1
|
Lazarus M, Sergiel A, Ferenčaković M, Sekovanić A, Reljić S, Pađen L, Janz DM, Oster E, Zwijacz-Kozica T, Zięba F, Selva N, Huber Đ. Trace element contaminants and endocrine status of European brown bears assessed using blood as a matrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177486. [PMID: 39551211 DOI: 10.1016/j.scitotenv.2024.177486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Bioaccumulation of trace element contaminants with endocrine disruptive (ED) potential has been noted in European brown bears, though evidence of their effects is lacking. Generalized linear models were employed to assess circulating levels of reproductive, stress, and thyroid hormones in relation to arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb) and thallium (Tl) in 53 free-ranging brown bears (Ursus arctos) from two European populations (Carpathian and Dinara-Pindos). Other potential drivers of hormone variation, such as essential elements, ecological factors, physiological variables, and capture methods, were included as predictors. The models demonstrated a positive association between cortisol and Cd, and a negative association with Tl. In addition, Tl and Pb were identified as key factors in explaining variation in thyroid hormones (free triiodothyronine, fT3 and free thyroxine, fT4). Trap type was significant in explaining variation in fT3 concentrations, while sex was an important predictor of progesterone levels. The essential elements, cobalt (Co) and copper (Cu) accounted for 41 % of testosterone variation, while Cu and selenium (Se) were negatively associated with fT4. Other notable predictors of investigated hormone variation included body condition index (important for cortisol), age (for fT4), year (for fT3), capture day (for fT4 and fT4:fT3 ratio) and population (fT4:fT3 ratio). This study evidenced trace elements as important factors to consider when studying hormonal variation in terrestrial wildlife (Tl for cortisol and fT3, Cd for cortisol, Cu for testosterone and fT4, Co for testosterone, Pb and Se for fT4). To gain a more definitive understanding of the effects of exposure to element contaminants on endocrine status, it is recommended to include more sensitive and specific endocrine disruption-related endpoints in a larger sample size. Doing so will further enhance our understanding of the potential adverse endocrine effects of environmental pollutants on these bear populations and other large mammalian wildlife species.
Collapse
Affiliation(s)
- Maja Lazarus
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Agnieszka Sergiel
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland.
| | | | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Slaven Reljić
- University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia
| | - Lana Pađen
- University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia
| | - David M Janz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Ena Oster
- University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia
| | | | | | - Nuria Selva
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland; Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, Huelva, Spain; Estación Biológica de Doñana CSIC, Seville, Spain
| | - Đuro Huber
- University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia
| |
Collapse
|
2
|
Xie Z, Zhang X, Xie Y, Liu F, Sun B, Liu W, Wu J, Wu Y. Bioaccumulation and Potential Endocrine Disruption Risk of Legacy and Emerging Organophosphate Esters in Cetaceans from the Northern South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4368-4380. [PMID: 38386007 DOI: 10.1021/acs.est.3c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Despite the increasing health risks shown by the continuous detection of organophosphate esters (OPEs) in biota in recent years, information on the occurrence and potential risks of OPEs in marine mammals remains limited. This study conducted the first investigation into the body burdens and potential risks of 10 traditional OPEs (tOPEs) and five emerging OPEs (eOPEs) in 10 cetacean species (n = 84) from the northern South China Sea (NSCS) during 2005-2021. All OPEs, except for 2-ethylhexyl diphenyl phosphate (EHDPHP), were detected in these cetaceans, indicating their widespread occurrence in the NSCS. Although the levels of the ∑10tOPEs in humpback dolphins remained stable from 2005 to 2021, the concentrations of the ∑5eOPEs showed a significant increase, suggesting a growing demand for these new-generation OPEs in South China. Dolphins in proximity to urban regions generally exhibited higher OPE concentrations than those from rural areas, mirroring the environmental trends of OPEs occurring in this area. All OPE congeners, except for EHDPHP, in humpback dolphins exhibited a maternal transfer ratio >1, indicating that the dolphin placenta may not be an efficient barrier for OPEs. The observed significant correlations between levels of OPEs and hormones (triiodothyronine, thyroxine, and testosterone) in humpback dolphins indicated that OPE exposures might have endocrine disruption effects on the dolphin population.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Wen Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
3
|
Abellan-Borja A, Rodriguez-Sanchez IP, Carrera-Treviño R, Villanueva-Segura OK, Zapata-Morin PA, Martinez-de-Villareal LE, Barboza-Aranda LJ, Gomez-Govea MA, Martinez-Fierro ML, Delgado-Enciso I, Ruiz-Ayma G, Gonzalez-Rojas JI, Guzman-Velasco A. Free amino acid and acylcarnitine values in Ursus americanus Pallas 1780 (black bear) from Northeastern Mexico. PLoS One 2023; 18:e0272979. [PMID: 36735654 PMCID: PMC9897576 DOI: 10.1371/journal.pone.0272979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Ursus americanus Pallas 1780 is the largest carnivore and the only ursid in Mexico. It is considered an endangered species in the country because its distribution and population have been reduced by up to 80% because of habitat loss or furtive hunting. These problems can lead to a diet change, which could result in metabolic disorders, such as fatty acid β-oxidation defects or organic acid metabolism disorders. In our study, a free amino acid and acylcarnitine profile was characterized. METHODS Peripheral blood samples were drawn from nine free-ranging black bears in a period of five months, from June to October of 2019 in Northeastern Mexico, and 12 amino acids and 30 acylcarnitines were determined and quantified. Age differences were observed in the samples through ANOVA and post-hoc Tukey test. RESULTS Only three metabolites showed a significant difference with age: alanine (Ala) [cubs vs juvenile], free-carnitine (C0) [juvenile vs cubs] and acetylcarnitine (C2) [cubs vs adults and juvenile vs cubs]. CONCLUSION Metabolites with variability due to age were identified, making them potential biomarkers to monitor metabolic status as early diagnosis in endangered species. This is the first study of black bear amino acid and acylcarnitine profiles, and the values found could be used as reference for free amino acid and acylcarnitine concentrations in further studies of the species.
Collapse
Affiliation(s)
- Andres Abellan-Borja
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Iram P. Rodriguez-Sanchez
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Rogelio Carrera-Treviño
- Facultad de Medicina Veterinaria y Zootecnia, Laboratorio de Vida Silvestre, Universidad Autonoma de Nuevo Leon, General Escobedo, Mexico
| | - Olga Karina Villanueva-Segura
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Patricio Adrian Zapata-Morin
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | | | - Luis Javier Barboza-Aranda
- Facultad de Medicina Veterinaria y Zootecnia, Laboratorio de Vida Silvestre, Universidad Autonoma de Nuevo Leon, General Escobedo, Mexico
| | - Mayra A. Gomez-Govea
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | | | - Ivan Delgado-Enciso
- Universidad de Colima, Colima, Mexico
- Secretaria de Salud de Colima, Instituto Estatal de Cancer, Colima, Mexico
| | - Gabriel Ruiz-Ayma
- Facultad de Ciencias Biologicas, Laboratorio de Conservacion de Vida Silvestre y Desarrollo Sustentable, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Jose Ignacio Gonzalez-Rojas
- Facultad de Ciencias Biologicas, Laboratorio de Conservacion de Vida Silvestre y Desarrollo Sustentable, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
- * E-mail: (AGV); (JIGR)
| | - Antonio Guzman-Velasco
- Facultad de Ciencias Biologicas, Laboratorio de Conservacion de Vida Silvestre y Desarrollo Sustentable, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico
- * E-mail: (AGV); (JIGR)
| |
Collapse
|
4
|
Ciesielski TM, Sonne C, Smette EI, Villanger GD, Styrishave B, Letcher RJ, Hitchcock DJ, Dietz R, Jenssen BM. Testosterone and persistent organic pollutants in east Greenland male polar bears (Ursus maritimus). Heliyon 2023; 9:e13263. [PMID: 37101474 PMCID: PMC10123070 DOI: 10.1016/j.heliyon.2023.e13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) are chemicals that undergo long-range transport to the Arctic. These chemicals possess endocrine disruptive properties raising concerns for development and reproduction. Here, we report the relationship between concentrations of testosterone (T) and persistent organic pollutant (POPs) in 40 East Greenland male polar bears (Ursus maritimus) sampled during January to September 1999-2001. The mean ± standard concentrations of blood T were 0.31 ± 0.49 (mean ± SD) ng/mL in juveniles/subadults (n = 22) and 3.58 ± 7.45 ng/mL in adults (n = 18). The ∑POP concentrations (mean ± SD) in adipose tissue were 8139 ± 2990 ng/g lipid weight (lw) in juveniles/subadults and 11,037 ± 3950 ng/g lw in adult males, respectively, of which Σpolychlorinated biphenyls (ΣPCBs) were found in highest concentrations. The variation in T concentrations explained by sampling date (season), biometrics and adipose tissue POP concentrations was explored using redundancy analysis (RDA). The results showed that age, body length, and adipose lipid content in adult males contributed (p = 0.02) to the variation in POP concentrations. However, although some significant relationships between individual organochlorine contaminants and T concentrations in both juveniles/subadults and adult polar bears were identified, no significant relationships (p = 0.32) between T and POP concentrations were identified by the RDAs. Our results suggest that confounders such as biometrics and reproductive status may mask the endocrine disruptive effects that POPs have on blood T levels in male polar bears, demonstrating why it can be difficult to detect effects on wildlife populations.
Collapse
Affiliation(s)
- Tomasz M. Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Corresponding author.
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
- Corresponding author.
| | - Eli I. Smette
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Gro Dehli Villanger
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Mental and Physical Health, Department of Child Health and Development, Norwegian Institute of Public Health, PO Box 222 Skoyen, NO-0213 Oslo, Norway
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Robert J. Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjørn M. Jenssen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
- Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| |
Collapse
|
5
|
Straub L, Minnameyer A, Camenzind D, Kalbermatten I, Tosi S, Van Oystaeyen A, Wäckers F, Neumann P, Strobl V. Thiamethoxam as an inadvertent anti-aphrodisiac in male bees. Toxicol Rep 2022; 9:36-45. [PMID: 34987978 PMCID: PMC8693414 DOI: 10.1016/j.toxrep.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
There is consensus that neonicotinoids can impact non-target animal fertility. Thiamethoxam reduced both mating success and sperm physiology in bumblebees. Queens mated by exposed males had 50% less total living sperm in their spermatheca. Thiamethoxam may act as anti-aphrodisiac, thereby limiting conservation efforts.
Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g−1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | | | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Van der Walt M, Neuman-Lee LA, Terletzky PA, Atwood TC, Gese EM, French SS. Measuring adrenal and reproductive hormones in hair from Southern Beaufort Sea polar bears (Ursus maritimus). Gen Comp Endocrinol 2021; 310:113807. [PMID: 33964286 DOI: 10.1016/j.ygcen.2021.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/23/2022]
Abstract
Polar bears (Ursus maritimus) use sea ice to access marine mammal prey. In Alaska's Southern Beaufort Sea, the declining availability of sea ice habitat in summer and fall has reduced opportunities for polar bears to routinely hunt on the ice for seals, their primary prey. This reduced access to prey may result in physiological stress with subsequent potential consequences to reproductive function (physiological changes that accompany reproduction), which can be measured via reproductive hormones. Hormone concentrations in hair can be used as a minimally invasive alternative to serum concentrations, which must come from animal captures. Hair samples also provide a long-term average measurement of hormone concentrations that is not influenced by short-term fluctuations like that of serum. The aim of this study was (1) to determine if a radioimmunoassay could be used to measure adrenal and reproductive hormones in polar bear hair, and (2) to determine what the relationship is between these hormones and other reproductive, condition, and demographic parameters of polar bears. We successfully validated this method for cortisol, progesterone, estradiol, and testosterone through the analysis of hair and serum of 141 free-ranging polar bears. We found that while hair cannot be used to estimate serum hormone concentrations during the breeding season, hormone concentrations in hair can be used to measure reproductive function in polar bears. Further, our findings support trends in previous studies measuring hormone concentrations in serum. We found that adrenal and some reproductive hormones were positively correlated in hair samples of females. Associations between hormone concentrations in hair and serum did not vary relative to reproductive status of adult females. Serum testosterone increased throughout the breeding season for adult males and was significantly associated with body mass index (BMI). Our research supports the use of hair as a measure of reproductive function in polar bears and allows us to monitor the future effects of climate change on polar bear physiology.
