53 activity on this promoter was reduced by ∼80% under the same experimental conditions. Knockdown of the upregulated CCL4 mRNA levels in p53-proficient TK6 cells inhibited DEB-induced apoptosis by ∼45%-50%. Collectively, these observations demonstrate for the first time that the CCL4 gene is upregulated by wild-type p53 at the transcriptional level, and this upregulation mediates apoptosis in DEB-exposed human lymphoblasts.
Collapse
Affiliation(s)
- Akamu J. Ewunkem
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411 USA
| | - Maya Deve
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411 USA
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411 USA
| | - Perpetua M. Muganda
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411 USA
| |
Collapse
|
12
|
Wolf P. Inhibitor of apoptosis proteins as therapeutic targets in bladder cancer. Front Oncol 2023; 13:1124600. [PMID: 36845731 PMCID: PMC9950391 DOI: 10.3389/fonc.2023.1124600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Evasion from apoptosis is a hallmark of cancer. Inhibitor of apoptosis proteins (IAPs) contribute to this hallmark by suppressing the induction of cell death. IAPs were found to be overexpressed in cancerous tissues and to contribute to therapeutic resistance. The present review focuses on the IAP members cIAP1, cIAP2, XIAP, Survivin and Livin and their importance as potential therapeutic targets in bladder cancer.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany,Faculty of Medicine, University of Freiburg, Freiburg, Germany,*Correspondence: Philipp Wolf,
| |
Collapse
|
13
|
Luan H, Yan L, Zhao Y, Ding X, Cao L. Fucoxanthin induces apoptosis and reverses epithelial-mesenchymal transition via inhibiting Wnt/β-catenin pathway in lung adenocarcinoma. Discov Oncol 2022; 13:98. [PMID: 36192568 PMCID: PMC9530106 DOI: 10.1007/s12672-022-00564-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Invasion and metastasis are hallmark characteristics of cancer and the main causes of death in cancer patients. Studies have shown that epithelial-mesenchymal transition (EMT) plays significant role in tumor invasion and metastasis. Fucoxanthin, a carotenoid found in seaweeds, has been proved to have anti-tumor effects. Our study aimed to research the role of fucoxanthin on proliferation, apoptosis, migration and EMT of two types of LUAD cells. METHODS Cell migration and invasion were examined by Wound-healing and Transwell assays. Western blot assay was used to detect the expression levels of apoptosis-related proteins, EMT-related proteins and β-catenin. Immunohistochemistry was used to detect the expression of β-catenin in human lung adenocarcinoma tissues and corresponding para-cancerous tissues. RESULTS Our results revealed that fucoxanthin depressed the proliferation and induced apoptosis in A549 and NCI-H1299 cells. Moreover, fucoxanthin reversed TGF-β1-induced EMT and cell motility. Meanwhile, we disclosed that fucoxanthin and XAV939 had similar effect on β-catenin, EMT protein and cell motility. What is more, immunohistochemical results revealed that the high expression rate and abnormal expression rate of β-catenin in cancer tissues was significantly higher than that in para-cancerous tissues. CONCLUSION Taken together, the findings of our research highlight a novel role for fucoxanthin in NSCLC cells, which might be a potentially effective anti-tumor agent for the treatment of LUAD patients.
Collapse
Affiliation(s)
- Heqi Luan
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| | - Lina Yan
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| | - Yuanyuan Zhao
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| | - Xuejiao Ding
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| | - Lihua Cao
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| |
Collapse
|
14
|
Can B, Kar F, Kar E, Özkoç M, Şentürk H, Dönmez DB, Kanbak G, Alataş İÖ. Conivaptan and Boric Acid Treatments in Acute Kidney Injury: Is This Combination Effective and Safe? Biol Trace Elem Res 2022; 200:3723-3737. [PMID: 34676519 DOI: 10.1007/s12011-021-02977-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Acute kidney injury is still a worldwide clinic problem that affects kidney function and associated with high mortality risk. Unfortunately, approximately 1.7 million people are thought to die from acute kidney injury each year. Boron element is defined as an "essential trace element" for plants and thought to have a widespread role in living organisms. Boric acid, which is one of the important forms of boron, has been extensively discussed for both medicinal and nonmedicinal purposes. However, there is a lack of data in the literature to examine the relationship between boric acid and antidiuretic hormone (ADH) antagonism in kidney injury. Thus, we aimed to investigate the effects of conivaptan as an ADH antagonist and boric acid as an antioxidant agent on the post-ischemic renal injury process. In this study, the unilateral ischemia-reperfusion (I/R) injury rat model with contralateral nephrectomy was performed and blood/kidney tissue samples were taken at 6th hours of reperfusion. The effects of 10 mg/mL/kg conivaptan and 50 mg/kg boric acid were examined with the help of some biochemical and histological analyses. We observed that conivaptan generally alleviated the destructive effects of I/R and has therapeutic effects. Also of note is that conivaptan and boric acid combination tended to show negative effects on kidney function, considering the highest BUN (78.46 ± 3.88 mg/dL) and creatinine levels (1.561 ± 0.1018 mg/dL), suggesting possibly drug-drug interaction. Although it has reported that conivaptan can interact with other active substances, no experimental/clinical data on the possible interaction with boric acid have reported so far.
Collapse
Affiliation(s)
- Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Fatih Kar
- Department of Basic Science, Faculty of Engineering and Natural Sciences, Kutahya Health Sciences University, Kutahya, Turkey
| | - Ezgi Kar
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mete Özkoç
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hakan Şentürk
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Dilek Burukoğlu Dönmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Güngör Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - İbrahim Özkan Alataş
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
15
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Wang W, Li X, Zhang Y, Zhang J, Jia L. Mycelium polysaccharides of Macrolepiota procera alleviate reproductive impairments induced by nonylphenol. Food Funct 2022; 13:5794-5806. [PMID: 35543179 DOI: 10.1039/d2fo00680d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nonylphenol (NP) exposure has become a crucial inducement of male reproductive disorders in the world. Therefore, it is urgent to seek solutions to alleviate the toxicity of NP. This study was oriented toward studying the protective effects of Macrolepiota procera mycelium polysaccharides (MMP) on NP-induced reproductive impairments. After NP administration, declined sperm amounts and testis index, increased the deformity rate of sperms, aberrant hormone secretion and testicular pathological injury were observed, corporately leading to reproductive capacity attenuation. Importantly, MMP significantly reversed the foregoing changes in NP-treated mice. Notably, it has been observed that the MMP therapy remarkably improved oxidative stress, apoptosis, autophagy and inflammatory responses, and suppressed the Akt/mTOR signaling pathway in testicular tissues. These results manifested that MMP might be a promising treatment strategy for ameliorating the biotoxicity of NP.
Collapse
Affiliation(s)
- Wenshuai Wang
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Xiaoxu Li
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Yaohan Zhang
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| |
Collapse
|
17
|
Nguyen P, Doan P, Murugesan A, Ramesh T, Rimpilainen T, Candeias NR, Yli-Harja O, Kandhavelu M. GPR17 signaling activation by CHBC agonist induced cell death via modulation of MAPK pathway in glioblastoma. Life Sci 2022; 291:120307. [PMID: 35016881 DOI: 10.1016/j.lfs.2022.120307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
AIM Glioblastoma multiforme (GBM) is the most common and aggressive primary adult brain tumor. GBM is characterized by a heterogeneous population of cells that are resistant to chemotherapy. Recently, we have synthesized CHBC, a novel indole derivative targeted to GBM biomarker G-protein-coupled receptor 17 and inhibitor of GBM cells. In this study, CHBC was further investigated to characterize the efficiency of this agonist at the molecular level and its underlying mechanism in GBM cell death induction. MATERIALS AND METHODS The effect of CHBC and TMZ was determined using time dependent inhibitor assay in glioblastoma cells, LN229 and SNB19. Drug induced cell cycle arrest was measured using PI staining followed by image analysis. The induction of apoptosis and mechanism of action of CHBC was studied using apoptosis, caspase 3/7 and mitochondrial membrane permeability assays. Modulation of the key genes involved in MAPK signaling pathway was also measured using immunoblotting array. KEY FINDINGS The inhibitory kinetic study has revealed that CHBC inhibited SNB19 and LN229 cell growth in a time-dependent manner. Furthermore, CHBC with the IC50 of 85 μM, mediated cell death through an apoptosis mechanism in both studied cell lines. The study also has revealed that CHBC targets GPR17 leading to the induction of apoptosis via the activation of Caspase 3/7 and dysfunction of mitochondrial membrane potential. In addition, CHBC treatment led to marked G2/M cell cycle arrest. The protein array has confirmed the anticancer effect of CHBC by the disruption of the mitogen-activated protein kinase pathway (MAPK). SIGNIFICANCE Taken together, these results demonstrated that CHBC induced G2/M cell cycle arrest and apoptosis by disrupting MAPK signaling in human glioblastoma cells. This study concludes that CHBC represent a class of compounds for treating glioblastoma.
