1
|
Almansour I, Jermy BR. Nucleic acid vaccine candidates encapsulated with mesoporous silica nanoparticles against MERS-CoV. Hum Vaccin Immunother 2024; 20:2346390. [PMID: 38691025 PMCID: PMC11067998 DOI: 10.1080/21645515.2024.2346390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Middle East respiratory coronavirus (MERS-CoV) is a newly emergent, highly pathogenic coronavirus that is associated with 34% mortality rate. MERS-CoV remains listed as priority pathogen by the WHO. Since its discovery in 2012 and despite the efforts to develop coronaviruses vaccines to fight against SARS-CoV-2, there are currently no MERS-CoV vaccine that has been approved. Therefore, there is high demand to continue on the development of prophylactic vaccines against MERS-CoV. Current advancements in vaccine developments can be adapted for the development of improved MERS-CoV vaccines candidates. Nucleic acid-based vaccines, including pDNA and mRNA, are relatively new class of vaccine platforms. In this work, we developed pDNA and mRNA vaccine candidates expressing S.FL gene of MERS-CoV. Further, we synthesized a silane functionalized hierarchical aluminosilicate to encapsulate each vaccine candidates. We tested the nucleic acid vaccine candidates in mice and evaluated humoral antibodies response. Interestingly, we determined that the non-encapsulated, codon optimized S.FL pDNA vaccine candidate elicited the highest level of antibody responses against S.FL and S1 of MERS-CoV. Encapsulation of mRNA with nanoporous aluminosilicate increased the humoral antibody responses, whereas encapsulation of pDNA did not. These findings suggests that MERS-CoV S.FL pDNA vaccine candidate induced the highest level of humoral responses. This study will enhance further optimization of nanosilica as potential carrier for mRNA vaccines. In conclusion, this study suggests MERS-CoV pDNA vaccine candidate as a suitable vaccine platform for further pivotal preclinical testings.
Collapse
Affiliation(s)
- Iman Almansour
- Nucleic Acid Vaccine Laboratory, Department of Epidemic Diseases Research, Institute for Research and Medical Consultations IRMC, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - B. Rabindran Jermy
- Department of Nanomedicine Research, Institute for Research and Medical Consultations IRMC, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
3
|
Alatawi A, Gumel AB. Mathematical assessment of control strategies against the spread of MERS-CoV in humans and camels in Saudi Arabia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6425-6470. [PMID: 39176403 DOI: 10.3934/mbe.2024281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A new mathematical model for the transmission dynamics and control of the Middle Eastern respiratory syndrome (MERS), a respiratory virus caused by MERS-CoV coronavirus (and primarily spread to humans by dromedary camels) that first emerged out of the Kingdom of Saudi Arabia (KSA) in 2012, was designed and used to study the transmission dynamics of the disease in a human-camel population within the KSA. Rigorous analysis of the model, which was fitted and cross-validated using the observed MERS-CoV data for the KSA, showed that its disease-free equilibrium was locally asymptotically stable whenever its reproduction number (denoted by $ {\mathbb R}_{0M} $) was less than unity. Using the fixed and estimated parameters of the model, the value of $ {\mathbb R}_{0M} $ for the KSA was estimated to be 0.84, suggesting that the prospects for MERS-CoV elimination are highly promising. The model was extended to allow for the assessment of public health intervention strategies, notably the potential use of vaccines for both humans and camels and the use of face masks by humans in public or when in close proximity with camels. Simulations of the extended model showed that the use of the face mask by humans who come in close proximity with camels, as a sole public health intervention strategy, significantly reduced human-to-camel and camel-to-human transmission of the disease, and this reduction depends on the efficacy and coverage of the mask type used in the community. For instance, if surgical masks are prioritized, the disease can be eliminated in both the human and camel population if at least 45% of individuals who have close contact with camels wear them consistently. The simulations further showed that while vaccinating humans as a sole intervention strategy only had marginal impact in reducing the disease burden in the human population, an intervention strategy based on vaccinating camels only resulted in a significant reduction in the disease burden in camels (and, consequently, in humans as well). Thus, this study suggests that attention should be focused on effectively combating the disease in the camel population, rather than in the human population. Furthermore, the extended model was used to simulate a hybrid strategy, which combined vaccination of both humans and camels as well as the use of face masks by humans. This simulation showed a marked reduction of the disease burden in both humans and camels, with an increasing effectiveness level of this intervention, in comparison to the baseline scenario or any of the aforementioned sole vaccination scenarios. In summary, this study showed that the prospect of the elimination of MERS-CoV-2 in the Kingdom of Saudi Arabia is promising using pharmaceutical (vaccination) and nonpharmaceutical (mask) intervention strategies, implemented in isolation or (preferably) in combination, that are focused on reducing the disease burden in the camel population.
Collapse
Affiliation(s)
- Adel Alatawi
- Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abba B Gumel
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
4
|
Biswas S, Mita MA, Afrose S, Hasan MR, Shimu MSS, Zaman S, Saleh MA. An in silico approach to develop potential therapies against Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Heliyon 2024; 10:e25837. [PMID: 38379969 PMCID: PMC10877303 DOI: 10.1016/j.heliyon.2024.e25837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
A deadly respiratory disease Middle East Respiratory Syndrome (MERS) is caused by a perilous virus known as MERS-CoV, which has a severe impact on human health. Currently, there is no approved vaccine, prophylaxis, or antiviral therapeutics for preventing MERS-CoV infection. Due to its inexorable and integral role in the maturation and replication of the MERS-CoV virus, the 3C-like protease is unavoidly a viable therapeutic target. In this study, 2369 phytoconstituents were enlisted from Japanese medicinal plants, and these compounds were screened against 3C-like protease to identify feasible inhibitors. The best three compounds were identified as Kihadanin B, Robustaflavone, and 3-beta-O- (trans-p-Coumaroyl) maslinic acid, with binding energies of -9.8, -9.4, and -9.2 kcal/mol, respectively. The top three potential candidates interacted with several active site residues in the targeted protein, including Cys145, Met168, Glu169, Ala171, and Gln192. The best three compounds were assessed by in silico technique to determine their drug-likeness properties, and they exhibited the least harmful features and the greatest drug-like qualities. Various descriptors, such as solvent-accessible surface area, root-mean-square fluctuation, root-mean-square deviation, hydrogen bond, and radius of gyration, validated the stability and firmness of the protein-ligand complexes throughout the 100ns molecular dynamics simulation. Moreover, the top three compounds exhibited better binding energy along with better stability and firmness than the inhibitor (Nafamostat), which was further confirmed by the binding free energy calculation. Therefore, this computational investigation could aid in the development of efficient therapeutics for life-threatening MERS-CoV infections.
Collapse
Affiliation(s)
- Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
5
|
Al-Salmi FA, El-Megharbel SM, Hamza RZ. Synthesis and spectroscopic study of novel mixed ligand formula "Artemisinin/Zn" and assessment of its inhibitory effect against "SARS-CoV-2″. Heliyon 2023; 9:e17177. [PMID: 37366527 PMCID: PMC10277259 DOI: 10.1016/j.heliyon.2023.e17177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Background Herein, a newly synthesised mixed ligand artemisinin/zinc (Art/Zn) is chemically characterised and examined against SARS-CoV-2. Methods The synthesised complex was thoroughly characterised using various spectroscopic methods (FT-IR, UV and XRD). Its surface morphology and chemical purity were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. The synthesised Art/Zn complex was tested for its inhibitory effects against SARS-CoV-2 using inhibitory concentration 50 (IC50) and cytotoxicity concentration 50 (CC50). Results The results reveal that the Art/Zn complex exhibits a moderate in vitro inhibitory effects against SARS-CoV-2, with a CC50 index of 213.6 μg/ml and an IC50 index of 66.79 μg/ml. Notably, it exhibits the inhibitory effect (IC50 = 66.79 μg/ml) at a very low concentration without any observable cytotoxic effects on host cells (CC50 = 213.6 μg/ml). Its mode of action against SARS-CoV-2 involves inhibiting the viral replication. The predicted target classes that Art/Zn may affect include kinases, which can regulate and inhibit the viral replication and binding to the angiotensin-converting enzyme-2 (ACE2) receptor and the main protease inhibitor (MPro), thereby inhibiting the activity of SARS-CoV-2 and proved by the molecular dynamics simulation. Conclusion We recommend using the Art/Zn complex owing to its moderate inhibitory and antiviral effects against the SARS-CoV-2 with a low cytotoxic effect on host (Vero E6) cells. We suggest conducting further prospective studies to investigate the biological effects of Art/Zn in animal models at different concentrations for testing its clinical efficacy and safety in inhibiting SARS-CoV-2 activities.
Collapse
Affiliation(s)
- Fawziah A Al-Salmi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Samy M El-Megharbel
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Chemistry, Zagazig University, P.O. Box 44519, Zagazig, 44519, Egypt
| | - Reham Z Hamza
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Zoology, Zagazig University, P.O. Box 44519, Zagazig, 44519, Egypt
| |
Collapse
|
6
|
Singh RS, Singh A, Masih GD, Batra G, Sharma AR, Joshi R, Prakash A, Suroy B, Sarma P, Prajapat M, Kaur H, Bhattacharyya A, Upadhyay S, Medhi B. A comprehensive insight on the challenges for COVID-19 vaccine: A lesson learnt from other viral vaccines. Heliyon 2023; 9:e16813. [PMID: 37303517 PMCID: PMC10245239 DOI: 10.1016/j.heliyon.2023.e16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
The aim of this study is to comprehensively analyze previous viral vaccine programs and identify potential challenges and effective measures for the COVID-19 vaccine program. Previous viral vaccine programs, such as those for HIV, Zika, Influenza, Ebola, Dengue, SARS, and MERS, were evaluated. Paramount challenges were identified, including quasi-species, cross-reactivity, duration of immunity, revaccination, mutation, immunosenescence, and adverse events related to viral vaccines. Although a large population has been vaccinated, mutations in SARS-CoV-2 and adverse events related to vaccines pose significant challenges. Previous vaccine programs have taught us that predicting the final outcome of the current vaccine program for COVID-19 cannot be determined at a given state. Long-term follow-up studies are essential. Validated preclinical studies, long-term follow-up studies, alternative therapeutic approaches, and alternative vaccines are necessary.