Collapse
Affiliation(s)
- Marilize Van der Walt
- Department of Biology and the Ecology Center, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA.
| | - Lorin A Neuman-Lee
- Department of Biology and the Ecology Center, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA.
| | - Patricia A Terletzky
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA.
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Eric M Gese
- U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Department of Wildland Resources, Utah State University, Logan, UT 84322, USA.
| | - Susannah S French
- Department of Biology and the Ecology Center, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
7
|
Pollock SZ, St Clair CC. Railway-Associated Attractants as Potential Contaminants for Wildlife. ENVIRONMENTAL MANAGEMENT 2020; 66:16-29. [PMID: 32147802 DOI: 10.1007/s00267-020-01277-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Grizzly bears (Ursus arctos) appear to be attracted to natural and anthropogenic forage along railways, which may increase collision vulnerability, but also potentially causes exposure to contaminants associated with railway infrastructure. We assessed contaminant exposure for a vulnerable population of grizzly bears in the Canadian Rocky Mountains by determining if (1) dandelions (Taraxacum officinale) growing adjacent to a railway and grain spilled from hopper cars contain heavy metals, polycyclic aromatic hydrocarbons (PAHs), and mycotoxins and (2) metal concentrations from hair samples of individual bears correlates with use of the railway or other anthropogenic features. We used principle components analysis to represent 10 heavy metals and 16 PAHs and then compared their concentrations in railway-associated sources of grain and dandelions to reference samples that we purchased (grain) or sampled from nearby sites (dandelions). We also measured metal concentrations in the hair of bears that were captured and fitted with GPS collars. We found significantly higher concentrations in railway-associated samples of dandelion and grain for both metals (particularly lead, iron, and chromium), and the sum of 16 PAHs. Several metals and PAHs in railway-associated samples exceeded regulatory standards for soil or animal feed. Mycotoxins were detectable in grain samples, but occurred well below permissible standards. Metal concentrations in bear hair were not predicted by railway use, but higher metal concentrations occurred in male bears and two individuals that used ski hills during fall. As mitigation to reduce wildlife exposure to contaminants, particularly in protected areas, we encourage removal of railway grain deposits, regular maintenance of railway infrastructure, such as lubricating stations, and investigation of contaminants associated with other human infrastructures, such as ski hills.
Collapse
Affiliation(s)
- Sonya Zoey Pollock
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | | |
Collapse
|
8
|
Neerland ED, Bytingsvik J, Nikiforov VA, Evenset A, Krøkje Å. DNA Double-Strand Breaks in Arctic Char (Salvelinus alpinus) from Bjørnøya in the Norwegian Arctic. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2405-2413. [PMID: 31343779 DOI: 10.1002/etc.4546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
High levels of organochlorine contaminants (OCs) have been found in arctic char (Salvelinus alpinus) from Lake Ellasjøen, Bjørnøya (Norwegian Arctic). The aim of the present study was to investigate the potential genotoxic effect of environmental organochlorine contaminant exposure in arctic char from Ellasjøen compared with arctic char from the low-contaminated Lake Laksvatn nearby. Blood was analyzed using agarose gel electrophoresis and image data analysis to quantify the fraction of total DNA that migrated into the gel (DNA-FTM) as a relative measure of DNA double-strand breaks (DSBs). Analysis by GC-MS of muscle samples showed an average 43 times higher concentration of ΣOCs in arctic char from Ellasjøen (n = 18) compared with Laksvatn char (n = 21). Char from Lake Ellasjøen had a much higher frequency of DSBs, as measured by DNA-FTM, than char from Lake Laksvatn. Principal component analysis and multiple linear regressions show that there was a significant positive relationship between DSBs and levels of organochlorine contaminants in the char. In addition, DSBs were less frequent in reproductively mature char than in immature char. The results suggest that organochlorine contaminants are genotoxic to arctic char. Environ Toxicol Chem 2019;38:2405-2413. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Eirik D Neerland
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jenny Bytingsvik
- Akvaplan-niva AS, Fram Centre-High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Vladimir A Nikiforov
- Norwegian Institute for Air Research, Fram Centre-High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Anita Evenset
- Akvaplan-niva AS, Fram Centre-High North Research Centre for Climate and the Environment, Tromsø, Norway
- The Arctic University of Norway, Tromsø, Norway
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Bohler S, Krauskopf J, Espín-Pérez A, Gebel S, Palli D, Rantakokko P, Kiviranta H, Kyrtopoulos SA, Balling R, Kleinjans J. Genes associated with Parkinson's disease respond to increasing polychlorinated biphenyl levels in the blood of healthy females. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:107-117. [PMID: 30991279 DOI: 10.1016/j.envpol.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly found in human blood, that have been suggested to be linked to the occurrence of sporadic Parkinson's disease (PD). It has been reported that some non-coplanar PCBs accumulate in the brains of female PD patients. To improve our understanding of the association between PCB exposure and PD risk we have applied whole transcriptome gene expression analysis in blood cells from 594 PCB-exposed subjects (369 female, 225 male). Interestingly, we observe that in females, blood levels of non-coplanar PCBs appear to be associated with expression levels of PD-specific genes. However, no such association was detected in males. Among the 131 PD-specific genes affected, 39 have been shown to display similar changes in expression levels in the substantia nigra of deceased PD patients. Especially among the down-regulated genes, transcripts of genes involved in neurotransmitter vesicle-related functions were predominant.
Collapse
Affiliation(s)
- Sacha Bohler
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands, 6229, ER Maastricht, the Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands, 6229, ER Maastricht, the Netherlands.
| | - Almudena Espín-Pérez
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands, 6229, ER Maastricht, the Netherlands
| | - Stephan Gebel
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, Esch-sur-Alzette L, 4362, Luxembourg
| | - Domenico Palli
- Istituto per lo Studio e la Prevenzione Oncologica (ISPO Toscana), FVia Cosimo Il Vecchio, 2, 50139, Florence, Italy
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701, Kuopio, Finland
| | - Hannu Kiviranta
- National Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701, Kuopio, Finland
| | - Soterios A Kyrtopoulos
- National Hellenic Research Foundation, Institute of Biology, Pharmaceutical Chemistry and Biotechnology, 48 Vassileos Constantinou Ave, 11635, Athens, Greece
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, Esch-sur-Alzette L, 4362, Luxembourg
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands, 6229, ER Maastricht, the Netherlands
| |
Collapse
|
10
|
Galligan TM, Balmer BC, Schwacke LH, Bolton JL, Quigley BM, Rosel PE, Ylitalo GM, Boggs ASP. Examining the relationships between blubber steroid hormones and persistent organic pollutants in common bottlenose dolphins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:982-991. [PMID: 31146318 DOI: 10.1016/j.envpol.2019.03.083] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Odontocete cetaceans bioaccumulate high concentrations of endocrine disrupting persistent organic pollutants (POPs), including dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyltrichloroethylene (DDE), and dichlorodiphenyldichloroethane (DDD) - collectively DDTs - but few studies have explored DDTs-mediated endocrine disruption in cetaceans. Herein, we use remotely collected blubber biopsies from common bottlenose dolphins (Tursiops truncatus) inhabiting a site with high localized DDTs contamination to study the relationships between DDTs exposure and steroid hormone homeostasis in cetaceans. We quantified blubber steroid hormone concentrations by liquid chromatography-tandem mass spectrometry and blubber POP concentrations by gas chromatography-mass spectrometry. We detected six steroid hormones in blubber, including progesterone (P4), 17-hydroxyprogesterone (17OHP4), androstenedione (AE), testosterone (T), cortisol (F), and cortisone (E). Sampled dolphins (n = 62) exhibited exposure to DDT, DDE, DDD, chlordanes (CHLDs), mirex, dieldrin, hexachlorobenzene, polychlorinated biphenyls (PCBs), and brominated diphenyl ethers (BDEs). Using principal components analysis (PCA), we determined that blubber DDTs primarily loaded to the first principal component (PC1) explaining 81.6% of the total variance in POP exposure, while the remaining POPs primarily loaded to the PC2 (10.4% of variance). PC1 scores were negatively correlated with blubber T in males and blubber F in females, suggesting that exposure to DDTs impacted androgen and corticosteroid homeostasis. These conclusions were further supported by observed negative correlations between T and o,p'-DDE, o,p'-DDD, and p,p'-DDD in males sampled in the fall, and between F and the six individual DDTs and ∑6DDTs in females. Overall, these results suggest that POP-mediated endocrine disruption may have occurred in this stock of dolphins, which could negatively impact their health and fitness. However, this study relied on uncontrolled incidental exposures, making it impossible to establish a causal relationship between DDTs exposure and endocrine effects. Importantly, this study demonstrates that remotely collected blubber biopsies are a useful matrix for studying endocrine disruption in marine mammals.
Collapse
Affiliation(s)
- Thomas M Galligan
- Medical University of South Carolina, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA; Virginia Polytechnic Institute and State University, Department of Fish and Wildlife Conservation, 310 West Campus Drive, 101 Cheatham Hall, Blacksburg, VA, 24060, USA.
| | - Brian C Balmer
- National Marine Mammal Foundation, 3419 Maybank Highway, Site B, Johns Island, SC, 29455, USA
| | - Lori H Schwacke
- National Marine Mammal Foundation, 3419 Maybank Highway, Site B, Johns Island, SC, 29455, USA
| | - Jennie L Bolton
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Brian M Quigley
- National Marine Mammal Foundation, 3419 Maybank Highway, Site B, Johns Island, SC, 29455, USA
| | - Patricia E Rosel
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, 646 Cajundome Boulevard, Lafayette, LA, 70506, USA
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Ashley S P Boggs
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| |
Collapse
|
11
|
Spörndly-Nees E, Holm L, van Beest FM, Fakhrzadeh A, Ekstedt E, Letcher R, Magnusson U, Desforges JP, Dietz R, Sonne C. Age and seasonal variation in testis and baculum morphology in East Greenland polar bears (Ursus maritimus) in relation to high concentrations of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2019; 173:246-254. [PMID: 30928855 DOI: 10.1016/j.envres.2019.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Persistent organic pollutants (POPs) are found in high concentrations in the Artic. Polar bears (Ursus maritimus) are one of the most exposed mammals in the Arctic and are thereby vulnerable to reproductive disruption. The aim of this study was to investigate male polar bear reproduction based on a detailed evaluation of testis histology and to assess possible effects of environmental chemicals on male polar bear reproduction. Reproductive groups that were identified based on histology were as follows: actively reproductive (REP), non-reproductive either with degenerated testes (DEG), undeveloped seminiferous tubules (UND), or morphology in-transition (INT). Categorization into these groups was supported by significant differences in testis and baculum measurements among REP, DEG, and UND, as well as differences in the area and diameter of seminiferous tubules among REP, DEG, and UND. These results show that it is possible to identify the reproductive stage in polar bears even if capture date and or age is lacking. Based on testis morphology we suggest that adult male polar bears from East Greenland have active spermatogenesis in February to June, and inactive degenerated testes in August to January. January to February was the main period of reproductive transition, characterised by a shift between inactive and active spermatogenesis. Baculum and testis size measurements decreased significantly with increasing concentrations of the chlordane metabolite oxychlordane, suggesting a potential impact on male reproductive success. Half of the investigated polar bears in REP group displayed signs of disorganization of the spermatogenesis which might be a sign of disrupted reproduction. However, no correlations with levels of the investigated POPs were detected. Reproductive organ measurements in polar bears differed significantly between REP and DEG groups, which cannot be explained by age, and therefore should be considered when investigating the effect of POPs on male reproduction.