Collapse
Affiliation(s)
- Phung Nguyen
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland
| | - Phuong Doan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Tatu Rimpilainen
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olli Yli-Harja
- Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98103-8904, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland.
| |
Collapse
|
18
|
Zhang T, Xu Z, Wen L, Lei D, Li S, Wang J, Huang J, Wang N, Durkan C, Liao X, Wang G. Cadmium-induced dysfunction of the blood-brain barrier depends on ROS-mediated inhibition of PTPase activity in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125198. [PMID: 33550130 DOI: 10.1016/j.jhazmat.2021.125198] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Increasing evidence has demonstrated that cadmium accumulation in the blood increases the risk of neurological diseases. However, how cadmium breaks through the blood-brain barrier (BBB) and is transferred from the blood circulation into the central nervous system is still unclear. In this study, we examined the toxic effect of cadmium chloride (CdCl2) on the development and function of BBB in zebrafish. CdCl2 exposure induced cerebral hemorrhage, increased BBB permeability and promoted abnormal vascular formation by promoting VEGF production in zebrafish brain. Furthermore, in vivo and in vitro experiments showed that CdCl2 altered cell-cell junctional morphology by disrupting the proper localization of VE-cadherin and ZO-1. The potential mechanism involved in the inhibition of protein tyrosine phosphatase (PTPase) mediated by cadmium-induced ROS was confirmed with diphenylene iodonium (DPI), a ROS production inhibitor. Together, these data indicate that BBB is a critical target of cadmium toxicity and provide in vivo etiological evidence of cadmium-induced neurovascular disease in a zebrafish BBB model.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Daoxi Lei
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Shuyu Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Jinxia Huang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB30FF, UK.
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB30FF, UK.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
19
|
Liu M, Zheng B, Liu P, Zhang J, Chu X, Dong C, Shi J, Liang Y, Chu L, Liu Y, Han X. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide‑induced acute liver injury. Mol Med Rep 2021; 23:438. [PMID: 33846815 PMCID: PMC8060806 DOI: 10.3892/mmr.2021.12077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Arsenic trioxide (ATO)-induced hepatotoxicity limits the therapeutic effect of acute myelogenous leukemia treatment. Magnesium isoglycyrrhizinate (MgIG) is a natural compound extracted from licorice and a hepatoprotective drug used in liver injury. It exhibits anti-oxidant, anti-inflammatory and anti-apoptotic properties. The aim of the present study was to identify the protective action and underlying mechanism of MgIG against ATO-induced hepatotoxicity. A total of 50 mice were randomly divided into five groups (n=10/group): Control; ATO; MgIG and high- and low-dose MgIG + ATO. Following continuous administration of ATO for 7 days, the relative weight of the liver, liver enzyme, histological data, antioxidant enzymes, pro-inflammatory cytokines, cell apoptosis and changes in Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) signaling pathway were observed. MgIG decreased liver injury, decreased the liver weight and liver index, inhibited oxidative stress and decreased the activity of glutathione, superoxide dismutase and catalase, production of reactive oxygen species and levels of pro-inflammatory cytokines, including IL-1β, IL-6 and TNF-α. Western blotting showed a decrease in Bax and caspase-3. There was decreased cleaved caspase-3 expression and increased Bcl-2 expression. MgIG notably activated ATO-mediated expression of Keap1 and Nrf2 in liver tissue. MgIG administration was an effective treatment to protect the liver from ATO-induced toxicity. MgIG maintained the level of Nrf2 in the liver and protected the antioxidative defense system to attenuate oxidative stress and prevent ATO-induced liver injury.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Bin Zheng
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Panpan Liu
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jianping Zhang
- Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chunhui Dong
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jing Shi
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yingran Liang
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Li Chu
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yanshuang Liu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xue Han
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
20
|
An CX, Xie SP, Li HL, Hu YH, Niu R, Zhang LJ, Jiang Y, Li Q, Zhou YN. Knockdown of Microtubule Associated Serine/threonine Kinase Like Expression Inhibits Gastric Cancer Cell Growth and Induces Apoptosis by Activation of ERK1/2 and Inactivation of NF-κB Signaling. Curr Med Sci 2021; 41:108-117. [PMID: 33582914 DOI: 10.1007/s11596-021-2325-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Microtubule-associated serine/threonine kinase (MASTL) functions to regulate chromosome condensation and mitotic progression. Therefore, aberrant MASTL expression is commonly implicated in various human cancers. This study analyzed MASTL expression in gastric cancer vs. adjacent normal tissue for elucidating the association with clinicopathological data from patients. This work was then extended to investigate the effects of MASTL knockdown on tumor cells in vitro. The level of MASTL expression in gastric cancer tissue was assessed from the UALCAN, GEPIA, and Oncomine online databases. Lentivirus carrying MASTL or negative control shRNA was infected into gastric cancer cells. RT-qPCR, Western blotting, cell viability, cell counting, flow cytometric apoptosis and cell cycle, and colony formation assays were performed. MASTL was upregulated in gastric cancer tissue compared to the adjacent normal tissue, and the MASTL expression was associated with advanced tumor stage, Helicobacter pylori infection and histological subtypes. On the other hand, knockdown of MASTL expression significantly reduced tumor cell viability and proliferation, and arrested cell cycle at G2/M stage but promoted tumor cells to undergo apoptosis. At protein level, knockdown of MASTL expression enhanced levels of cleaved PARP1, cleaved caspase-3, Bax and p-ERK1/2 expression, but downregulated expression levels of BCL-2 and p-NF-κB-p65 protein in AGS and MGC-803 cells. MASTL overexpression in gastric cancer tissue may be associated with gastric cancer development and progression, whereas knockdown of MASTL expression reduces tumor cell proliferation and induces apoptosis. Further study will evaluate MASTL as a potential target of gastric cancer therapeutic strategy.