Collapse
Affiliation(s)
- Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gladson David Masih
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Benjamin Suroy
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Sector-32, Chandigarh, 160030, India
| | - Sujata Upadhyay
- Department of Physiology, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
7
|
Oh J, Park U, Kim J, Jeon K, Kim C, Cho NH, Choi YS. Enhancing immune protection against MERS-CoV: the synergistic effect of proteolytic cleavage sites and the fusion peptide and RBD domain targeting VLP immunization. Front Immunol 2023; 14:1201136. [PMID: 37275866 PMCID: PMC10235442 DOI: 10.3389/fimmu.2023.1201136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic infectious virus that has caused significant outbreaks in the Middle East and beyond. Due to a highly mortality rate, easy transmission, and rapid spread of the MERS-CoV, it remains as a significant public health treat. There is currently no licensed vaccine available to protect against MERS-CoV. Methods In this study, we investigated whether the proteolytic cleavage sites and fusion peptide domain of the MERS-CoV spike (S) protein could be a vaccine target to elicit the MERS-CoV S protein-specific antibody responses and confer immune protection against MERS-CoV infection. Our results demonstrate that immunization of the proteolytic cleavage sites and the fusion peptide domain using virus-like particle (VLP) induced the MERS-CoV S protein-specific IgG antibodies with capacity to neutralize pseudotyped MERS-CoV infection in vitro. Moreover, proteolytic cleavage sites and the fusion peptide VLP immunization showed a synergistic effect on the immune protection against MERS-CoV infection elicited by immunization with VLP expressing the receptor binding domain (RBD) of the S protein. Additionally, immune evasion of MERS-CoV RBD variants from anti-RBD sera was significantly controlled by anti-proteolytic cleavage sites and the fusion peptide sera. Conclusion and discussion Our study demonstrates the potential of VLP immunization targeting the proteolytic cleavage sites and the fusion peptide and RBD domains of the MERS-CoV S protein for the development of effective treatments and vaccines against MERS-CoV and related variants.
Collapse
Affiliation(s)
- Jeein Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Uni Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Juhyung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyeongseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chulwoo Kim
- Deparatment of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
8
|
Joshi A, Akhtar N, Sharma NR, Kaushik V, Borkotoky S. MERS virus spike protein HTL-epitopes selection and multi-epitope vaccine design using computational biology. J Biomol Struct Dyn 2023; 41:12464-12479. [PMID: 36935104 DOI: 10.1080/07391102.2023.2191137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/03/2023] [Indexed: 03/20/2023]
Abstract
MERS-CoV, a zoonotic virus, poses a serious threat to public health globally. Thus, it is imperative to develop an effective vaccination strategy for protection against MERS-CoV. Immunoinformatics and computational biology tools provide a faster and more cost-effective strategy to design potential vaccine candidates. In this work, the spike proteins from different strains of MERS-CoV were selected to predict HTL-epitopes that show affinity for T-helper MHC-class II HTL allelic determinant (HLA-DRB1:0101). The antigenicity and conservation of these epitopes among the selected spike protein variants in different MERS-CoV strains were analyzed. The analysis identified five epitopes with high antigenicity: QSIFYRLNGVGITQQ, DTIKYYSIIPHSIRS, PEPITSLNTKYVAPQ, INGRLTTLNAFVAQQ and GDMYVYSAGHATGTT. Then, a multi-epitope vaccine candidate was designed using linkers and adjuvant molecules. Finally, the vaccine construct was subjected to molecular docking with TLR5 (Toll-like receptor-5). The proposed vaccine construct had strong binding energy of -32.3 kcal/mol when interacting with TLR5.Molecular dynamics simulation analysis showed that the complex of the vaccine construct and TLR5 is stable. Analysis using in silico immune simulation also showed that the prospective multi-epitope vaccine design had the potential to elicit a response within 70 days, with the immune system producing cytokines and immunoglobulins. Finally, codon adaptation and in silico cloning analysis showed that the candidate vaccine could be expressed in the Escherichia coli K12 strain. Here we also designed support vaccine construct MEV-2 by using B-cell and CD8+ CTL epitopes to generate the complete immunogenic effect. This study opens new avenues for the extension of research on MERS vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Joshi
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, Kalinga University, Raipur, India
| | - Nahid Akhtar
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Subhomoi Borkotoky
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| |
Collapse
|
9
|
Lacasta A, Kim HC, Kepl E, Gachogo R, Chege N, Ojuok R, Muriuki C, Mwalimu S, Touboul G, Stiber A, Poole EJ, Ndiwa N, Fiala B, King NP, Nene V. Design and immunological evaluation of two-component protein nanoparticle vaccines for East Coast fever. Front Immunol 2023; 13:1015840. [PMID: 36713406 PMCID: PMC9880323 DOI: 10.3389/fimmu.2022.1015840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Nanoparticle vaccines usually prime stronger immune responses than soluble antigens. Within this class of subunit vaccines, the recent development of computationally designed self-assembling two-component protein nanoparticle scaffolds provides a powerful and versatile platform for displaying multiple copies of one or more antigens. Here we report the generation of three different nanoparticle immunogens displaying 60 copies of p67C, an 80 amino acid polypeptide from a candidate vaccine antigen of Theileria parva, and their immunogenicity in cattle. p67C is a truncation of p67, the major surface protein of the sporozoite stage of T. parva, an apicomplexan parasite that causes an often-fatal bovine disease called East Coast fever (ECF) in sub-Saharan Africa. Compared to I32-19 and I32-28, we found that I53-50 nanoparticle scaffolds displaying p67C had the best biophysical characteristics. p67C-I53-50 also outperformed the other two nanoparticles in stimulating p67C-specific IgG1 and IgG2 antibodies and CD4+ T-cell responses, as well as sporozoite neutralizing capacity. In experimental cattle vaccine trials, p67C-I53-50 induced significant immunity to ECF, suggesting that the I53-50 scaffold is a promising candidate for developing novel nanoparticle vaccines. To our knowledge this is the first application of computationally designed nanoparticles to the development of livestock vaccines.
Collapse
Affiliation(s)
- Anna Lacasta
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya,*Correspondence: Anna Lacasta, ; Neil P. King,
| | - Hyung Chan Kim
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Rachael Gachogo
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Naomi Chege
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Rose Ojuok
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Charity Muriuki
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Stephen Mwalimu
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Gilad Touboul
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Ariel Stiber
- Summer Undergraduate Research Fellowship Program, Caltech, Pasadena, CA, United States
| | - Elizabeth Jane Poole
- Research Methods Group, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Nicholas Ndiwa
- Research Methods Group, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States,*Correspondence: Anna Lacasta, ; Neil P. King,
| | - Vishvanath Nene
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
10
|
Kumar A, Sharma A, Tirpude NV, Thakur S, Kumar S. Combating the Progression of Novel Coronavirus SARS-CoV-2 Infectious Disease: Current State and Future Prospects in Molecular Diagnostics and Drug Discovery. Curr Mol Med 2023; 23:127-146. [PMID: 34344288 DOI: 10.2174/1566524021666210803154250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
A highly infectious and life-threatening virus was first reported in Wuhan, China, in late 2019, and it rapidly spread all over the world. This novel virus belongs to the coronavirus family and is associated with severe acute respiratory syndrome (SARS), causing respiratory disease known as COVID-19. In March 2020, WHO has declared the COVID-19 outbreak a global pandemic. Its morbidity and mortality rates are swiftly rising day by day, with the situation becoming more severe and fatal for the comorbid population. Many COVID-19 patients are asymptomatic, but they silently spread the infection. There is a need for proper screening of infected patients to prevent the epidemic transmission of disease and for early curative interventions to reduce the risk of developing severe complications from COVID-19. To date, the diagnostic assays are of two categories, molecular detection of viral genetic material by real-time RTpolymerase chain reaction and serological test, which relies on detecting antiviral antibodies. Unfortunately, there are no effective prophylactics and therapeutics available against COVID-19. However, a few drugs have shown promising antiviral activity against it, and these presently are being referred for clinical trials, albeit FDA has issued an Emergency Use Authorization (EUA) for the emergency use of a few drugs for SARSCoV- 2 infection. This review provides an insight into current progress, challenges and future prospects of laboratory detection methods of COVID-19, and highlights the clinical stage of the major evidence-based drugs/vaccines recommended against the novel SARS-CoV-2 pandemic virus.
Collapse
Affiliation(s)
- Arbind Kumar
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Aashish Sharma
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Narendra Vijay Tirpude
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Sharad Thakur
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| |
Collapse
|
11
|
Atoum MF, Padma KR, Don KR. Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e131577. [PMID: 36915406 PMCID: PMC10007998 DOI: 10.5812/ijpr-131577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 01/22/2023]
Abstract
CONTEXT The whole universe is facing a coronavirus catastrophe, and prompt treatment for the health crisis is primarily significant. The primary way to improve health conditions in this battle is to boost our immunity and alter our diet patterns. A common bulb veggie used to flavor cuisine is garlic. Compounds in the plant that are physiologically active are present, contributing to its pharmacological characteristics. Among several food items with nutritional value and immunity improvement, garlic stood predominant and more resourceful natural antibiotic with a broad spectrum of antiviral potency against diverse viruses. However, earlier reports have depicted its efficacy in the treatment of a variety of viral illnesses. Nonetheless, there is no information on its antiviral activities and underlying molecular mechanisms. OBJECTIVES The bioactive compounds in garlic include organosulfur (allicin and alliin) and flavonoid (quercetin) compounds. These compounds have shown immunomodulatory effects and inhibited attachment of coronavirus to the angiotensin-converting enzyme 2 (ACE2) receptor and the Mpro of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Further, we have discussed the contradictory impacts of garlic used as a preventive measure against the novel coronavirus. METHOD The GC/MS analysis revealed 18 active chemicals, including 17 organosulfur compounds in garlic. Using the molecular docking technique, we report for the first time the inhibitory effect of the under-consideration compounds on the host receptor ACE2 protein in the human body, providing a crucial foundation for understanding individual compound coronavirus resistance on the main protease protein of SARS-CoV-2. Allyl disulfide and allyl trisulfide, which make up the majority of the compounds in garlic, exhibit the most potent activity. RESULTS Conventional medicine has proven its efficiency from ancient times. Currently, our article's prime spotlight was on the activity of Allium sativum on the relegation of viral load and further highlighted artificial intelligence technology to study the attachment of the allicin compound to the SARS-CoV-2 receptor to reveal its efficacy. CONCLUSIONS The COVID-19 pandemic has triggered interest among researchers to conduct future research on molecular docking with clinical trials before releasing salutary remedies against the deadly malady.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Faculty of Applied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Kanchi Ravi Padma
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women’s) University, Tirupati, India
| | - Kanchi Ravi Don
- Department of Oral Pathology and Microbiology, Bharath Institute of Higher Education and Research, Sree Balaji Dental College and Hospital, Chennai, India
| |
Collapse
|
12
|
El-Kafrawy SA, Odle A, Abbas AT, Hassan AM, Abdel-dayem UA, Qureshi AK, Wong LYR, Zheng J, Meyerholz DK, Perlman S, Zumla A, Azhar EI. SARS-CoV-2-specific immunoglobulin Y antibodies are protective in infected mice. PLoS Pathog 2022; 18:e1010782. [PMID: 36121829 PMCID: PMC9484655 DOI: 10.1371/journal.ppat.1010782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Safe, passive immunization methods are required against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants. Immunization of chickens with antigen is known to induce specific IgY antibodies concentrated in the egg yolk and has a good safety profile, high yield of IgY per egg, can be topically applied, not requiring parenteral delivery. Our data provide the first evidence of the prophylactic efficacy of Immunoglobulin Y antibodies against SARS-CoV-2 in mice. Lohmann hens were injected with recombinant SARS-CoV-2 RBD protein; IgY-Abs were extracted from the eggs and characterized using SDS-PAGE. Antiviral activity was evaluated using plaque reduction neutralization tests. In additional experiments, IgY-RBD efficacy was examined in mice sensitized to SARS-CoV-2 infection by transduction with Ad5-hACE2 (mild disease) or by using mouse-adapted virus (severe disease). In both cases, prophylactic intranasal administration of IgY-Abs reduced SARS-CoV-2 replication, and reduced morbidity, inflammatory cell infiltration, hemorrhage, and edema in the lungs and increased survival compared to control groups that received non-specific IgY-Abs. These results indicate that further evaluation of IgY-RBD antibodies in humans is warranted.