Collapse
Affiliation(s)
- Ellinor Spörndly-Nees
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 75007, Sweden.
| | - Lena Holm
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 75007, Sweden
| | - Floris M van Beest
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-400, Roskilde, Denmark
| | - Azadeh Fakhrzadeh
- Iranian Research Institute for Information Science and Technology (IranDoc) Tehran Province, No. 1090, Enghelab, Tehran, Iran
| | - Elisabeth Ekstedt
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 75007, Sweden
| | - Robert Letcher
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Bldg. 33, 1125 Colonel By Drive, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Ulf Magnusson
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-400, Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-400, Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-400, Roskilde, Denmark
| |
Collapse
|
12
|
Routti H, Atwood TC, Bechshoft T, Boltunov A, Ciesielski TM, Desforges JP, Dietz R, Gabrielsen GW, Jenssen BM, Letcher RJ, McKinney MA, Morris AD, Rigét FF, Sonne C, Styrishave B, Tartu S. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1063-1083. [PMID: 30901781 DOI: 10.1016/j.scitotenv.2019.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
The polar bear (Ursus maritimus) is among the Arctic species exposed to the highest concentrations of long-range transported bioaccumulative contaminants, such as halogenated organic compounds and mercury. Contaminant exposure is considered to be one of the largest threats to polar bears after the loss of their Arctic sea ice habitat due to climate change. The aim of this review is to provide a comprehensive summary of current exposure, fate, and potential health effects of contaminants in polar bears from the circumpolar Arctic required by the Circumpolar Action Plan for polar bear conservation. Overall results suggest that legacy persistent organic pollutants (POPs) including polychlorinated biphenyls, chlordanes and perfluorooctane sulfonic acid (PFOS), followed by other perfluoroalkyl compounds (e.g. carboxylic acids, PFCAs) and brominated flame retardants, are still the main compounds in polar bears. Concentrations of several legacy POPs that have been banned for decades in most parts of the world have generally declined in polar bears. Current spatial trends of contaminants vary widely between compounds and recent studies suggest increased concentrations of both POPs and PFCAs in certain subpopulations. Correlative field studies, supported by in vitro studies, suggest that contaminant exposure disrupts circulating levels of thyroid hormones and lipid metabolism, and alters neurochemistry in polar bears. Additionally, field and in vitro studies and risk assessments indicate the potential for adverse impacts to polar bear immune functions from exposure to certain contaminants.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Thea Bechshoft
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Center, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Adam D Morris
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen OE, Denmark
| | - Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
13
|
Trego ML, Hoh E, Whitehead A, Kellar NM, Lauf M, Datuin DO, Lewison RL. Contaminant Exposure Linked to Cellular and Endocrine Biomarkers in Southern California Bottlenose Dolphins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3811-3822. [PMID: 30852886 DOI: 10.1021/acs.est.8b06487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cetaceans in the Southern California Bight (SCB) are exposed to high levels of halogenated organic contaminants (HOCs), which have previously been linked to impaired reproductive health and immune responses. We used a combination of molecular tools to examine the potential physiological impacts of HOC exposure in two bottlenose dolphin ( Tursiops truncatus) ecotypes in the SCB. We quantified 25 HOCs in the blubber of 22 biopsies collected from males between 2012 and 2016. We then analyzed genome-wide gene expression in skin using RNA-sequencing and measured blubber testosterone to compare HOC exposure with cellular and endocrine biomarkers. We found high levels of HOCs in both ecotypes with significantly higher total polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), tris(4-chlorophenyl)methanol (TCPMOH), and chlordane-related compounds in the coastal ecotype versus the offshore ecotype. We found evidence of PBDE bioaccumulation in both ecotypes, however, the pattern of bioaccumulation or endocrine disruption for other HOCs was different between the ecotypes, suggesting potential endocrine disruption in the coastal ecotype. We also observed correlations between HOCs and gene coexpression networks enriched for xenobiotic metabolism, hormone metabolism, and immune response that could indicate cellular effects from HOC exposure. By integrating measurements of HOC load with both transcriptome profiling and endocrine biomarkers, our approach provides insight into HOC exposure and potential impacts on wild cetacean health in southern California.
Collapse
Affiliation(s)
- Marisa L Trego
- Department of Biology , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
- Department of Environmental Toxicology , University of California-Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Eunha Hoh
- School of Public Health , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Andrew Whitehead
- Department of Environmental Toxicology , University of California-Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Nicholas M Kellar
- Ocean Associates, Incorporated, under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service , National Oceanic and Atmospheric Administration , Arlington , Virginia 22207 , United States
| | - Morgane Lauf
- Ocean Associates, Incorporated, under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service , National Oceanic and Atmospheric Administration , Arlington , Virginia 22207 , United States
| | - Dana O Datuin
- School of Public Health , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Rebecca L Lewison
- Department of Biology , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| |
Collapse
|
14
|
Lippold A, Bourgeon S, Aars J, Andersen M, Polder A, Lyche JL, Bytingsvik J, Jenssen BM, Derocher AE, Welker JM, Routti H. Temporal Trends of Persistent Organic Pollutants in Barents Sea Polar Bears ( Ursus maritimus) in Relation to Changes in Feeding Habits and Body Condition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:984-995. [PMID: 30548071 DOI: 10.1021/acs.est.8b05416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Temporal trends of persistent organic pollutants (POPs: PCBs, OH-PCBs, p, p'-DDE, HCB, β-HCH, oxychlordane, BDE-47, and 153) in relation to changes in feeding habits and body condition in adult female polar bears ( Ursus maritimus) from the Barents Sea subpopulation were examined over 20 years (1997-2017). All 306 samples were collected in the spring (April). Both stable isotope values of nitrogen (δ15N) and carbon (δ13C) from red blood cells declined over time, with a steeper trend for δ13C between 2012 and 2017, indicating a decreasing intake of marine and high trophic level prey items. Body condition, based on morphometric measurements, had a nonsignificant decreasing tendency between 1997 and 2005, and increased significantly between 2005 and 2017. Plasma concentrations of BDE-153 and β-HCH did not significantly change over time, whereas concentrations of Σ4PCB, Σ5OH-PCB, BDE-47, and oxychlordane declined linearly. Concentrations of p, p'-DDE and HCB, however, declined until 2012 and 2009, respectively, and increased thereafter. Changes in feeding habits and body condition did not significantly affect POP trends. The study indicates that changes in diet and body condition were not the primary driver of POPs in polar bears, but were controlled in large part by primary and/or secondary emissions of POPs.
Collapse
Affiliation(s)
- Anna Lippold
- Norwegian Polar Institute , Tromsø 9296 , Norway
- The Arctic University of Norway (UiT) , Tromsø 9019 , Norway
| | - Sophie Bourgeon
- The Arctic University of Norway (UiT) , Tromsø 9019 , Norway
| | - Jon Aars
- Norwegian Polar Institute , Tromsø 9296 , Norway
| | | | - Anuschka Polder
- Norwegian University of Life Sciences (NMBU) , Oslo 0454 , Norway
| | - Jan Ludvig Lyche
- Norwegian University of Life Sciences (NMBU) , Oslo 0454 , Norway
| | - Jenny Bytingsvik
- Akvaplan-niva AS , Tromsø 9296 , Norway
- Norwegian University of Science and Technology (NTNU) Trondheim 7491 , Norway
| | - Bjørn Munro Jenssen
- Norwegian University of Science and Technology (NTNU) Trondheim 7491 , Norway
| | | | - Jeffrey M Welker
- University of Alaska Anchorage (UAA) , Anchorage 99508 , United States
- University of Oulu , Oulu 90014 , Finland
- University of the Arctic
| | - Heli Routti
- Norwegian Polar Institute , Tromsø 9296 , Norway
| |
Collapse
|
15
|
Trego ML, Hoh E, Kellar NM, Meszaros S, Robbins MN, Dodder NG, Whitehead A, Lewison RL. Comprehensive Screening Links Halogenated Organic Compounds with Testosterone Levels in Male Delphinus delphis from the Southern California Bight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3101-3109. [PMID: 29397698 PMCID: PMC6301072 DOI: 10.1021/acs.est.7b04652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
While environmental pollutants have been associated with changes in endocrine health in cetaceans, efforts to link contaminant exposure with hormones have largely been limited to a list of known, targeted contaminants, overlooking minimally characterized or unknown compounds of emerging concern. To address this gap, we analyzed a suite of potential endocrine disrupting halogenated organic compounds (HOCs) in blubber from 16 male short-beaked common dolphins ( Delphinus delphis) with known maturity status collected from fishery bycatch in the Southern California Bight. We employed a suspect screening mass spectrometry-based method to investigate a wide range of HOCs that were previously observed in cetaceans from the same region. Potential endocrine effects were assessed through the measurement of blubber testosterone. We detected 167 HOCs, including 81 with known anthropogenic sources, 49 of unknown origin, and 37 with known natural sources. The sum of 11 anthropogenic and 4 unknown HOC classes were negatively correlated with blubber testosterone. Evidence suggests that elevated anthropogenic HOC load contributes to impaired testosterone production in mature male D. delphis. The application of this integrative analytical approach to cetacean contaminant analysis allows for inference of the biological consequences of accumulation of HOCs and prioritization of compounds for future environmental toxicology research.
Collapse
Affiliation(s)
- Marisa L. Trego
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
- Corresponding Author, Phone: (858) 546-7066
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Nicholas M. Kellar
- Southwest Fisheries Science Center, MMTD, NMFS, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sara Meszaros
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Michelle N. Robbins
- Ocean Associates, Inc., under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration - USA
| | - Nathan G. Dodder
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Rebecca L. Lewison
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| |
Collapse
|
16
|
Pavlova V, Nabe-Nielsen J, Dietz R, Sonne C, Grimm V. Allee effect in polar bears: a potential consequence of polychlorinated biphenyl contamination. Proc Biol Sci 2017; 283:rspb.2016.1883. [PMID: 27903868 DOI: 10.1098/rspb.2016.1883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
Polar bears (Ursus maritimus) from East Greenland and Svalbard exhibited very high concentrations of polychlorinated biphenyls (PCBs) in the 1980s and 1990s. In Svalbard, slow population growth during that period was suspected to be linked to PCB contamination. In this case study, we explored how PCBs could have impacted polar bear population growth and/or male reproductive success in Svalbard during the mid-1990s by reducing the fertility of contaminated males. A dose-response relationship linking the effects of PCBs to male polar bear fertility was extrapolated from studies of the effects of PCBs on sperm quality in rodents. Based on this relationship, an individual-based model of bear interactions during the breeding season predicted fertilization success under alternative assumptions regarding male-male competition for females. Contamination reduced pregnancy rates by decreasing the availability of fertile males, thus triggering a mate-finding Allee effect, particularly when male-male competition for females was limited or when infertile males were able to compete with fertile males for females. Comparisons of our model predictions on age-dependent reproductive success of males with published empirical observations revealed that the low representation of 10-14-year-old males among breeding males documented in Svalbard in mid-1990s could have resulted from PCB contamination. We conclude that contamination-related male infertility may lead to a reduction in population growth via an Allee effect. The magnitude of the effect is largely dependent on the population-specific mating system. In eco-toxicological risk assessments, appropriate consideration should therefore be given to negative effects of contaminants on male fertility and male mating behaviour.
