1
|
Niu X, Qu W, Chen Z, Li H, Liu P, Sun M, Yang J, Xing Y, Li D. Condensed tannin from Caragana korshinskii extraction and protection effects on intestinal barrier function in mice. Front Vet Sci 2025; 12:1513371. [PMID: 39963270 PMCID: PMC11830745 DOI: 10.3389/fvets.2025.1513371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Caragana korshinskii tannins (CKT) were extracted by response surface methodology and the protection effect of CKT on the jejunal mucosal barrier function of mice was investigated. Firstly, this work presents the extraction, purification and characterization of CKT. The results show that the extraction conditions were as follows: extraction temperature was 52°C, extraction time was 95 min, liquid-solid ratio was 20:1 and acetone volume fraction was 62%. The extraction yield of the CKT was 5.34%. The CKT has a typical polyphenol peak with a molecular weight of 8.662 kDa and is composed of epigallocatechin, catechin, epigallocatechin gallate, epicatechin, gallocatechin, epicatechin-3-o-gallate and catechin gallate with a molar ratio of 1:8.88:2.65:1.55:1.92:0.49:0.14. Additionally, the CKT showed strong antioxidants capacity in vitro. Secondly, the protection effect of CKT on the growth performance and mucosal barrier function of the mouse jejunum was examined. Totally, sixty KM mice were randomly divided into six treatment groups (n = 10) using a single-factor completely randomized experimental design. The treatment groups were intragastrically administered with 0, 25, 50, 100, 200, and 400 mg/kg BW of CKT aqueous solution once a day. The gavage volume was set at 0.2 mL per 10 g of body weight, administered daily for 21 days. The results showed that CKT significantly improved growth performance and physiological state of mouse intestine. CKT strengthened the intestinal physical barrier by upregulating the expression of Occludin and ZO-1 and decreasing the levels of serum diamine oxidase (DAO) and D-lactate (D-LA). Regarding biochemical barrier, CKT could upregulate the activity and gene expression of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreasing the content of malondialdehyde (MDA) in jejunum tissues. Generally, CKT may be used as a functional feed additive to regulate intestinal mucosal function, thereby enhancing the health of the intestine and host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuanyuan Xing
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dabiao Li
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Xu H, Gong L, Zhang X, Li Z, Fu J, Lv Z, Guo Y. Effects of tannic acid on growth performance, intestinal health, and tolerance in broiler chickens. Poult Sci 2025; 104:104676. [PMID: 39817985 PMCID: PMC11783431 DOI: 10.1016/j.psj.2024.104676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025] Open
Abstract
This study investigated the optimal tannic acid dosage and assessed tolerance levels in broiler chickens. In experiment 1, 525 broilers were randomly divided into 5 treatment groups, the control group (CON group) and groups TA1 to TA4, corresponding to treatments of 0.025, 0.05, 0.075, and 0.1 % tannic acid, respectively, to determine the effect of tannic acid on broiler growth performance and gut health. Experiment 2 was performed to evaluate the tolerance of tannic acid; 416 broilers were randomly divided into control (CTR), 0.075 % tannic acid (TA), 0.375 % tannic acid (5TA), and 0.75 % tannic acid (10TA) groups. In the first experiment, compared with that in the CON group, the growth performance and the ileal intestinal villi height to crypt depth ratio showed a quadratic curve increase with tannic acid supplementation (P < 0.05). Adding 0.05 % to 0.075 % tannic acid significantly improved the growth performance, intestinal morphology, and intestinal barrier function (P < 0.05). Tannic acid concentrations of 0.075 % significantly increased the abundance of Firmicutes and Lactobacillaceae in the ileum and decreased the abundance of Vibrionaceae and Yersiniaceae (P < 0.05). In experiment 2, the growth performance of the TA group significantly improved compared with that of the CTR group (P < 0.05). The F/G was significantly higher in the 5TA and 10TA groups than in the CTR group (P < 0.05), and the 10TA group had significantly reduced body weight on d 21 (P < 0.05). The addition of tannic acid resulted in significant glomerular and glandular hyperplasia, as well as muscularis thickening of the gizzard mucosa. However, broilers could not tolerate tannic acid doses of 0.375 % and above. Tannic acid supplementation may protect the proventriculus mucosal layer, reduce villi atrophy, and enhance growth performance by positively influencing the intestinal microbiota, villus morphology, and intestinal barrier function.