Collapse
Affiliation(s)
- Sherif A. El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Aymn T. Abbas
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Biotechnology Research Laboratories, Gastroenterology, Surgery Centre, Mansoura University, Mansoura, Egypt
| | - Ahmed M. Hassan
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Umama A. Abdel-dayem
- Animal Facility Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arooj K. Qureshi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, United Kingdom
- NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Esam I. Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Kumar A, O Pai M, Badoni G, Singh A, Agrawal A, Ji Omar B. Perspective Chapter: Tracking Trails of SARS CoV-2 - Variants to Therapy. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.106472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
A virus when replicates itself from one generation to another, tends to change a little bit of its structure. These variations are called mutations. History says that SARS CoV-2 originated from the virus reservoirs of animals, specifically non-human mammals like bats and minks. Since then, there are evolutionary changes in its genome due to recombination in divergent strains of different species. Thus, making the virus more robust and smarter to sustain and evade immune responses in humans. Probably, this has led to the 2019 SARS CoV-2 pandemic. This chapter tracks the evolutionary trails of the virus origin, its pathogenesis in humans, and varying variants with the coming times. Eventually, the chapter overviews the available vaccines and therapies to be followed for SARS CoV-2.
Collapse
|
14
|
Kumar A, Ladha A, Choudhury A, Ikbal AMA, Bhattacharjee B, Das T, Gupta G, Sharma C, Sarbajna A, Mandal SC, Choudhury MD, Ali N, Slama P, Rezaei N, Palit P, Tiwari ON. The chimera of S1 and N proteins of SARS-CoV-2: can it be a potential vaccine candidate for COVID-19? Expert Rev Vaccines 2022; 21:1071-1086. [PMID: 35604776 DOI: 10.1080/14760584.2022.2081156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the biggest global health issues. Spike protein (S) and nucleoprotein (N), the major immunogenic components of SARS-CoV-2, have been shown to be involved in the attachment and replication of the virus inside the host cell. AREAS COVERED Several investigations have shown that the SARS-CoV-2 nucleoprotein can elicit a cell-mediated immune response capable of regulating viral replication and lowering viral burden. However, the development of an effective vaccine that can stop the transmission of SARS-CoV-2 remains a matter of concern. Literature was retrieved using the keywords COVID-19 vaccine, role of nucleoprotein as vaccine candidate, spike protein, nucleoprotein immune responses against SARS-CoV-2, and chimera vaccine in PubMed, Google Scholar, and Google. EXPERT OPINION We have focussed on the use of chimera protein, consisting of N and S-1 protein components of SARS-CoV-2, as a potential vaccine candidate. This may act as a polyvalent mixed recombinant protein vaccine to elicit a strong T and B cell immune response, which will be capable of neutralizing the wild and mutated variants of SARS-CoV-2, and also restricting its attachment, replication, and budding in the host cell.
Collapse
Affiliation(s)
- Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | - Amit Ladha
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Ankita Choudhury
- Department of Pharmaceutical Sciences, Allama TR College of Pharmacy, Hospital Rd, Srigouri, India
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Tripura (W), India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tanmay Das
- Department of Business Administration, Assam University Silchar, India
| | - Gaurav Gupta
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chhavi Sharma
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Adity Sarbajna
- Department of Zoology, Surendranath College, Kolkata, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Nahid Ali
- Division of Immunology, Department of Infectious Diseases, INDIAN INSTITUTE OF CHEMICAL BIOLOGY, Kolkata, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Partha Palit
- Department of Pharmaceutical Sciences Drug Discovery research Laboratory, Assam University, Silchar, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
15
|
Abduljaleel Z, Shahzad N, Aziz SA, Malik SM. Monoclonal antibody designed for SARS-nCoV-2 spike protein of receptor binding domain on antigenic targeted epitopes for inhibition to prevent viral entry. Mol Divers 2022; 27:695-708. [PMID: 35616802 PMCID: PMC9133318 DOI: 10.1007/s11030-022-10449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
SARS, or severe acute respiratory syndrome, is caused by a novel coronavirus (COVID-19). This situation has compelled many pharmaceutical R&D companies and public health research sectors to focus their efforts on developing effective therapeutics. SARS-nCoV-2 was chosen as a protein spike to targeted monoclonal antibodies and therapeutics for prevention and treatment. Deep mutational scanning created a monoclonal antibody to characterize the effects of mutations in a variable antibody fragment based on its expression levels, specificity, stability, and affinity for specific antigenic conserved epitopes to the Spike-S-Receptor Binding Domain (RBD). Improved contacts between Fv light and heavy chains and the targeted antigens of RBD could result in a highly potent neutralizing antibody (NAbs) response as well as cross-protection against other SARS-nCoV-2 strains. It undergoes multipoint core mutations that combine enhancing mutations, resulting in increased binding affinity and significantly increased stability between RBD and antibody. In addition, we improved. Structures of variable fragment (Fv) complexed with the RBD of Spike protein were subjected to our established in-silico antibody-engineering platform to obtain enhanced binding affinity to SARS-nCoV-2 and develop ability profiling. We found that the size and three-dimensional shape of epitopes significantly impacted the activity of antibodies produced against the RBD of Spike protein. Overall, because of the conformational changes between RBD and hACE2, it prevents viral entry. As a result of this in-silico study, the designed antibody can be used as a promising therapeutic strategy to treat COVID-19.
Collapse
Affiliation(s)
- Zainularifeen Abduljaleel
- Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Mecca, 21955, Kingdom of Saudi Arabia.
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Mecca, 21955, Kingdom of Saudi Arabia.
- The Regional Laboratory, Molecular Diagnostics Unit, Department of Molecular Biology, Ministry of Health (MOH), P.O. Box 6251, Mecca, Saudi Arabia.
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Syed A Aziz
- Department of Pathology and Lab Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shaheer M Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
16
|
Forni D, Cagliani R, Molteni C, Arrigoni F, Mozzi A, Clerici M, De Gioia L, Sironi M. Homology-based classification of accessory proteins in coronavirus genomes uncovers extremely dynamic evolution of gene content. Mol Ecol 2022; 31:3672-3692. [PMID: 35575901 PMCID: PMC9328142 DOI: 10.1111/mec.16531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
Coronaviruses (CoVs) have complex genomes that encode a fixed array of structural and nonstructural components, as well as a variety of accessory proteins that differ even among closely related viruses. Accessory proteins often play a role in the suppression of immune responses and may represent virulence factors. Despite their relevance for CoV phenotypic variability, information on accessory proteins is fragmentary. We applied a systematic approach based on homology detection to create a comprehensive catalogue of accessory proteins encoded by CoVs. Our analyses grouped accessory proteins into 379 orthogroups and 12 super‐groups. No orthogroup was shared by the four CoV genera and very few were present in all or most viruses in the same genus, reflecting the dynamic evolution of CoV genomes. We observed differences in the distribution of accessory proteins in CoV genera. Alphacoronaviruses harboured the largest diversity of accessory open reading frames (ORFs), deltacoronaviruses the smallest. However, the average number of accessory proteins per genome was highest in betacoronaviruses. Analysis of the evolutionary history of some orthogroups indicated that the different CoV genera adopted similar evolutionary strategies. Thus, alphacoronaviruses and betacoronaviruses acquired phosphodiesterases and spike‐like accessory proteins independently, whereas horizontal gene transfer from reoviruses endowed betacoronaviruses and deltacoronaviruses with fusion‐associated small transmembrane (FAST) proteins. Finally, analysis of accessory ORFs in annotated CoV genomes indicated ambiguity in their naming. This complicates cross‐communication among researchers and hinders automated searches of large data sets (e.g., PubMed, GenBank). We suggest that orthogroup membership is used together with a naming system to provide information on protein function.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
17
|
Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther 2022; 7:146. [PMID: 35504917 PMCID: PMC9062866 DOI: 10.1038/s41392-022-00996-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
With the constantly mutating of SARS-CoV-2 and the emergence of Variants of Concern (VOC), the implementation of vaccination is critically important. Existing SARS-CoV-2 vaccines mainly include inactivated, live attenuated, viral vector, protein subunit, RNA, DNA, and virus-like particle (VLP) vaccines. Viral vector vaccines, protein subunit vaccines, and mRNA vaccines may induce additional cellular or humoral immune regulations, including Th cell responses and germinal center responses, and form relevant memory cells, greatly improving their efficiency. However, some viral vector or mRNA vaccines may be associated with complications like thrombocytopenia and myocarditis, raising concerns about the safety of these COVID-19 vaccines. Here, we systemically assess the safety and efficacy of COVID-19 vaccines, including the possible complications and different effects on pregnant women, the elderly, people with immune diseases and acquired immunodeficiency syndrome (AIDS), transplant recipients, and cancer patients. Based on the current analysis, governments and relevant agencies are recommended to continue to advance the vaccine immunization process. Simultaneously, special attention should be paid to the health status of the vaccines, timely treatment of complications, vaccine development, and ensuring the lives and health of patients. In addition, available measures such as mix-and-match vaccination, developing new vaccines like nanoparticle vaccines, and optimizing immune adjuvant to improve vaccine safety and efficacy could be considered.
Collapse
Affiliation(s)
- Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Han Wang
- Laboratory for Clinical Immunology, Harbin Children's Hospital, Harbin, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qingkun Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianqi Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
18
|
Lim TS, Choong YS. In silico design of ACE2 mutants for competitive binding of SARS-CoV-2 receptor binding domain with hACE2. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The receptor binding motif (RBM) within the S-protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been touted as one of the main targets for vaccine/therapeutic development due to its interaction with the human angiotensin II converting enzyme 2 (hACE2) to facilitate virus entry into the host cell. The mechanism of action is based on the disruption of binding between the RBM and the hACE2 to prevent virus uptake for replication. In this work, we applied in silico approaches to design specific competitive binders for SARS-CoV-2 S-protein receptor binding motif (RBM) by using hACE2 peptidase domain (PD) mutants. Online single point mutation servers were utilised to estimate the effect of PD mutation on the binding affinity with RBM. The PD mutants were then modelled and the binding free energy was calculated. Three PD variants were designed with an increased affinity and interaction with SARS-CoV-2-RBM. It is hope that these designs could serve as the initial work for vaccine/drug development and could eventually interfere the preliminary recognition between SARS-CoV-2 and the host cell.