Collapse
Affiliation(s)
- Cai-Xia An
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Shou-Pin Xie
- Department of Neurology, The First People's Hospital of Lanzhou City, Lanzhou, 730050, China
| | - Hai-Long Li
- Department of Internal Mddicine, The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yong-Hua Hu
- Department of Internal Mddicine, The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Rong Niu
- Department of External Chest, Gansu Provincial Cancer Hospital, Lanzhou, 730030, China
| | - Lin-Jie Zhang
- Division of Pediatric Emergency, Gansu Provincial Maternal and Child Health Hospital, Lanzhou, 730050, China
| | - Yan Jiang
- Division of Pediatric Emergency, Gansu Provincial Maternal and Child Health Hospital, Lanzhou, 730050, China
| | - Qiang Li
- Division of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yong-Ning Zhou
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Smirnova A, Mentor A, Ranefall P, Bornehag CG, Brunström B, Mattsson A, Jönsson M. Increased apoptosis, reduced Wnt/β-catenin signaling, and altered tail development in zebrafish embryos exposed to a human-relevant chemical mixture. CHEMOSPHERE 2021; 264:128467. [PMID: 33032226 DOI: 10.1016/j.chemosphere.2020.128467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of anthropogenic chemicals is detected in humans and wildlife and the health effects of various chemical exposures are not well understood. Early life stages are generally the most susceptible to chemical disruption and developmental exposure can cause disease in adulthood, but the mechanistic understanding of such effects is poor. Within the EU project EDC-MixRisk, a chemical mixture (Mixture G) was identified in the Swedish pregnancy cohort SELMA by the inverse association between levels in women at around gestational week ten with birth weight of their children. This mixture was composed of mono-ethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mono-isononyl phthalate, triclosan, perfluorohexane sulfonate, perfluorooctanoic acid, and perfluorooctane sulfonate. In a series of experimental studies, we characterized effects of Mixture G on early development in zebrafish models. Here, we studied apoptosis and Wnt/β-catenin signaling which are two evolutionarily conserved signaling pathways of crucial importance during development. We determined effects on apoptosis by measuring TUNEL staining, caspase-3 activity, and acridine orange staining in wildtype zebrafish embryos, while Wnt/β-catenin signaling was assayed using a transgenic line expressing an EGFP reporter at β-catenin-regulated promoters. We found that Mixture G increased apoptosis, suppressed Wnt/β-catenin signaling in the caudal fin, and altered the shape of the caudal fin at water concentrations only 20-100 times higher than the geometric mean serum concentration in the human cohort. These findings call for awareness that pollutant mixtures like mixture G may interfere with a variety of developmental processes, possibly resulting in adverse health effects.
Collapse
Affiliation(s)
- Anna Smirnova
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Petter Ranefall
- SciLifeLab BioImage Informatics Facility, and Dept of Information Technology, Uppsala University, Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| |
Collapse
|
22
|
Liu Y, Piao XJ, Xu WT, Zhang Y, Zhang T, Xue H, Li YN, Zuo WB, Sun G, Fu ZR, Luo YH, Jin CH. Calycosin induces mitochondrial-dependent apoptosis and cell cycle arrest, and inhibits cell migration through a ROS-mediated signaling pathway in HepG2 hepatocellular carcinoma cells. Toxicol In Vitro 2020; 70:105052. [PMID: 33188878 DOI: 10.1016/j.tiv.2020.105052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
Calycosin is one of the main ingredients extracted from the Chinese medical herb, Radix astragali (RA). It has been shown to inhibit cell proliferation and induce apoptosis in several cancer cell lines, but the underlying mechanism remains unclear. The effects of calycosin on the proliferation and apoptosis of hepatocellular carcinoma (HCC) cells, as well as its mechanism, were investigated in this study. Cell Counting Kit-8 assay results suggested that calycosin had anti-proliferation effects on HCC in dose- and time-dependent manners, and had less cytotoxicity in normal cells. Hoechst/PI double staining and flow cytometry results showed cellular morphological changes and apoptosis after treatment of HepG2 cells with calycosin. The western blot assay showed calycosin decreased the expression of Bcl-2 and increased the expression of Bax, caspase-3, and PARP. Calycosin induced the activation of MAPK, STAT3, NF-κB, apoptosis-related proteins, and induced cell cycle arrest in the G0/G1 phase by regulating AKT. In addition, calycosin reduced the expression of TGF-β1, SMAD2/3, SLUG, and vimentin. Furthermore, phosphorylation, apoptosis, and cell migration induced by calycosin were mediated by the production of reactive oxygen species. These events could be inhibited by pretreatment with N-acetyl-L-cysteine. Calycosin resisted HCC by activating ROS-mediated MAPK, STAT3, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xian-Ji Piao
- The Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wen-Bo Zuo
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Geng Sun
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhong-Ren Fu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China.
| |
Collapse
|
23
|
Xu Y, Sun MH, Xu Y, Ju JQ, Pan MH, Pan ZN, Li XH, Sun SC. Nonylphenol exposure affects mouse oocyte quality by inducing spindle defects and mitochondria dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:114967. [PMID: 32645552 DOI: 10.1016/j.envpol.2020.114967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Nonylphenol (NP) is a chemical raw material and intermediate which is mainly used in the production of surfactants, lubricating oil additives and pesticide emulsifiers. NP is reported to be toxic on the immune system, nervous system and reproductive system due to its binding to estrogen receptors. However, the toxicity of NP on mammalian oocyte quality remains unclear. In present study, we explored the effects of NP exposure on mouse oocyte maturation. Our results showed that 4 weeks of NP exposure increased the number of atresia follicles and decreased oocyte developmental competence. Transcriptomic analysis indicated that NP exposure altered the expression of more than 800 genes in oocytes, including multiple biological pathways. Subcellular structure examination indicated that NP exposure disrupted meiotic spindle organization and caused chromosome misalignment. Moreover, aberrant mitochondrial distribution and decreased membrane potential were also observed, indicating that NP exposure caused mitochondria dysfunction. Further analysis showed that NP exposure resulted in the accumulation of reactive oxygen species (ROS), which causes oxidative stress; and the NP-exposed oocytes showed positive Annexin-V signal, indicating the occurrence of early apoptosis. In summary, our results indicated that NP exposure reduced oocyte quality by affecting cytoskeletal dynamics and mitochondrial function, which further induced oxidative stress and apoptosis in mice.
Collapse
Affiliation(s)
- Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
Cao LJ, Xie HT, Chu ZX, Ma Y, Wang MM, Shi Z. Tubeimoside‑1 induces apoptosis in human glioma U251 cells by suppressing PI3K/Akt‑mediated signaling pathways. Mol Med Rep 2020; 22:1527-1535. [PMID: 32627020 PMCID: PMC7339596 DOI: 10.3892/mmr.2020.11224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Tubeimoside-1 (TBMS1), a traditional Chinese herb extracted from Bolbostemma paniculatum (Maxim.), induces apoptosis in a number of human cancer cell lines. TBMS1 has been reported to induce apoptosis in human glioma cells, however the mechanism remains to be elucidated. The present study explored TBMS1-induced PI3K/Akt-related pathways in human glioma cells. The human glioma U251 and the human astrocyte (HA) cell lines were treated with various concentrations of TBMS1. MTT assays were conducted to analyze cell viability. Cell cycle distribution and the rate of apoptosis were assessed using flow cytometry. BrdU incorporation and Hoechst 33342 staining were performed to analyze the cell cycle and apoptosis, respectively. Western blotting was performed to investigate protein expression levels. The results demonstrated that TBMS1 reduced cell viability in human glioma cells U251 by suppressing Akt phosphorylation. Subsequently, TBMS1 inhibited DNA synthesis and induced G2/M phase arrest by targeting the PI3K/Akt/p21 and the cyclin-dependent kinase 1/cyclin B1 signaling cascades. In addition, TBMS1 triggered apoptosis via the PI3K/Akt-mediated Bcl-2 signaling pathway. These results demonstrated that TBMS1 prevented the progression of gliomas via the PI3K/Akt-dependent pathway, which provided a theoretical basis for in vivo studies to use TBMS1 as potential therapy for the prevention of cancer.