Collapse
Affiliation(s)
- Huiping Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenyi Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Sall KK, Foldager L, Delf C, Christensen SJ, Agerley MN, Havn KT, Pedersen C. Control of Neonatal Diarrhea in Piglets with Reduced Antibiotic Use by Application of a Complementary Feed-A Randomized Controlled Farm Trial. Vet Sci 2025; 12:42. [PMID: 39852918 PMCID: PMC11769454 DOI: 10.3390/vetsci12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
The objective of this farm trial was to investigate if the consumption of antibiotics could be reduced when piglets showing early signs of neonatal diarrhea were treated with an oral dose of tannin extract derived from sweet chestnut wood. The farm had a very high incidence of neonatal diarrhea among gilt litters. Gilts were randomized into test or control groups in a 1:1 ratio to compare the consumption of antibiotics used for piglets and piglet mortality during the four-week trial period. Control litters were treated with the oral antibiotic paromomycin, while test litters were treated with the complementary feed O-Nella-Protect. The farm trial included 18 gilt litters comprising 254 piglets. In the control group, 100% of the piglets received antibiotic treatment. In the test group, consumption of antibiotics used against diarrhea was reduced by 84% (p = 0.001) and consumption of antibiotics used for other illnesses was reduced by 45% (p = 0.045). In both test and control groups, six piglets died. Microbiological analysis identified both potential bacterial and viral pathogens. In conclusion, the farm trial indicates that even under the challenge of potentially serious bacterial and viral pathogens, a complimentary feed containing a tannin extract can support piglet health and reduce antibiotic consumption.
Collapse
Affiliation(s)
- Klaus K. Sall
- Sall&Sall Advisors, DK-8220 Brabrand, Denmark
- Newtrifeed ApS, DK-6372 Bylderup-Bov, Denmark; (S.J.C.); (M.N.A.); (K.T.H.)
| | - Leslie Foldager
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark;
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | - Michael N. Agerley
- Newtrifeed ApS, DK-6372 Bylderup-Bov, Denmark; (S.J.C.); (M.N.A.); (K.T.H.)
- Porcus Pig Veterinarians, DK-5220 Odense SØ, Denmark
| | - Kristian T. Havn
- Newtrifeed ApS, DK-6372 Bylderup-Bov, Denmark; (S.J.C.); (M.N.A.); (K.T.H.)
- Porcus Pig Veterinarians, DK-5220 Odense SØ, Denmark
| | | |
Collapse
|
4
|
de Souza KL, Dias CP, Callegari MA, Friderichs A, Paes AOS, de Carvalho RH, da Silva CA. Performance and intestinal health of piglets in the nursery phase subjected to diets with condensed black wattle (Acacia mearnsii) tannin. Anim Biosci 2025; 38:117-130. [PMID: 39210818 PMCID: PMC11725734 DOI: 10.5713/ab.24.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the use of condensed tannin from black acacia (Acacia mearnsii) as a substitute additive for zinc oxide and growth-promoting antibiotics on the performance, digestibility, and intestinal health of piglets in the nursery phase. METHODS A total of 200 PIC piglets that were 22 days old and weighed 6.0±0.9 kg were subjected to four treatments in the nursery phase (22 to 64 days of age): CONTR (control diet); ENR+ZnO (control diet + 10 mg/kg of enramycin + 2,500 mg/kg of zinc oxide during the first 21 days); BUT (control diet + 900 mg/kg of sodium butyrate) and TAN (control diet + 2,000 mg/kg of condensed tannin). The experimental design was a randomized block with 4 treatments and 10 replicates, with a pen of five animals each as the experimental unit. The zootechnical performance, diarrhea index score, dietary digestibility and metagenomics of the deep rectum microbiota were evaluated. RESULTS The TAN had greater weight gain in the nursery phase and final weight (p<0.05) than the CONTR (394 vs 360 g/d, and 22.6 vs 21.1 kg, respectively), with these values being intermediate for the ENR+ZnO and BUT (365 and 382 g/d, and 21.3 and 22.1 kg, respectively). There was no difference between treatments for semi-liquid diarrhea (score 2), but CONTR had more cases of severe diarrhea (score 3; p<0.05) than ENR+ZnO, BUT and TAN, with 42, 18, 29, and 21 cases, respectively. The treatments had no impact on rare taxa or the relative abundances of taxonomic groups (uniformity), but the use of TAN promoted an increase in the abundances of Brevibacillus spp. and Enterococcus spp. compared to the other treatments (p<0.05). CONCLUSION The use of condensed tannin from black wattle as a performance-enhancing additive was effective, with effects on performance and intestinal health, demonstrating its potential as a substitute for zinc oxide and enramycin in the diets of piglets in nursery phase.
