1
|
Biernat M, Pagacz J, Piszko P, Siwińska M, Zachanowicz E, Michlewska S, Antosik A, Tymowicz-Grzyb P, Sylla A, Szterner P, Najmrodzki A, Urbaniak M, Rusek-Wala P, Szwed-Georgiou A, Rudnicka K, Szustakiewicz K. Impact of Zn-Modified Hydroxyapatite Whiskers on Physicochemical and Biological Properties of Poly(ε-Caprolactone) Composites Intended for Implantable Medical Devices. J Biomed Mater Res B Appl Biomater 2025; 113:e35586. [PMID: 40271807 DOI: 10.1002/jbm.b.35586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
Poly(ε-caprolactone) (PCL)-hydroxyapatite (HAP) biocomposites were produced by thermal processing to test the impact of HAP addition on the physicochemical and biological properties of PCL. Two different HAPs: zinc-modified and unmodified, were added to the polymer matrix to enhance their biocompatibility, surface properties, and antimicrobial activity. The overall properties of biocomposites were assessed by thermal and mechanical analysis, while their structure and morphology were assessed by electron microscopy and infrared spectroscopy. A short-term degradation process of the composites in terms of their medical application was carried out, and biocompatibility was investigated regarding cytocompatibility, immunocompatibility, and bactericidal activity. PCL/HAP composites with 15 wt.% HAP offer the best-balanced properties with a moderate decrease in mechanical strength, cytocompatibility, and a moderate increase in antimicrobial activity. All the composites show high cytocompatibility with both L929 fibroblasts and hFOB 1.19 human fetal osteoblasts. Zn modification promoted their antimicrobial properties, and they have been proven safe for use in a short degradation test. Therefore, the PCL/HAP and PCL/HAP_Zn biocomposites have potential for medical applications, especially for bone regeneration.
Collapse
Affiliation(s)
- Monika Biernat
- Biomaterials Research Group, Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Cracow, Poland
| | - Joanna Pagacz
- Biomaterials Research Group, Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Cracow, Poland
| | - Paweł Piszko
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology (WUST), Wroclaw, Poland
| | - Małgorzata Siwińska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Emilia Zachanowicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology (WUST), Wroclaw, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Agnieszka Antosik
- Biomaterials Research Group, Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Cracow, Poland
| | - Paulina Tymowicz-Grzyb
- Biomaterials Research Group, Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Cracow, Poland
| | - Anna Sylla
- Biomaterials Research Group, Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Cracow, Poland
| | - Piotr Szterner
- Biomaterials Research Group, Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Cracow, Poland
| | - Adrian Najmrodzki
- Biomaterials Research Group, Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Cracow, Poland
| | - Mateusz Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Rusek-Wala
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Aleksandra Szwed-Georgiou
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology (WUST), Wroclaw, Poland
| |
Collapse
|
2
|
Singaravelu S, Abrahamse H, Dhilip Kumar SS. Three-dimensional bio-derived materials for biomedical applications: challenges and opportunities. RSC Adv 2025; 15:9375-9397. [PMID: 40161530 PMCID: PMC11951103 DOI: 10.1039/d4ra07531e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Three-dimensional (3D) bio-derived materials are emerging as a promising approach to enhance wound healing therapies. These innovative materials can be tailored to meet the specific needs of various wound types and patients, facilitating the controlled release of therapeutic agents such as growth factors and antibiotics, which promote cell growth and tissue regeneration. Despite their potential, significant challenges remain in achieving optimal biocompatibility, ensuring structural integrity, and maintaining precise release mechanisms. Additionally, issues such as scalability, cost-effectiveness, and regulatory compliance pose substantial barriers to widespread use. However, recent advances in materials science and interdisciplinary research offer new opportunities to overcome these challenges. This review provides a comprehensive analysis of the current state of 3D bio-derived materials in biomedical applications, highlighting the types of materials available, their advantages and limitations, and the progress made in their design and development. It also outlines new directions for future research aimed at bridging the gap between scientific discoveries and their practical applications in injury healing strategies. The findings of this review underscore the significant potential of 3D bio-derived materials in revolutionizing wound healing and advancing personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sivakumar Singaravelu
- Laser Research Centre, University of Johannesburg, Faculty of Health Sciences PO Box 17011, Doornfontein Johannesburg South Africa +27 11 559 6884
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Faculty of Health Sciences PO Box 17011, Doornfontein Johannesburg South Africa +27 11 559 6884
| | - Sathish Sundar Dhilip Kumar
- Laser Research Centre, University of Johannesburg, Faculty of Health Sciences PO Box 17011, Doornfontein Johannesburg South Africa +27 11 559 6884
| |
Collapse
|
3
|
Janmohammadi M, Nourbakhsh MS, Bahraminasab M. 3D printed polycaprolactone scaffold incorporated with tragacanth gum/bioactive glass and cellulose nanocrystals for bone tissue engineering. Int J Biol Macromol 2025; 305:141114. [PMID: 39956230 DOI: 10.1016/j.ijbiomac.2025.141114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Biomimetic organic-inorganic nanocomposite scaffolds hold tremendous potential to accelerate bone regeneration due to their ability to provide excellent structural and biological cues. Therefore, we employed a 3D-printed polycaprolactone host component as a mechanical support that was filled with a tragacanth gum-45S5 bioactive glass-cellulose nanocrystal guest component. The designed host-guest scaffolds were evaluated via physical, chemical, mechanical, and biological properties. Owing to the successful integration between host and guest components, the scaffolds showed enhanced physical and swelling properties (approximately 100 %) for nutrient transfer and cell proliferation. Furthermore, the host-guest scaffolds exhibited improved surface apatite formation and increased strength (3.35-16.55 MPa) within the ideal range for bone tissue engineering applications. It was verified in vitro that the host-guest scaffolds offer a highly desirable microenvironment for cell proliferation and attachment. Importantly, the host-guest scaffolds exhibited remarkable calcium deposition (4-56 %) and matrix formation. However, it was found that the proportion of cellulose nanocrystals can affect the properties of fabricated host-guest scaffolds. These results highlight the importance of optimizing the cellulose nanocrystal content in the scaffold composition to achieve the desired balance of properties for effective bone tissue engineering applications. The incorporation of cellulose nanocrystals at lower concentrations, particularly 3 wt%, represents a promising approach for developing biomimetic scaffolds that can enhance bone regeneration. Notably, the results of this study confirmed that incorporating cellulose nanocrystals at lower concentrations into the host-guest scaffolds is a viable strategy for fabricating a suitable biomaterial that enhances bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | | | - Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
4
|
Kordbacheh H, Katbab AA, Aghvami-Panah M, Haghighipour N. Piezoelectric scaffold based on polycaprolactone/thermoplastic polyurethane/barium titanate/cellulose nanocrystal for bone tissue engineering. Int J Biol Macromol 2025; 288:138681. [PMID: 39672423 DOI: 10.1016/j.ijbiomac.2024.138681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
This study presents the development of a novel piezoelectric scaffold for bone tissue engineering composed of poly(ε-caprolactone) (PCL), thermoplastic polyurethane (TPU), barium titanate (BT), and cellulose nanocrystals (CNC). PCL and TPU are considered advantageous materials because of their ease of processing, versatility in design, and ability to degrade over time; however, their inherent immiscibility poses challenges to achieving optimal porous structures. In this study, porous scaffolds were produced using gas foaming and salt leaching techniques, resulting in highly porous interconnected scaffolds exhibiting considerable elasticity that is suitable for dynamic cell culture while avoiding the use of toxic solvents. Given the piezoelectric nature of bone tissue, incorporating electric biosignals into scaffolds is essential to enhance bone regeneration. Therefore, BT was incorporated as a piezoelectric material. CNC, derived from cotton, assisted in BT distribution and acted as a reinforcing agent, imparting mechanoelectrical signaling properties to the scaffolds. The optimized scaffolds PCL/TPU (75/25) featuring 100 μm pores were integrated with varying BT and CNC ratios and were subjected to multiple analyses. The results showed a measurable electrical output of 1.2 mV and enhanced cell adhesion, viability, and proliferation under dynamic culture conditions, underscoring their potential for bone tissue regeneration.