Collapse
Affiliation(s)
- Li-Juan Cao
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Hai-Tang Xie
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Zhong-Xia Chu
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Yue Ma
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Ming-Ming Wang
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Zhuang Shi
- Department of Mongolian Medicine Hand Foot Surgery, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| |
Collapse
|
25
|
Park K, Han EJ, Ahn G, Kwak IS. Effects of combined stressors to cadmium and high temperature on antioxidant defense, apoptotic cell death, and DNA methylation in zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137130. [PMID: 32045767 DOI: 10.1016/j.scitotenv.2020.137130] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 05/12/2023]
Abstract
Fish are frequently affected by environmental stressors, such as temperature changes and heavy metal exposure, in aquatic ecosystems. In this study, we evaluated the combined effects of cadmium (Cd) toxicity and temperature (rearing temperature of 26 °C and heat stress at 34 °C) on zebrafish (Danio rerio) embryos. The survival and heart rates of zebrafish embryos decreased at relatively high Cd concentrations of 0.07 and 0.1 mg L-1. Abnormal morphology was induced by exposure to a combination of Cd toxicity and heat stress. The yolk sac edema size was not significantly different between the control- and Cd-treated groups. Cd exposure induced reactive oxygen species (ROS) production and cell death in the live zebrafish. High temperature (34 °C) triggered Cd-induced cell death and intracellular ROS production to a greater extent than the rearing temperature of 26 °C. Transcriptional levels of six genes-CAT, SOD, p53, BAX, Dnmt1, and Dnmt3b-were investigated. The mRNA expression of CAT and SOD, molecular indicators of oxidative stress, was increased significantly at 34 °C after Cd exposure. The mRNA expression of CAT was more sensitive to temperature than that of SOD in Cd-treated zebrafish. p53 and BAX, apoptosis-related genes, were upregulated upon combined exposure to high temperature and Cd. In addition, at 34 °C, the expression of Dnmt1 and Dnmt3b transcripts, markers of DNA methylation, was increased upon exposure of zebrafish to all concentrations of Cd. Overall, these results suggest that high temperature facilitates the potential role of Cd toxicity in the transcriptional regulation of genes involved in the antioxidant system, apoptosis, and DNA methylation.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Eui Jeong Han
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|
26
|
Song C, Charli A, Luo J, Riaz Z, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mechanistic Interplay Between Autophagy and Apoptotic Signaling in Endosulfan-Induced Dopaminergic Neurotoxicity: Relevance to the Adverse Outcome Pathway in Pesticide Neurotoxicity. Toxicol Sci 2020; 169:333-352. [PMID: 30796443 DOI: 10.1093/toxsci/kfz049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic exposure to pesticides is implicated in the etiopathogenesis of Parkinson's disease (PD). Previously, we showed that dieldrin induces dopaminergic neurotoxicity by activating a cascade of apoptotic signaling pathways in experimental models of PD. Here, we systematically investigated endosulfan's effect on the interplay between apoptosis and autophagy in dopaminergic neuronal cell models of PD. Exposing N27 dopaminergic neuronal cells to endosulfan rapidly induced autophagy, indicated by an increased number of autophagosomes and LC3-II accumulation. Prolonged endosulfan exposure (>9 h) triggered apoptotic signaling, including caspase-2 and -3 activation and protein kinase C delta (PKCδ) proteolytic activation, ultimately leading to cell death, thus demonstrating that autophagy precedes apoptosis during endosulfan neurotoxicity. Furthermore, inhibiting autophagy with wortmannin, a phosphoinositide 3-kinase inhibitor, potentiated endosulfan-induced apoptosis, suggesting that autophagy is an early protective response against endosulfan. Additionally, Beclin-1, a major regulator of autophagy, was cleaved during the initiation of apoptotic cell death, and the cleavage was predominantly mediated by caspase-2. Also, caspase-2 and caspase-3 inhibitors effectively blocked endosulfan-induced apoptotic cell death. CRISPR/Cas9-based stable knockdown of PKCδ significantly attenuated endosulfan-induced caspase-3 activation, indicating that the kinase serves as a regulatory switch for apoptosis. Additional studies in primary mesencephalic neuronal cultures confirmed endosulfan's effect on autophagy and neuronal degeneration. Collectively, our results demonstrate that a functional interplay between autophagy and apoptosis dictate pesticide-induced neurodegenerative processes in dopaminergic neuronal cells. Our study provides insight into cell death mechanisms in environmentally linked neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Adhithiya Charli
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Jie Luo
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Zainab Riaz
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
27
|
Avilla MN, Malecki KMC, Hahn ME, Wilson RH, Bradfield CA. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem Res Toxicol 2020; 33:860-879. [PMID: 32259433 PMCID: PMC7175458 DOI: 10.1021/acs.chemrestox.9b00476] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
Collapse
Affiliation(s)
- Mele N. Avilla
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Kristen M. C. Malecki
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Rachel H. Wilson
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
- McArdle
Laboratory for Cancer Research, University of Wisconsin School of Medicine
and Public Health, Madison, Wisconsin 53705-227, United States
| |
Collapse
|
28
|
Concentration-dependent effect of silymarin on concanavalin A-stimulated mouse spleen cells in vitro. EUROPEAN PHARMACEUTICAL JOURNAL 2020. [DOI: 10.2478/afpuc-2020-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAims: Silymarin (SIL), a mixture of phenolic compounds, has a pleiotropic mode of action on various cell types, including immune cells. In this study, we investigated the concentration-dependent effect of SIL on proliferation of concanavalin A (CoA)-stimulated mouse spleen T lymphocytes, their viability, and secretion of IFN-g and IL-4 cytokines ex vivo in relation to gene expressions of transcription factors nuclear factor kappa B and Foxp3. In addition, metabolic activity of T cells was determined as changes in the mitochondrial membrane potential and apoptosis.Material/Methods: Isolated splenocytes were stimulated with lectin CoA and treated with SIL atthe concentrations of 5, 10, 20, and 40 μg/ml for 70 h and unstimulated cells served as the control. Cultures of splenocytes were evaluated for proliferation index following BrdU incorporation and viability of cells after trypan blue staining. Gene expressions of transcription factors and cytokines were assessed using real-time PCR, whereas ELISA test was applied to measure cytokine secretion. Mitochondrial membrane potential and apoptosis were determined by flow cytometry.Results: We demonstrated that CoA-activated mouse spleen T lymphocytes show different susceptibilities to low (£10 μg/ml) and higher (20 and 40 μg/ml) SIL concentrations. Low concentrations resulted in increased proliferation, cytokine secretion, and mitochondrial membrane potential and reduced transition of cells to apoptosis. High concentration of SIL had the opposite effect without exerting significant cytotoxicity and upregulated genes for cytokines and transcription factors on mRNA level. It is possible that individual subpopulations of T cells induced by CoA were differentially affected by the various SIL concentrations and the dose of 40 μg/ml had the profound suppressive effect. This correlated with the highest expression of Foxp3 factor, indicating that this dose stimulated preferential differentiation to Tregs lymphocytes.Conclusions: Treatment with suitable doses of SIL can provide potential benefits in the modulation of host immune functions in various diseases.
Collapse
|
29
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
30
|
Bi D, Li X, Li T, Li X, Lin Z, Yao L, Li H, Xu H, Hu Z, Zhang Z, Liu Q, Xu X. Characterization and Neuroprotection Potential of Seleno-Polymannuronate. Front Pharmacol 2020; 11:21. [PMID: 32153394 PMCID: PMC7044149 DOI: 10.3389/fphar.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Seleno-polymannuronate (Se-PM) was prepared from alginate-derived polymannuronate (PM) through a sulfation followed by a selenylation replacement reaction. The organic selenium content of Se-PM was 437.25 μg/g and its average molecular weight was 2.36 kDa. The neuroprotection effect of Se-PM and corresponding molecular mechanisms were investigated. Our results showed that, comparing to both sulfated PM (S-PM) and PM, Se-PM remarkably inhibited the aggregation of Aβ1-42 oligomer in vitro and significantly reduced the APP and BACE1 protein expression in N2a-sw cells, highlighting the critical function of the selenium presented in Se-PM. Moreover, Se-PM decreased the expression of cytochrome c and the ratio of Bax to Bcl-2, and enhanced the mitochondrial membrane potential in N2a-sw cells. These results suggested that Se-PM treatment can markedly inhibit N2a-sw cell apoptosis and promote N2a-sw cell survival and that Se-PM might be a potential therapeutic agent for the prevention of neurodegeneration owing to its remarkable neuroprotection effect.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaofan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tong Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhenqing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
31
|
Ewunkem AJ, Deve M, Harrison SH, Muganda PM. Diepoxybutane induces the expression of a novel p53-target gene XCL1 that mediates apoptosis in exposed human lymphoblasts. J Biochem Mol Toxicol 2020; 34:e22446. [PMID: 31953984 DOI: 10.1002/jbt.22446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
Diepoxybutane (DEB) is the most potent active metabolite of the environmental chemical 1,3-butadiene (BD). BD is a human carcinogen that exhibits multiorgan systems toxicity. Our previous studies demonstrated that the X-C motif chemokine ligand 1 (XCL1) gene expression was upregulated 3.3-fold in a p53-dependent manner in TK6 lymphoblasts undergoing DEB-induced apoptosis. The tumor-suppressor p53 protein is a transcription factor that regulates a wide variety of cellular processes, including apoptosis, through its various target genes. Thus, the objective of this study was to determine whether XCL1 is a novel direct p53 transcriptional target gene and deduce its role in DEB-induced toxicity in human lymphoblasts. We utilized the bioinformatics tool p53scan to search for known p53 consensus sequences within the XCL1 promoter region. The XCL1 gene promoter region was found to contain the p53 consensus sequences 5'-AGACATGCCTAGACATGCCT-3' at three positions relative to the transcription start site (TSS). Furthermore, the XCL1 promoter region was found, through reporter gene assays, to be transactivated at least threefold by wild-type p53 promoter in DEB-exposed human lymphoblasts. Inactivation of the XCL1 promoter p53-binding motif located at -2.579 kb relative to TSS reduced the transactivation function of p53 on this promoter in DEB-exposed cells by 97%. Finally, knockdown of XCL1 messenger RNA with specific small interfering RNA inhibited DEB-induced apoptosis in human lymphoblasts by 50%. These observations demonstrate, for the first time, that XCL1 is a novel DEB-induced direct p53 transcriptional target gene that mediates apoptosis in DEB-exposed human lymphoblasts.