Collapse
Affiliation(s)
- Viola Pavlova
- Biology Centre of the AS CR, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice 370 05, Czech Republic .,Arctic Research Centre, Aarhus University, C.F. Møllers Allé 8, Aarhus C 8000, Denmark.,Department of Bioscience, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Jacob Nabe-Nielsen
- Arctic Research Centre, Aarhus University, C.F. Møllers Allé 8, Aarhus C 8000, Denmark.,Department of Bioscience, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Rune Dietz
- Arctic Research Centre, Aarhus University, C.F. Møllers Allé 8, Aarhus C 8000, Denmark.,Department of Bioscience, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Christian Sonne
- Arctic Research Centre, Aarhus University, C.F. Møllers Allé 8, Aarhus C 8000, Denmark.,Department of Bioscience, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Volker Grimm
- Department of Ecological Modelling, Helmholtz Center for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| |
Collapse
|
17
|
Ciesielski TM, Hansen IT, Bytingsvik J, Hansen M, Lie E, Aars J, Jenssen BM, Styrishave B. Relationships between POPs, biometrics and circulating steroids in male polar bears (Ursus maritimus) from Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:598-608. [PMID: 28710978 DOI: 10.1016/j.envpol.2017.06.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to determine the effects of persistent organic pollutants (POPs) and biometric variables on circulating levels of steroid hormones (androgens, estrogens and progestagens) in male polar bears (Ursus maritimus) from Svalbard, Norway (n = 23). Levels of pregnenolone (PRE), progesterone (PRO), androstenedione (AN), dehydroepiandrosterone (DHEA), testosterone (TS), dihydrotestosterone (DHT), estrone (E1), 17α-estradiol (αE2) and 17β-estradiol (βE2) were quantified in polar bear serum by gas chromatography tandem mass spectrometry (GC-MS/MS), while POPs were measured in plasma. Subsequently, associations between hormone concentrations (9 steroids), POPs (21 polychlorinated biphenyls (PCBs), 8 OH-PCBs, 8 organochlorine pesticides (OCPs) and OCP metabolites, and 2 polybrominated diphenyl ethers (PBDEs)) and biological variables (age, head length, body mass, girth, body condition index), capture date, location (latitude and longitude), lipid content and cholesterol levels were examined using principal component analysis (PCA) and orthogonal projections to latent structures (OPLS) modelling. Average concentrations of androgens, estrogens and progestagens were in the range of 0.57-83.7 (0.57-12.4 for subadults, 1.02-83.7 for adults), 0.09-2.69 and 0.57-2.44 nmol/L, respectively. The steroid profiles suggest that sex steroids were mainly synthesized through the Δ-4 pathway in male polar bears. The ratio between androgens and estrogens significantly depended on sexual maturity with androgen/estrogen ratios being approximately 60 times higher in adult males than in subadult males. PCA plots and OPLS models indicated that TS was positively related to biometrics, such as body condition index in male polar bears. A negative relationship was also observed between POPs and DHT. Consequently, POPs and body condition may potentially affect the endocrinological function of steroids, including development of reproductive tissues and sex organs and the general condition of male polar bears.
Collapse
Affiliation(s)
- Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Tjelta Hansen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jenny Bytingsvik
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Hansen
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Elisabeth Lie
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Aars
- Norwegian Polar Institute, Tromsø, Norway
| | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Department of Arctic Technology, The University Centre in Svalbard, Longyearbyen, Norway
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Richard JT, Robeck TR, Osborn SD, Naples L, McDermott A, LaForge R, Romano TA, Sartini BL. Testosterone and progesterone concentrations in blow samples are biologically relevant in belugas (Delphinapterus leucas). Gen Comp Endocrinol 2017; 246:183-193. [PMID: 27989435 DOI: 10.1016/j.ygcen.2016.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/06/2016] [Accepted: 12/11/2016] [Indexed: 12/22/2022]
Abstract
Steroid hormone analysis in blow (respiratory vapor) may provide a minimally invasive way to assess the reproductive status of wild cetaceans. Biological validation of the method is needed to allow for the interpretation of hormone measurements in blow samples. Utilizing samples collected from trained belugas (Delphinapterus leucas, n=20), enzyme immunoassays for testosterone and progesterone were validated for use with beluga blow samples. Testosterone concentrations in 40 matched blood and blow samples collected from 4 male belugas demonstrated a positive correlation (R2=0.52, p<0.0001). Progesterone concentrations in 64 matching blood and blow samples from 11 females were also positively correlated (R2=0.60, p<0.0001). Testosterone concentrations (mean±SD) in blow samples collected from adult males (119.3±14.2pg/ml) were higher (p<0.01) than that of a juvenile male (<8years) (59.4±6.5pg/ml) or female belugas (54.1±25.7pg/ml). Among adult males, testosterone concentrations in blow demonstrated a seasonal pattern of secretion, with peak secretion occurring during the breeding season (February-April, 136.95±33.8pg/ml). Progesterone concentrations in blow varied by reproductive status; pregnant females (410.6±87.8pg/ml) and females in the luteal phase of the estrous cycle (339.5±51.0pg/ml) had higher (p<0.0001) blow progesterone concentrations than non-pregnant females without a corpus luteum (242.5±27.3pg/ml). Results indicate that blow sample analysis can be used to detect variation in reproductive states associated with large differences in circulating testosterone or progesterone in belugas.
Collapse
Affiliation(s)
- Justin T Richard
- University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA; Mystic Aquarium, a division of Sea Research Foundation, 55 Coogan Blvd, Mystic, CT 06355, USA.
| | - Todd R Robeck
- SeaWorld and Busch Gardens Reproductive Research Center, SeaWorld Parks and Entertainment, 2595 Ingraham Road, San Diego, CA 92019, USA
| | - Steven D Osborn
- SeaWorld San Antonio, 10500 SeaWorld Drive, San Antonio, TX 78251, USA
| | - Lisa Naples
- Shedd Aquarium, 1200 S. Lake Shore Drive, Chicago, IL 60605, USA
| | | | - Robert LaForge
- University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| | - Tracy A Romano
- Mystic Aquarium, a division of Sea Research Foundation, 55 Coogan Blvd, Mystic, CT 06355, USA
| | - Becky L Sartini
- University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|
19
|
Villa S, Migliorati S, Monti GS, Holoubek I, Vighi M. Risk of POP mixtures on the Arctic food chain. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1181-1192. [PMID: 28054401 DOI: 10.1002/etc.3671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/07/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
The exposure of the Arctic ecosystem to persistent organic pollutants (POPs) was assessed through a review of literature data. Concentrations of 19 chemicals or congeneric groups were estimated for the highest levels of the Arctic food chain (Arctic cod, ringed seals, and polar bears). The ecotoxicological risk for seals, bears, and bear cubs was estimated by applying the concentration addition (CA) concept. The risk of POP mixtures was very low in seals. By contrast, the risk was 2 orders of magnitude higher than the risk threshold for adult polar bears and even more (3 orders of magnitude above the threshold) for bear cubs fed with contaminated milk. Based on the temporal trends available for many of the chemicals, the temporal trend of the mixture risk for bear cubs was calculated. Relative to the 1980s, a decrease in risk from the POP mixture is evident, mainly because of international control measures. However, the composition of the mixture substantially changes, and the contribution of new POPs (particularly perfluorooctane sulfonate) increases. These results support the effectiveness of control measures, such as those promulgated in the Stockholm Convention, as well as the urgent need for their implementation for new and emerging POPs. Environ Toxicol Chem 2017;36:1181-1192. © 2017 SETAC.
Collapse
Affiliation(s)
- Sara Villa
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milano, Italy
| | - Sonia Migliorati
- Department of Economics, Management, and Statistics, University of Milano Bicocca, Milano, Italy
| | - Gianna Serafina Monti
- Department of Economics, Management, and Statistics, University of Milano Bicocca, Milano, Italy
| | - Ivan Holoubek
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic
| | - Marco Vighi
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milano, Italy
- Madrid Institute for Advanced Studies in Water (IMDEA Water), Madrid, Spain
| |
Collapse
|
20
|
Sonne C, Torjesen PA, Fuglei E, Muir DCG, Jenssen BM, Jørgensen EH, Dietz R, Ahlstrøm Ø. Exposure to Persistent Organic Pollutants Reduces Testosterone Concentrations and Affects Sperm Viability and Morphology during the Mating Peak Period in a Controlled Experiment on Farmed Arctic Foxes (Vulpes lagopus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4673-4680. [PMID: 28301147 DOI: 10.1021/acs.est.7b00289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated testosterone production and semen parameters in farmed Arctic foxes by dietary exposure to persistent organic pollutants (POPs) for 22 months. Eight male foxes were given a diet of POP-contaminated minke whale blubber, whereas their eight male siblings were fed a control diet containing pig fat as the main fat source. The minke whale-based feed contained a ∑POPs concentration of 802 ng/g ww, whereas the pig-based feed contained ∑POPs of 24 ng/g ww. At the end of the experiment, ∑POP concentrations in adipose tissue were 8856 ± 2535 ng/g ww in the exposed foxes and 1264 ± 539 ng/g ww in the control foxes. The exposed group had 45-64% significantly lower testosterone concentrations during their peak mating season compared to the controls (p ≤ 0.05), while the number of dead and defect sperm cells was 27% (p = 0.07) and 15% (p = 0.33) higher in the exposed group. Similar effects during the mating season in wild Arctic foxes may affect mating behavior and reproductive success. On the basis of these results, we recommend testosterone as a sensitive biomarker of POP exposure and that seasonal patterns are investigated when interpreting putative endocrine disruption in Arctic wildlife with potential population-level effects.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology , Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Peter A Torjesen
- Department of Endocrinology, Hormone Laboratory , Oslo University Hospital, NO-0514 Oslo, Norway
| | - Eva Fuglei
- Norwegian Polar Institute , Fram Centre, NO-9296 Tromsø, Norway
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada , Burlington, Ontario, Canada L7S 1A1
| | - Bjørn Munro Jenssen
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology , Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology , NO-7491 Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svarbard , P.O. Box 156, NO-9171 Longyearbyen, Norway
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway , NO-9037 Tromsø, Norway
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology , Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Øystein Ahlstrøm
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences , NO-1433 Ås, Norway
| |
Collapse
|
21
|
Pedersen KE, Letcher RJ, Sonne C, Dietz R, Styrishave B. Per- and polyfluoroalkyl substances (PFASs) - New endocrine disruptors in polar bears (Ursus maritimus)? ENVIRONMENT INTERNATIONAL 2016; 96:180-189. [PMID: 27692342 DOI: 10.1016/j.envint.2016.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging in the Arctic and accumulate in brain tissues of East Greenland (EG) polar bears. In vitro studies have shown that PFASs might possess endocrine disrupting abilities and therefore the present study was conducted to investigate potential PFAS induced alterations in brain steroid concentrations. The concentrations of eleven steroid hormones were determined in eight brain regions from ten EG polar bears. Pregnenolone (PRE), the dominant progestagen, was found in mean concentrations of 5-47ng/g (ww) depending on brain region. PRE showed significantly (p<0.01) higher concentrations in female compared to male bears. Dehydroepiandrosterone (DHEA) found in mean concentrations 0.67-4.58ng/g (ww) was the androgen found in highest concentrations. Among the estrogens estrone (E1) showed mean concentrations of 0.90-2.21ng/g (ww) and was the most abundant. Remaining steroid hormones were generally present in concentrations below 2ng/g (ww). Steroid levels in brain tissue could not be explained by steroid levels in plasma. There was however a trend towards increasing estrogen levels in plasma resulting in increasing levels of androgens in brain tissue. Correlative analyses showed positive associations between PFASs and 17α-hydroxypregnenolone (OH-PRE) (e.g. perflouroalkyl sulfonates (∑PFSA): p<0.01, r=0.39; perfluoroalkyl carboxylates (∑PFCA): p<0.01, r=0.61) and PFCA and testosterone (TS) (∑PFCA: p=0.03, r=0.30) across brain regions. Further when investigating correlative associations in specific brain regions significant positive correlations were found between ∑PFCA and several steroid hormones in the occipital lobe. Correlative positive associations between PFCAs and steroids were especially observed for PRE, progesterone (PRO), OH-PRE, DHEA, androstenedione (AN) and testosterone (TS) (all p≤0.01, r≥0.7). The results from the present study generally indicate that an increase in PFASs concentration seems to concur with an increase in steroid hormones of EG polar bears. It is, however, not possible to determine whether alterations in brain steroid concentrations arise from interference with de novo steroid synthesis or via disruption of peripheral steroidogenic tissues mainly in gonads and feedback mechanisms. Steroids are important for brain plasticity and gender specific behavior as well as postnatal development and sexually dimorph brain function. The present work indicates an urgent need for a better mechanistic understanding of how PFASs may affect the endocrine system of polar bears and potentially other mammal species.