Collapse
Affiliation(s)
- Hamta Kordbacheh
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Ali Asghar Katbab
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad Aghvami-Panah
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
5
|
Zhang C, Ru Y, You J, Lin R, Chen S, Qi Y, Li D, Zhang C, Qiu Z. Antibacterial Properties of PCL@45s5 Composite Biomaterial Scaffolds Based on Additive Manufacturing. Polymers (Basel) 2024; 16:3379. [PMID: 39684126 DOI: 10.3390/polym16233379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
This study focuses on the development of polymer-bioglass composite bone scaffolds for the treatment of bone defects. PCL particles and 45s5 bioglass powder were employed as raw materials to fabricate PCL/45s5 composite wires with mass fractions of 5 wt%, 10 wt%, and 20 wt% via the twin-screw extrusion method. A cylindrical porous model was established using 3D modeling software, and a porous composite scaffold was constructed through the melt deposition manufacturing process. The macroscopical characterization of composite stock and composite powder was analyzed. The melt flow rate, water contact angle, elastic modulus, in vitro degradation rate, and antibacterial property of composite scaffold were measured. The experimental results showed that the incorporation of 45s5 bioglass into PCL material gave the composite better antibacterial properties, effectively reduced the flow rate of the material, increased the hydrophobicity of the material, and improved the rigidity and biocompatibility of the PCL material. This study offers initial insights into the use of synthetic bone tissue engineering scaffolds for clinical bone repair treatments.
Collapse
Affiliation(s)
- Chen Zhang
- School of Materials and Chemistry Engineering, Minjiang University, Fuzhou 350108, China
| | - Yixian Ru
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jinchao You
- School of Materials and Chemistry Engineering, Minjiang University, Fuzhou 350108, China
| | - Runyi Lin
- School of Materials and Chemistry Engineering, Minjiang University, Fuzhou 350108, China
| | - Shihao Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yi Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dejing Li
- School of Materials and Chemistry Engineering, Minjiang University, Fuzhou 350108, China
| | - Cheng Zhang
- School of Materials and Chemistry Engineering, Minjiang University, Fuzhou 350108, China
| | - Zhenli Qiu
- School of Materials and Chemistry Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
6
|
Khatami SM, Hanaee-Ahvaz H, Parivar K, Soleimani M, Abedin Dargoush S, Naderi Sohi A. Cell-free bilayer functionalized scaffold for osteochondral tissue engineering. J Biosci Bioeng 2024; 138:452-461. [PMID: 39227279 DOI: 10.1016/j.jbiosc.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Osteochondral tissue engineering using layered scaffolds is a promising approach for treating osteochondral defects as an alternative to microfracture procedure, autologous chondrocyte implantation, and cartilage-bone grafting. The team previously investigated the chondrogenesis of mesenchymal stem cells (MSCs) on a polycaprolactone (PCL)/acetylated hyaluronic acid scaffold. The present study first focused on fabricating a novel osteoconductive scaffold utilizing bismuth-nanohydroxyapatite/reduced graphene oxide (Bi-nHAp/rGO) nanocomposite and electrospun PCL. The osteoconductive ability of the scaffold was investigated by evaluating the alkaline phosphatase (ALP) activity and the osteogenic genes expression in the adipose-derived MSCs. The expression of Runx2, collagen I, ALP, and osteocalcin as well as the result of ALP activity indicated the osteoconductive potential of the Bi-nHA-rGO/PCL scaffold. In the next step, a bilayer scaffold containing Bi-nHAp/rGO/PCL as an osteogenic layer and acetylated hyaluronic acid/PCL as a chondrogenic layer was prepared by the electrospinning technique and transplanted into osteochondral defects of rats. The chondrogenic and osteogenic markers corresponding to the surrounding tissues of the transplanted scaffold were surveyed 60 days later by real-time polymerase chain reaction (PCR) and immunohistochemistry methods. The results showed increased chondrogenic (Sox9 and collagen II) and osteogenic (osteocalcin and ALP) gene expression and augmented secretion of collagens II and X after transplantation. The results strongly support the efficacy of this constructed cell-free bilayer scaffold to induce osteochondral defect regeneration.
Collapse
Affiliation(s)
- Seyedeh Mahsa Khatami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alireza Naderi Sohi
- Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
7
|
Yi J, Li M, Zhu J, Wang Z, Li X. Recent development and applications of electrodeposition biocoatings on medical titanium for bone repair. J Mater Chem B 2024; 12:9863-9893. [PMID: 39268681 DOI: 10.1039/d4tb01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Bioactive coatings play a crucial role in enhancing the osseointegration of titanium implants for bone repair. Electrodeposition offers a versatile and efficient technique to deposit uniform coatings onto titanium surfaces, endowing implants with antibacterial properties, controlled drug release, enhanced osteoblast adhesion, and even smart responsiveness. This review summarizes the recent advancements in bioactive coatings for titanium implants used in bone repair, focusing on various electrodeposition strategies based on material-structure synergy. Firstly, it outlines different titanium implant materials and bioactive coating materials suitable for bone repair. Then, it introduces various electrodeposition methods, including electrophoretic deposition, anodization, micro-arc oxidation, electrochemical etching, electrochemical polymerization, and electrochemical deposition, discussing their applications in antibacterial, osteogenic, drug delivery, and smart responsiveness. Finally, it discusses the challenges encountered in the electrodeposition of coatings for titanium implants in bone repair and potential solutions.
Collapse
Affiliation(s)
- Jialong Yi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ming Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jixiang Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - ZuHang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
8
|
Fernandes H, Kannan S, Alam M, Stan G, Popa A, Buczyński R, Gołębiewski P, Ferreira J. Two decades of continuous progresses and breakthroughs in the field of bioactive ceramics and glasses driven by CICECO-hub scientists. Bioact Mater 2024; 40:104-147. [PMID: 39659434 PMCID: PMC11630650 DOI: 10.1016/j.bioactmat.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 12/12/2024] Open
Abstract
Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactive inorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been the deliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization, confer antioxidant properties, and impart antimicrobial effects, marking significant contributions to the field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertainties posed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroid hormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. This comprehensive overview of CICECO-hub's significant contributions to the forefront inorganic biomaterials across all research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures), follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, and testing protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes (scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated bone regeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctional examples of successful biomedical applications and effective translations to the market of bone grafts for advanced therapies.
Collapse
Affiliation(s)
- H.R. Fernandes
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - M. Alam
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - G.E. Stan
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - A.C. Popa
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - R. Buczyński
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - P. Gołębiewski
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - J.M.F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| |
Collapse
|
9
|
Wu Y, Hollmann F, Musa MM. Oxidation of Cyclohexane to Cyclohexanol/Cyclohexanone Using Sol-Gel-Encapsulated Unspecific Peroxygenase from Agrocybe aegerita. ChemistryOpen 2024; 13:e202400152. [PMID: 39212291 PMCID: PMC11457760 DOI: 10.1002/open.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Indexed: 09/04/2024] Open
Abstract
Unspecific peroxygenase from Agrocybe aegerite (AaeUPO) is a remarkable catalyst for the oxyfunctionalization of non-activated C-H bonds under mild conditions. It exhibits comparable activity to P450 monooxygenase but offers the advantage of using H2O2 instead of a complex electron transport chain to reductively activate O2. Here, we demonstrate the successful oxidation of cyclohexane to cyclohexanol/cyclohexanone (KA-oil) using sol-gel encapsulated AaeUPO. Remarkably, cyclohexane serves both as a solvent and a substrate in this system, which simplifies product isolation. The ratio of cyclohexanone to cyclohexanol using this approach is remarkably higher compared to the oxidation using free AaeUPO in aqueous media using acetonitrile as a cosolvent. The utilization of sol-gel encapsulated AaeUPO offers a promising approach for oxyfunctionalization reactions and improves the chances for this enzyme to be incorporated in the same pot with other chemical transformations.
Collapse
Affiliation(s)
- Yinqi Wu
- Department of BiotechnologyDelft University of Technology2629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology2629HZDelftThe Netherlands
| | - Musa M. Musa
- Department of ChemistryInterdisciplinary Research Center for Refining and Advanced ChemicalsKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| |
Collapse
|
10
|
Taephatthanasagon T, Purbantoro SD, Rodprasert W, Pathanachai K, Charoenlertkul P, Mahanonda R, Sa-Ard-Lam N, Kuncorojakti S, Soedarmanto A, Jamilah NS, Osathanon T, Sawangmake C, Rattanapuchpong S. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration. BMC Vet Res 2024; 20:403. [PMID: 39251976 PMCID: PMC11382457 DOI: 10.1186/s12917-024-04246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The integration of stem cells, signaling molecules, and biomaterial scaffolds is fundamental for the successful engineering of functional bone tissue. Currently, the development of composite scaffolds has emerged as an attractive approach to meet the criteria of ideal scaffolds utilized in bone tissue engineering (BTE) for facilitating bone regeneration in bone defects. Recently, the incorporation of polycaprolactone (PCL) with hydroxyapatite (HA) has been developed as one of the suitable substitutes for BTE applications owing to their promising osteogenic properties. In this study, a three-dimensional (3D) scaffold composed of PCL integrated with HA (PCL/HA) was prepared and assessed for its ability to support osteogenesis in vitro. Furthermore, this scaffold was evaluated explicitly for its efficacy in promoting the proliferation and osteogenic differentiation of canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) to fill the knowledge gap regarding the use of composite scaffolds for BTE in the veterinary orthopedics field. RESULTS Our findings indicate that the PCL/HA scaffolds substantially supported the proliferation of cBM-MSCs. Notably, the group subjected to osteogenic induction exhibited a markedly upregulated expression of the osteogenic gene osterix (OSX) compared to the control group. Additionally, the construction of 3D scaffold constructs with differentiated cells and an extracellular matrix (ECM) was successfully imaged using scanning electron microscopy. Elemental analysis using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy confirmed that these constructs possessed the mineral content of bone-like compositions, particularly the presence of calcium and phosphorus. CONCLUSIONS This research highlights the synergistic potential of PCL/HA scaffolds in concert with cBM-MSCs, presenting a multidisciplinary approach to scaffold fabrication that effectively regulates cell proliferation and osteogenic differentiation. Future in vivo studies focusing on the repair and regeneration of bone defects are warranted to further explore the regenerative capacity of these constructs, with the ultimate goal of assessing their potential in veterinary clinical applications.