Collapse
Affiliation(s)
- Akamu J Ewunkem
- Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, North Carolina
| | - Maya Deve
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Scott H Harrison
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Perpetua M Muganda
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
32
|
Daré RG, Oliveira MM, Truiti MC, Nakamura CV, Ximenes VF, Lautenschlager SO. Abilities of protocatechuic acid and its alkyl esters, ethyl and heptyl protocatechuates, to counteract UVB-induced oxidative injuries and photoaging in fibroblasts L929 cell line. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111771. [DOI: 10.1016/j.jphotobiol.2019.111771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/04/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
33
|
Liu Y, Luo YH, Li SM, Shen GN, Wang JR, Zhang Y, Feng YC, Xu WT, Zhang Y, Zhang T, Xue H, Wang HX, Cui Y, Wang Y, Jin CH. 2-(Naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via ROS-mediated MAPK, AKT, and STAT3 signaling pathways in HepG2 human hepatocellular carcinoma cells. Drug Chem Toxicol 2019; 45:33-43. [DOI: 10.1080/01480545.2019.1658767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shu-Mei Li
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu-Chao Feng
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong-Xing Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yang Cui
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying Wang
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| |
Collapse
|
34
|
Reyes-Becerril M, Angulo C, Sanchez V, Cuesta A, Cruz A. Methylmercury, cadmium and arsenic(III)-induced toxicity, oxidative stress and apoptosis in Pacific red snapper leukocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105223. [PMID: 31207538 DOI: 10.1016/j.aquatox.2019.105223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Methylmercury (MeHg), cadmium (Cd) and arsenic (As(III)) are among the most toxic metals in aquatic systems that have been associated with multiple animal and human health problems. This study investigated cytotoxic, oxidative stress, and apoptosis effects on fish leukocytes following their exposure to metals. A preliminary study indicated that leukocytes exposed to MeHg at a concentration of 0.01 mM, Cd at 0.05 mM, and As(III) at 2 mM showed a time-dependent cell viability reduction (around 40%), so they were selected for further experiments. To evaluate the effect of MeHg, Cd and As(III) on Pacific red snapper Lutjanus peru, we measured cytotoxicity, reactive oxygen species, antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT)), nitric oxide production, apoptosis-related and immune-related genes on head-kidney and spleen leukocytes following exposure to MeHg (0.01 mM), Cd (0.05 mM) and As(III) (2 mM) for 30 min and 2 h. Reactive oxygen species (ROS) generation highly increased in time-dependent doses in head-kidney leukocytes compared with the control group. Regarding antioxidant activity, SOD increased significantly in leukocytes exposed to any heavy metals after two h. Expressly, CAT activity decreased in those leukocytes exposed to Cd and As(III). Apoptotic function genes (Casp-2, Casp-3, and Casp-7) strongly up-regulated after heavy metal exposure, but Cd was more toxic. Finally, granzyme A and perforin 1 strongly up-regulated in leukocytes exposed to MeHg and As(III) compared with the control group. Our data showed that MeHg, Cd, and As(III) might have been cytotoxic and induced oxidative stress and apoptosis with possible biological consequences in fish.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico.
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Veronica Sanchez
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Spain
| | - Ariel Cruz
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| |
Collapse
|
35
|
Hu T, Linghu K, Huang S, Battino M, Georgiev MI, Zengin G, Li D, Deng Y, Wang YT, Cao H. Flaxseed extract induces apoptosis in human breast cancer MCF-7 cells. Food Chem Toxicol 2019; 127:188-196. [PMID: 30905866 DOI: 10.1016/j.fct.2019.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/22/2022]
Abstract
Significant evidence indicated that flaxseed (Linum usitatissimum) possesses various positive health aspects such as reducing the risk of cancer and cardiovascular diseases. The fatty acids are considered to be responsible for these benefits of flaxseed. Herein, the in vitro effects of flaxseed extract on the growth and apoptosis of human breast cancer MCF-7 cells were investigated. The MCF-7 cells treated with flaxseed extract showed a dose-dependent decrease in cell viability. The flaxseed extract induced reactive oxygen species and the flow cytometric analysis demonstrated that flaxseed fatty acids triggered apoptosis of MCF-7 cells, which was also shown by the loss of mitochondrial membrane potential and caspase cascade reaction. Thus, the flaxseed extract regulated the growth of MCF-7 cells and induced apoptosis. Eventually, the flaxseed could be used as a dietary supplement to prevent breast cancer.
Collapse
Affiliation(s)
- Tingyan Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, China.
| | - Kegang Linghu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, China.
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China.
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica Delle Marche, Ancona, Ancona, Italy.
| | - Milen I Georgiev
- Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Defang Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China.
| | - Yun Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Y T Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, China.
| | - Hui Cao
- Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, Guangdong, 519031, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
36
|
Wang L, Kumar M, Deng Q, Wang X, Liu M, Gong Z, Zhang S, Ma X, Xu-Monette ZY, Xiao M, Yi Q, Young KH, Ramos KS, Li Y. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces peripheral blood abnormalities and plasma cell neoplasms resembling multiple myeloma in mice. Cancer Lett 2019; 440-441:135-144. [PMID: 30343114 PMCID: PMC6238649 DOI: 10.1016/j.canlet.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Abstract
Although epidemiologic studies have suggested a possible association between occupational exposures to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the risk of development of multiple myeloma, definitive evidence in support of this association is lacking. In the present study, we employed the Vk*Myc mouse model of multiple myeloma to assess the impact of TCDD exposure on multiple myeloma pathogenesis. TCDD induced splenomegaly and multiple peripheral blood abnormalities, including anemia and high serum IgG levels. In addition, TCDD triggered bone lytic lesions, as well as renal tubular casts, a phenomenon associated with human myeloma kidney disease. Even in wild-type C57BL/6 mice, TCDD increased serum IgG levels, induced anemia, and increased plasma cell presence in the spleen and bone marrow, hallmarks of benign monoclonal gammopathy. Lastly, TCDD induced AKT activation and the DNA damage response, key pathogenic events in myeloma pathogenesis, in animal spleen and/or bone marrow. These data indicate that TCDD accelerates monoclonal gammopathy development and promotes progression to multiple myeloma in genetically-predisposed mice. This work offers the first direct experimental evidence establishing TCDD as an environmental risk factor for monoclonal gammopathy of undetermined significance and multiple myeloma.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Munish Kumar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Raman Fellow (UGC), Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Qipan Deng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xu Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ming Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhaojian Gong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Xiao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
37
|
AnvariFar H, Amirkolaie AK, Jalali AM, Miandare HK, Sayed AH, Üçüncü Sİ, Ouraji H, Ceci M, Romano N. Environmental pollution and toxic substances: Cellular apoptosis as a key parameter in a sensible model like fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:144-159. [PMID: 30273782 DOI: 10.1016/j.aquatox.2018.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants-induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver) as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.