Collapse
Affiliation(s)
- Kelly Lais de Souza
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina, PR 86057970,
Brazil
| | | | | | | | | | - Rafael Humberto de Carvalho
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina, PR 86057970,
Brazil
- Akei Animal Research, Fartura, SP 18870970,
Brazil
| | - Caio Abércio da Silva
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina, PR 86057970,
Brazil
| |
Collapse
|
5
|
Marchetti L, Rebucci R, Lanzoni D, Giromini C, Aidos L, Di Giancamillo A, Cremonesi P, Biscarini F, Castiglioni B, Bontempo V. Dietary supplementation with a blend composed of carvacrol, tannic acid derived from Castanea sativa and Glycyrrhiza glabra, and glycerides of medium chain fatty acids for weanling piglets raised in commercial farm. Vet Res Commun 2024; 48:3773-3791. [PMID: 39269670 PMCID: PMC11538194 DOI: 10.1007/s11259-024-10539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study aimed to evaluate the dietary administration of a blend composed of carvacrol, tannic acid derived from Castanea sativa mill and Glycyrrhiza glabra, medium chain fatty acids (MCFAs) glycerides for weanling piglets. An in vitro digestion followed by total phenolic content (TPC) and total antioxidant activity (TAC) assessment was performed before the in vivo application. At weaning, a total of 210 piglets were randomly allocated to two experimental treatments (7 replicates/15 piglets for each replicate). Control group (CTR) was fed a standard basal diet while the treated group (T) was fed the basal diet mixed with 1.500 mg/kg of blend. After in vitro digestion, TPC and TAC evidenced peaks at the end of oral and gastric phases in comparison to the intestinal one in line with the high content of phenolic compound (P < 0.05). Treatment conditioned body weight and average daily gain (P < 0.05), fecal score on 6, 7, and 8 d after weaning (P < 0.05). At 35d, the T group showed a decrease in salivary cortisol compared to CTR (P < 0.05). Duodenum and jejunum sections of T piglets revealed higher villi (P < 0.05), deeper crypts (P < 0.01), and increased V/C ratio (P < 0.01). CTR showed a higher expression of duodenal Occludin (P < 0.05). Jejunal E-cadherin and Occludin were more expressed in T jejunum sections (P < 0.05). Twelve differentially abundant genera were identified in T group caecal samples. Potentially harmful Clostridium sensu stricto 13 was reduced by the treatment (P < 0.05). In conclusion, the tested blend positively affected salivary stress markers and the gut health of weaned piglets.
Collapse
Affiliation(s)
- Luca Marchetti
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy.
| | - Raffaella Rebucci
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, 20100, Italy
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Filippo Biscarini
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Valentino Bontempo
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| |
Collapse
|
6
|
Cekić B, Marković J, Maksimović V, Ružić-Muslić D, Maksimović N, Ćosić I, Zeljić Stojiljković K. Characterization of Chestnut Tannins: Bioactive Compounds and Their Impact on Lamb Health. Life (Basel) 2024; 14:1556. [PMID: 39768264 PMCID: PMC11678802 DOI: 10.3390/life14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
The objective of the present study was to characterize the chestnut (Castanea sativa Mill.) tannin product, Farmatan Plus® (Tanin Sevnica d.d., Sevnica, Slovenia), and to subsequently examine its effects on the blood metabolic parameters of fattening lambs, particularly in relation to their health status. Thirty lambs were randomly divided into three treatment groups: a control group without added tannin and two groups that received 9.46 g of the tannin product/kg of the diet dry matter (DM) and 18.87 g of the tannin product/kg of the diet DM. Metabolic parameters such as contents of total protein, globulin, urea, and liver enzymes (AST and GGT) were measured over a trial period of 60 days to evaluate the effects of tannin supplementation. This study represents the first in-depth characterization of Farmatan Plus®, demonstrating its richness in bioactive compounds such as vescalin and castalagin. The results showed no significant adverse effects on lamb health, with all parameters remaining within normal physiological ranges (p > 0.05). These results support the safe inclusion of chestnut tannins in the diet of lambs and underline their potential as a functional feed additive that can positively influence the health and growth performance of ruminants.