Collapse
Affiliation(s)
- Teeanutree Taephatthanasagon
- Graduate Program in Veterinary Bioscience, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Steven Dwi Purbantoro
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Koranis Pathanachai
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Charoenlertkul
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rangsini Mahanonda
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Lam
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
| | - Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adretta Soedarmanto
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nabila Syarifah Jamilah
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
11
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
12
|
Janmohammadi M, Doostmohammadi N, Bahraminasab M, Nourbakhsh MS, Arab S, Asgharzade S, Ghanbari A, Satari A. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds. Int J Biol Macromol 2024; 270:132361. [PMID: 38750857 DOI: 10.1016/j.ijbiomac.2024.132361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/13/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Critical-sized bone defects are a major challenge in reconstructive bone surgery and usually fail to be treated due to limited remaining bone quality and extensive healing time. The combination of 3D-printed scaffolds and bioactive materials is a promising approach for bone tissue regeneration. In this study, 3D-printed alkaline-treated polycaprolactone scaffolds (M-PCL) were fabricated and integrated with tragacanth gum- 45S5 bioactive glass (TG-BG) to treat critical-sized calvarial bone defects in female adult Wistar rats. After a healing period of four and eight weeks, the new bone of blank, M-PCL, and M-PCL/TG-BG groups were harvested and assessed. Micro-computed tomography, histological, biochemical, and biomechanical analyses, gene expression, and bone matrix formation were used to assess bone regeneration. The micro-computed tomography results showed that the M-PCL/TG-BG scaffolds not only induced bone tissue formation within the bone defect but also increased BMD and BV/TV compared to blank and M-PCL groups. According to the histological analysis, there was no evidence of bony union in the calvarial defect regions of blank groups, while in M-PCL/TG-BG groups bony integration and repair were observed. The M-PCL/TG-BG scaffolds promoted the Runx2 and collagen type I expression as compared with blank and M-PCL groups. Besides, the bone regeneration in M-PCL/TG-BG groups correlated with TG-BG incorporation. Moreover, the use of M-PCL/TG-BG scaffolds promoted the biomechanical properties in the bone remodeling process. These data demonstrated that the M-PCL/TG-BG scaffolds serve as a highly promising platform for the development of bone grafts, supporting bone regeneration with bone matrix formation, and osteogenic features. Our results exhibited that the 3D-printed M-PCL/TG-BG scaffolds are a promising strategy for successful bone regeneration.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Nesa Doostmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | | | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Samira Asgharzade
- Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Molecular Medicine, of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Atefeh Satari
- Department of Molecular Medicine, of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
13
|
Chang SY, Kang DH, Cho SK. Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review. Asian Spine J 2024; 18:444-457. [PMID: 38146053 PMCID: PMC11222887 DOI: 10.31616/asj.2023.0407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023] Open
Abstract
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
Collapse
Affiliation(s)
- Sam Yeol Chang
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul,
Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Ho Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
- Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul,
Korea
| | - Samuel K. Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY,
USA
| |
Collapse
|
14
|
Yang Z. Preparation and characterization of amphiphilic, biodegradable, waterborne polyurethanes without using organic solvent and catalyst. RSC Adv 2024; 14:17306-17317. [PMID: 38813130 PMCID: PMC11132061 DOI: 10.1039/d4ra02044h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Traditionally, waterborne polyurethanes (WPUs) are prepared using toxic organic solvents and catalysts. These WPUs are non-biodegradable and are buried or incinerated after the expiration date. This has adverse effects on the environment and human health, which limits the applications of WPUs. Herein, a special synthetic method was developed for biodegradable waterborne polyurethane (BWPU) by adding hydrophilic prepolymers into WPU prepolymers without using organic solvents and catalysts. Different proportions of polyethylene glycol (PEG) were introduced into polycaprolactone (PCL)-based BWPUs to improve the comprehensive properties. Results showed that as the PEG content was increased from 0 to 16 wt%, the solid content of BWPU increased from 34.8 wt% to 53.1 wt%, while the tensile strength and Young's modulus of BWPU films increased from 21.81 MPa to 56.83 MPa and 8.08 MPa to 19.4 MPa, respectively. However, the elongation at break did not decrease significantly, but still reached 827.17%. With an increase in PEG content, the crystallinity and phase separation decreased, while the hydrophilicity and surface energy increased for BWPU films. In addition, the prepared BWPUs had good biodegradability in PBS/lipase solution. The mass loss of BWPU without PEG reached 6.3 wt% after 4 weeks of degradation, whereas the mass losses of BWPUs with PEG reached 2.3-4.3 wt%. Obviously, the introduction of PEG did not increase biodegradability. Thus, the higher the PCL content, the faster the biodegradation rate. This work would provide an effective method for the preparation of ecofriendly biodegradable BWPU with excellent comprehensive properties.
Collapse
Affiliation(s)
- Zhihui Yang
- Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Department of Chemistry, Qinghai Normal University Xining 810016 P. R. China +86-971-6303132
| |
Collapse
|
15
|
Zhou Y, Tian Y, Zhang M. Technical development and application of supercritical CO 2 foaming technology in PCL foam production. Sci Rep 2024; 14:6825. [PMID: 38514733 PMCID: PMC10958027 DOI: 10.1038/s41598-024-57545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Polycaprolactone (PCL) has the advantages of good biocompatibility, appropriate biodegradability, non-toxicity, flexibility, and processability. As a result, PCL-based foams can successfully work in bone tissue engineering, medical patches, drug delivery, reinforcing materials, and other applications. A promising technology for producing PCL foam products is supercritical CO2 (ScCO2) foaming technology, which avoids using organic solvents, is green, and has low foaming agent costs. However, due to the limitations of ScCO2 foaming technology, it is no longer possible to use this technology alone to meet current production requirements. Therefore, ScCO2 foaming technology must combine with other technologies to develop PCL foam products with better performance and matching requirements. This paper systematically reviews the technological development of ScCO2 foaming in producing PCL foams. The molding process of ScCO2 foaming and the conventional preparation process of PCL foam products are discussed comprehensively, including the preparation process, advantages, and disadvantages, challenges faced, etc. Six combined technologies for ScCO2 foaming in the production of PCL foams and the applications of PCL foams are presented. Finally, the future remaining research for producing PCL foams by ScCO2 foaming is analyzed.
Collapse
Affiliation(s)
- Yujin Zhou
- College of Physical Education, Wuhan Sports University, Wuhan, 430079, China
- College of Science, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yingrui Tian
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Mengdong Zhang
- Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
16
|
Sun W, Pinacho P, Obenchain DA, Schnell M. Gas-Phase Characterization of Adipic Acid, 6-Hydroxycaproic Acid, and Their Thermal Decomposition Products by Rotational Spectroscopy. J Phys Chem Lett 2024; 15:817-825. [PMID: 38232320 PMCID: PMC10823529 DOI: 10.1021/acs.jpclett.3c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
We report the spectroscopic investigation of two bifunctional aliphatic carboxylic acids, namely, adipic acid and 6-hydroxycaproic acid, in the gas phase by combining high-resolution rotational spectroscopy and supersonic expansions. Their pure rotational spectra were successfully identified and characterized. However, due to the low thermal stability of these two chemicals, the measured rotational spectra were significantly congested with transitions corresponding to their decomposition products upon heating. We observed cyclopentanone and adipic anhydride in the spectrum of adipic acid and ε-caprolactone and its monohydrate in the spectrum of 6-hydroxycaproic acid. On the basis of the distinct fingerprints of both carboxylic acids and a series of their decomposition products, the spectra were analyzed in a time-segmented manner. This provides valuable insights into the thermal decomposition mechanisms of these two samples over time, which highlights the robustness of microwave spectroscopy as a potent tool for analyzing complex chemical mixtures in a species-, isomer-, and conformer-selective way.