Collapse
Affiliation(s)
- Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia , Penang , Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia , Penang , Malaysia
| |
Collapse
|
19
|
Tai W, Zhang X, Yang Y, Zhu J, Du L. Advances in mRNA and other vaccines against MERS-CoV. Transl Res 2022; 242:20-37. [PMID: 34801748 PMCID: PMC8603276 DOI: 10.1016/j.trsl.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus (CoV). Belonging to the same beta-CoV genus as severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and SARS-CoV-2, MERS-CoV has a significantly higher fatality rate with limited human-to-human transmissibility. MERS-CoV causes sporadic outbreaks, but no vaccines have yet been approved for use in humans, thus calling for continued efforts to develop effective vaccines against this important CoV. Similar to SARS-CoV-1 and SARS-CoV-2, MERS-CoV contains 4 structural proteins, among which the surface spike (S) protein has been used as a core component in the majority of currently developed MERS-CoV vaccines. Here, we illustrate the importance of the MERS-CoV S protein as a key vaccine target and provide an update on the currently developed MERS-CoV vaccines, including those based on DNAs, proteins, virus-like particles or nanoparticles, and viral vectors. Additionally, we describe approaches for designing MERS-CoV mRNA vaccines and explore the role and importance of naturally occurring pseudo-nucleosides in the design of effective MERS-CoV mRNA vaccines. This review also provides useful insights into designing and evaluating mRNA vaccines against other viral pathogens.
Collapse
Affiliation(s)
- Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, Califonia; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
20
|
Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2. J Microbiol 2022; 60:335-346. [PMID: 35089583 PMCID: PMC8795728 DOI: 10.1007/s12275-022-1608-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
The global spread of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has provoked an urgent need for prophylactic measures. Several innovative vaccine platforms have been introduced and billions of vaccine doses have been administered worldwide. To enable the creation of safer and more effective vaccines, additional platforms are under development. These include the use of nanoparticle (NP) and virus-like particle (VLP) technology. NP vaccines utilize self-assembling scaffold structures designed to load the entire spike protein or receptor-binding domain of SARS-CoV-2 in a trimeric configuration. In contrast, VLP vaccines are genetically modified recombinant viruses that are considered safe, as they are generally replication-defective. Furthermore, VLPs have indigenous immunogenic potential due to their microbial origin. Importantly, NP and VLP vaccines have shown stronger immunogenicity with greater protection by mimicking the physicochemical characteristics of SARS-CoV-2. The study of NP- and VLP-based coronavirus vaccines will help ensure the development of rapid-response technology against SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
|
21
|
Jomhori M, Mosaddeghi H. Molecular modeling of natural and synthesized inhibitors against SARS-CoV-2 spike glycoprotein. RESEARCH ON BIOMEDICAL ENGINEERING 2022. [PMCID: PMC7779244 DOI: 10.1007/s42600-020-00122-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose Viral diseases increasingly endanger the world public health because of the transient efficacy of antiviral therapies. The novel coronavirus disease 2019 (COVID-19) has been recently identified as caused by a new type of coronaviruses. This type of coronavirus binds to the human receptor through the Spike glycoprotein (S) Receptor Binding Domain (RBD). The spike protein is found in inaccessible (closed) or accessible (open) conformations in which the accessible conformation causes severe infection. Thus, this receptor is a significant target for antiviral drug design. Methods An attempt was made to recognize 111 natural and synthesized compounds in order to utilize them against SARS-CoV-2 spike glycoprotein to inhibit Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using simulation methods, such as molecular docking. The FAF-Drugs3, Pan-Assay Interference Compounds (PAINS), ADME (absorption, distribution, metabolism, excretion) databases along with Lipinski’s rules were used to evaluate the drug-like properties of the identified ligands. In order to analyze and identify the residues critical in the docking process of the spike glycoprotein, the interactions of proposed ligands with both conformations of the spike glycoprotein was simulated. Results The results showed that among the available ligands, seven ligands had significant interactions with the binding site of the spike glycoprotein, in which angiotensin-converting enzyme 2 (ACE2) is bounded. Out of seven candidate molecules, six ligands exhibited drug-like characteristics. The results also demonstrated that fluorophenyl and propane groups of ligands had optimal interactions with the binding site of the spike glycoprotein. Conclusion According to the results, our findings indicated the ability of six ligands to prevent the binding of the SARS-CoV-2 spike glycoprotein to its cognate receptor, providing novel compounds for the treatment of COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s42600-020-00122-3.
Collapse
Affiliation(s)
| | - Hamid Mosaddeghi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| |
Collapse
|
22
|
Ozger ZB, Cihan P. A novel ensemble fuzzy classification model in SARS-CoV-2 B-cell epitope identification for development of protein-based vaccine. Appl Soft Comput 2022; 116:108280. [PMID: 34931117 PMCID: PMC8673934 DOI: 10.1016/j.asoc.2021.108280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
Abstract
B-cell epitope prediction research has received growing interest since the development of the first method. B-cell epitope identification with the aid of an accurate prediction method is one of the most important steps in epitope-based vaccine development, immunodiagnostic testing, antibody production, disease diagnosis, and treatment. Nevertheless, using experimental methods in epitope mapping is very time-consuming, costly, and labor-intensive. Therefore, although successful predictions with in silico methods are very important in epitope prediction, there are limited studies in this area. The aim of this study is to propose a new approach for successfully predicting B-cell epitopes for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, the SARS-CoV B-cell epitope prediction performances of different fuzzy learning classification models genetic cooperative competitive learning (GCCL), fuzzy genetics-based machine learning (GBML), Chi's method (CHI), Ishibuchi's method with weight factor (W), structural learning algorithm on vague environment (SLAVE) and the state-of-the-art ensemble fuzzy classification model were compared. The obtained results showed that the proposed ensemble approach has the lowest error in SARS-CoV B-cell epitope estimation compared to the base fuzzy learners (average error rates; ensemble fuzzy=8.33, GCCL=30.42, GBML=23.82, CHI=29.17, W=46.25, and SLAVE=20.42). SARS-CoV and SARS-CoV-2 have high genome similarities. Therefore, the most successful method determined for SARS-CoV B-cell epitope prediction was used in SARS-CoV-2 cell epitope prediction. Finally, the eventual B-cell epitope prediction results obtained for SARS-CoV-2 with the ensemble fuzzy classification model were compared with the epitope sequences predicted by the BepiPred server and immunoinformatics studies in the literature for the same protein sequences according to VaxiJen 2.0 scores. We hope that the developed epitope prediction method will help design effective vaccines and drugs against future outbreaks of the coronavirus family, especially SARS-CoV-2 and its possible mutations.
Collapse
Affiliation(s)
- Zeynep Banu Ozger
- Department of Computer Engineering, Sutcu Imam University, 46040, Kahramanmaras, Turkey
| | - Pınar Cihan
- Department of Computer Engineering, Tekirdag Namik Kemal University, 59860, Corlu, Tekirdag, Turkey
| |
Collapse
|
23
|
Du L, Yang Y, Zhang X, Li F. Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies. NANOSCALE 2022; 14:1054-1074. [PMID: 35018939 PMCID: PMC8863106 DOI: 10.1039/d1nr03831a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
COVID-19 has caused a global pandemic and millions of deaths. It is imperative to develop effective countermeasures against the causative viral agent, SARS-CoV-2 and its many variants. Vaccines and therapeutic antibodies are the most effective approaches for preventing and treating COVID-19, respectively. SARS-CoV-2 enters host cells through the activities of the virus-surface spike (S) protein. Accordingly, the S protein is a prime target for vaccines and therapeutic antibodies. Dealing with particles with dimensions on the scale of nanometers, nanotechnology has emerged as a critical tool for rapidly designing and developing safe, effective, and urgently needed vaccines and therapeutics to control the COVID-19 pandemic. For example, nanotechnology was key to the fast-track approval of two mRNA vaccines for their wide use in human populations. In this review article, we first explore the roles of nanotechnology in battling COVID-19, including protein nanoparticles (for presentation of protein vaccines), lipid nanoparticles (for formulation with mRNAs), and nanobodies (as unique therapeutic antibodies). We then summarize the currently available COVID-19 vaccines and therapeutics based on nanotechnology.
Collapse
Affiliation(s)
- Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, USA.
| |
Collapse
|
24
|
Cui Q, Garcia G, Zhang M, Wang C, Li H, Zhou T, Sun G, Arumugaswami V, Shi Y. Compound screen identifies the small molecule Q34 as an inhibitor of SARS-CoV-2 infection. iScience 2022; 25:103684. [PMID: 34977495 PMCID: PMC8704726 DOI: 10.1016/j.isci.2021.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
The COVID-19 outbreak poses a serious threat to global public health. Effective countermeasures and approved therapeutics are desperately needed. In this study, we screened a small molecule library containing the NCI-DTP compounds to identify molecules that can prevent SARS-CoV-2 cellular entry. By applying a luciferase assay-based screening using a pseudotyped SARS-CoV-2-mediated cell entry assay, we identified a small molecule compound Q34 that can efficiently block cellular entry of the pseudotyped SARS-CoV-2 into human ACE2-expressing HEK293T cells, and inhibit the infection of the authentic SARS-CoV-2 in human ACE2-expressing HEK293T cells, human iPSC-derived neurons and astrocytes, and human lung Calu-3 cells. Importantly, the safety profile of the compound is favorable. There is no obvious toxicity observed in uninfected cells treated with the compound. Thus, this compound holds great potential as both prophylactics and therapeutics for COVID-19 and future pandemics by blocking the entry of SARS-CoV-2 and related viruses into human cells. A compound library was screened to identify inhibitors of SARS-CoV-2 cellular entry Small molecule Q34 is a potent inhibitor of cellular entry of pseudotyped SARS-CoV-2 Compound Q34 inhibits authentic SARS-CoV-2 infection of human cells Compound Q34 is non-toxic to human cells without SARS-CoV-2 infection
Collapse
Affiliation(s)
- Qi Cui
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingzi Zhang
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Cheng Wang
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hongzhi Li
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Tao Zhou
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guihua Sun
- Diabetes and Metabolism Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
25
|
Bosaeed M, Balkhy HH, Almaziad S, Aljami HA, Alhatmi H, Alanazi H, Alahmadi M, Jawhary A, Alenazi MW, Almasoud A, Alanazi R, Bittaye M, Aboagye J, Albaalharith N, Batawi S, Folegatti P, Ramos Lopez F, Ewer K, Almoaikel K, Aljeraisy M, Alothman A, Gilbert SC, Khalaf Alharbi N. Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): an open-label, non-randomised, dose-escalation, phase 1b trial. THE LANCET. MICROBE 2022; 3:e11-e20. [PMID: 34751259 PMCID: PMC8565931 DOI: 10.1016/s2666-5247(21)00193-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND ChAdOx1-vectored vaccine candidates against several pathogens have been developed and tested in clinical trials and ChAdOx1 nCoV-19 has now been licensed for emergency use for COVID-19. We assessed the safety and immunogenicity of the ChAdOx1 MERS vaccine in a phase 1b trial in healthy Middle Eastern adults. METHOD MERS002 is an open-label, non-randomised, dose-escalation, phase 1b trial. Healthy Middle Eastern adults aged 18-50 years were included in the study. ChAdOx1 MERS was administered as a single intramuscular injection into the deltoid muscle of the non-dominant arm at three different dose groups: 5·0 × 109 viral particles in a low-dose group, 2·5 × 1010 viral particles in an intermediate-dose group, and 5·0 × 1010 viral particles in a high-dose group. The primary objective was to assess the safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited and unsolicited adverse events after vaccination for up to 28 days and occurrence of serious adverse events up to 6 months. The study is registered with ClinicalTrials.gov, NCT04170829. FINDINGS Between Dec 17, 2019, and June 1, 2020, 24 participants were enrolled (six to the low-dose, nine to the intermediate-dose, and nine to the high-dose group) and received a dose; 23 were available for follow-up at 6 months. The one dose of ChAdOx1 MERS vaccine was well tolerated with no serious adverse event reported during the 6 months of follow-up. Most adverse events were mild (67, 74%) and moderate (17, 19%). Six (7%) severe adverse events were reported by two participants in the intermediate-dose group (two feverish, two headache, one joint pain, and one muscle pain). Pain at the injection site was the most common local and overall adverse event, reported by 15 (63%) of the 24 participants. The most common systemic adverse event was headache, reported by 14 (58%), followed by muscle pain reported by 13 (54%). The vaccine induced both antibody and T cell immune responses in all volunteers; antibodies peaked at day 28 and T cell responses peaked at day 14; and continued until the end of follow-up at 6 months. INTERPRETATION The acceptable safety and immunogenicity data from this phase 1b trial of ChAdOx1 MERS vaccine candidate in Healthy Middle Eastern adults, combined with previous safety and immunogenicity data from a trial in the UK, support selecting the ChAdOx1 MERS vaccine for advancement into phase 2 clinical evaluation. FUNDING UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research; and King Abdullah International Medical Research Center.