Collapse
Affiliation(s)
- Bogdan Cekić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| | - Jordan Marković
- Institute for Forage Crops, Globoder, 37251 Kruševac, Serbia;
| | - Vuk Maksimović
- Department of Life Sciences, University of Belgrade—Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia;
| | - Dragana Ružić-Muslić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| | - Nevena Maksimović
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| | - Ivan Ćosić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| | - Krstina Zeljić Stojiljković
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (D.R.-M.); (N.M.); (I.Ć.); (K.Z.S.)
| |
Collapse
|
7
|
Seong Wei L, Mohamad Sukri SA, Tahiluddin AB, Abdul Kari Z, Wee W, Kabir MA. Exploring beneficial effects of phytobiotics in marine shrimp farming: A review. Heliyon 2024; 10:e31074. [PMID: 39113972 PMCID: PMC11304020 DOI: 10.1016/j.heliyon.2024.e31074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 08/10/2024] Open
Abstract
Marine shrimp farming, mainly Penaeus monodon and Litopenaeus vannamei, is an important component of the aquaculture industry. Marine shrimp farming helps produce a protein source for humans, provides job opportunities, and generates lucrative profits for investors. Intensification farming practices can lead to poor water quality, stress, and malnutrition among the farmed marine shrimp, resulting in disease outbreaks and poor production, impeding the development of marine shrimp farming. Antibiotics are the common short-term solution to treat diseases in marine shrimp farming. Moreover, the negative impacts of using antibiotics on public health and the environment erode consumer confidence in aquaculture products. Recently, research on using phytobiotics as a prophylactic agent in aquaculture has become a hot topic. Various phytobiotics have been explored to reveal their beneficial effects on aquaculture species. In this review paper, the sources and modes of action of phytobiotics are presented. The roles of phytobiotics in improving growth performance, increasing antioxidant capacity, enhancing the immune system, stimulating disease resistance, and mitigating stress due to abiotic factors in marine shrimp culture are recapitulated and discussed.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
- Tropical Rainforest Research Centre (TRaCe), Universiti Malaysia Kelantan, Pulau Banding, 33300, Gerik, Perak, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Albaris B. Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao, Tawi-Tawi, 7500, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, Kastamonu, 37200, Turkey
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center for Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | |
Collapse
|
8
|
Wu Z, Wu W, Yang S, Cheng F, Lv J, Shao Y, Tang X, Li E, Zhao Q. Safety evaluation and effects of dietary phlorotannins on the growth, health, and intestinal microbiota of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109569. [PMID: 38641216 DOI: 10.1016/j.fsi.2024.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Phlorotannins are phenolic compounds with diverse biological activities, yet their efficacy in aquatic animals currently remains unclear. This investigation scrutinized the influence of phlorotannins on the growth, immunity, antioxidant capacity, and intestinal microbiota in Litopenaeus vannamei, concurrently evaluating the potential adverse effects of phlorotannins on L. vannamei. A base diet without phlorotannins supplementation was used as a control, and 4 groups of diets with different concentrations (0, 0.5, 1.0, 2.0 g kg-1) of phlorotannins were formulated and fed to juvenile shrimp (0.25 ± 0.01 g) for 60 days followed by a 24-h challenge with Vibrio parahaemolyticus with triplicate in each group. Compared with the control, dietary 2.0 g kg-1 phlorotannins significantly improved the growth of the shrimp. The activities of enzymes related to cellular immunity, humoral immunity, and antioxidants, along with a notable upregulation in the expression of related genes, significantly increased. After V. parahaemolyticus challenge, the cumulative survival rates of the shrimp demonstrated a positive correlation with elevated concentrations of phlorotannins. In addition, the abundance of Bacteroidetes and functional genes associated with metabolism increased in phlorotannins supplementation groups. Phlorotannins did not elicit any detrimental effects on the biological macromolecules or histological integrity of the hepatopancreas or intestines. Simultaneously, it led to a significant reduction in malondialdehyde content. All results indicated that phlorotannins at concentrations of 2.0 g kg-1 can be used as safe feed additives to promote the growth, stimulate the immune response, improve the antioxidant capacity and intestinal health of L. vannamei, and an protect shrimp from damage caused by oxidative stress.