Collapse
Affiliation(s)
- Wenhao Sun
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Pablo Pinacho
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Melanie Schnell
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute
of Physical Chemistry, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Strasse 1, 24118 Kiel, Germany
| |
Collapse
|
17
|
Javkhlan Z, Hsu SH, Chen RS, Chen MH. 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration. J Formos Med Assoc 2024; 123:71-77. [PMID: 37709573 DOI: 10.1016/j.jfma.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND/PURPOSE 3D-printing technology is an important tool for the bone tissue engineering (BTE). The aim of this study was to investigate the interaction of polycaprolactone (PCL) scaffolds and modified mesh PCL coated with beta TCP (PCL/β-TCP) scaffolds with MG-63. METHODS This study used the fused deposition modeling (FDM) technique with the 3D printing technique to fabricate the thermoplastic polymer and composite scaffolds. Scaffold structure and coating quality were observed under a scanning electron microscope (SEM). MG-63 cells were injected and attached to the mesh-manufactured PCL scaffolds. The biocompatibility of mesh structured PCL and PCL/β-TCP scaffolds could be examined by measuring the viability of MG-63 cells of MTT assay. Bone cell differentiation was evaluated ALP activity by mineralization assay. RESULTS The results showed that both mesh PCL scaffolds and PCL/β-TCP scaffolds were non-toxic to the cells. The ALP activities of cells in PCL/β-TCP scaffolds groups were significant differences and better than PCL groups in all groups at all experimental dates. The mineralization process was time-dependent, and significantly higher mineralization of osteosarcoma cells was observed on PCL/β-TCP scaffolds at experimental dates. CONCLUSION We concluded that both meshes structured PCL and PCL/β-TCP scaffolds could promote the MG-63 cell growth, and PCL/β-TCP was better than the PCL scaffolds for the outcome of MG63 cell differentiation and mineralization.
Collapse
Affiliation(s)
- Zolzaya Javkhlan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hao Hsu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Kim J, Kim S, Song I. Octacalcium phosphate, a promising bone substitute material: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:4-12. [PMID: 37157781 PMCID: PMC10834270 DOI: 10.12701/jyms.2023.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Biomaterials have been used to supplement and restore function and structure by replacing or restoring parts of damaged tissues and organs. In ancient times, the medical use of biomaterials was limited owing to infection during surgery and poor surgical techniques. However, in modern times, the medical applications of biomaterials are diversifying owing to great developments in material science and medical technology. In this paper, we introduce biomaterials, focusing on calcium phosphate ceramics, including octacalcium phosphate, which has recently attracted attention as a bone graft material.
Collapse
Affiliation(s)
| | | | - Inhwan Song
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
19
|
Zhang J, Li J, Qu X, Liu Y, Harada A, Hua Y, Yoshida N, Ishida M, Tabata A, Sun L, Liu L, Miyagawa S. Development of a thick and functional human adipose-derived stem cell tissue sheet for myocardial infarction repair in rat hearts. Stem Cell Res Ther 2023; 14:380. [PMID: 38124195 PMCID: PMC10734106 DOI: 10.1186/s13287-023-03560-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Heart failure (HF) is a major cause of death worldwide. The most effective treatment for HF is heart transplantation, but its use is limited by the scarcity of donor hearts. Recently, stem cell-based therapy has emerged as a promising approach for treating myocardial infarction. Our research group has been investigating the use of human induced pluripotent stem cell-derived cardiomyocyte patches as a potential therapeutic candidate. We have successfully conducted eight cases of clinical trials and demonstrated the safety and effectiveness of this approach. However, further advancements are necessary to overcome immune rejection and enhance therapeutic efficacy. In this study, we propose a novel and efficient technique for constructing mesenchymal stem cell (MSC) tissue sheets, which can be transplanted effectively for treating myocardial infarction repair. METHODS We applied a one-step method to construct the human adipose-derived mesenchymal stem cell (hADSC) tissue sheet on a poly(lactic-co-glycolic acid) fiber scaffold. Histology, immunofluorescence, and paracrine profile assessment were used to determine the organization and function of the hADSC tissue sheet. Echocardiography and pathological analyses of heart sections were performed to evaluate cardiac function, fibrosis area, angiogenesis, and left ventricular remodeling. RESULTS In vitro, the hADSC tissue sheet showed great organization, abundant ECM expression, and increased paracrine secretion than single cells. In vivo, the hADSC tissue sheet group demonstrated improved cardiac functional recovery, less ventricular remodeling, decreased fibrosis, and enhanced angiogenesis than the MI group. CONCLUSIONS We developed thick and functional hADSC tissue sheets via the one-step strategy. The hADSC tissue sheet showed excellent performance in treating myocardial infarction in the rat model.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Frontier of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Xiang Qu
- Frontier of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yuting Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Noriko Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Masako Ishida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Akiko Tabata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Lifu Sun
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Frontier of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
20
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
21
|
Lamparelli EP, Marino M, Szychlinska MA, Della Rocca N, Ciardulli MC, Scala P, D’Auria R, Testa A, Viggiano A, Cappello F, Meccariello R, Della Porta G, Santoro A. The Other Side of Plastics: Bioplastic-Based Nanoparticles for Drug Delivery Systems in the Brain. Pharmaceutics 2023; 15:2549. [PMID: 38004530 PMCID: PMC10674524 DOI: 10.3390/pharmaceutics15112549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Plastics have changed human lives, finding a broad range of applications from packaging to medical devices. However, plastics can degrade into microscopic forms known as micro- and nanoplastics, which have raised concerns about their accumulation in the environment but mainly about the potential risk to human health. Recently, biodegradable plastic materials have been introduced on the market. These polymers are biodegradable but also bioresorbable and, indeed, are fundamental tools for drug formulations, thanks to their transient ability to pass through biological barriers and concentrate in specific tissues. However, this "other side" of bioplastics raises concerns about their toxic potential, in the form of micro- and nanoparticles, due to easier and faster tissue accumulation, with unknown long-term biological effects. This review aims to provide an update on bioplastic-based particles by analyzing the advantages and drawbacks of their potential use as components of innovative formulations for brain diseases. However, a critical analysis of the literature indicates the need for further studies to assess the safety of bioplastic micro- and nanoparticles despite they appear as promising tools for several nanomedicine applications.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy;
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Antonino Testa
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellbeing Sciences, Parthenope University of Naples, 80133 Naples, Italy;
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
22
|
Moon JW, Choi SY, Kim SJ, Shin JM, Park IH. Wedge resection combined with 3D-printed polycaprolactone mesh for caudal septal deviation. J Otolaryngol Head Neck Surg 2023; 52:69. [PMID: 37876017 PMCID: PMC10599004 DOI: 10.1186/s40463-023-00677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/18/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Biocompatibility and stability of three-dimensional printed polycaprolactone mesh grafts for nasal surgery are proven in both animal and human models. However, their safety and durability as batten grafts for caudal septal deviation has not been documented. This study was designed to investigate the efficacy and safety of three-dimensional printed polycaprolactone mesh batten graft in septoplasty using the wedge resection technique for the correction of caudal septal deviation. METHODS This retrospective study reviewed the medical records of 20 patients aged ≥ 18 years with caudal septal deviation who underwent septoplasty with wedge resection and three-dimensional printed polycaprolactone mesh graft from a tertiary medical center in South Korea, between December 1, 2019 and May 31, 2021. Those without nasal obstruction before surgery or with a short follow-up period (< 28 days) were excluded from the survey analysis. RESULTS Of the 20 patients (mean age, 48.0 [range, 19-65] years), 17 (85.0%) were male, and three (15.0%) were female. A significant change was noted in the mean nasal obstruction symptom evaluation score (68.2 vs. 15.0, P < .001) in the 17 patients included in the analysis. Postoperative endoscopic evaluation revealed a straight septum in 19/20 (95.0%) patients, and no complications were noted in the postoperative follow-up period of up to 364 days. CONCLUSIONS The three-dimensional printed polycaprolactone nasal mesh is safe and provides adequate support to resist the intrinsic memory of the cartilage of the caudal septum. In addition to nasal surgeries, it has great potential as a graft in other reconstructive surgeries. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Jee Won Moon
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, 08308, Seoul, South Korea
| | - Seok-Youl Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, 08308, Seoul, South Korea
| | - Su-Jong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, 08308, Seoul, South Korea
| | - Jae-Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, 08308, Seoul, South Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, College of Medicine, Seoul, South Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, 08308, Seoul, South Korea.
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, College of Medicine, Seoul, South Korea.