Collapse
Affiliation(s)
- Mohammad Bosaeed
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City in Riyadh, Riyadh, Saudi Arabia
| | | | - Sultan Almaziad
- Department of Medicine, King Abdulaziz Medical City in Riyadh, Riyadh, Saudi Arabia
| | - Haya A Aljami
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hind Alhatmi
- Department of Medicine, King Abdulaziz Medical City in Riyadh, Riyadh, Saudi Arabia
| | - Hala Alanazi
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mashael Alahmadi
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ayah Jawhary
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed W Alenazi
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulrahman Almasoud
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Rawan Alanazi
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mustapha Bittaye
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jeremy Aboagye
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nahla Albaalharith
- Department of Nursing, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah Batawi
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pedro Folegatti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fernando Ramos Lopez
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Khalid Almoaikel
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Majed Aljeraisy
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Adel Alothman
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City in Riyadh, Riyadh, Saudi Arabia
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Naif Khalaf Alharbi
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Svobodova M, Skouridou V, Jauset-Rubio M, Viéitez I, Fernández-Villar A, Cabrera Alvargonzalez JJ, Poveda E, Bofill CB, Sans T, Bashammakh A, Alyoubi AO, O’Sullivan CK. Aptamer Sandwich Assay for the Detection of SARS-CoV-2 Spike Protein Antigen. ACS OMEGA 2021; 6:35657-35666. [PMID: 34957366 PMCID: PMC8691202 DOI: 10.1021/acsomega.1c05521] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2021] [Indexed: 05/10/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) emerged at the end of 2019, resulting in the ongoing COVID-19 pandemic. The high transmissibility of the virus and the substantial number of asymptomatic individuals have led to an exponential rise in infections worldwide, urgently requiring global containment strategies. Reverse transcription-polymerase chain reaction is the gold standard for the detection of SARS-CoV-2 infections. Antigen tests, targeting the spike (S) or nucleocapsid (N) viral proteins, are considered as complementary tools. Despite their shortcomings in terms of sensitivity and specificity, antigen tests could be deployed for the detection of potentially contagious individuals with high viral loads. In this work, we sought to develop a sandwich aptamer-based assay for the detection of the S protein of SARS-CoV-2. A detailed study on the binding properties of aptamers to the receptor-binding domain of the S protein in search of aptamer pairs forming a sandwich is presented. Screening of aptamer pairs and optimization of assay conditions led to the development of a laboratory-based sandwich assay able to detect 21 ng/mL (270 pM) of the protein with negligible cross-reactivity with the other known human coronaviruses. The detection of 375 pg of the protein in viral transport medium demonstrates the compatibility of the assay with clinical specimens. Finally, successful detection of the S antigen in nasopharyngeal swab samples collected from suspected patients further establishes the suitability of the assay for screening purposes as a complementary tool to assist in the control of the pandemic.
Collapse
Affiliation(s)
- Marketa Svobodova
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
| | - Vasso Skouridou
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
| | - Irene Viéitez
- Rare
Diseases & Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-Uvigo, Vigo 36213, Spain
| | - Alberto Fernández-Villar
- Pneumology
Service, Galicia Sur Health Research Institute
(IIS Galicia Sur), SERGAS-Uvigo, Vigo 36213, Spain
| | | | - Eva Poveda
- Group
of Virology and Pathogenesis, Galicia Sur
Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario
Universitario de Vigo, SERGAS-UVigo, Vigo 36213, Spain
| | - Clara Benavent Bofill
- Laboratori
Clinic ICS Camp de Tarragona, Hospital Universitari
de Tarragona Joan XXIII, Avda. Dr. Mallafré Guasch, 4, Tarragona 43007, Spain
| | - Teresa Sans
- Laboratori
Clinic ICS Camp de Tarragona, Hospital Universitari
de Tarragona Joan XXIII, Avda. Dr. Mallafré Guasch, 4, Tarragona 43007, Spain
| | - Abdulaziz Bashammakh
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, Jeddah 80215, Kingdom of Saudi Arabia
| | - Abdulrahman O. Alyoubi
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, Jeddah 80215, Kingdom of Saudi Arabia
| | - Ciara K. O’Sullivan
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
- Institució
Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
27
|
Agrawal A, Varshney R, Pathak M, Patel SK, Rai V, Sulabh S, Gupta R, Solanki KS, Varshney R, Nimmanapalli R. Exploration of antigenic determinants in spike glycoprotein of SARS-CoV2 and identification of five salient potential epitopes. Virusdisease 2021; 32:774-783. [PMID: 34514073 PMCID: PMC8422955 DOI: 10.1007/s13337-021-00737-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/07/2021] [Indexed: 12/20/2022] Open
Abstract
Emerging pathogens have been an eternal threat to mankind. In a series of pandemics caused by notorious coronaviruses, a newly emerged SARS-CoV2 virus is creating panic among the world population. The unavailability of reliable theranostics insists the exploration of antigenic determinants in spike glycoprotein of SARS-CoV2. The four novel inserts ('70VSGTNGT76', '150KSWM153', 247SYLTPG252 and 674QTQTNSPRR682) in SARS-CoV2 spike protein were unraveled via multiple sequence alignment of spike proteins of SARS-CoV2, SARS-CoV, and MERS-CoV. The three-dimension (3D) modeling of the spike protein of the SARS-CoV2 and their interaction with the ACE2 receptor was delineated with the help of SWISS-MODEL and 3DLigandSite web servers. The predicted 3D model of SARS-CoV2 was further verified by SAVES, RAMPAGE, and ProSA-web tools. The potential B-cell immunogenic epitopes of SARS-CoV2 were predicted out by using various software viz. IEDB B-cell epitopes prediction tool, BepiPred linear epitope prediction tool, Emini Surface Accessibility Prediction tool, and Kolaskar-Tongaonkar antigenicity web tool. The five epitopes (i.e. '71SGTNGTKRFDN81, 247SYLTPG252, 634RVYST638, 675QTQTNSPRRARSV687, and 1054QSAPH1058) were selected as potent antigenic determinants. The quantum of information generated by this study will prove beneficial for the development of effective therapeutics, diagnostics, and multi-epitopic vaccines to combat this ongoing menace.
Collapse
Affiliation(s)
- Aditya Agrawal
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Rajat Varshney
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, IAS, RGSC, Banaras Hindu University, Mirzapur, Uttar Pradesh 231001 India
| | - Mamta Pathak
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Shailesh Kumar Patel
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Vishal Rai
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Sourabh Sulabh
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713340 India
| | - Rohini Gupta
- Department of Veterinary Medicine, Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh 482001 India
| | - Khushal Singh Solanki
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Ritu Varshney
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355 India
| | - Ramadevi Nimmanapalli
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, IAS, RGSC, Banaras Hindu University, Mirzapur, Uttar Pradesh 231001 India
| |
Collapse
|
28
|
Wang S, Li L, Yan F, Gao Y, Yang S, Xia X. COVID-19 Animal Models and Vaccines: Current Landscape and Future Prospects. Vaccines (Basel) 2021; 9:1082. [PMID: 34696190 PMCID: PMC8537799 DOI: 10.3390/vaccines9101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) has become an unprecedented challenge to global public health. With the intensification of the COVID-19 epidemic, the development of vaccines and therapeutic drugs against the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also widespread. To prove the effectiveness and safety of these preventive vaccines and therapeutic drugs, available animal models that faithfully recapitulate clinical hallmarks of COVID-19 are urgently needed. Currently, animal models including mice, golden hamsters, ferrets, nonhuman primates, and other susceptible animals have been involved in the study of COVID-19. Moreover, 117 vaccine candidates have entered clinical trials after the primary evaluation in animal models, of which inactivated vaccines, subunit vaccines, virus-vectored vaccines, and messenger ribonucleic acid (mRNA) vaccines are promising vaccine candidates. In this review, we summarize the landscape of animal models for COVID-19 vaccine evaluation and advanced vaccines with an efficacy range from about 50% to more than 95%. In addition, we point out future directions for COVID-19 animal models and vaccine development, aiming at providing valuable information and accelerating the breakthroughs confronting SARS-CoV-2.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Ling Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao 266000, China;
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| |
Collapse
|
29
|
Maghsood F, Hassani D, Salimi V, Kardar GA, Khoshnoodi J, Ghaderi A, Raeeskarami SR, Rostamian A, Seyyedsalehi MS, Ahmadi Fesharaki R, Jeddi-Tehrani M, Zarnani AH, Amiri MM, Shokri F. Differential Antibody Response to SARS-CoV-2 Antigens in Recovered and Deceased Iranian COVID-19 Patients. Viral Immunol 2021; 34:708-713. [PMID: 34534012 DOI: 10.1089/vim.2021.0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The coronavirus infectious disease 2019 (COVID-19), which is initiated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has imposed critical challenges to global health. Understanding the kinetic of SARS-CoV-2-specific IgM and IgG responses in different subsets of COVID-19 patients is crucial to get insight into the humoral immune response elicited against the virus. We investigated IgM and IgG responses against SARS-CoV-2 nucleocapsid (N) and receptor-binding domain (RBD) of spike protein in two groups of recovered and deceased COVID-19 patients. The levels of IgM and IgG specific to N and RBD proteins were detected by ELISA. N- and RBD-specific IgM was higher in deceased patients in comparison with recovered patients, while there was no significant difference in N- and RBD-specific IgG between the two groups. A significant correlation was observed between IgG and IgM titers against RBD and N, in both groups of patients. These results argue against impaired antibody response in deceased COVID-19 patients.