Collapse
Affiliation(s)
- Hossein AnvariFar
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran; University of Applied Science and Technology, Provincial Unit, P.O. Box: 4916694338, Golestan, Iran
| | - A K Amirkolaie
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Ali M Jalali
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran; Sturgeon Affairs Management, Gorgan, Golestan, Iran; Center for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, VIC, 3280, Australia
| | - H K Miandare
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran
| | - Alaa H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, İzmir, Turkey
| | - Hossein Ouraji
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Marcello Ceci
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy
| | - Nicla Romano
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy.
| |
Collapse
|
38
|
Wang H, Li H, Chen F, Luo J, Gu J, Wang H, Wu H, Xu Y. Baicalin extracted from Huangqin (Radix Scutellariae Baicalensis) induces apoptosis in gastric cancer cells by regulating B cell lymphoma
(Bcl-2)/Bcl-2-associated X protein and activating caspase-3 and caspase-9. J TRADIT CHIN MED 2018; 37:229-5. [PMID: 29960296 DOI: 10.1016/s0254-6272(17)30049-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the effects of baicalin in human gastric cancer cells, including apoptosis-inducing
effects, and to investigate its underlying mechanisms of action. METHODS Cell proliferation and apoptosis assays were performed to investigate the anti-proliferation effects of baicalin in human gastric cancer BGC-823 and MGC-803 cells. Real time-quantitative
polymerase chain reaction and Western blotting analysis were performed to elucidate the molecular
mechanisms underlying the anti-tumor properties of baicalin. RESULTS In BGC-823 and MGC-803 gastric cancer cells treated with 80, 120, and 160 μmol/L baicalin
for 48 h, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay showed that
baicalin significantly inhibited cell proliferation in a dose-dependent manner, while flow cytometric
analysis demonstrated that baicalin could induce apoptosis, also in a dose-dependent manner.
Moreover, baicalin up-regulated the expression of caspase-3, caspase-9, and B cell lymphoma
(Bcl-2)-associated X protein and down-regulated the expression of Bcl-2 at both the mRNA and
protein level. CONCLUSION Baicalin has potential as a therapeutic
agent for gastric cancer by inducing apoptosis in cancer cells.
Collapse
|
39
|
Shih YL, Hung FM, Lee CH, Yeh MY, Lee MH, Lu HF, Chen YL, Liu JY, Chung JG. Fisetin Induces Apoptosis of HSC3 Human Oral Cancer Cells Through Endoplasmic Reticulum Stress and Dysfunction of Mitochondria-mediated Signaling Pathways. ACTA ACUST UNITED AC 2018; 31:1103-1114. [PMID: 29102932 DOI: 10.21873/invivo.11176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM Oral cancer has been reported to be one of the major cancer-related diseases in human populations and the treatment of oral cancer is still unsatisfied. Fisetin, is a flavonoid from plants and has several biological activities such as antioxidant, anti-inflammatory and anticancer function, but its cytotoxicity in human oral cancer cells is unknown. In the present study, we investigated fisetin-induced cytotoxic effects on HSC3 human oral cancer cells in vitro. Materials and Methods/Results: We used flow cytometric assay to show fisetin induced apoptotic cell death through increased reactive oxygen species and Ca2+, but reduced the mitochondrial membrane potential and increased caspase-8, -9 and -3 activities in HSC3 cells. Furthermore, we also used 4' 6-diamidino-2-phenylindole staining to show that fisetin induced chromatin condensation (apoptotic cell death), and Comet assay to show that fisetin induced DNA damage in HSC3 cells. Western blotting was used to examine the levels of apoptotic-associated protein and results indicated that fisetin increased expression of pro-apoptotic proteins such as B-cell lymphoma 2 (BCL2) antagonist/killer (BAK) and BCL2-associated X (BAX) but reduced that of anti-apoptotic protein such as BCL2 and BCL-x, and increased the cleaved forms of caspase-3, -8 and -9, and cytochrome c, apoptosis-inducing factor (AIF) and endonuclease G (ENDO G) in HSC3 cells. Confocal microscopy showed that fisetin increased the release of cytochrome c, AIF and ENDO G from mitochondria into the cytoplasm. CONCLUSION Based on these observations, we suggest that fisetin induces apoptotic cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, R.O.C
| | - Fang-Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Hospital, New Taipei, Taiwan, R.O.C
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan, R.O.C
| | - Ming-Yang Yeh
- Department of Medical Education and Research, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City, Taiwan, R.O.C.,Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan, R.O.C
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
40
|
Wallace SJ, de Solla SR, Thomas PJ, Harner T, Eng A, Langlois VS. Airborne polycyclic aromatic compounds contribute to the induction of the tumour-suppressing P53 pathway in wild double-crested cormorants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:176-189. [PMID: 29276953 DOI: 10.1016/j.ecoenv.2017.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and PAH-like compounds are known or probable environmental carcinogens released into the environment as a by-product of incomplete combustion of fossil fuels and other organic materials. Studies have shown that exposure to PACs in the environment can induce both genotoxicity and epigenetic toxicity, but few studies have related PAC exposure to molecular changes in free ranging wildlife. Previous work has suggested that double-crested cormorants (Phalacrocorax auritus; DCCO) exhibited a higher incidence of genetic mutations when their breeding sites were located in heavily industrialized areas (e.g., Hamilton Harbour, Hamilton, ON, Canada) as compared to sites located in more pristine environments, such as in Lake Erie. The aim of this study was to determine if airborne PACs from Hamilton Harbour alter the tumour-suppressing P53 pathway and/or global DNA methylation in DCCOs. Airborne PACs were measured using passive air samplers in the Hamilton Harbour area and low-resolution mass spectrometry analysis detected PACs in livers of DCCOs living in Hamilton Harbour. Further hepatic and lung transcriptional analysis demonstrated that the expression of the genes involved in the DNA repair and cellular apoptosis pathway were up-regulated in both tissues of DCCOs exposed to PACs, while genes involved in p53 regulation were down-regulated. However, global methylation levels did not differ between reference- and PAC-exposed DCCOs. Altogether, data suggest that PACs activate the P53 pathway in free-ranging DCCOs living nearby PAC-contaminated areas.
Collapse
Affiliation(s)
- S J Wallace
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - S R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - P J Thomas
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - T Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - A Eng
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - V S Langlois
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada; Institut national de la recherche scientifique - Centre Eau Terre Environnement (INRS), Quebec City, QC, Canada.
| |
Collapse
|
41
|
Wang W, Wang R, Zhang Q, Mor G, Zhang H. Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide induces human trophoblast Swan 71 cell dysfunctions due to cell apoptosis through disorder of mitochondrial fission/fusion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:820-832. [PMID: 29144987 DOI: 10.1016/j.envpol.2017.11.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/06/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE) is an endocrine disrupter and ultimate carcinogenic product of benzo(a)pyrene (BaP). Numerous studies have shown that BPDE causes trophoblast-related diseases, such as preeclampsia, growth restriction or miscarriages. However, the underlying mechanism, especially the mitochondria-related BPDE-induced trophoblast dysfunction remains unknown. In this study, we examined mitochondrial functions in BPDE-induced human trophoblast cell line Swan 71. BPDE decreased cell ability, attenuated cell invasion and HCG secretion, induced cell apoptosis, decreased mitochondrial membrane potential, increased reactive oxygen species (ROS) and MDA, and decreased SOD activity in a dose-dependent manner. In the mechanism, BPDE significantly increased pro-apoptosis protein (P53 and Bak1) and decreased anti-apoptosis protein (Bcl-2). Furthermore, the protein expression levels of mitochondrial fusion genes (Mfn1, Mfn2, and OPA1) were decreased and those of fission genes (Fis1 and Drp1) were increased with increasing concentrations of BPDE and incubation time, resulting in the release of Cyt c and activation of Caspase 3, which irreversibly induced trophoblast cell apoptosis. This study reveals the mechanism of dysfunction of trophoblast cells through cell apoptosis due to the disorder of mitochondrial fission/fusion after exposure to BPDE, providing a further experimental understanding the adverse effects of BaP on trophoblast cells in early pregnancy.