- Medical Device Usability Test Center, Korea University, College of Medicine, Seoul, South Korea.
| |
Collapse
|
23
|
Kumara SPSNBS, Senevirathne SWMAI, Mathew A, Bray L, Mirkhalaf M, Yarlagadda PKDV. Progress in Nanostructured Mechano-Bactericidal Polymeric Surfaces for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2799. [PMID: 37887949 PMCID: PMC10609396 DOI: 10.3390/nano13202799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Bacterial infections and antibiotic resistance remain significant contributors to morbidity and mortality worldwide. Despite recent advances in biomedical research, a substantial number of medical devices and implants continue to be plagued by bacterial colonisation, resulting in severe consequences, including fatalities. The development of nanostructured surfaces with mechano-bactericidal properties has emerged as a promising solution to this problem. These surfaces employ a mechanical rupturing mechanism to lyse bacterial cells, effectively halting subsequent biofilm formation on various materials and, ultimately, thwarting bacterial infections. This review delves into the prevailing research progress within the realm of nanostructured mechano-bactericidal polymeric surfaces. It also investigates the diverse fabrication methods for developing nanostructured polymeric surfaces with mechano-bactericidal properties. We then discuss the significant challenges associated with each approach and identify research gaps that warrant exploration in future studies, emphasizing the potential for polymeric implants to leverage their distinct physical, chemical, and mechanical properties over traditional materials like metals.
Collapse
Affiliation(s)
- S. P. S. N. Buddhika Sampath Kumara
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - S. W. M. Amal Ishantha Senevirathne
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Asha Mathew
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- School of Engineering, University of Southern Queensland, Springfield, QLD 4300, Australia
| | - Laura Bray
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Mohammad Mirkhalaf
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Prasad K. D. V. Yarlagadda
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- School of Engineering, University of Southern Queensland, Springfield, QLD 4300, Australia
| |
Collapse
|
24
|
Emadi H, Karevan M, Masoudi Rad M, Sadeghzade S, Pahlevanzadeh F, Khodaei M, Khayatzadeh S, Lotfian S. Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications. Polymers (Basel) 2023; 15:3617. [PMID: 37688243 PMCID: PMC10490551 DOI: 10.3390/polym15173617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
This study investigated the relationship between the structure and mechanical properties of polycaprolactone (PCL) nanocomposites reinforced with baghdadite, a newly introduced bioactive agent. The baghdadite nanoparticles were synthesised using the sol-gel method and incorporated into PCL films using the solvent casting technique. The results showed that adding baghdadite to PCL improved the nanocomposites' tensile strength and elastic modulus, consistent with the results obtained from the prediction models of mechanical properties. The tensile strength increased from 16 to 21 MPa, and the elastic modulus enhanced from 149 to 194 MPa with fillers compared to test specimens without fillers. The thermal properties of the nanocomposites were also improved, with the degradation temperature increasing from 388 °C to 402 °C when 10% baghdadite was added to PCL. Furthermore, it was found that the nanocomposites containing baghdadite showed an apatite-like layer on their surfaces when exposed to simulated body solution (SBF) for 28 days, especially in the film containing 20% nanoparticles (PB20), which exhibited higher apatite density. The addition of baghdadite nanoparticles into pure PCL also improved the viability of MG63 cells, increasing the viability percentage on day five from 103 in PCL to 136 in PB20. Additionally, PB20 showed a favourable degradation rate in PBS solution, increasing mass loss from 2.63 to 4.08 per cent over four weeks. Overall, this study provides valuable insights into the structure-property relationships of biodegradable-bioactive nanocomposites, particularly those reinforced with new bioactive agents.
Collapse
Affiliation(s)
- Hosein Emadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 14176-14411, Iran
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mehdi Karevan
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Maryam Masoudi Rad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Sorour Sadeghzade
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saber Khayatzadeh
- Department of Design and Mathematics, University of the West of England, Bristol BS16 1QY, UK
| | - Saeid Lotfian
- Faculty of Engineering, University of Strathclyde, Glasgow G4 0LZ, UK
| |
Collapse
|
25
|
Aldhaher A, Shahabipour F, Shaito A, Al-Assaf S, Elnour AA, Sallam EB, Teimourtash S, Elfadil AA. 3D hydrogel/ bioactive glass scaffolds in bone tissue engineering: Status and future opportunities. Heliyon 2023; 9:e17050. [PMID: 37483767 PMCID: PMC10362084 DOI: 10.1016/j.heliyon.2023.e17050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Repairing significant bone defects remains a critical challenge, raising the clinical demand to design novel bone biomaterials that incorporate osteogenic and angiogenic properties to support the regeneration of vascularized bone. Bioactive glass scaffolds can stimulate angiogenesis and osteogenesis. In addition, natural or synthetic polymers exhibit structural similarity with extracellular matrix (ECM) components and have superior biocompatibility and biodegradability. Thus, there is a need to prepare composite scaffolds of hydrogels for vascularized bone, which incorporate to improve the mechanical properties and bioactivity of natural polymers. In addition, those composites' 3-dimensional (3D) form offer regenerative benefits such as direct doping of the scaffold with ions. This review presents a comprehensive discussion of composite scaffolds incorporated with BaG, focusing on their effects on osteo-inductivity and angiogenic properties. Moreover, the adaptation of the ion-doped hydrogel composite scaffold into a 3D scaffold for the generation of vascularized bone tissue is exposed. Finally, we highlight the challenges and future of manufacturing such biomaterials.
Collapse
Affiliation(s)
- Abdullah Aldhaher
- Department of Chemistry, Faculty of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Fahimeh Shahabipour
- Orthopedic Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Abdullah Shaito
- Biomedical Research Center, College of Medicine, And Department of Biomedical Sciences at College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Saphwan Al-Assaf
- Hydrocolloids Research Centre, University of Chester, Chester, United Kingdom
| | - Ahmed A.M. Elnour
- Faculty of Chemical and Process Engineering Technology, University of Malaysia Pahang-UMP, Malaysia
| | | | - Shahin Teimourtash
- Department of Healthcare Science Center, McMaster University, Toronto, Canada
| | - Abdelgadir A. Elfadil
- Department of Environmental Science, Faculty of Science and Technology, Al-Neelain University, P. O. Box: 12702, Sudan
| |
Collapse
|
26
|
Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater 2023; 14:341. [PMID: 37504836 PMCID: PMC10381286 DOI: 10.3390/jfb14070341] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Michael Wagels
- Department of Plastic Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
- The Herston Biofabrication Institute, The University of Queensland, Herston, QLD 4006, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Plastic and Reconstructive Surgery, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- The Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD 4102, Australia
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies (CTET), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
27
|
Martelli A, Bellucci D, Cannillo V. Additive Manufacturing of Polymer/Bioactive Glass Scaffolds for Regenerative Medicine: A Review. Polymers (Basel) 2023; 15:2473. [PMID: 37299270 PMCID: PMC10255145 DOI: 10.3390/polym15112473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Tissue engineering (TE) is a branch of regenerative medicine with enormous potential to regenerate damaged tissues using synthetic grafts such as scaffolds. Polymers and bioactive glasses (BGs) are popular materials for scaffold production because of their tunable properties and ability to interact with the body for effective tissue regeneration. Due to their composition and amorphous structure, BGs possess a significant affinity with the recipient's tissue. Additive manufacturing (AM), a method that allows the creation of complex shapes and internal structures, is a promising approach for scaffold production. However, despite the promising results obtained so far, several challenges remain in the field of TE. One critical area for improvement is tailoring the mechanical properties of scaffolds to meet specific tissue requirements. In addition, achieving improved cell viability and controlled degradation of scaffolds is necessary to ensure successful tissue regeneration. This review provides a critical summary of the potential and limitations of polymer/BG scaffold production via AM covering extrusion-, lithography-, and laser-based 3D-printing techniques. The review highlights the importance of addressing the current challenges in TE to develop effective and reliable strategies for tissue regeneration.
Collapse
Affiliation(s)
| | - Devis Bellucci
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via. P. Vivarelli 10, 41125 Modena, Italy;
| | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via. P. Vivarelli 10, 41125 Modena, Italy;
| |
Collapse
|
28
|
Lacambra-Andreu X, Maazouz A, Lamnawar K, Chenal JM. A Review on Manufacturing Processes of Biocomposites Based on Poly(α-Esters) and Bioactive Glass Fillers for Bone Regeneration. Biomimetics (Basel) 2023; 8:81. [PMID: 36810412 PMCID: PMC9945144 DOI: 10.3390/biomimetics8010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
The incorporation of bioactive and biocompatible fillers improve the bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. During these last 20 years, those biocomposites have been explored for making complex geometry devices likes screws or 3D porous scaffolds for the repair of bone defects. This review provides an overview of the current development of manufacturing process with synthetic biodegradable poly(α-ester)s reinforced with bioactive fillers for bone tissue engineering applications. Firstly, the properties of poly(α-ester), bioactive fillers, as well as their composites will be defined. Then, the different works based on these biocomposites will be classified according to their manufacturing process. New processing techniques, particularly additive manufacturing processes, open up a new range of possibilities. These techniques have shown the possibility to customize bone implants for each patient and even create scaffolds with a complex structure similar to bone. At the end of this manuscript, a contextualization exercise will be performed to identify the main issues of process/resorbable biocomposites combination identified in the literature and especially for resorbable load-bearing applications.