Collapse
Affiliation(s)
- Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Danesh Hassani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology Asthma and Allergy Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghaderi
- Cancer Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Reza Raeeskarami
- Department of Pediatrics, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorrahman Rostamian
- Department of Rheumatology, Valiasr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Raoufeh Ahmadi Fesharaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Transcriptomic Profiling of Dromedary Camels Immunised with a MERS Vaccine Candidate. Vet Sci 2021; 8:vetsci8080156. [PMID: 34437478 PMCID: PMC8402689 DOI: 10.3390/vetsci8080156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Middle East Respiratory Syndrome coronavirus (MERS-CoV) infects dromedary camels and zoonotically infects humans, causing a respiratory disease with severe pneumonia and death. With no approved antiviral or vaccine interventions for MERS, vaccines are being developed for camels to prevent virus transmission into humans. We have previously developed a chimpanzee adenoviral vector-based vaccine for MERS-CoV (ChAdOx1 MERS) and reported its strong humoral immunogenicity in dromedary camels. Here, we looked back at total RNA isolated from whole blood of three immunised dromedaries pre and post-vaccination during the first day; and performed RNA sequencing and bioinformatic analysis in order to shed light on the molecular immune responses following a ChAdOx1 MERS vaccination. Our finding shows that a number of transcripts were differentially regulated as an effect of the vaccination, including genes that are involved in innate and adaptive immunity, such as type I and II interferon responses. The camel Bcl-3 and Bcl-6 transcripts were significantly upregulated, indicating a strong activation of Tfh cell, B cell, and NF-κB pathways. In conclusion, this study gives an overall view of the first changes in the immune transcriptome of dromedaries after vaccination; it supports the potency of ChAdOx1 MERS as a potential camel vaccine to block transmission and prevent new human cases and outbreaks.
Collapse
|
31
|
Rolta R, Salaria D, Sharma P, Sharma B, Kumar V, Rathi B, Verma M, Sourirajan A, Baumler DJ, Dev K. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua Inhibit Spike Protein of SARS-CoV-2 Binding to ACE2 Receptor: In Silico Approach. CURRENT PHARMACOLOGY REPORTS 2021; 7:135-149. [PMID: 34306988 PMCID: PMC8279807 DOI: 10.1007/s40495-021-00259-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
COVID-19, the disease caused by SARS-CoV-2, has been declared as a global pandemic. Traditional medicinal plants have long history to treat viral infections. Our in silico approach suggested that unique phytocompounds such as emodin, thymol and carvacrol, and artemisinin could physically bind SARS-CoV-2 spike glycoproteins (6VXX and 6VYB), SARS-CoV-2 B.1.351 South Africa variant of Spike glycoprotein (7NXA), and even with ACE2 and prevent the SARS-CoV-2 binding to the host ACE2, TMPRSS2 and neutrapilin-1 receptors. Since Chloroquine has been looked as potential therapy against COVID-19, we also compared the binding of chloroquine and artemisinin for its interaction with spike proteins (6VXX, 6VYB) and its variant 7NXA, respectively. Molecular docking study of phytocompounds and SARS-CoV-2 spike protein was performed by using AutoDock/Vina software. Molecular dynamics (MD) simulation was performed for 50ns. Among all the phytocompounds, molecular docking studies revealed lowest binding energy of artemisinin with 6VXX and 6VYB, with Etotal -10.5 KJ mol-1 and -10.3 KJ mol-1 respectively. Emodin showed the best binding affinity with 6VYB with Etotal -8.8 KJ mol-1and SARS-CoV-2 B.1.351 variant (7NXA) with binding energy of -6.4KJ mol-1. Emodin showed best interactions with TMPRSS 2 and ACE2 with Etotal of -7.1 and -7.3 KJ mol-1 respectively, whereas artemisinin interacts with TMPRSS 2 and ACE2 with Etotal of -6.9 and -7.4 KJ mol-1 respectively. All the phytocompounds were non-toxic and non-carcinogenic. MD simulation showed that artemisinin has more stable interaction with 6VYB as compared to 6VXX, and hence proposed as potential phytochemical to prevent SARS-CoV-2 interaction with ACE-2 receptor. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40495-021-00259-4.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Pin, Solan, Himachal Pradesh 173212 India
| | - Deeksha Salaria
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Pin, Solan, Himachal Pradesh 173212 India
| | - PremPrakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College University of Delhi, Delhi, 110007 India
| | - Bhanu Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Pin, Solan, Himachal Pradesh 173212 India
| | - Vikas Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Pin, Solan, Himachal Pradesh 173212 India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College University of Delhi, Delhi, 110007 India
| | - Mansi Verma
- Sri Venkateswara College, University of Delhi, New Delhi, 110021 India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Pin, Solan, Himachal Pradesh 173212 India
| | - David J. Baumler
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN USA
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Pin, Solan, Himachal Pradesh 173212 India
| |
Collapse
|
32
|
Abstract
The rapid and remarkably successful development, manufacture, and deployment of several effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is now tempered by three key challenges. First, reducing virus transmission will require prevention of asymptomatic and mild infections in addition to severe symptomatic infections. Second, the emergence of variants of concern with mutations in the S protein's receptor binding domain increases the likelihood that vaccines will have to be updated because some of these mutations render variants less optimally targeted by current vaccines. This will require coordinated global SARS-CoV-2 surveillance to link genotypes to phenotypes, potentially using the WHO's global influenza surveillance program as a guide. Third, concerns about the longevity of vaccine-induced immunity highlight the potential need for re-vaccination, depending on the extent to which the virus has been controlled and whether re-vaccination can target those at greatest risk of severe illness. Fortunately, as I discuss in this review, these challenges can be addressed.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
33
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Kumar R, Yeni CM, Utami NA, Masand R, Asrani RK, Patel SK, Kumar A, Yatoo MI, Tiwari R, Natesan S, Vora KS, Nainu F, Bilal M, Dhawan M, Emran TB, Ahmad T, Harapan H, Dhama K. SARS-CoV-2 infection during pregnancy and pregnancy-related conditions: Concerns, challenges, management and mitigation strategies-a narrative review. J Infect Public Health 2021; 14:863-875. [PMID: 34118736 PMCID: PMC8062420 DOI: 10.1016/j.jiph.2021.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health problem. The SARS-CoV-2 triggers hyper-activation of inflammatory and immune responses resulting in cytokine storm and increased inflammatory responses on several organs like lungs, kidneys, intestine, and placenta. Although SARS-CoV-2 affects individuals of all age groups and physiological statuses, immune-compromised individuals such as pregnant women are considered as a highly vulnerable group. This review aims to raise the concerns of high risk of infection, morbidity and mortality of COVID-19 in pregnant women and provides critical reviews of pathophysiology and pathobiology of how SARS-CoV-2 infection potentially increases the severity and fatality during pregnancy. This article also provides a discussion of current evidence on vertical transmission of SARS-CoV-2 during pregnancy and breastfeeding. Lastly, guidelines on management, treatment, preventive, and mitigation strategies of SARS-CoV-2 infection during pregnancy and pregnancy-related conditions such as delivery and breastfeeding are discussed.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062, Himachal Pradesh, India.
| | - Cut Meurah Yeni
- Department of Obstetrics and Gynecology, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia; Department of Obstetrics and Gynecology, Dr. Zainoel Abidin Hospital, Banda Aceh, 24415, Indonesia.
| | - Niken Asri Utami
- Department of Obstetrics and Gynecology, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia; Department of Obstetrics and Gynecology, Dr. Zainoel Abidin Hospital, Banda Aceh, 24415, Indonesia.
| | - Rupali Masand
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Rajesh Kumar Asrani
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062, Himachal Pradesh, India.
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Akshay Kumar
- Department of Cardiothoracic Surgery, Medanta Hospital, Gurgaon, 122001, India.
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190006, Jammu and Kashmir, India.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
| | - Senthilkumar Natesan
- Indian Institute of Public Health Gandhinagar, Lekawada, Gandhinagar, Gujarat, 382042, India.
| | - Kranti Suresh Vora
- Indian Institute of Public Health Gandhinagar, Lekawada, Gandhinagar, Gujarat, 382042, India; Institute of Health Research, University of Canberra, ACT 2617, Australia.
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, India; The Trafford Group of Colleges, Manchester, WA14 5PQ, United Kingdom.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia; Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia; Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| |
Collapse
|
35
|
Najafi Fard S, Petrone L, Petruccioli E, Alonzi T, Matusali G, Colavita F, Castilletti C, Capobianchi MR, Goletti D. In Vitro Models for Studying Entry, Tissue Tropism, and Therapeutic Approaches of Highly Pathogenic Coronaviruses. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8856018. [PMID: 34239932 PMCID: PMC8221881 DOI: 10.1155/2021/8856018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 12/31/2022]
Abstract
Coronaviruses (CoVs) are enveloped nonsegmented positive-sense RNA viruses belonging to the family Coronaviridae that contain the largest genome among RNA viruses. Their genome encodes 4 major structural proteins, and among them, the Spike (S) protein plays a crucial role in determining the viral tropism. It mediates viral attachment to the host cell, fusion to the membranes, and cell entry using cellular proteases as activators. Several in vitro models have been developed to study the CoVs entry, pathogenesis, and possible therapeutic approaches. This article is aimed at summarizing the current knowledge about the use of relevant methodologies and cell lines permissive for CoV life cycle studies. The synthesis of this information can be useful for setting up specific experimental procedures. We also discuss different strategies for inhibiting the binding of the S protein to the cell receptors and the fusion process which may offer opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Saeid Najafi Fard
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Elisa Petruccioli
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Tonino Alonzi
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| |
Collapse
|
36
|
Heffron AS, McIlwain SJ, Amjadi MF, Baker DA, Khullar S, Armbrust T, Halfmann PJ, Kawaoka Y, Sethi AK, Palmenberg AC, Shelef MA, O’Connor DH, Ong IM. The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biol 2021; 19:e3001265. [PMID: 34143766 PMCID: PMC8245122 DOI: 10.1371/journal.pbio.3001265] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/30/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023] Open
Abstract
The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the 6 other known human CoVs. We also confirm reactivity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.
Collapse
Affiliation(s)
- Anna S. Heffron
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Maya F. Amjadi
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David A. Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tammy Armbrust
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ajay K. Sethi
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ann C. Palmenberg
- Department of Biochemistry, Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Miriam A. Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Irene M. Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
37
|
Bisgin A, Sanlioglu AD, Eksi YE, Griffith TS, Sanlioglu S. Current Update on Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development with a Special Emphasis on Gene Therapy Viral Vector Design and Construction for Vaccination. Hum Gene Ther 2021; 32:541-562. [PMID: 33858231 DOI: 10.1089/hum.2021.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease (COVID-19) caused by the novel coronavirus SARS-coronavirus 2 (CoV-2). To combat the devastating spread of SARS-CoV-2, extraordinary efforts from numerous laboratories have focused on the development of effective and safe vaccines. Traditional live-attenuated or inactivated viral vaccines are not recommended for immunocompromised patients as the attenuated virus can still cause disease via phenotypic or genotypic reversion. Subunit vaccines require repeated dosing and adjuvant use to be effective, and DNA vaccines exhibit lower immune responses. mRNA vaccines can be highly unstable under physiological conditions. On the contrary, naturally antigenic viral vectors with well-characterized structure and safety profile serve as among the most effective gene carriers to provoke immune response via heterologous gene transfer. Viral vector-based vaccines induce both an effective cellular immune response and a humoral immune response owing to their natural adjuvant properties via transduction of immune cells. Consequently, viral vectored vaccines carrying the SARS-CoV-2 spike protein have recently been generated and successfully used to activate cytotoxic T cells and develop a neutralizing antibody response. Recent progress in SARS-CoV-2 vaccines, with an emphasis on gene therapy viral vector-based vaccine development, is discussed in this review.