Collapse
Affiliation(s)
- Kathrine Eggers Pedersen
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, P.O. Box 358, Roskilde DK-4000, Denmark
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, P.O. Box 358, Roskilde DK-4000, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Nuijten RJM, Hendriks AJ, Jenssen BM, Schipper AM. Circumpolar contaminant concentrations in polar bears (Ursus maritimus) and potential population-level effects. ENVIRONMENTAL RESEARCH 2016; 151:50-57. [PMID: 27450999 DOI: 10.1016/j.envres.2016.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Polar bears (Ursus maritimus) currently receive much attention in the context of global climate change. However, there are other stressors that might threaten the viability of polar bear populations as well, such as exposure to anthropogenic pollutants. Lipophilic organic compounds bio-accumulate and bio-magnify in the food chain, leading to high concentrations at the level of top-predators. In Arctic wildlife, including the polar bear, various adverse health effects have been related to internal concentrations of commercially used anthropogenic chemicals like PCB and DDT. The extent to which these individual health effects are associated to population-level effects is, however, unknown. In this study we assembled data on adipose tissue concentrations of ∑PCB, ∑DDT, dieldrin and ∑PBDE in individual polar bears from peer-reviewed scientific literature. Data were available for 14 out of the 19 subpopulations. We found that internal concentrations of these contaminants exceed threshold values for adverse individual health effects in several subpopulations. In an exploratory regression analysis we identified a clear negative correlation between polar bear population density and sub-population specific contaminant concentrations in adipose tissue. The results suggest that adverse health effects of contaminants in individual polar bears may scale up to population-level consequences. Our study highlights the need to consider contaminant exposure along with other threats in polar bear population viability analyses.
Collapse
Affiliation(s)
- R J M Nuijten
- Department of Environmental Science, Institute for Water and Wetland Research (IWWR), Radboud University (RU), NL-6500 GL Nijmegen, The Netherlands; Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 7608 PB Wageningen, The Netherlands.
| | - A J Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research (IWWR), Radboud University (RU), NL-6500 GL Nijmegen, The Netherlands
| | - B M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Arctic Technology, The University Centre in Svalbard, Longyearbyen, Norway
| | - A M Schipper
- Department of Environmental Science, Institute for Water and Wetland Research (IWWR), Radboud University (RU), NL-6500 GL Nijmegen, The Netherlands; PBL Netherlands Environmental Assessment Agency, PO Box 303, 3720 AH Bilthoven, The Netherlands
| |
Collapse
|
23
|
Bechshoft T, Derocher AE, Richardson E, Lunn NJ, St Louis VL. Hair Mercury Concentrations in Western Hudson Bay Polar Bear Family Groups. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5313-5319. [PMID: 27095340 DOI: 10.1021/acs.est.6b00483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methylmercury is one of the more toxic forms of mercury (Hg), the biomagnification of which is prevalent in the Arctic where apex predators such as polar bears (Ursus maritimus) can carry high loads. The maternal transfer of contaminants to offspring is a concern, as offspring may be particularly sensitive to the effects of environmental pollutants during early development. However, few studies of polar bears report on Hg in dependent young. We examined hair total Hg (THg) concentrations in 24 polar bear family groups in western Hudson Bay: mother, cub-of-the-year (COY), yearling, and 2 year old. THg concentrations increased with bear age, with COYs having lower concentrations than other offspring groups (p ≤ 0.008). Using AICc-based regression models, we found maternal THg to be positively related to body condition and litter size, while overall offspring THg was positively related to maternal body condition in addition to being dependent on the sex and age of the offspring. COY THg concentrations were positively related to maternal THg while also depending on the sex of the offspring. Considering our results, future studies in polar bear ecotoxicology are encouraged to include offspring of different ages and sexes.
Collapse
Affiliation(s)
- Thea Bechshoft
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada
| | - Evan Richardson
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, University of Alberta , CW405, Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Nicholas J Lunn
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, University of Alberta , CW405, Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Vincent L St Louis
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
24
|
Adverse effects of endocrine disruptors on the foetal testis development: focus on the phthalates. Folia Histochem Cytobiol 2016; 47:S67-74. [PMID: 20067897 DOI: 10.2478/v10042-009-0056-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are great concerns about the increasing incidence of abnormalities in male reproductive function. Human sperm counts have markedly dropped and the rate of testicular cancer has clearly augmented over the past four decades. Moreover, the prevalence rates of cryptorchidism and hypospadias are also probably increasing. It has been hypothesized that all these adverse trends in male reproduction result from abnormalities in the development of the testis during foetal and neonatal life. Furthermore, many recent epidemiological, clinical and experimental data suggest that these male reproductive disorders could be due to the effects of xenobiotics termed endocrine disruptors, which are becoming more and more concentrated and prevalent in our environment. Among these endocrine disruptors, we chose to focus this review on the phthalates for different reasons: 1) they are widespread in the environment; 2) their concentrations in many human biological fluids have been measured; 3) the experimental data using rodent models suggesting a reprotoxicity are numerous and are the most convincing; 4) their deleterious effects on the in vivo and in vitro development and function of the rat foetal testis have been largely studied; 5) some epidemiological data in humans suggest a reprotoxic effect at environmental concentrations at least during neonatal life. However, the direct effects of phthalates on human foetal testis have never been explored. Thus, as we did for the rat in the 1990s, we recently developed and validated an organ culture system which allows maintenance of the development of the different cell types of human foetal testis. In this system, addition of 10-4 M MEHP (mono-2-ethylhexyl phthalate), the most produced phthalate, had no effect on basal or LH-stimulated production of testosterone, but it reduced the number of germ cells by increasing their apoptosis, without modification of their proliferation. This is the first experimental demonstration that phthalates alter the development of the foetal testis in humans. Using our organotypic culture system, we and others are currently investigating the effect of MEHP in the mouse and the rat, and it will be interesting to compare the results between these species to analyse the relevance of toxicological tests based on rodent models.
Collapse
|
25
|
Weisser JJ, Hansen M, Björklund E, Sonne C, Dietz R, Styrishave B. A novel method for analysing key corticosteroids in polar bear ( Ursus maritimus ) hair using liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1017-1018:45-51. [DOI: 10.1016/j.jchromb.2016.02.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
|
26
|
|
27
|
Flor S, He X, Lehmler HJ, Ludewig G. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2186-200. [PMID: 26300354 PMCID: PMC4718780 DOI: 10.1007/s11356-015-5142-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/03/2015] [Indexed: 04/15/2023]
Abstract
Recent studies identified polychlorinated biphenyl (PCB) sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific congener PCB 11, and sulfate monoesters of two HO-PCBs reported to interact with sulfotransferases (PCB 39, no ortho chlorines, and PCB 53, 3 ortho chlorines). We tested these PCB sulfates and 4'-HO-PCB 3 as positive control for estrogenic, androgenic, anti-estrogenic, and anti-androgenic activity in the E- and A-screen with human breast cancer MCF7-derived cells at 100 μM-1 pM concentrations. Only 4'-HO-PCB 3 was highly cytotoxic at 100 μM. We observed structure-activity relationships: compounds with a sulfate group in the chlorine-containing ring of PCB 3 (2PCB 3 and 3PCB 3 sulfate) showed no interaction with the estrogen (ER) and androgen (AR) receptor. The 4'-HO-PCB 3 and its sulfate ester had the highest estrogenic effect, but at 100-fold different concentrations, i.e., 1 and 100 μM, respectively. Four of the PCB sulfates were estrogenic (2'PCB 3, 4'PCB 3, 4'PCB 39, and 4'PCB 53 sulfates; at 100 μM). These sulfates and 3'PCB 3 sulfate also exhibited anti-estrogenic activity, but at nM and pM concentrations. The 4'PCB 3 sulfate (para-para' substituted) had the strongest androgenic activity, followed by 3'PCB 3, 4'PCB 53, 4PCB11, and 4PCB 39 sulfates and the 4'HO-PCB 3. In contrast, anti-androgenicity was only observed with the two compounds that have the sulfate group in ortho- or meta- position in the second ring (2'PCB 3 and 3'PCB 3 sulfate). No dose-response was observed in any screen, but, with exception of estrogenic activity (only seen at 100 μM), endocrine activity was often displayed at several concentrations and even at 1 pM concentration. These data suggest that sulfation of HO-PCBs is indeed reducing their cytotoxicity and estrogenicity, but may produce other endocrine disruptive activities at very low concentrations.
Collapse
Affiliation(s)
- Susanne Flor
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA
| | - Xianran He
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA
| | - Gabriele Ludewig
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA.
| |
Collapse
|
28
|
Pavlova V, Grimm V, Dietz R, Sonne C, Vorkamp K, Rigét FF, Letcher RJ, Gustavson K, Desforges JP, Nabe-Nielsen J. Modeling Population-Level Consequences of Polychlorinated Biphenyl Exposure in East Greenland Polar Bears. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:143-54. [PMID: 26289812 DOI: 10.1007/s00244-015-0203-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/27/2015] [Indexed: 05/21/2023]
Abstract
Polychlorinated biphenyls (PCBs) can cause endocrine disruption, cancer, immunosuppression, or reproductive failure in animals. We used an individual-based model to explore whether and how PCB-associated reproductive failure could affect the dynamics of a hypothetical polar bear (Ursus maritimus) population exposed to PCBs to the same degree as the East Greenland subpopulation. Dose-response data from experimental studies on a surrogate species, the mink (Mustela vision), were used in the absence of similar data for polar bears. Two alternative types of reproductive failure in relation to maternal sum-PCB concentrations were considered: increased abortion rate and increased cub mortality. We found that the quantitative impact of PCB-induced reproductive failure on population growth rate depended largely on the actual type of reproductive failure involved. Critical potencies of the dose-response relationship for decreasing the population growth rate were established for both modeled types of reproductive failure. Comparing the model predictions of the age-dependent trend of sum-PCBs concentrations in females with actual field measurements from East Greenland indicated that it was unlikely that PCB exposure caused a high incidence of abortions in the subpopulation. However, on the basis of this analysis, it could not be excluded that PCB exposure contributes to higher cub mortality. Our results highlight the necessity for further research on the possible influence of PCBs on polar bear reproduction regarding their physiological pathway. This includes determining the exact cause of reproductive failure, i.e., in utero exposure versus lactational exposure of offspring; the timing of offspring death; and establishing the most relevant reference metrics for the dose-response relationship.