Collapse
Affiliation(s)
- Xavier Lacambra-Andreu
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
- CNRS, UMR 5510, MATEIS, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Abderrahim Maazouz
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
- Hassan II Academy of Science and Technology, Rabat 10100, Morocco
| | - Khalid Lamnawar
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Jean-Marc Chenal
- CNRS, UMR 5510, MATEIS, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France
| |
Collapse
|
29
|
Sachan R, Warkar SG, Purwar R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Radha Sachan
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G. Warkar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
30
|
Hagh HB, Unsworth LD, Doustdar F, Olad A. Fibrous electrospun polycaprolactone nanomat reinforced with halloysite nanotubes: Preparation and study of its potential application as tissue engineering scaffold. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haleh Bakhtkhosh Hagh
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Fatemeh Doustdar
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
31
|
Banerjee S, Banerjee S, Mondal A. Nanomaterials regenerative medicine and tissue engineering. NANOSTRUCTURED MATERIALS FOR TISSUE ENGINEERING 2023:3-53. [DOI: 10.1016/b978-0-323-95134-0.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Al‐allaq AA, Kashan JS. A review: In vivo studies of bioceramics as bone substitute materials. NANO SELECT 2022. [DOI: 10.1002/nano.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ali A. Al‐allaq
- Ministry of Higher Education and Scientific Research Office Reconstruction and Projects Baghdad Iraq
| | - Jenan S. Kashan
- Biomedical Engineering Department University of Technology Baghdad Iraq
| |
Collapse
|
33
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
34
|
Fu L, Feng Q, Chen Y, Fu J, Zhou X, He C. Nanofibers for the Immunoregulation in Biomedical Applications. ADVANCED FIBER MATERIALS 2022; 4:1334-1356. [DOI: 10.1007/s42765-022-00191-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 01/06/2025]
|
35
|
Height-to-Diameter Ratio and Porosity Strongly Influence Bulk Compressive Mechanical Properties of 3D-Printed Polymer Scaffolds. Polymers (Basel) 2022; 14:polym14225017. [PMID: 36433144 PMCID: PMC9693008 DOI: 10.3390/polym14225017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Although the architectural design parameters of 3D-printed polymer-based scaffolds-porosity, height-to-diameter (H/D) ratio and pore size-are significant determinants of their mechanical integrity, their impact has not been explicitly discussed when reporting bulk mechanical properties. Controlled architectures were designed by systematically varying porosity (30-75%, H/D ratio (0.5-2.0) and pore size (0.25-1.0 mm) and fabricated using fused filament fabrication technique. The influence of the three parameters on compressive mechanical properties-apparent elastic modulus Eapp, bulk yield stress σy and yield strain εy-were investigated through a multiple linear regression analysis. H/D ratio and porosity exhibited strong influence on the mechanical behavior, resulting in variations in mean Eapp of 60% and 95%, respectively. σy was comparatively less sensitive to H/D ratio over the range investigated in this study, with 15% variation in mean values. In contrast, porosity resulted in almost 100% variation in mean σy values. Pore size was not a significant factor for mechanical behavior, although it is a critical factor in the biological behavior of the scaffolds. Quantifying the influence of porosity, H/D ratio and pore size on bench-top tested bulk mechanical properties can help optimize the development of bone scaffolds from a biomechanical perspective.
Collapse
|
36
|
Strutynska N, Slobodyanik M, Tykhonenko T, Titov Y, Stus N. Features of synthesis of sodium and carbonate containing biphasic calcium phosphates and their cytotoxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Ahmadi S, Shafiei SS, Sabouni F. Electrospun Nanofibrous Scaffolds of Polycaprolactone/Gelatin Reinforced with Layered Double Hydroxide Nanoclay for Nerve Tissue Engineering Applications. ACS OMEGA 2022; 7:28351-28360. [PMID: 35990483 PMCID: PMC9386844 DOI: 10.1021/acsomega.2c02863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/22/2022] [Indexed: 06/01/2023]
Abstract
Nerve tissue engineering (NTE) is an effective approach for repairing damaged nerve tissue. In this regard, nanoparticle-incorporated electrospun scaffolds have aroused a great deal of interest in NTE applications. In this study, layered double hydroxide (LDH)-incorporated polycaprolactone (PCL)/gelatin (Gel) nanofibrous scaffolds were fabricated by an electrospinning technique. The physicochemical, mechanical, and biological properties of the scaffolds were examined. Also, the phase identification, morphology, and elemental composition were studied using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. The results revealed that the inclusion of LDH nanoparticles into the PCL/Gel scaffold has improved its mechanical strength and elongation at the break, while the degradation rate was enhanced in comparison with the pure PCL/Gel mat. The LDH-enriched electrospun PCL/Gel scaffolds exhibited a considerable impact on cell attachment and proliferation. The gene expression results showed that the neuron-specific (γγ) enolase (NSE) gene expression was significantly decreased in the scaffolds containing 1 and 10 wt % LDH compared to the scaffold without LDH, whereas in the scaffold with 0.1 wt % LDH, a slight increase in expression was observed. It can be deduced that electrospun PCL/Gel scaffolds containing LDH with optimum concentration can be a promising candidate for nerve tissue engineering applications.
Collapse
|
38
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
39
|
Han J, Li Z, Sun Y, Cheng F, Zhu L, Zhang Y, Zhang Z, Wu J, Wang J. Surface Roughness and Biocompatibility of Polycaprolactone Bone Scaffolds: An Energy-Density-Guided Parameter Optimization for Selective Laser Sintering. Front Bioeng Biotechnol 2022; 10:888267. [PMID: 35898639 PMCID: PMC9309791 DOI: 10.3389/fbioe.2022.888267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional porous polycaprolactone (PCL) bone scaffolds prepared by selective laser sintering (SLS) have demonstrated great potential in the repair of non-load-bearing bone defects. The microgeometry and surface roughness of PCL scaffolds during the SLS process may change the biocompatibility and bioactivity of the scaffolds. However, in addition to the widely concerned mechanical properties and structural accuracy of scaffolds, there is still a lack of systematic research on how SLS process parameters affect the surface roughness of PCL scaffolds and the relationship between roughness and biocompatibility of scaffolds. In this study, we use the energy density model (EDM) combined with the thermodynamic properties of PCL powder to calculate the energy density range (Ed1–Ed3) suitable for PCL sintering. Five PCL scaffolds with different laser powers and scanning speeds were prepared; their dimensional accuracy, mechanical strength, and surface properties were comprehensively evaluated, and the bioactivities were compared through the attachment and proliferation of MC3T3-E1 cells on the scaffolds. It was found that the high energy density (Ed3) reduced the shape fidelity related to pore size and porosity, and the dense and smooth surface of the scaffolds showed poor cytocompatibility, while the low energy density (Ed1) resulted in weak mechanical properties, but the rough surface caused by incomplete sintered PCL particles facilitated the cell adhesion and proliferation. Therefore, the surface roughness and related biocompatibility of PCL bone scaffolds should be considered in energy-density-guided SLS parameter optimization.