Collapse
Affiliation(s)
- Zijie Wu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Wenbo Wu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Shouguo Yang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Fen Cheng
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Jingyi Lv
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Yingjin Shao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Xianming Tang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
9
|
Zhang X, Gong H, Chen P, Wang J, Chen Z, Chang Z, Li J. Effects of Tannin Supplementation in Diet on the Resistance to Ammonia Stress of Pacific White Shrimp Litopenaeus vannamei. AQUACULTURE NUTRITION 2024; 2024:5539701. [PMID: 39555517 PMCID: PMC11105962 DOI: 10.1155/2024/5539701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 11/19/2024]
Abstract
Tannin (TA), as a natural phenolic compound with strong antioxidant activity, has been used as a feed additive for various animals. In this study, we fed a diet containing 800 mg/kg of tannin on Litopenaeus vannamei for 56 days and then subjected to acute ammonia stress for 48 hr to investigate the effect of dietary tannin on the ammonia stress response of L. vannamei through transcriptomic and metabolomic analysis. The transcriptome analysis indicated that ammonia stress-induced differential expression of 4,185 genes, while tannin-fed shrimp only had 964 differentially expressed genes. Compared with the TA_0 group, 59 pathways were significantly altered, and the pathways of "starch and sucrose metabolism," "retinol metabolism," "arachidonic acid metabolism," "lysosome," and "amino sugar and nucleotide sugar metabolism" were highly enriched in the TS_0 group. Compared with the TS_0 group, six pathways were significantly altered, and the pathways of "dilated cardiomyopathy," "complement and coagulation cascades," "cardiac muscle contraction," "fructose and mannose metabolism," "cGMP-PKG signaling pathway," and "beta-alanine metabolism" were significantly enriched in the TS_800 group. Metabolomic analysis showed that a total of 107 differential metabolites (DMs) were identified in the TS_0 vs. TA_0 group, while 75 DMs were identified in the TS_800 vs. TS_0 group. Based on KEGG annotation, it was found that a large amount of DM was significantly enriched in amino acid metabolism pathways in the TS_0 group, including "arginine and proline metabolism," "alanine, aspartic acid, and glutamic acid metabolism," "β-Alanine metabolism and tyrosine metabolism" indicated that tannins affect the metabolism of amino acids. The integration of DEGs and DMs indicates that dietary tannins highly alter the digestion and absorption functions of proteins, as well as the biosynthesis and metabolism of amino acids. This study provides new insights into the adaptation of Pacific white shrimp to ammonia stress and the addition of tannins to feed to enhance immune function.
Collapse
Affiliation(s)
- Xiuhong Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Han Gong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ping Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong, China
| | - Jiajia Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong, China
| | - Zhao Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong, China
| | - Zhiqiang Chang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong, China
| |
Collapse
|
10
|
Žitek Makoter T, Tancer Verboten M, Mirt I, Zupančić K, Cör Andrejč D, Knez Ž, Knez Marevci M. Beneficial Effects of Castanea sativa Wood Extract on the Human Body and Possible Food and Pharmaceutical Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:914. [PMID: 38611444 PMCID: PMC11013190 DOI: 10.3390/plants13070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/14/2024]
Abstract
The aim of this review was to investigate the potential use of Castanea sativa wood extract as a food supplement and to evaluate its beneficial properties for human health. The results of the limited amount of studies suggest promising properties, including potential anti-inflammatory effects. The literature indicates that the extract, which is rich in bioactive compounds such as tannins, offers promising therapeutic possibilities for the treatment of conditions associated with chronic inflammation. Consequently, interest in its use in food and pharmaceuticals is growing. Phytochemical studies have reported antioxidant and antimicrobial activities, and anti-inflammatory, anticancer, hypolipidemic, hypoglycemic, and neuroprotective activities. A suitable extraction method and solvent is crucial for the isolation of bioactive compounds, being green extraction technologies outstanding for the industrial recovery of chestnut wood's bioactive compounds. Nevertheless, it is important to emphasize the importance of adhering to regulatory guidelines and obtaining the necessary approvals from regulatory authorities to ensure product safety and compliance. The regulation of herbal medicinal products with proven efficacy and traditional herbal medicinal products is well defined, monitored by authorized bodies, and subject to strict control measures. It is noteworthy that medicinal products are subject to stringent quality testing to ensure safety and efficacy in use, whereas there are no comparable regulatory standards and specific labeling requirements for dietary supplements. When using herbal products, compliance with established standards in health research is essential.