Collapse
Affiliation(s)
- Atil Bisgin
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ahter D Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yunus Emre Eksi
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Thomas S Griffith
- The Department of Urology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Salih Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
38
|
Immunotherapeutic Efficacy of IgY Antibodies Targeting the Full-Length Spike Protein in an Animal Model of Middle East Respiratory Syndrome Coronavirus Infection. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021. [PMID: 34073502 DOI: 10.3390/ph14060511.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identified in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often fatal acute respiratory illness in humans. No approved prophylactic or therapeutic interventions are currently available. In this study, we developed chicken egg yolk antibodies (IgY Abs) specific to the MERS-CoV spike (S) protein and evaluated their neutralizing efficiency against MERS-CoV infection. S-specific IgY Abs were produced by injecting chickens with the purified recombinant S protein of MERS-CoV at a high titer (4.4 mg/mL per egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated specific binding to the MERS-CoV S protein. In vitro neutralization of the generated IgY Abs against MERS-CoV was evaluated and showed a 50% neutralizing concentration of 51.42 μg/mL. In vivo testing using a human-transgenic mouse model showed a reduction of viral antigen positive cells in treated mice, compared to the adjuvant-only controls. Moreover, the lung cells of the treated mice showed significantly reduced inflammation, compared to the controls. Our results show efficient neutralization of MERS-CoV infection both in vitro and in vivo using S-specific IgY Abs. Clinical trials are needed to evaluate the efficiency of the IgY Abs in camels and humans.
Collapse
|
39
|
El-Kafrawy SA, Abbas AT, Sohrab SS, Tabll AA, Hassan AM, Iwata-Yoshikawa N, Nagata N, Azhar EI. Immunotherapeutic Efficacy of IgY Antibodies Targeting the Full-Length Spike Protein in an Animal Model of Middle East Respiratory Syndrome Coronavirus Infection. Pharmaceuticals (Basel) 2021; 14:511. [PMID: 34073502 PMCID: PMC8229159 DOI: 10.3390/ph14060511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Identified in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often fatal acute respiratory illness in humans. No approved prophylactic or therapeutic interventions are currently available. In this study, we developed chicken egg yolk antibodies (IgY Abs) specific to the MERS-CoV spike (S) protein and evaluated their neutralizing efficiency against MERS-CoV infection. S-specific IgY Abs were produced by injecting chickens with the purified recombinant S protein of MERS-CoV at a high titer (4.4 mg/mL per egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated specific binding to the MERS-CoV S protein. In vitro neutralization of the generated IgY Abs against MERS-CoV was evaluated and showed a 50% neutralizing concentration of 51.42 μg/mL. In vivo testing using a human-transgenic mouse model showed a reduction of viral antigen positive cells in treated mice, compared to the adjuvant-only controls. Moreover, the lung cells of the treated mice showed significantly reduced inflammation, compared to the controls. Our results show efficient neutralization of MERS-CoV infection both in vitro and in vivo using S-specific IgY Abs. Clinical trials are needed to evaluate the efficiency of the IgY Abs in camels and humans.
Collapse
Affiliation(s)
- Sherif A. El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aymn T. Abbas
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biotechnology Research Laboratories, Gastroenterology, Surgery Centre, Mansoura University, Mansoura 35516, Egypt
| | - Sayed S. Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki 12622, Egypt;
- Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Ahmed M. Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (N.I.-Y.); (N.N.)
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (N.I.-Y.); (N.N.)
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
40
|
Vafaeinezhad A, Atashzar MR, Baharlou R. The Immune Responses against Coronavirus Infections: Friend or Foe? Int Arch Allergy Immunol 2021; 182:863-876. [PMID: 33951640 PMCID: PMC8247827 DOI: 10.1159/000516038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 01/19/2023] Open
Abstract
Coronaviruses (CoVs) were first discovered in the 1960s. Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) has been identified as the cause of COVID-19, which spread throughout China and subsequently, across the world. As COVID-19 causes serious public health concerns across the world, investigating the characteristics of SARS-CoV-2 and its interaction with the host immune responses may provide a clearer picture of how the pathogen causes disease in some individuals. Interestingly, SARS-CoV-2 has 80% sequence homology with SARS-CoV-1 and 96-98% homology with CoVs isolated from bats. Therefore, the experience acquired in SARS and Middle East Respiratory Syndrome (MERS) epidemics may improve our understanding of the immune response and immunopathological changes in COVID-19 patients. In the present paper, we have reviewed the immune responses (including the innate and adaptive immunities) to SARS-CoV, MERS-CoV, and SARS-CoV-2, so as to improve our understanding of the concept of the COVID-19 disease, which will be helpful in developing vaccines and medications for treating the COVID-19 patients.
Collapse
Affiliation(s)
- Arefe Vafaeinezhad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
41
|
Arashkia A, Jalilvand S, Mohajel N, Afchangi A, Azadmanesh K, Salehi‐Vaziri M, Fazlalipour M, Pouriayevali MH, Jalali T, Mousavi Nasab SD, Roohvand F, Shoja Z. Severe acute respiratory syndrome-coronavirus-2 spike (S) protein based vaccine candidates: State of the art and future prospects. Rev Med Virol 2021; 31:e2183. [PMID: 33594794 PMCID: PMC7646037 DOI: 10.1002/rmv.2183] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which is responsible for a global pandemic that started in late 2019 in Wuhan, China. To prevent the worldwide spread of this highly pathogenic virus, development of an effective and safe vaccine is urgently needed. The SARS-CoV-2 and SARS-CoV share a high degree of genetic and pathologic identity and share safety and immune-enhancement concerns regarding vaccine development. Prior animal studies with first generation (whole virus-based) preparations of SARS-CoV vaccines (inactivated and attenuated vaccine modalities) indicated the possibility of increased infectivity or eosinophilic infiltration by immunization. Therefore, development of second and third generation safer vaccines (by using modern vaccine platforms) is actively sought for this viral infection. The spike (S) protein of SARS-CoVs is the main determinant of cell entry and tropism and is responsible for facilitating zoonosis into humans and sustained person-to-person transmission. Furthermore, 'S' protein contains multiple neutralizing epitopes that play an essential role in the induction of neutralizing antibodies (nAbs) and protective immunity. Moreover, T-cell responses against the SARS-CoV-2 'S' protein have also been characterized that correlate to the IgG and IgA antibody titres in Covid-19 patients. Thus, S protein is an obvious candidate antigen for inclusion into vaccine platforms against SARS-CoV-2 viral infection. This manuscript reviews different characteristics of S protein, its potency and 'state of the art' of the vaccine development strategies and platforms using this antigen, for construction of a safe and effective SARS-CoV-2 vaccine.
Collapse
MESH Headings
- Antibodies, Viral/biosynthesis
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/biosynthesis
- COVID-19 Vaccines/immunology
- Clinical Trials as Topic
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Genome, Viral/immunology
- Humans
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Pandemics
- Patient Safety
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
Collapse
Affiliation(s)
- Arash Arashkia
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Somayeh Jalilvand
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Nasir Mohajel
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Atefeh Afchangi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Mostafa Salehi‐Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | - Mehdi Fazlalipour
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | | | - Tahmineh Jalali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | - Seyed Dawood Mousavi Nasab
- Department of Research and DevelopmentProduction and Research ComplexPasteur Institute of IranTehranIran
| | - Farzin Roohvand
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Zabihollah Shoja
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | | |
Collapse
|
42
|
Darwish RM. COVID-19 immunity and vaccines: what a pharmacist needs to know. ASIAN BIOMED 2021; 15:51-67. [PMID: 37551403 PMCID: PMC10388771 DOI: 10.2478/abm-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
COVID-19 vaccines are being produced using different platforms by different companies, some of which are entering Phase 3 and 4 trials. Due to the pandemic, this production has been accelerated, which leaves a window for speculation on the method of production and safety. Pharmacists are familiar with vaccination; however, COVID-19 vaccines are still new and further work is needed to clarify many aspects, including side effects, methods of storage, and number of doses. Prioritization of vaccination has been implemented to a certain extent, but no clear strategy is available. A comprehensive overview on immunity and immunological principles for the design of COVID-19 vaccine strategies is provided in this narrative review and the current COVID-19 vaccine landscape is discussed, in addition to exploring the principles for prioritization of vaccination using data from articles available in PubMed and from health organizations. Pharmacists should have a better understanding of COVID-19 vaccines and their manufacture. This would also allow better counseling of the public on COVID 19, immunization, and explaining prioritization basis and vaccination programs.
Collapse
Affiliation(s)
- Rula M. Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Aljubeiha, Amman00962, Jordan
| |
Collapse
|
43
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
44
|
A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc Natl Acad Sci U S A 2021; 118:2026153118. [PMID: 33688034 PMCID: PMC8000430 DOI: 10.1073/pnas.2026153118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Measles virus (MeV) vaccine is one of the safest and most efficient vaccines with a track record in children. Here, we generated a panel of rMeV-based vaccines with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S antigens inserted near 3′ of the MeV genome. The rMeV expressing a soluble stabilized, prefusion spike (preS) is much more potent in triggering SARS-CoV-2–specific neutralizing antibody than rMeV-based full-length S vaccine candidate. A single dose of rMeV-preS is sufficient to induce high levels of SARS-CoV-2 antibody in animals. Furthermore, rMeV-preS induces high levels of Th1-biased immunity. Hamsters immunized with rMeV-preS were completely protected against SARS-CoV-2 challenge. Our results demonstrate rMeV-preS is a safe and highly efficacious bivalent vaccine candidate for SARS-CoV-2 and MeV. The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR−/−mice, IFNAR−/−-hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2–specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.
Collapse
|
45
|
Cho H, Jang Y, Park KH, Choi H, Nowakowska A, Lee HJ, Kim M, Kang MH, Kim JH, Shin HY, Oh YK, Kim YB. Human endogenous retrovirus-enveloped baculoviral DNA vaccines against MERS-CoV and SARS-CoV2. NPJ Vaccines 2021; 6:37. [PMID: 33741992 PMCID: PMC7979866 DOI: 10.1038/s41541-021-00303-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Here we report a recombinant baculoviral vector-based DNA vaccine system against Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV2). A non-replicating recombinant baculovirus expressing the human endogenous retrovirus envelope gene (AcHERV) was constructed as a DNA vaccine vector for gene delivery into human cells. For MERS-CoV vaccine construction, DNA encoding MERS-CoV S-full, S1 subunit, or receptor-binding domain (RBD) was inserted into the genome of AcHERV. For COVID19 vaccine construction, DNA encoding SARS-CoV2 S-full or S1 or a MERS-CoV NTD domain-fused SARS-CoV2 RBD was inserted into the genome of AcHERV. AcHERV-DNA vaccines induce high humoral and cell-mediated immunity in animal models. In challenge tests, twice immunized AcHERV-MERS-S1 and AcHERV-COVID19-S showed complete protection against MERS-CoV and SARS-CoV2, respectively. Unlike AcHERV-MERS vaccines, AcHERV-COVID19-S provided the greatest protection against SARS-CoV2 challenge. These results support the feasibility of AcHERV-MERS or AcHERV-COVID19 vaccines in preventing pandemic spreads of viral infections.