Collapse
Affiliation(s)
- Jian Han
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Zehua Li
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Yuxuan Sun
- University of Science and Technology of China, Hefei, China
| | - Fajun Cheng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lei Zhu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yaoyao Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Zirui Zhang
- School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, China
| | - Jinzhe Wu
- School of Electronic Engineering, Naval University of Engineering, Wuhan, China
- *Correspondence: Jinzhe Wu, ; Junfeng Wang,
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- *Correspondence: Jinzhe Wu, ; Junfeng Wang,
| |
Collapse
|
40
|
Nikakhtar Y, Shafiei SS, Fathi-Roudsari M, Asadi-Eydivand M, ShiraliPour F. Preparation and characterization of electrospun polycaprolactone/brushite scaffolds to promote osteogenic differentiation of mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1102-1122. [PMID: 35144516 DOI: 10.1080/09205063.2022.2041786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Bone tissue engineering aims to develop effective strategies for repairing or replacing damaged bone tissue. In this study, composite scaffolds consisting of dicalcium phosphate dihydrate (DCDP, brushite) as a bone phase mineral precursor with different weight percentages (0%, 1%, 3%, 5%, and 10%) in combination with polycaprolactone (PCL) were fabricated by electrospinning technique. The morphology and mechanical behavior of scaffolds were characterized using scanning electron microscopy and tensile strength test, respectively. The bioactivity of scaffolds was assessed in simulated body fluid. Adhesion, viability, proliferation, and differentiation of mesenchymal stem cells derived from the human bone marrow on scaffolds were investigated using electron microscopy, MTT assay, live-dead assay, alizarin red staining, alkaline phosphatase activity and, gene expression analysis by real-time PCR. The results showed that the scaffold containing 3 wt. % of DCDP had the highest tensile strength (15.35 MPa). Furthermore, cells seeded on scaffolds showed over 80% viability after 1, 3, 7 days of incubation. Also, the results showed that the addition of DCDP to the PCL significantly increased the alkaline phosphatase activity. The osteocalcin gene expression in the composite scaffold showed a 6.1-fold increase compared to the pure PCL scaffold. It is concluded that electrospun PCL scaffolds containing DCDP with optimum concentration can be a proper candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Yeganeh Nikakhtar
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyedeh Sara Shafiei
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehrnoush Fathi-Roudsari
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mitra Asadi-Eydivand
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Faeze ShiraliPour
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
41
|
Ansari MAA, Golebiowska AA, Dash M, Kumar P, Jain PK, Nukavarapu SP, Ramakrishna S, Nanda HS. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci 2022; 10:2789-2816. [PMID: 35510605 DOI: 10.1039/d2bm00035k] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
There are more than 2 million bone grafting procedures performed annually in the US alone. Despite significant efforts, the repair of large segmental bone defects is a substantial clinical challenge which requires bone substitute materials or a bone graft. The available biomaterials lack the adequate mechanical strength to withstand the static and dynamic loads while maintaining sufficient porosity to facilitate cell in-growth and vascularization during bone tissue regeneration. A wide range of advanced biomaterials are being currently designed to mimic the physical as well as the chemical composition of a bone by forming polymer blends, polymer-ceramic and polymer-degradable metal composites. Transforming these novel biomaterials into porous and load-bearing structures via three-dimensional printing (3DP) has emerged as a popular manufacturing technique to develop engineered bone grafts. 3DP has been adopted as a versatile tool to design and develop bone grafts that satisfy porosity and mechanical requirements while having the ability to form grafts of varied shapes and sizes to meet the physiological requirements. In addition to providing surfaces for cell attachment and eventual bone formation, these bone grafts also have to provide physical support during the repair process. Hence, the mechanical competence of the 3D-printed scaffold plays a key role in the success of the implant. In this review, we present various recent strategies that have been utilized to design and develop robust biomaterials that can be deployed for 3D-printing bone substitutes. The article also reviews some of the practical, theoretical and biological considerations adopted in the 3D-structure design and development for bone tissue engineering.
Collapse
Affiliation(s)
- Mohammad Aftab Alam Ansari
- Biomedical Engineering and Technology Lab, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- FFF Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Aleksandra A Golebiowska
- Biomedical Engineering, Materials Science & Engineering, and Orthopaedic Surgery, University of Connecticut, 260 Glenbrook Road, Unit 3247 Storrs, CT, 06269, USA
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Arugul, Khurdha 752050, Odisha, India
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Prashant Kumar Jain
- FFF Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
| | - Syam P Nukavarapu
- Biomedical Engineering, Materials Science & Engineering, and Orthopaedic Surgery, University of Connecticut, 260 Glenbrook Road, Unit 3247 Storrs, CT, 06269, USA
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Engineering Drive 3, Singapore 117587, Singapore
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| |
Collapse
|
42
|
Wang Y, Zhang S, Nie B, Qu X, Yue B. Approaches to Biofunctionalize Polyetheretherketone for Antibacterial: A Review. Front Bioeng Biotechnol 2022; 10:895288. [PMID: 35646862 PMCID: PMC9136111 DOI: 10.3389/fbioe.2022.895288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Due to excellent mechanical properties and similar elastic modulus compared with human cortical bone, polyetheretherketone (PEEK) has become one of the most promising orthopedic implant materials. However, implant-associated infections (IAIs) remain a challenging issue since PEEK is bio-inert. In order to fabricate an antibacterial bio-functional surface, modifications of PEEK had been widely investigated. This review summarizes the modification strategies to biofunctionalize PEEK for antibacterial. We will begin with reviewing different approaches, such as surface-coating modifications and controlled release of antimicrobials. Furthermore, blending modifications and 3D printing technology were discussed. Finally, we compare the effects among different approaches. We aimed to provide an in-depth understanding of the antibacterial modification and optimize the design of the PEEK orthopedic implant.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bin’en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Bing Yue,
| |
Collapse
|
43
|
Roohani I, No YJ, Zuo B, Xiang SD, Lu Z, Liu H, Plebanski M, Zreiqat H. Low-Temperature Synthesis of Hollow β-Tricalcium Phosphate Particles for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:1806-1815. [PMID: 35405073 DOI: 10.1021/acsbiomaterials.1c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Tricalcium phosphate (β-TCP) has been extensively used in bone tissue engineering in the form of scaffolds, granules, or as reinforcing phase in organic matrices. Solid-state reaction route at high temperatures (>1000 °C) is the most widely used method for the preparation of β-TCP. The high-temperature synthesis, however, results in the formation of hard agglomerates and fused particles which necessitates postprocessing steps such as milling and sieving operations. This, inadvertently, could lead to introducing unwanted trace elements, promoting particle shape irregularity as well as compromising the biodegradability and bioactivity of β-TCP because of the solid microstructure of particles. In this study, we introduce a one-pot wet-chemical method at low temperatures (between 160 and 170 °C) to synthesize hollow β-TCP (hβ-TCP) submicron particles of an average size of 300 nm with a uniform rhombohedral shape. We assessed the cytocompatibility of the hβ-TCP using primary human osteoblasts (HOB), adipose-derived stem cells (ADSC), and antigen-presenting cells (APCs). We demonstrate the bioactivity of the hβ-TCP when cultured with HOB, ADSC, and APCs at a range of particle concentrations (up to 1000 μg/mL) for up to 7 days. hβ-TCP significantly enhances osteogenic differentiation of ADSC without the addition of osteogenic supplements. These findings offer a new type of β-TCP particles prepared at low temperatures, which present various opportunities for developing β-TCP based biomaterials.
Collapse
Affiliation(s)
- Iman Roohani
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Young Jung No
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Betty Zuo
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sue D Xiang
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Zufu Lu
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hongwei Liu
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3052, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3084, Australia
| | - Hala Zreiqat
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
44
|
Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F. Comparison between hydroxyapatite and polycaprolactone in inducing osteogenic differentiation and augmenting maxillary bone regeneration in rats. PeerJ 2022; 10:e13356. [PMID: 35529494 PMCID: PMC9070322 DOI: 10.7717/peerj.13356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration. Method In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation. Results MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p < 0.05) high levels of ALP activity with prolonged osteoblast induction. Micro-CT and H&E analyses confirmed the in vitro results with bone formation were significantly (p < 0.05) greater in HA scaffold and was supported by IHC analysis which confirmed stronger expression of osteogenic markers ALP and osteocalcin. Conclusion Different scaffold materials of HA and PCL might have influenced the bone regeneration ability of MC3T3-E1. Regardless, in vitro and in vivo bone regeneration was better in the HA scaffold which indicates its great potential for application in bone regeneration.
Collapse
Affiliation(s)
- Nur Atmaliya Luchman
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostic and Bioscience, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seng Fong Lau
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farinawati Yazid
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Rosa RP, Ferreira FV, dos Santos DM, Lona LM. Cellulose nanocrystals as initiator of ring-opening polymerization of ε-caprolactone: Mathematical modeling and experimental verification. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Tanaka M, Izumiya M, Haniu H, Ueda K, Ma C, Ueshiba K, Ideta H, Sobajima A, Uchiyama S, Takahashi J, Saito N. Current Methods in the Study of Nanomaterials for Bone Regeneration. NANOMATERIALS 2022; 12:nano12071195. [PMID: 35407313 PMCID: PMC9000656 DOI: 10.3390/nano12071195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
Abstract
Nanomaterials show great promise as bone regeneration materials. They can be used as fillers to strengthen bone regeneration scaffolds, or employed in their natural form as carriers for drug delivery systems. A variety of experiments have been conducted to evaluate the osteogenic potential of bone regeneration materials. In vivo, such materials are commonly tested in animal bone defect models to assess their bone regeneration potential. From an ethical standpoint, however, animal experiments should be minimized. A standardized in vitro strategy for this purpose is desirable, but at present, the results of studies conducted under a wide variety of conditions have all been evaluated equally. This review will first briefly introduce several bone regeneration reports on nanomaterials and the nanosize-derived caveats of evaluations in such studies. Then, experimental techniques (in vivo and in vitro), types of cells, culture media, fetal bovine serum, and additives will be described, with specific examples of the risks of various culture conditions leading to erroneous conclusions in biomaterial analysis. We hope that this review will create a better understanding of the evaluation of biomaterials, including nanomaterials for bone regeneration, and lead to the development of versatile assessment methods that can be widely used in biomaterial development.