Collapse
Affiliation(s)
- Viola Pavlova
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Volker Grimm
- Department of Ecological Modelling, Helmholtz Center for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Rune Dietz
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus C, Denmark
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus C, Denmark
| | - Katrin Vorkamp
- Arctic Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus C, Denmark
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Frank F Rigét
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Robert J Letcher
- Ecotoxicology and Wildlife Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Kim Gustavson
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jean-Pierre Desforges
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jacob Nabe-Nielsen
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus C, Denmark
| |
Collapse
|
29
|
Dietz R, Gustavson K, Sonne C, Desforges JP, Rigét FF, Pavlova V, McKinney MA, Letcher RJ. Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic. ENVIRONMENTAL RESEARCH 2015; 140:45-55. [PMID: 25825130 DOI: 10.1016/j.envres.2015.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Polar bears (Ursus maritimus) consume large quantities of seal blubber and other high trophic marine mammals and consequently have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In the present paper we carried out a risk quotient (RQ) evaluation on OHC-exposed polar bears harvested from 1999 to 2008 and from 11 circumpolar subpopulations spanning from Alaska to Svalbard in order to evaluate the risk of OHC-mediated reproductive effects (embryotoxicity, teratogenicity), immunotoxicity and carcinogenicity (genotoxicity). This RQ evaluation was based on the Critical Body Residue (CBR) concept and a Physiologically-Based Pharmacokinetic Modelling (PBPK) approach using OHC concentrations measured in polar bear adipose or liver tissue. The range of OHC concentrations within polar bear populations were as follows for adipose, sum polychlorinated biphenyls ∑PCBs (1797-10,537 ng/g lw), sum methylsulphone-PCB ∑MeSO2-PCBs (110-672 ng/g lw), sum chlordanes ∑CHLs (765-3477 ng/g lw), α-hexachlorocyclohexane α-HCH (8.5-91.3 ng/g lw), β-hexachlorocyclohexane β-HCH (65.5-542 ng/g lw), sum chlorbenzenes ∑ClBzs (145-304 ng/g lw), dichlorodiphenyltrichloroethane ∑DDTs (31.5-206 ng/g lw), dieldrin (69-249 ng/g lw), polybrominated diphenyl ethers ∑PBDEs (4.6-78.4 ng/g lw). For liver, the perfluorooctanesulfonic acid (PFOS) concentrations ranged from 231-2792 ng/g ww. The total additive RQ from all OHCs ranged from 4.3 in Alaska to 28.6 in East Greenland bears for effects on reproduction, immune health and carcinogenicity, highlighting the important result that the toxic effect threshold (i.e. RQ>1) was exceeded for all polar bear populations assessed. PCBs were the main contributors for all three effect categories, contributing from 70.6% to 94.3% of the total risk and a RQ between 3.8-22.5. ∑MeSO2-PCBs were the second highest effect contributor for reproductive and immunological effects (0.17<RQ<1.4), whereas PFOS was the second highest effect contributor for carcinogenic (genotoxic) effects (0.35<RQ<2.5). The results from this study corroborate and lend further support to previous assessments of the possible adverse health effects of exposure to known and measured OHCs in polar bears. We therefore suggest that Critical Daily Doses (CDD) should be investigated in "ex vivo" dose-response studies on polar bears to replace laboratory studies on rats (Rattus rattus) to reveal whether high RQs are maintained.
Collapse
Affiliation(s)
- Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Kim Gustavson
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Viola Pavlova
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Melissa A McKinney
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06269, USA; Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3.
| |
Collapse
|
30
|
Gustavson L, Ciesielski TM, Bytingsvik J, Styrishave B, Hansen M, Lie E, Aars J, Jenssen BM. Hydroxylated polychlorinated biphenyls decrease circulating steroids in female polar bears (Ursus maritimus). ENVIRONMENTAL RESEARCH 2015; 138:191-201. [PMID: 25725300 DOI: 10.1016/j.envres.2015.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
As a top predator in the Arctic food chain, polar bears (Ursus maritimus) are exposed to high levels of persistent organic pollutants (POPs). Because several of these compounds have been reported to alter endocrine pathways, such as the steroidogenesis, potential disruption of the sex steroid synthesis by POPs may cause implications for reproduction by interfering with ovulation, implantation and fertility. Blood samples were collected from 15 female polar bears in Svalbard (Norway) in April 2008. The concentrations of nine circulating steroid hormones; dehydroepiandrosterone (DHEA), androstenedione (AN), testosterone (TS), dihydrotestosterone (DHT), estrone (E1), 17α-estradiol (αE2), 17β-estradiol (βE2), pregnenolone (PRE) and progesterone (PRO) were determined. The aim of the study was to investigate associations among circulating levels of specific POP compounds and POP-metabolites (hydroxylated PCBs [OH-PCBs] and hydroxylated PBDEs [OH-PBDEs]), steroid hormones, biological and capture variables in female polar bears. Inverse correlations were found between circulating levels of PRE and AN, and circulating levels of OH-PCBs. There were no significant relationships between the steroid concentrations and other analyzed POPs or the variables capture date and capture location (latitude and longitude), lipid content, condition and body mass. Although statistical associations do not necessarily represent direct cause-effect relationships, the present study indicate that OH-PCBs may affect the circulating levels of AN and PRE in female polar bears and that OH-PCBs thus may interfere with the steroid homeostasis. Increase in PRO and a decrease in AN concentrations suggest that the enzyme CYP17 may be a potential target for OH-PCBs. In combination with natural stressors, ongoing climate change and contaminant exposure, it is possible that OH-PCBs may disturb the reproductive potential of polar bears.
Collapse
Affiliation(s)
- Lisa Gustavson
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Tomasz M Ciesielski
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Jenny Bytingsvik
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Bjarne Styrishave
- University of Copenhagen, Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Martin Hansen
- University of Copenhagen, Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elisabeth Lie
- The Norwegian School of Veterinary Science (NVH), Department of Food Safety and Infection Biology, P.O. Box 5003, Campus Adamstuen, NO-1432 Ås, Norway
| | - Jon Aars
- Norwegian Polar Institute (NPI), Fram Centre, NO-9296 Tromsø, Norway
| | - Bjørn M Jenssen
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| |
Collapse
|
31
|
|
32
|
Jenssen BM, Villanger GD, Gabrielsen KM, Bytingsvik J, Bechshoft T, Ciesielski TM, Sonne C, Dietz R. Anthropogenic flank attack on polar bears: interacting consequences of climate warming and pollutant exposure. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00016] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Pedersen KE, Styrishave B, Sonne C, Dietz R, Jenssen BM. Accumulation and potential health effects of organohalogenated compounds in the arctic fox (Vulpes lagopus)--a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:510-516. [PMID: 25300015 DOI: 10.1016/j.scitotenv.2014.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
This review addresses biological effects of anthropogenic organohalogenated compounds in the arctic fox (Vulpes lagopus). When considering the current levels, spatial and tissue distributions of selected organic pollutants in arctic fox subpopulations, especially the Svalbard based populations accumulate high levels. The dominating contaminant groups are the polychlorinated biphenyls (PCBs) and chlordanes (CHLs), which reach high levels in adipose tissues, adrenals and liver. Recent controlled exposure studies on domesticated arctic fox and Greenland sledge dogs, show adverse health effects associated with OC concentrations lower than those measured in free-ranging populations. This indicates that especially populations at Svalbard may be at risk of experiencing OC related effects. The arctic fox as such may be an overlooked species in the Arctic Monitoring and Assessment Programs and it would add further information about pollution in the Arctic to include this species in the monitoring program.
Collapse
Affiliation(s)
- Kathrine Eggers Pedersen
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Bjarne Styrishave
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjørn Munro Jenssen
- Norwegian University of Science and Technology, Department of Biology, NO 7491 Trondheim, Norway; University Centre in Svalbard, Department of Arctic Technology, NO 9171 Longyearbyen, Norway
| |
Collapse
|
34
|
Schell LM, Gallo MV, Deane GD, Nelder KR, DeCaprio AP, Jacobs A. Relationships of polychlorinated biphenyls and dichlorodiphenyldichloroethylene (p,p'-DDE) with testosterone levels in adolescent males. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:304-309. [PMID: 24398050 PMCID: PMC3948020 DOI: 10.1289/ehp.1205984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/20/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND Concern persists over endocrine-disrupting effects of persistent organic pollutants (POPs) on human growth and sexual maturation. Potential effects of toxicant exposures on testosterone levels during puberty are not well characterized. OBJECTIVES In this study we evaluated the relationship between toxicants [polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (p,p´-DDE), hexachlorobenzene (HCB), and lead] and testosterone levels among 127 Akwesasne Mohawk males 10 to < 17 years of age with documented toxicant exposures. METHODS Data were collected between February 1996 and January 2000. Fasting blood specimens were collected before breakfast by trained Akwesasne Mohawk staff. Multivariable regression models were used to estimates associations between toxicants and serum testosterone, adjusted for other toxicants, Tanner stage, and potential confounders. RESULTS The sum of 16 PCB congeners (Σ16PCBs) that were detected in ≥ 50% of the population was significantly and negatively associated with serum testosterone levels, such that a 10% change in exposure was associated with a 5.6% decrease in testosterone (95% CI: -10.8, -0.5%). Of the 16 congeners, the more persistent ones (Σ8PerPCBs) were related to testosterone, whereas the less persistent ones, possibly reflecting more recent exposure, were not. When PCB congeners were subgrouped, the association was significant for the sum of eight more persistent PCBs (5.7% decrease; 95% CI: -11, -0.4%), and stronger than the sum of six less persistent congeners (3.1% decrease; 95% CI: -7.2, 0.9%). p,p´-DDE was positively but not significantly associated with serum testosterone (5.2% increase with a 10% increase in exposure; 95% CI: -0.5, 10.9%). Neither lead nor HCB was significantly associated with testosterone levels. CONCLUSIONS Exposure to PCBs, particularly the more highly persistent congeners, may negatively influence testosterone levels among adolescent males. The positive relationship between p,p´-DDE and testosterone indicates that not all POPs act similarly. CITATION Schell LM, Gallo MV, Deane GD, Nelder KR, DeCaprio AP, Jacobs A; Akwesasne Task Force on the Environment. 2014. Relationships of polychlorinated biphenyls and dichlorodiphenyldichloroethylene (p,p´-DDE) with testosterone levels in adolescent males. Environ Health Perspect 122:304-309; http://dx.doi.org/10.1289/ehp.1205984.
Collapse
|
35
|
Bryan HM, Darimont CT, Paquet PC, Wynne-Edwards KE, Smits JEG. Stress and reproductive hormones reflect inter-specific social and nutritional conditions mediated by resource availability in a bear-salmon system. CONSERVATION PHYSIOLOGY 2014; 2:cou010. [PMID: 27293631 PMCID: PMC4806744 DOI: 10.1093/conphys/cou010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 05/03/2023]
Abstract
Food availability can influence the nutritional and social dynamics within and among species. Our investigation focused on grizzly and black bears in coastal British Columbia, Canada, where recent and dramatic declines in their primary prey (salmon) raise concerns about potentially negative effects on bear physiology. We examined how salmon availability relates to stress and reproductive hormones in coastal grizzly (n = 69) and black bears (n = 68) using cortisol and testosterone. In hair samples from genotyped individuals, we quantified salmon consumption using stable isotope analysis and hormone levels by enzyme immunoassay. To estimate the salmon biomass available to each bear, we developed a spatially explicit approach based on typical bear home-range sizes. Next, we compared the relative importance of salmon consumption and salmon availability on hormone levels in male bears using an information theoretical approach. Cortisol in grizzly bears was higher in individuals that consumed less salmon, possibly reflecting nutritional stress. In black bears, cortisol was better predicted by salmon availability than salmon consumption; specifically, individuals in areas and years with low salmon availability showed higher cortisol levels. This indicates that cortisol in black bears is more strongly influenced by the socially competitive environment mediated by salmon availability than by nutritional requirements. In both species, testosterone generally decreased with increasing salmon availability, possibly reflecting a less competitive environment when salmon were abundant. Differences between species could relate to different nutritional requirements, social densities and competitive behaviour and/or habitat use. We present a conceptual model to inform further investigations in this and other systems. Our approach, which combines data on multiple hormones with dietary and spatial information corresponding to the year of hair growth, provides a promising tool for evaluating the responses of a broad spectrum of wildlife to changes in food availability or other environmental conditions.