Collapse
Affiliation(s)
- Weiping Wang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Rong Wang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Reproductive Immunology Unit, Yale University School of Medicine, 333 Cedar Street LSOG 305A, New Haven, CT 06520, USA
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Wang XH, Souders CL, Zhao YH, Martyniuk CJ. Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio). CHEMOSPHERE 2018; 191:106-117. [PMID: 29031050 DOI: 10.1016/j.chemosphere.2017.10.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
The dipyridyl herbicide paraquat induces oxidative stress in cells and is implicated in adult neurodegenerative diseases. However, less is known about paraquat toxicity in early stages of vertebrate development. To address this gap, zebrafish (Danio rerio) embryos were exposed to 1, 10 and 100 μM paraquat for 96 h. Paraquat did not induce significant mortality nor deformity in embryos and larvae, but it did accelerate time to hatch. To evaluate whether mitochondrial respiration was related to earlier hatch times, oxygen consumption rate was measured in whole embryos. Maximal respiration of embryos exposed to 100 μM paraquat for 24 h was reduced by more than 70%, suggesting that paraquat negatively impacts mitochondrial bioenergetics in early development. Based upon this evidence for mitochondrial dysfunction, transcriptional responses of oxidative stress- and apoptosis-related genes were measured. Fish exposed to 1 μM paraquat showed higher expression levels of superoxide dismutase 2, heat shock protein 70, Bcl-2-associated X protein, and B-cell CLL/lymphoma 2a compared to control fish. No differences among groups were detected in larvae exposed to 10 and 100 μM paraquat, suggesting a non-monotonic response. We also measured endpoints related to larval behavior and dopaminergic signaling as paraquat is associated with degeneration of dopamine neurons. Locomotor activity was stimulated with 100 μM paraquat and dopamine transporter and dopamine receptor 3 mRNA levels were increased in larvae exposed to 1 μM paraquat, interpreted to be a compensatory response at lower concentrations. This study improves mechanistic understanding into the toxic actions of paraquat on early developmental stages.
Collapse
Affiliation(s)
- Xiao H Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
43
|
Ahmed R. Endocrine Disruptors; Possible Mechanisms for Inducing Developmental Disorders. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2017. [DOI: 10.15171/ijbsm.2017.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- R.G. Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
44
|
Quercetin, a natural product supplement, impairs mitochondrial bioenergetics and locomotor behavior in larval zebrafish (Danio rerio). Toxicol Appl Pharmacol 2017; 327:30-38. [PMID: 28450151 DOI: 10.1016/j.taap.2017.04.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022]
Abstract
Quercetin is a natural product that is sold as a supplement in health food stores. While there are reported benefits for this flavonoid as a dietary supplement due to antioxidant properties, the full scope of its biological interactions has not been fully addressed. To learn more about the mechanisms of action related to quercetin, we exposed zebrafish (Danio rerio) embryos to 1 and 10μg/L quercetin for 96h starting at 3h post fertilization. Quercetin up to 10μg/L did not induce significant mortality in developing fish, but did increase prevalence of an upward-curved dorsal plane in hatched larvae. To determine whether this developmental defect was potentially related to mitochondrial bioenergetics during development, we measured oxygen consumption rate in whole embryos following a 24-hour exposure to quercetin. Basal mitochondrial and ATP-linked respiration were decreased at 1 and 10μg/L quercetin, and maximal respiration was decreased at 10μg/L quercetin, suggesting that quercetin impairs mitochondrial bioenergetics. This is proposed to be related to the deformities observed during development. Due to the fact that ATP production was affected by quercetin, larval behaviors related to locomotion were investigated, as well as transcriptional responses of six myogenesis transcripts. Quercetin at 10μg/L significantly reduced the swimming velocity of zebrafish larvae. The expression levels of both myostatin A (mstna) and myogenic differentiation (myoD) were also altered by quercetin. Mstna, an inhibitory factor for myogenesis, was significantly increased at 1μg/L quercetin exposure, while myoD, a stimulatory factor for myogenesis, was significantly increased at 10μg/L quercetin exposure. There were no changes in transcripts related to apoptosis (bcl2, bax, casp3, casp7), but we did observe a decrease in mRNA levels for catalase (cat) in fish exposed to each dose, supporting an oxidative stress response. Our data support the hypothesis that quercetin may affect locomotion and induce deformities in zebrafish larvae by diminishing ATP production and by altering the expression of transcripts related to muscle formation and activity.
Collapse
|
45
|
Seyed Razi N, Seydi E, Nazemi M, Arast Y, Pourahmad J. Selective Toxicity of Persian Gulf Sea Squirt (Phallusia nigra) Extract on Isolated Mitochondria Obtained from Liver Hepatocytes of Hepatocellular Carcinoma Induced Rat. HEPATITIS MONTHLY 2017; 17. [DOI: 10.5812/hepatmon.41489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
46
|
Khaled I, Ferjani H, Sirotkin AV, Alwasel S, Harrath AH. Impact of oil-related environmental pollutants on the ovary structure in the freshwater leech Erpobdella johanssoni (Johansson, 1927) (Clitellata: Hirudinea). THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1329360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- I. Khaled
- Faculty of Science of Tunis, UR11ES12 Biologie de la, Reproduction et du Développement Animal, University of Tunis El Manar, Tunisia
| | - H. Ferjani
- Laboratory of Research on Biologically Compatible Compounds, Dental Medicine Faculty, University of Monastir, Tunisia
| | - A. V. Sirotkin
- Department Zoology and Anthropology, Constantine the Philosopher University, Slovakia
| | - S. Alwasel
- Department of Zoology college of Sciences, King Saud University, Saudi Arabia
| | - A. H. Harrath
- Department of Zoology college of Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
47
|
Kiran Kumar KM, Naveen Kumar M, Patil RH, Nagesh R, Hegde SM, Kavya K, Babu RL, Ramesh GT, Sharma SC. Cadmium induces oxidative stress and apoptosis in lung epithelial cells. Toxicol Mech Methods 2016; 26:658-666. [PMID: 27687512 DOI: 10.1080/15376516.2016.1223240] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is one of the well-known highly toxic environmental and industrial pollutants. Cd first accumulates in the nucleus and later interacts with zinc finger proteins of antiapoptotic genes and inhibit the binding of transcriptional factors and transcription. However, the role of Cd in oxidative stress and apoptosis is less understood. Hence, the present study was undertaken to unveil the mechanism of action. A549 cells were treated with or without Cd and cell viability was measured by MTT assay. Treatment of cells with Cd shows reduced viability in a dose-dependent manner with IC50 of 45 μM concentration. Cd significantly induces the reactive oxygen species (ROS), lipid peroxidation followed by membrane damage with the leakage of lactate dehydrogenase (LDH). Cells with continuous exposure of Cd deplete the antioxidant super oxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes. Further, analysis of the expression of genes involved in apoptosis show that both the extrinsic and intrinsic apoptotic pathways were involved. Death receptor marker tumor necrosis factor-α (TNF-α), executor caspase-8 and pro-apoptotic gene (Bax) were induced, while antiapoptotic gene (Bcl-2) was decreased in Cd-treated cells. Fluorescence-activated cell sorting (FACS) analysis further confirms the induction of apoptosis in Cd-treated A549 cells.