Collapse
Affiliation(s)
- Manabu Tanaka
- Department of Orthopedic Surgery, Okaya City Hospital, 4-11-33 Honcho, Okaya, Nagano 394-8512, Japan;
- Correspondence: (M.T.); (H.H.); Tel.: +81-266-23-8000 (M.T.); +81-263-37-3555 (H.H.)
| | - Makoto Izumiya
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
- Correspondence: (M.T.); (H.H.); Tel.: +81-266-23-8000 (M.T.); +81-263-37-3555 (H.H.)
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Chuang Ma
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Koki Ueshiba
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hirokazu Ideta
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.S.); (J.T.)
| | - Atsushi Sobajima
- Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.S.); (J.T.)
- Department of Orthopedics (Lower Limbs), Social Medical Care Corporation Hosei-kai Marunouchi Hospital, 1-7-45 Nagisa, Matsumoto, Nagano 390-8601, Japan
| | - Shigeharu Uchiyama
- Department of Orthopedic Surgery, Okaya City Hospital, 4-11-33 Honcho, Okaya, Nagano 394-8512, Japan;
| | - Jun Takahashi
- Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.S.); (J.T.)
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
| |
Collapse
|
47
|
Kodali D, Hembrick-Holloman V, Gunturu DR, Samuel T, Jeelani S, Rangari VK. Influence of Fish Scale-Based Hydroxyapatite on Forcespun Polycaprolactone Fiber Scaffolds. ACS OMEGA 2022; 7:8323-8335. [PMID: 35309494 PMCID: PMC8928498 DOI: 10.1021/acsomega.1c05593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 05/26/2023]
Abstract
Marine waste byproducts, especially fish scales, have proved to be one of the most prominent sources for developing sustainable materials for various applications including biomedical applications. Hydroxyapatite (HAp), being one of such biomaterials that can be synthesized from the massive fish-based waste, has received plentitude of attention due to its excellent ability to promote cell growth and proliferation. However, understanding the influence of HAp on polymer matrices that are tailored for biomedical applications is still a challenge. This study is intended to develop a sophisticated yet inexpensive method to obtain nonwoven polycaprolactone (PCL) nanofibrous scaffolds and analyze the influence of calcium-deficient nanoporous hydroxyapatite (n-HAp) on the thermal, mechanical, and biological properties of these scaffolds. The n-HAp is synthesized using two different types of fish scales, carpa (CA) and pink perch (PP), by calcination followed by nanomilling. The synthesized n-HAp powder is characterized by using X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy. The PCL fibrous scaffolds were developed using a novel forcespinning technique with n-HAp as the filler. The morphology of the scaffolds was characterized using SEM and Raman spectroscopy. SEM and TEM results have confirmed the size reduction of the HAp powder after nanomilling. Thermal properties were analyzed using thermogravimetric analysis and differential scanning calorimetry. The major degradation temperature has increased by 3° and was observed to be 398° for 1 wt % filler loading for both carpa and pink perch-derived n-HAp. The increase in filler content has increased the residue left after decomposition and is 4% for 5 wt % filler loading. The crystallinity percent has increased by 7% compared to neat fibers for 1 wt % filler loading. Mechanical properties were tested using tensile tests. The tensile test strength has shown 32% improvement for 1 wt % compared to neat fibers. Cell viability tests were performed using hFOB cells which have shown significant cell growth for a high filler loading of 5 wt %. The results suggest that both CA-n-HAP and PP-n-Hap-incorporated fibrous scaffolds can be used potentially for biomedical applications after careful investigation of the scaffold behavior with longer incubation periods.
Collapse
Affiliation(s)
- Deepa Kodali
- Department
of Materials Science Engineering, Tuskegee
University, Tuskegee, Alabama 36088, United States
| | - Vincent Hembrick-Holloman
- Department
of Materials Science Engineering, Tuskegee
University, Tuskegee, Alabama 36088, United States
| | - Dilip Reddy Gunturu
- College
of Veterinary Medicine Nursing and Allied Health, Pathobiology, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Temesgen Samuel
- College
of Veterinary Medicine Nursing and Allied Health, Pathobiology, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Shaik Jeelani
- Department
of Materials Science Engineering, Tuskegee
University, Tuskegee, Alabama 36088, United States
| | - Vijaya K. Rangari
- Department
of Materials Science Engineering, Tuskegee
University, Tuskegee, Alabama 36088, United States
| |
Collapse
|
48
|
Dethe MR, A P, Ahmed H, Agrawal M, Roy U, Alexander A. PCL-PEG copolymer based injectable thermosensitive hydrogels. J Control Release 2022; 343:217-236. [PMID: 35090961 PMCID: PMC9134269 DOI: 10.1016/j.jconrel.2022.01.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/09/2023]
Abstract
A number of stimuli-responsive-based hydrogels has been widely explored in biomedical applications in the last few decades because of their excellent biodegradability and biocompatibility. The development of synthetic chemistry and materials science leads to the emergence of in situ stimuli-responsive hydrogels. In this regard, several synthetic and natural polymers have been synthesized and utilized to prepare temperature-sensitive in situ forming hydrogels. This could be best used via injections as temperature stimulus could trigger in situ hydrogels gelation and swelling behaviors. There are many smart polymers available for the formulation of the in situ based thermoresponsive injectable hydrogel. Among these, poly (ε-caprolactone) (PCL) polymer has been recognized and approved by the FDA for numerous biomedical applications. More specifically, the PCL is coupled with polyethylene glycol (PEG) to obtain amphiphilic thermosensitive "smart" copolymers (PCL-PEG), to form rapid and reversible physical gelation behavior. However, the chemical structure of the copolymer is a critical aspect in determining water solubility, thermo-gelation behavior, drug release rate, degradation rate, and the possibility to deliver a diverse range of drugs. In this review, we have highlighted the typical PCL-PEG-based thermosensitive injectable hydrogels progress in the last decade for tissue engineering and localized drug delivery applications to treat various diseases. Additionally, the impact of molecular weight of PCL-PEG upon gelling behavior has also been critically highlighted for optimum hydrogels properties for potential pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC Jadcherla, Hyderabad 509301, India
| | - Upal Roy
- Department of Health and Biomedical Sciences, College of Health Affairs, One West University Blvd., Brownsville, TX 78520, United States of America
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India.
| |
Collapse
|
49
|
Wei XF, Capezza AJ, Cui Y, Li L, Hakonen A, Liu B, Hedenqvist MS. Millions of microplastics released from a biodegradable polymer during biodegradation/enzymatic hydrolysis. WATER RESEARCH 2022; 211:118068. [PMID: 35066257 DOI: 10.1016/j.watres.2022.118068] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this article, we show that enzymatic hydrolysis of a biodegradable polyester (poly(ε-caprolactone)) by Amano Lipase PS in an aqueous (buffer) environment yielded rapidly an excessive number of microplastic particles; merely 0.1 g of poly(ε-caprolactone) film was demonstrated to yield millions of particles. There were also indications of non-enzymatic hydrolysis at the same conditions, but this did not yield any particles within the time frame of the experiment (up to 6 days). Microplastic particles formed had irregular shapes with an average size of around 10 µm, with only a few reaching 60 µm. The formation of microplastic particles resulted from the uneven hydrolysis/erosion rate across the polymer film surface, which led to a rough and undulating surface with ridge, branch, and rod-shaped micro-protruding structures. The consequent detachment and fragmentation of these micro-sized protruding structures resulted in the release of microplastics to the surroundings. Together with microplastics, hydrolysis products such as acidic monomers and oligomers were also released during the enzymatic hydrolysis process, causing a pH decrease in the surrounding liquid. The results suggest that the risk of microplastic pollution from biodegradable plastics is notable despite their biodegradation. Special attention needs to be paid when using and disposing of biodegradable plastics, considering the enormous impact of the paradigm shift towards more biodegradable products on the environment.
Collapse
Affiliation(s)
- Xin-Feng Wei
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE, 100 44 Stockholm, Sweden.
| | - Antonio J Capezza
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE, 100 44 Stockholm, Sweden
| | - Yuxiao Cui
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE, 100 44 Stockholm, Sweden
| | - Lengwan Li
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE, 100 44 Stockholm, Sweden
| | - Aron Hakonen
- Sensor Visions AB, SE, 455 22 Hisings Backa, Sweden
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, China
| | - Mikael S Hedenqvist
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE, 100 44 Stockholm, Sweden.
| |
Collapse
|
50
|
Zeng X, Wang L, Chen X, Luo K, Li J. 3D
biocompatible bone engineering foams with tunable mechanical properties and porous structures. J Appl Polym Sci 2022. [DOI: 10.1002/app.52228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiyang Zeng
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology Chengdu China
| | - Li Wang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology Chengdu China
| | - Xiaohu Chen
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology Chengdu China
| | - Kun Luo
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology Chengdu China
| | - Junfeng Li
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology Chengdu China
| |
Collapse
|