Collapse
Affiliation(s)
- Heather M. Bryan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4Z6
- Raincoast Conservation Foundation, Sidney, British Columbia, Canada V8L 1Y2
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada V8W 3R4
- Corresponding author: Department of Geography, University of Victoria, Victoria, British Columbia, Canada V8W 3R4. Tel: +1 604 848 5570.
| | - Chris T. Darimont
- Raincoast Conservation Foundation, Sidney, British Columbia, Canada V8L 1Y2
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada V8W 3R4
| | - Paul C. Paquet
- Raincoast Conservation Foundation, Sidney, British Columbia, Canada V8L 1Y2
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada V8W 3R4
| | | | - Judit E. G. Smits
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4Z6
| |
Collapse
|
36
|
Krogenæs AK, Ropstad E, Gutleb AC, Hårdnes N, Berg V, Dahl E, Fowler PA. In utero exposure to environmentally relevant concentrations of PCB 153 and PCB 118 disrupts fetal testis development in sheep. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:628-649. [PMID: 24754397 DOI: 10.1080/15287394.2014.887426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyls (PCB) are environmental pollutants linked to adverse health effects including endocrine disruption and disturbance of reproductive development. This study aimed to determine whether exposure of pregnant sheep to three different mixtures of PCB 153 and PCB 118 affected fetal testis development. Ewes were treated by oral gavage from mating until euthanasia (d 134), producing three groups of fetuses with distinct adipose tissue PCB levels: high PCB 153/low PCB 118 (n = 13), high PCB 118/low PCB 153 (n = 14), and low PCB 153/low PCB 118 (n = 14). Fetal testes and blood samples were collected for investigation of testosterone, testis morphology, and testis proteome. The body weight of the offspring was lower in the high PCB compared to the low PCB group, but there were no significant differences in testis weight between groups when corrected for body weight. PCB exposure did not markedly affect circulating testosterone. There were no significant differences between groups in number of seminiferous tubules, Sertoli cell only tubules, and ratio between relative areas of seminiferous tubules and interstitium. Two-dimensional (2D) gel-based proteomics was used to screen for proteomic alterations in the high exposed groups relative to low PCB 153/low PCB 118 group. Twenty-six significantly altered spots were identified by liquid chromatography (LC)-mass spectroscopy (MS)/MS. Changes in protein regulation affected cellular processes as stress response, protein synthesis, and cytoskeleton regulation. The study demonstrates that in utero exposure to different environmental relevant PCB mixtures exerted subtle effects on developing fetal testis proteome but did not significantly disturb testis morphology and testosterone production.
Collapse
Affiliation(s)
- Anette K Krogenæs
- a Department of Production Animal Sciences , Norwegian School Veterinary Science , Oslo , Norway
| | | | | | | | | | | | | |
Collapse
|
37
|
High prevalence of proposed Müllerian duct remnant cysts on the spermatic duct in wild Eurasian otters (Lutra lutra) from Sweden. PLoS One 2013; 8:e84660. [PMID: 24376831 PMCID: PMC3871573 DOI: 10.1371/journal.pone.0084660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
The spermatic ducts (vasa deferentia) of 235 otters (Lutra lutra) found dead between 1999 and 2012 in Sweden were examined for presence of paraductular cysts. Single or multiple elongated uni- or bilateral cysts parallel to the spermatic duct were noted in 72% of the examined males. The cysts were adjacent to, but did not communicate with the lumen of the spermatic duct, and were usually located within a few centimeters of the testis and epididymis. The cysts are proposed to be congenital Müllerian duct remnants. Other morphologic abnormalities in the reproductive organs were not noted within this study. Possible causes of the incomplete regression of the embryonic female gonadal duct are exposure to environmental contaminants such as elevated concentrations of estrogen-like compounds (endocrine disrupting chemicals), inbreeding, or a naturally occurring anatomic defect. No obvious geographical pattern was observed for otters with or without cysts. This is the first study and description of cysts on the spermatic duct in otters.
Collapse
|
38
|
Erdmann SE, Dietz R, Sonne C, Bechshøft TØ, Vorkamp K, Letcher RJ, Long M, Bonefeld-Jørgensen EC. Xenoestrogenic and dioxin-like activity in blood of East Greenland polar bears (Ursus maritimus). CHEMOSPHERE 2013; 92:583-591. [PMID: 23648332 DOI: 10.1016/j.chemosphere.2013.03.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
The aims of the project were to (i) extract the lipophilic persistent organic pollutants (POPs) from the blood of 99 East Greenland polar bears and assess the combined mixture effect on the estrogen receptor (ER) and the aryl hydrocarbon receptor (AhR) mediated transactivity; (ii) To evaluate whether the receptor transactivities were associated with selected POP markers, and (iii) compare the receptor transactivities in polar bears with earlier studies on Greenlandic Inuit. Lipophilic POPs were extracted using a combination of solid-phase extraction (SPE) and high performance liquid chromatography (HPLC). ER mediated transactivity was determined using the ER luciferase reporter MVLN cell assay. The extracts were tested alone (XER) and together with 17β-estradiol (E2) as a physiological mimic (XERcomp). Dioxins and dioxin-like (DL) compounds were extracted by a combination of SPE and the Supelco Dioxin Prep System®. AhR mediated dioxin-like transactivity was determined using the AhR luciferase reporter Hepa 1.12cR cell assay. Agonistic ER transactivity was elicited by 19% of the samples, and a further increased E2 induced ER response was found for 52%, whereas 17% antagonized the E2 induced ER response. Positive correlations were found in subadult bears between XER and several POP biomarkers. XER and XERcomp correlated positively to each other. A total of 91% of the polar bear blood extracts elicited agonistic AhR transactivity. The AhR-TCDD equivalent (AhR-TEQ) median levels were higher among adult bears compared to subadult bears, but not significantly.
Collapse
Affiliation(s)
- Simon E Erdmann
- Centre for Arctic Health, Department of Public Health and Arctic Research Centre, Aarhus University, Build. 1260, Bartholins Allé 2, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE. Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:32-48. [PMID: 23136056 PMCID: PMC3601417 DOI: 10.1002/etc.2043] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/08/2012] [Accepted: 08/13/2012] [Indexed: 05/20/2023]
Abstract
Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical-GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical-climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.
Collapse
Affiliation(s)
- Michael J Hooper
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Vongraven D, Aars J, Amstrup S, Atkinson SN, Belikov S, Born EW, DeBruyn TD, Derocher AE, Durner G, Gill M, Lunn N, Obbard ME, Omelak J, Ovsyanikov N, Peacock E, Richardson E, Sahanatien V, Stirling I, Wiig Ø. A circumpolar monitoring framework for polar bears. URSUS 2012. [DOI: 10.2192/ursus-d-11-00026.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Bechshøft TØ, Rigét FF, Sonne C, Letcher RJ, Muir DCG, Novak MA, Henchey E, Meyer JS, Eulaers I, Jaspers VLB, Eens M, Covaci A, Dietz R. Measuring environmental stress in East Greenland polar bears, 1892-1927 and 1988-2009: what does hair cortisol tell us? ENVIRONMENT INTERNATIONAL 2012; 45:15-21. [PMID: 22572112 PMCID: PMC3366040 DOI: 10.1016/j.envint.2012.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 03/13/2012] [Accepted: 04/07/2012] [Indexed: 04/18/2024]
Abstract
Hair sampled from 96 East Greenland polar bears (Ursus maritimus) over the periods 1892-1927 and 1988-2009 was analyzed for cortisol as a proxy to investigate temporal patterns of environmental stress. Cortisol concentration was independent of sex and age, and was found at significantly higher (p<0.001) concentrations in historical hair samples (1892-1927; n=8) relative to recent ones (1988-2009; n=88). In addition, there was a linear time trend in cortisol concentration of the recent samples (p<0.01), with an annual decrease of 2.7%. The recent hair samples were also analyzed for major bioaccumulative, persistent organic pollutants (POPs). There were no obvious POP related time trends or correlations between hair cortisol and hair POP concentrations. Thus, polar bear hair appears to be a relatively poor indicator of the animal's general POP load in adipose tissue. However, further investigations are warranted to explore the reasons for the temporal decrease found in the bears' hair cortisol levels.
Collapse
Affiliation(s)
- T Ø Bechshøft
- Department of Bioscience, Aarhus University, Box 358, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nordstad T, Moe B, Bustnes JO, Bech C, Chastel O, Goutte A, Sagerup K, Trouvé C, Herzke D, Gabrielsen GW. Relationships between POPs and baseline corticosterone levels in black-legged kittiwakes (Rissa tridactyla) across their breeding cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 164:219-226. [PMID: 22366481 DOI: 10.1016/j.envpol.2012.01.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/24/2012] [Accepted: 01/29/2012] [Indexed: 05/31/2023]
Abstract
Chronic exposure to persistent organic pollutants (POPs) in wildlife might alter the response to environmental changes through interference with the regulation of stress hormones. Here, we examined the relationship between blood concentrations of several POPs and baseline plasma corticosterone levels in the black-legged kittiwake (Rissa tridactyla) during three distinct periods in the breeding season. The concentrations of POPs and corticosterone increased, whereas body mass decreased progressively from the pre-laying period to the incubation and the chick rearing period. ∑PCB (polychlorinated biphenyls) correlated positively with the baseline corticosterone levels during the pre-laying period, which might suggest that PCBs affect the regulation of corticosterone. However, this relationship was not found during the incubation or the chick rearing period. Possible explanations are discussed with emphasis on how total stress/allostatic load is handled during different periods and conditions.
Collapse
Affiliation(s)
- Tore Nordstad
- Norwegian Polar Institute, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bytingsvik J, Lie E, Aars J, Derocher AE, Wiig Ø, Jenssen BM. PCBs and OH-PCBs in polar bear mother-cub pairs: a comparative study based on plasma levels in 1998 and 2008. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 417-418:117-128. [PMID: 22264925 DOI: 10.1016/j.scitotenv.2011.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to examine the plasma concentrations and prevalence of polychlorinated biphenyls (PCBs) and hydroxylated PCB-metabolites (OH-PCBs) in polar bear (Ursus maritimus) mothers (n=26) and their 4 months old cubs-of-the-year (n=38) from Svalbard to gain insight into the mother-cub transfer, biotransformation and to evaluate the health risk associated with the exposure to these contaminants. As samplings were performed in 1997/1998 and 2008, we further investigated the differences in levels and pattern of PCBs between the two sampling years. The plasma concentrations of Σ(21)PCBs (1997/1998: 5710 ± 3090 ng/g lipid weight [lw], 2008: 2560 ± 1500 ng/g lw) and Σ(6)OH-PCBs (1997/1998: 228 ± 60 ng/g wet weight [ww], 2008: 80 ± 38 ng/g ww) in mothers were significantly lower in 2008 compared to in 1997/1998. In cubs, the plasma concentrations of Σ(21)PCBs (1997/1998: 14680 ± 5350 ng/g lw, 2008: 6070 ± 2590 ng/g lw) and Σ(6)OH-PCBs (1997/1998: 98 ± 23 ng/g ww, 2008: 49 ± 21 ng/g ww) were also significantly lower in 2008 than in 1997/1998. Σ(21)PCBs in cubs was 2.7 ± 0.7 times higher than in their mothers. This is due to a significant maternal transfer of these contaminants. In contrast, Σ(6)OH-PCBs in cubs were approximately 0.53 ± 0.16 times the concentration in their mothers. This indicates a lower maternal transfer of OH-PCBs compared to PCBs. The majority of the metabolite/precursor-ratios were lower in cubs compared to mothers. This may indicate that cubs have a lower endogenous capacity to biotransform PCBs to OH-PCBs than polar bear mothers. Exposure to PCBs and OH-PCBs is a potential health risk for polar bears, and the levels of PCBs and OH-PCBs in cubs from 2008 were still above levels associated with health effects in humans and wildlife.