Collapse
Affiliation(s)
| | - Yuyeon Jang
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea.,Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki-Hoon Park
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea.,Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hanul Choi
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea.,Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Aleksandra Nowakowska
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Minjee Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Bong Kim
- KR BioTech, Seoul, Republic of Korea. .,Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea. .,Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Khan S, Shaker B, Ahmad S, Abbasi SW, Arshad M, Haleem A, Ismail S, Zaib A, Sajjad W. Towards a novel peptide vaccine for Middle East respiratory syndrome coronavirus and its possible use against pandemic COVID-19. J Mol Liq 2021; 324:114706. [PMID: 33173250 PMCID: PMC7644433 DOI: 10.1016/j.molliq.2020.114706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/02/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging health concern due to its high mortality rate of 35%. At present, no vaccine is available to protect against MERS-CoV infections. Therefore, an in silico search for potential antigenic epitopes in the non-redundant proteome of MERS-CoV was performed herein. First, a subtractive proteome-based approach was employed to look for the surface exposed and host non-homologous proteins. Following, immunoinformatics analysis was performed to predict antigenic B and T cell epitopes that were used in the design of a multi-epitopes peptide. Molecular docking study was carried out to predict vaccine construct affinity of binding to Toll-like receptor 3 (TLR3) and understand its binding conformation to extract ideas about its processing by the host immune system. We identified membrane protein, envelope small membrane protein, non-structural protein ORF3, non-structural protein ORF5, and spike glycoprotein as potential candidates for subunit vaccine designing. The designed multi-epitope peptide then linked to β-defensin adjuvant is showing high antigenicity. Further, the sequence of the designed vaccine construct is optimized for maximum expression in the Escherichia coli expression system. A rich pattern of hydrogen and hydrophobic interactions of the construct was observed with the TLR3 allowing stable binding of the construct at the docked site as predicted by the molecular dynamics simulation and MM-PBSA binding energies. We expect that the panel of subunit vaccine candidates and the designed vaccine construct could be highly effective in immunizing populations from infections caused by MERS-CoV and could possible applied on the current pandemic COVID-19.
Collapse
Affiliation(s)
- Salman Khan
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 73000, PR China
| | - Bilal Shaker
- School of Integrative Engineering, Chung ANG University, Seoul, South Korea
| | - Sajjad Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, the Mall, Rawalpindi 46000, Pakistan
| | - Muhammad Arshad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Haleem
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saba Ismail
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anita Zaib
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, the Mall, Rawalpindi 46000, Pakistan
| |
Collapse
|
47
|
Ashfaq UA, Saleem S, Masoud MS, Ahmad M, Nahid N, Bhatti R, Almatroudi A, Khurshid M. Rational design of multi epitope-based subunit vaccine by exploring MERS-COV proteome: Reverse vaccinology and molecular docking approach. PLoS One 2021; 16:e0245072. [PMID: 33534822 PMCID: PMC7857617 DOI: 10.1371/journal.pone.0245072] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Middle East respiratory syndrome (MERS-COV), first identified in Saudi Arabia, was caused by a novel strain of coronavirus. Outbreaks were recorded from different regions of the world, especially South Korea and the Middle East, and were correlated with a 35% mortality rate. MERS-COV is a single-stranded, positive RNA virus that reaches the host by binding to the receptor of dipeptidyl-peptides. Because of the unavailability of the vaccine available for the protection from MERS-COV infection, the rapid case detection, isolation, infection prevention has been recommended to combat MERS-COV infection. So, vaccines for the treatment of MERS-COV infection need to be developed urgently. A possible antiviral mechanism for preventing MERS-CoV infection has been considered to be MERS-CoV vaccines that elicit unique T-cell responses. In the present study, we incorporated both molecular docking and immunoinformatic approach to introduce a multiepitope vaccine (MEP) against MERS-CoV by selecting 15 conserved epitopes from seven viral proteins such as three structural proteins (envelope, membrane, and nucleoprotein) and four non-structural proteins (ORF1a, ORF8, ORF3, ORF4a). The epitopes, which were examined for non-homologous to host and antigenicity, were selected on the basis of conservation between T-cell, B-cell, and IFN-γ epitopes. The selected epitopes were then connected to the adjuvant (β-defensin) at the N-terminal through an AAY linker to increase the immunogenic potential. Structural modelling and physiochemical characteristic were applied to the vaccine construct developed. Afterwards the structure has been successfully docked with antigenic receptor, Toll-like receptor 3 (TLR-3) and in-silico cloning ensures that its expression efficiency is legitimate. Nonetheless the MEP presented needs tests to verify its safety and immunogenic profile.
Collapse
Affiliation(s)
- Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- * E-mail:
| | - Saman Saleem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Rashid Bhatti
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
48
|
Mohammad MHS. Immune response scenario and vaccine development for SARS-CoV-2 infection. Int Immunopharmacol 2021; 94:107439. [PMID: 33571745 PMCID: PMC7846221 DOI: 10.1016/j.intimp.2021.107439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/10/2021] [Accepted: 01/23/2021] [Indexed: 12/28/2022]
Abstract
COVID-19 pandemic has started in December 2019 in China and quickly extended to become a worldwide health and economic emergency issue. It is caused by the novel coronavirus; SARS-CoV-2. COVID-19 patients’ clinical presentations vary from asymptomatic infection or flu like symptoms to serious pneumonia which could be associated with multiple organ failure possibly leading to death. It is understood that the immune response to SARS-CoV-2 includes all elements of the immune system which could altogether succeed in viral elimination and complete cure. Meanwhile, this immune response may also lead to disease progression and could be responsible for the patient’s death. Many trials have been done recently to create therapies and vaccines against human coronavirus infections such as MERS or SARS, however, till now, there is some controversy about the effectiveness and safety of antiviral drugs and vaccines which have been developed to treat and prevent this disease and its management depends mainly on supportive care. The spike glycoprotein or protein S of SARS-CoV-2 is the main promoter that induces development of neutralizing antibodies; hence, many attempts of vaccines and antiviral drugs development have been designed to be directed specifically against this protein. While some of these attempts have been proved to be efficient in in vitro settings, only few of them have been proceeded to randomized animal trials and human studies which makes COVID-19 prevention an ongoing challenge. This review describes the natural immune response scenario during COVID-19 and the vaccines development trials to create efficient vaccines thus helping to build more effective approaches for prophylaxis and management.
Collapse
Affiliation(s)
- Mai H S Mohammad
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, P.O. 41522, Egypt.
| |
Collapse
|
49
|
Tan TK, Rijal P, Rahikainen R, Keeble AH, Schimanski L, Hussain S, Harvey R, Hayes JWP, Edwards JC, McLean RK, Martini V, Pedrera M, Thakur N, Conceicao C, Dietrich I, Shelton H, Ludi A, Wilsden G, Browning C, Zagrajek AK, Bialy D, Bhat S, Stevenson-Leggett P, Hollinghurst P, Tully M, Moffat K, Chiu C, Waters R, Gray A, Azhar M, Mioulet V, Newman J, Asfor AS, Burman A, Crossley S, Hammond JA, Tchilian E, Charleston B, Bailey D, Tuthill TJ, Graham SP, Duyvesteyn HME, Malinauskas T, Huo J, Tree JA, Buttigieg KR, Owens RJ, Carroll MW, Daniels RS, McCauley JW, Stuart DI, Huang KYA, Howarth M, Townsend AR. A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nat Commun 2021; 12:542. [PMID: 33483491 PMCID: PMC7822889 DOI: 10.1038/s41467-020-20654-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Rolle Rahikainen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Lisa Schimanski
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jack W P Hayes
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Jane C Edwards
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | | | | | - Miriam Pedrera
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | | | | | - Holly Shelton
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Anna Ludi
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | | | - Clare Browning
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | | | - Dagmara Bialy
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Sushant Bhat
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | | | - Philippa Hollinghurst
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Matthew Tully
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Katy Moffat
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Chris Chiu
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Ryan Waters
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Ashley Gray
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Mehreen Azhar
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | | | - Joseph Newman
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Amin S Asfor
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Alison Burman
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | | | - John A Hammond
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Elma Tchilian
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | | | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | | | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Jiandong Huo
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
- Rutherford Appleton Laboratory, Protein Production UK, Research Complex at Harwell, and Rosalind Franklin Institute, Harwell, Didcot, OX11 0FA, UK
| | - Julia A Tree
- National Infection Service, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - Karen R Buttigieg
- National Infection Service, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - Raymond J Owens
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
- Rutherford Appleton Laboratory, Protein Production UK, Research Complex at Harwell, and Rosalind Franklin Institute, Harwell, Didcot, OX11 0FA, UK
| | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Rodney S Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - John W McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David I Stuart
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Kuan-Ying A Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Alain R Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
50
|
Remali J, Aizat WM. A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection. Front Pharmacol 2021; 11:589044. [PMID: 33519449 PMCID: PMC7845143 DOI: 10.3389/fphar.2020.589044] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
The rapid outbreak of coronavirus disease 2019 (COVID-19) has demonstrated the need for development of new vaccine candidates and therapeutic drugs to fight against the underlying virus, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Currently, no antiviral treatment is available to treat COVID-19 as treatment is mostly directed to only relieving the symptoms. Retrospectively, herbal medicinal plants have been used for thousands of years as a medicinal alternative including for the treatment of various viral illnesses. However, a comprehensive description using various medicinal plants in treating coronavirus infection has not to date been described adequately, especially their modes of action. Most other reports and reviews have also only focused on selected ethnobotanical herbs such as Traditional Chinese Medicine, yet more plants can be considered to enrich the source of the anti-viral compounds. In this review, we have screened and identified potential herbal medicinal plants as anti-coronavirus medication across major literature databases without being limited to any regions or ethnobotanic criteria. As such we have successfully gathered experimentally validated in vivo, in vitro, or in silico findings of more than 30 plants in which these plant extracts or their related compounds, such as those of Artemisia annua L., Houttuynia cordata Thunb., and Sambucus formosana Nakai, are described through their respective modes of action against specific mechanisms or pathways during the viral infection. This includes inhibition of viral attachment and penetration, inhibition of viral RNA and protein synthesis, inhibition of viral key proteins such as 3-chymotrypsin-like cysteine protease (3CLpro) and papain-like protease 2 (PLpro), as well as other mechanisms including inhibition of the viral release and enhanced host immunity. We hope this compilation will help researchers and clinicians to identify the source of appropriate anti-viral drugs from plants in combating COVID-19 and, ultimately, save millions of affected human lives.
Collapse
Affiliation(s)
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| |
Collapse
|