Collapse
Affiliation(s)
- Taja Žitek Makoter
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.M.); (D.C.A.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | | | - Ivan Mirt
- Tanin Sevnica, Hermanova 1, SI-8290 Sevnica, Slovenia; (I.M.); (K.Z.)
| | - Katarina Zupančić
- Tanin Sevnica, Hermanova 1, SI-8290 Sevnica, Slovenia; (I.M.); (K.Z.)
| | - Darija Cör Andrejč
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.M.); (D.C.A.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.M.); (D.C.A.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Maša Knez Marevci
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.M.); (D.C.A.); (Ž.K.)
| |
Collapse
|
11
|
Nuamah E, Poaty Ditengou JIC, Hirwa F, Cheon I, Chae B, Choi NJ. Dietary Supplementation of Tannins: Effect on Growth Performance, Serum Antioxidant Capacity, and Immunoglobins of Weaned Piglets-A Systematic Review with Meta-Analysis. Antioxidants (Basel) 2024; 13:236. [PMID: 38397834 PMCID: PMC10886058 DOI: 10.3390/antiox13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the swine industry has witnessed the withdrawal of antibiotics and continuous regulation of zinc and copper oxides in the early-life nutrition of piglets. Due to this development, alternative additives from plant sources have been extensively explored. Therefore, this study's objective was to evaluate the effect of dietary supplementation with tannins on weaned piglets' growth performance, serum antioxidant capacity, and serum immune status using a systematic review and meta-analysis approach. A total of 16 studies with parameters of interest were deemed eligible after a two-step screening process following a comprehensive literature search in the scientific databases of Web of Science, Scopus, ScienceDirect, PubMed, and Google Scholar. The inclusion criteria were mainly (1) studies involving basal diet supplemented with tannins and (2) studies with the quantification of tannin doses, while the exclusion criteria were (1) studies with pre- and post-weaning pigs and (2) challenged studies. Applying the random-effects models, Hedges' g effect size of supplementation with tannins was calculated using R software to determine the standardized mean difference (SMD) at a 95% confidence interval. Sub-group analysis and meta-regression further explored heterogeneity (PSMD < 0.05, I2 > 50%, n ≥ 10). Supplementation with tannins reduced the feed conversion ratio (p < 0.01) but increased the final body weight (p < 0.01) of weaned piglets. Chestnut and grape seed proanthocyanidin tannin sources yielded higher effects on growth performance. In addition, meta-regression models indicated that tannin dosage and supplementation duration were directly associated with tannins' effectiveness on productive performance. In the serum, the concentration of glutathione peroxidase, superoxide dismutase, and total antioxidant capacity were elevated (p < 0.01) in response to tannin supplementation, whereas malondialdehydes was reduced (p < 0.01). Likewise, increased immunoglobin M and G levels (p < 0.01) were detected. In conclusion, dietary supplementation with tannins, particularly with chestnut and grape seed proanthocyanidins, increases the productivity of weaned piglets. At the same time, it is a possible nutritional strategy to mitigate oxidative stress and stimulate gut health. Thus, supplementing chestnut and grape seed proanthocyanidin tannins in the early phase of swine production could be used to alleviate the incidence of diarrhea.