Collapse
Affiliation(s)
- K M Kiran Kumar
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - M Naveen Kumar
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - Rajeshwari H Patil
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - Rashmi Nagesh
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - Shubha M Hegde
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - K Kavya
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| | - R L Babu
- b Department of Bioinformatics and Biotechnology , Karnataka State Women's University , Jnanashakthi Campus , Vijayapura , Karnataka , India
| | - Govindarajan T Ramesh
- c Department of Biology and Center for Biotechnology and Biomedical Sciences , Norfolk State University , Norfolk , VA , USA
| | - S Chidananda Sharma
- a Department of Microbiology and Biotechnology , Bangalore University, Jnana Bharathi , Bengaluru , Karnataka , India
| |
Collapse
|
48
|
Ebrahimzadeh-Bideskan AR, Hami J, Alipour F, Haghir H, Fazel AR, Sadeghi A. Protective effects of ascorbic acid and garlic extract against lead-induced apoptosis in developing rat hippocampus. Metab Brain Dis 2016; 31:1123-32. [PMID: 27311610 DOI: 10.1007/s11011-016-9837-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
Lead exposure has negative effects on developing nervous system and induces apoptosis in newly generated neurons. Natural antioxidants (i.e. Ascorbic acid and Garlic) might protect against lead-induced neuronal cell damage. The aim of the present study was to investigate the protective effects of Ascorbic acid and Garlic administration during pregnancy and lactation on lead-induced apoptosis in rat developing hippocampus. Timed pregnant Wistar rats were administrated with Lead (1500 ppm) via drinking water (Pb group) or lead plus Ascorbic acid (Pb + AA Group, 500 mg/kg, IP), or lead plus Garlic Extract (Pb + G Group, 1 ml garlic juice/100 g BW, via Gavage) from early gestation (GD 0) until postnatal day 50 (PN 50). At the end of experiments, the pups' brains were carefully dissected. To identify neuronal death, the brain sections were stained with TUNEL assay. Mean of blood and brain lead levels increased significantly in Pb group comparing to other studied groups (P < 0.01). There was significant reduction in blood and brain lead level in Pb + AA and Pb + G groups when compared to those of Pb group (P < 0.01). The mean number of TUNEL positive cells in the CA1, CA3, and DG was significantly lower in the groups treated by either Ascorbic acid or Garlic (P < 0.05). Administration of Ascorbic acid and Garlic during pregnancy and lactation protect against lead-induced neuronal cell apoptosis in the hippocampus of rat pups partially via the reduction of Pb concentration in the blood and in the brain.
Collapse
Affiliation(s)
| | - Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali-Reza Fazel
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Sadeghi
- Department of Anatomy and Cell Biology, School of Medicine, Isfahan University of Medical Sciences, Hezar jarib St, Isfahan, Iran.
| |
Collapse
|
49
|
Sui Y, Li S, Shi P, Wu Y, Li Y, Chen W, Huang L, Yao H, Lin X. Ethyl acetate extract from Selaginella doederleinii Hieron inhibits the growth of human lung cancer cells A549 via caspase-dependent apoptosis pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:261-71. [PMID: 27292193 DOI: 10.1016/j.jep.2016.06.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Selaginella doederleinii Hieron has been used as a folk medicine for the treatment of different cancers, especially for nasopharyngeal carcinoma, lung cancer and trophoblastic tumor in China. Previously, the ethyl acetate extract from S. doederleinii (SDEA extract) showed favorable anti-cancer potentials. However, the main chemical composition and anticancer mechanism of the SDEA extract were still not very clear. Until now, there are no reports available about the oral toxicity of the extract. AIM OF STUDY The present study was to further elucidate the chemical composition and anti-lung cancer mechanism of the SDEA extract, and evaluate the acute oral toxicity of the extract. MATERIALS AND METHODS The SDEA extract was separated and analysed by HPLC to disclose its main chemicals. The effects of the extract were then investigated in vitro on cell viability, apoptosis and cell cycle using fluorescence microscopy and flow cytometry, and the molecular mechanism against human lung cancer cells A549 was further studied by western blot assays. The in vivo anti-cancer effect of the extract was evaluated in A549 xenograft mice model by histochemical assay, and tumor growth, microvascular density (MVD) and Ki67 expression were also measured. In addition, acute oral toxicity test of the extract was executed in mice. RESULTS SDEA extract mainly contained eight biflavonoids. The extract caused the loss of mitochondrial membrane potential and induced cell apoptosis by upregulating Bax, downregulating Bcl-2, activating caspase-9 and caspase-3 and blocked the cell cycle in S phase. The extract reduced expression of antigen Ki67, decreased MVD, and significantly inhibited the tumor growth. The extract did not show apparent oral acute toxicity in healthy mice. CONCLUSION The SDEA extract exerted anti-tumor effect through activating mitochondrial pathways and reducing Ki67 expression and MVD. Low oral acute toxicity suggested it a promising chemotherapy agent.
Collapse
MESH Headings
- A549 Cells
- Acetates/chemistry
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/toxicity
- Apoptosis/drug effects
- Blotting, Western
- Caspases/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Chromatography, High Pressure Liquid
- Dose-Response Relationship, Drug
- Flow Cytometry
- Humans
- Ki-67 Antigen/metabolism
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Fluorescence
- Microvessels/drug effects
- Microvessels/pathology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Neovascularization, Pathologic
- Phytotherapy
- Plant Extracts/administration & dosage
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plant Extracts/toxicity
- Plants, Medicinal
- S Phase Cell Cycle Checkpoints/drug effects
- Selaginellaceae/chemistry
- Signal Transduction/drug effects
- Solvents/chemistry
- Time Factors
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yuxia Sui
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China; Provincial Clinical College of Fujian Medical University, Department of Pharmacy, Fuzhou 350001, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China
| | - Peiying Shi
- Department of TCM resource and Apitherapy, Bee Science College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youjia Wu
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China
| | - Yuxiang Li
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China; Fujian Center For Disease Control & Prevention, Fuzhou 350001, China
| | - Weiying Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China.
| | - XinHua Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China.
| |
Collapse
|
50
|
Choudhary AK, Devi RS. Effects of aspartame on hsp70, bcl-2 and bax expression in immune organs of Wistar albino rats. J Biomed Res 2016; 30:427-435. [PMID: 27845306 PMCID: PMC5044715 DOI: 10.7555/jbr.30.20140097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/10/2014] [Accepted: 05/06/2016] [Indexed: 12/13/2022] Open
Abstract
Aspartame, a “first generation sweetener”, is widely used in a variety of foods, beverages, and medicine. The FDA has determined the acceptable daily intake (ADI) value of aspartame to be 50 mg/kg·day, while the JECFA (Joint FAO/WHO Expert Committee on Food Additives) has set this value at 40 mg/kg of body weight/day. Safety issues have been raised about aspartame due to its metabolites, specifically toxicity from methanol and/or its systemic metabolites formaldehyde and formic acid. The immune system is now recognized as a target organ for many xenobiotics, such as drugs and chemicals, which are able to trigger unwanted apoptosis or to alter the regulation of apoptosis. Our previous studies has shown that oral administration of aspartame [40 mg/(kg·day)] or its metabolites for 90 days increased oxidative stress in immune organs of Wistar albino rats. In this present study, we aimed to clarify whether aspartame consumption over a longer period (90-days) has any effect on the expression of hsp70, bcl-2 and bax at both mRNA transcript and protein expression levels in immune organs. We observed that oral administration of aspartame for 90 days did not cause any apparent DNA fragmentation in immune organs of aspartame treated animals; however, there was a significant increase in hsp70 expression, apart from significant alteration in bcl-2 and bax at both mRNA transcript and protein expression level in the immune organs of aspartame treated animals compared to controls. Hence, the results indicated that hsp70 levels increased in response to oxidative injury induced by aspartame metabolites; however, these metabolites did not induce apoptosis in the immune organs. Furthermore, detailed analyses are needed to elucidate the precise molecular mechanisms involved in these changes.
Collapse
Affiliation(s)
- Arbind Kumar Choudhary
- Department of Physiology, Dr. ALM.PG. Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamilnadu, India
| | - Rathinasamy Sheela Devi
- Department of Physiology, Dr. ALM.PG. Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamilnadu, India;
| |
Collapse
|