Collapse
Affiliation(s)
- Jenny Bytingsvik
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
44
|
Hallanger IG, Jørgensen EH, Fuglei E, Ahlstrøm Ø, Muir DCG, Jenssen BM. Dietary contaminant exposure affects plasma testosterone, but not thyroid hormones, vitamin A, and vitamin E, in male juvenile arctic foxes (Vulpes lagopus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1298-1313. [PMID: 23030655 DOI: 10.1080/15287394.2012.709445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Levels of persistent organic pollutants (POP), such as polychlorinated biphenyls (PCB), are high in many Arctic top predators, including the Arctic fox (Vulpes lagopus). The aim of this study was to examine possible endocrine-disruptive effects of dietary POP exposure in male juvenile Arctic foxes in a controlled exposure experiment. The study was conducted using domesticated farmed blue foxes (Vulpes lagopus) as a model species. Two groups of newly weaned male foxes received a diet supplemented with either minke whale (Baleneoptera acutorostrata) blubber that was naturally contaminated with POP (exposed group, n = 5 or 21), or pork (Sus scrofa) fat (control group, n = 5 or 21). When the foxes were 6 mo old and had received the 2 diets for approximately 4 mo (147 d), effects of the dietary exposure to POP on plasma concentrations of testosterone (T), thyroid hormones (TH), thyroid-stimulating hormone (TSH), retinol (vitamin A), and tocopherol (viramin E) were examined. At sampling, the total body concentrations of 104 PCB congeners were 0.1 ± 0.03 μg/g lipid weight (l.w.; n = 5 [mean ± standard deviation]) and 1.5 ± 0.17 μg/g l.w. (n = 5) in the control and exposed groups, respectively. Plasma testosterone concentrations in the exposed male foxes were significantly lower than in the control males, being approximately 25% of that in the exposed foxes. There were no between-treatment differences for TH, TSH, retinol, or tocopherol. The results suggest that the high POP levels experienced by costal populations of Arctic foxes, such as in Svalbard and Iceland, may result in delayed masculine maturation during adolescence. Sex hormone disruption during puberty may thus have lifetime consequences on all aspects of reproductive function in adult male foxes.
Collapse
|
45
|
Buckman AH, Veldhoen N, Ellis G, Ford JKB, Helbing CC, Ross PS. PCB-associated changes in mRNA expression in killer whales (Orcinus orca) from the NE Pacific Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:10194-10202. [PMID: 21985468 DOI: 10.1021/es201541j] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Killer whales in the NE Pacific Ocean are among the world's most PCB-contaminated marine mammals, raising concerns about implications for their health. Sixteen health-related killer whale mRNA transcripts were analyzed in blubber biopsies collected from 35 free-ranging killer whales in British Columbia using real-time quantitative polymerase chain reaction. We observed PCB-related increases in the expression of five gene targets, including the aryl hydrocarbon receptor (AhR; r(2) = 0.83; p < 0.001), thyroid hormone α receptor (TRα; r(2) = 0.64; p < 0.001), estrogen α receptor (ERα; r(2) = 0.70; p < 0.001), interleukin 10 (IL-10; r(2) = 0.74 and 0.68, males and females, respectively; p < 0.001), and metallothionein 1 (MT1; r(2) = 0.58; p < 0.001). Best-fit models indicated that population (dietary preference), age, and sex were not confounding factors, except for IL-10, where males differed from females. While the population-level consequences are unclear, the PCB-associated alterations in mRNA abundance of such pivotal end points provide compelling evidence of adverse physiological effects of persistent environmental contaminants in these endangered killer whales.
Collapse
Affiliation(s)
- Andrea H Buckman
- Institute of Ocean Sciences, Fisheries & Oceans Canada, P.O. Box 6000, 9860 West Saanich Road, Sidney, British Columbia V8L 4B2, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Xi W, Wan HT, Zhao YG, Wong MH, Giesy JP, Wong CKC. Effects of perinatal exposure to bisphenol A and di(2-ethylhexyl)-phthalate on gonadal development of male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2515-27. [PMID: 22828881 DOI: 10.1007/s11356-012-0827-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 04/15/2023]
Abstract
PURPOSE In this study, we investigated the effects of maternal transfer of bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) during gestational and weaning periods on gonadal development of male offspring. METHODS Pregnant CD-1 mice were administered by gavages in corn oil with 0.1, 1, or 10 mg/kg/day of BPA and DEHP from gestational days (GD1-21) to the weaning period (postnatal days (PND) 1-21). RESULTS Our data indicated that the exposure significantly reduced the male-to-female sex ratio and the sizes of the gonads of male pups as recorded at PND15. The testes of the perinatally exposed male pups were developed less and the expression levels of testicular anti-mullerian hormone, androgen receptor, cyclin A, and StAR were significantly lesser than the control male pups. The less developed testes were accompanied with significant reductions in the expression levels of Gnrh and Fsh at the hypothalamic-pituitary levels. The negative effects were found to be persistent in the sexually mature pups at PND42. CONCLUSION Our data reveal that the maternal transfer of BPA and DEHP may impose negative influence on the development and functions of the reproductive system of male pups.
Collapse
Affiliation(s)
- Wei Xi
- Croucher Institute of Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Yeung BH, Wan HT, Law AY, Wong CK. Endocrine disrupting chemicals: Multiple effects on testicular signaling and spermatogenesis. SPERMATOGENESIS 2011; 1:231-239. [PMID: 22319671 PMCID: PMC3271665 DOI: 10.4161/spmg.1.3.18019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 02/01/2023]
Abstract
In the past 200 years, an enormous number of synthetic chemicals with diverse structural features have been produced for industrial, medical and domestic purposes. These chemicals, originally thought to have little or no biological toxicity, are widely used in our daily lives as well as are commonly present in foods. It was not until the first World Wildlife Federation Wingspread Conference held in 1994 were concerns about the endocrine disrupting (ED) effects of these chemicals articulated. The potential hazardous effects of endocrine disrupting chemicals (EDCs) on human health and ecological well-being are one of the global concerns that affect the health and propagation of human beings. Considerable numbers of studies indicated that endocrine disruption is linked to "the developmental basis of adult disease," highlighting the significant effects of EDC exposure on a developing organism, leading to the propensity of an individual to develop a disease or dysfunction in later life. In this review, we intend to provide environmental, epidemiological and experimental data to associate pollutant exposure with reproductive disorders, in particular on the development and function of the male reproductive system. Possible effects of pollutant exposure on the processes of embryonic development, like sex determination and masculinization are described. In addition, the effects of pollutant exposure on hypothalamus-pituitary-gonadal axis, testicular signaling, steroidogenesis and spermatogenesis are also discussed.
Collapse
Affiliation(s)
- Bonnie Hy Yeung
- Croucher Institute of Environmental Sciences; Department of Biology; Hong Kong Baptist University; Hong Kong
| | | | | | | |
Collapse
|
48
|
Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B. Effect of endocrine disruptor pesticides: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2265-303. [PMID: 21776230 PMCID: PMC3138025 DOI: 10.3390/ijerph8062265] [Citation(s) in RCA: 510] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/15/2022]
Abstract
Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health.
Collapse
Affiliation(s)
- Wissem Mnif
- Laboratoire de Biochimie, Unité de Recherche 02/UR/09-01, Institut Supérieur de Biotechnologie, de Monastir, BP 74, 5019 Monastir, Tunisia; E-Mails: (W.M.); (A.I.H.H); (A.B.)
- Institut Supérieur de Biotechnologie de Sidi Thabet, Pole Technologie Sidi Thabet, 2020 Ariana, Tunisia
| | - Aziza Ibn Hadj Hassine
- Laboratoire de Biochimie, Unité de Recherche 02/UR/09-01, Institut Supérieur de Biotechnologie, de Monastir, BP 74, 5019 Monastir, Tunisia; E-Mails: (W.M.); (A.I.H.H); (A.B.)
| | - Aicha Bouaziz
- Laboratoire de Biochimie, Unité de Recherche 02/UR/09-01, Institut Supérieur de Biotechnologie, de Monastir, BP 74, 5019 Monastir, Tunisia; E-Mails: (W.M.); (A.I.H.H); (A.B.)
| | - Aghleb Bartegi
- Department of Biology, Faculty of Sciences, King Faisal University, P.O. Box 1759, 31982, Al Hassa, Saudi Arabia; E-Mail:
| | - Olivier Thomas
- Environment and Health Research laboratory (LERES), Advanced School of Public Health (EHESP), Avenue du Professeur Léon Bernard - CS 74312, 35043 Rennes Cedex, France; E-Mail: (O.T.)
| | - Benoit Roig
- Environment and Health Research laboratory (LERES), Advanced School of Public Health (EHESP), Avenue du Professeur Léon Bernard - CS 74312, 35043 Rennes Cedex, France; E-Mail: (O.T.)
| |
Collapse
|
49
|
Villanger GD, Jenssen BM, Fjeldberg RR, Letcher RJ, Muir DCG, Kirkegaard M, Sonne C, Dietz R. Exposure to mixtures of organohalogen contaminants and associative interactions with thyroid hormones in East Greenland polar bears (Ursus maritimus). ENVIRONMENT INTERNATIONAL 2011; 37:694-708. [PMID: 21345491 DOI: 10.1016/j.envint.2011.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/02/2010] [Accepted: 01/20/2011] [Indexed: 05/05/2023]
Abstract
We investigated the multivariate relationships between adipose tissue residue levels of 48 individual organohalogen contaminants (OHCs) and circulating thyroid hormone (TH) levels in polar bears (Ursus maritimus) from East Greenland (1999-2001, n=62), using projection to latent structure (PLS) regression for four groupings of polar bears; subadults (SubA), adult females with cubs (AdF_N), adult females without cubs (AdF_S) and adult males (AdM). In the resulting significant PLS models for SubA, AdF_N and AdF_S, some OHCs were especially important in explaining variations in circulating TH levels: polybrominated diphenylether (PBDE)-99, PBDE-100, PBDE-153, polychlorinated biphenyl (PCB)-52, PCB-118, cis-nonachlor, trans-nonachlor, trichlorobenzene (TCB) and pentachlorobenzene (QCB), and both negative and positive relationships with THs were found. In addition, the models revealed that DDTs had a positive influence on total 3,5,3'-triiodothyronine (TT3) in AdF_S, and that a group of 17 higher chlorinated ortho-PCBs had a positive influence on total 3,5,3',5'-tetraiodothyronine (thyroxine, TT4) in AdF_N. TH levels in AdM seemed less influenced by OHCs because of non-significant PLS models. TH levels were also influenced by biological factors such as age, sex, body size, lipid content of adipose tissue and sampling date. When controlling for biological variables, the major relationships from the PLS models for SubA, AdF_N and AdF_S were found significant in partial correlations. The most important OHCs that influenced TH levels in the significant PLS models may potentially act through similar mechanisms on the hypothalamic-pituitary-thyroid (HPT) axis, suggesting that both combined effects by dose and response addition and perhaps synergistic potentiation may be a possibility in these polar bears. Statistical associations are not evidence per se of biological cause-effect relationships. Still, the results of the present study indicate that OHCs may affect circulating TH levels in East Greenland polar bears, adding to the "weight of evidence" suggesting that OHCs might interfere with thyroid homeostasis in polar bears.
Collapse
Affiliation(s)
- Gro D Villanger
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dhooge W, den Hond E, Koppen G, Bruckers L, Nelen V, van de Mieroop E, Bilau M, Croes K, Baeyens W, Schoeters G, van Larebeke N. Internal exposure to pollutants and sex hormone levels in Flemish male adolescents in a cross-sectional study: associations and dose-response relationships. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2011; 21:106-13. [PMID: 20010975 DOI: 10.1038/jes.2009.63] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/21/2009] [Indexed: 05/20/2023]
Abstract
Flanders is densely populated with much industry and intensive farming. Hormonal status of 14- to 15-year-old male adolescents was studied in relation to internal exposure to pollutants. A total of 887 participants were selected as a random sample of the adolescents residing in the study areas. Confounding factors and significant covariates were taken into account. Serum levels of testosterone, free testosterone and estradiol, and the aromatase index showed significant positive associations with serum levels of marker polychlorobiphenyls (sum of PCBs 138, 153, and 180) and of hexachlorobenzene (HCB) and a negative association with urinary cadmium concentration. Serum levels of estradiol also showed a positive association with serum levels of dichlorodiphenyldichloroethylene (DDE). A doubling of serum concentrations of marker PCBs and HCB and of urinary concentration of cadmium were, respectively, associated with an increase of 16.4% (P<0.00001) and 16.6% (P<0.001) and a decrease of 9.6% (P<0.001) in serum testosterone concentration. Similar findings were made after additional adjustment for concurrent exposures. Associations between biological effects and internal exposures were, in terms of the regression coefficient, often stronger at exposures below the median. Environmental exposures to pollutants resulting in "normal" levels of internal exposure were associated with quite substantial differences in hormone concentrations.
Collapse
Affiliation(s)
- Willem Dhooge
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|