Collapse
Affiliation(s)
- Emmanuel Nuamah
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (J.I.C.P.D.); (F.H.); (I.C.); (B.C.)
| | | | | | | | | | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (J.I.C.P.D.); (F.H.); (I.C.); (B.C.)
| |
Collapse
|
12
|
Wang Y, Wu J, Li L, Yao Y, Chen C, Hong Y, Chai Y, Liu W. Effects of Tannic Acid Supplementation of a High-Carbohydrate Diet on the Growth, Serum Biochemical Parameters, Antioxidant Capacity, Digestive Enzyme Activity, and Liver and Intestinal Health of Largemouth Bass, Micropterus salmoides. AQUACULTURE NUTRITION 2024; 2024:6682798. [PMID: 38274322 PMCID: PMC10810693 DOI: 10.1155/2024/6682798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/27/2024]
Abstract
We investigated the effects of dietary tannic acid (TA) supplementation of a high-carbohydrate diet on growth, feed utilization, whole-body proximate composition, serum biochemical indicators, antioxidant capacity, digestive enzyme activity, and liver and intestinal health of juvenile largemouth bass, Micropterus salmoides (initial mean weight: 8.08 ± 0.08 g). Five diets were prepared, including a positive control (dietary carbohydrate level, 16%, LC0), a negative control (dietary carbohydrate level, 21%, HC0), and three TA-supplementation diets based on the negative control diet with TA addition at 200, 400, and 800 mg/kg, respectively. After 8 weeks of feeding, the results showed that compared with the LC0 diet, 400-800 mg/kg dietary TA significantly improved the survival rate of largemouth bass (P < 0.05) while significantly reducing its weight-gain rate and specific growth rate (P < 0.05). Compared with the HC0 diet, 400 mg/kg dietary TA significantly increased serum catalase activity (P < 0.05), and significantly decreased serum malondialdehyde, liver glycogen, lightness (L ∗), and yellowness (b ∗) (P < 0.05). Moreover, compared with the HC0 diet, 200-400 mg/kg dietary TA effectively improved the vacuolation of hepatocytes caused by the high-carbohydrate diet and reduced the occurrence of intestinal epithelial cell vacuolation and necrosis. In turn, 800 mg/kg dietary TA significantly inhibited protease activity in the pyloric caecum and intestine (P < 0.05). In conclusion, dietary supplementation with TA inhibited protease activity, which resulted in decreased growth performance in largemouth bass. However, it was also found that 200-400 mg/kg TA enhanced the antioxidant capacity of largemouth bass in the case of the high-carbohydrate diet, reduced liver glycogen levels, and improved liver and intestinal health. Finally, it should be noted that, when the dietary TA level exceeded 800 mg/kg, TA appeared to play a pro-oxidation role in the liver, which may cause oxidative stress in the liver.
Collapse
Affiliation(s)
- Yi Wang
- The College of Agriculture/College of Animal Sciences, Yangtze University, Jingzhou 434020, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Jianjun Wu
- Wuhan SunHY Biology, Wuhan 430074, Hubei, China
| | - Luoxin Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Yuanfeng Yao
- Wufeng Chicheng Biotech Co. Ltd., Yichang, Hubei, China
| | - Chiqing Chen
- Wufeng Chicheng Biotech Co. Ltd., Yichang, Hubei, China
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, Guangdong, China
| | - Yi Chai
- The College of Agriculture/College of Animal Sciences, Yangtze University, Jingzhou 434020, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| |
Collapse
|
13
|
Wang Z, Guo L, Ding X, Li F, Xu H, Li S, Wang X, Li K, Yue X. Supplementation of chestnut tannins in diets can improve meat quality and antioxidative capability in Hu lambs. Meat Sci 2023; 206:109342. [PMID: 37729859 DOI: 10.1016/j.meatsci.2023.109342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Chestnut tannins (CNT), as a source of hydrolyzable tannins, positively affect the antioxidant status of livestock. In the current study, 90 male Hu lambs were used to investigate the effect of dietary CNT intake on growth performance, nutrient digestibility, meat quality and oxidative stability, rumen microbial, and the transcriptomes of muscle and liver. A completely randomized design with three CNT intake levels (0, 0.3%, and 0.6%) was used. Rumen microbial and nutrient digestibility were not significantly altered by CNT intake. Diets with 0.3% CNT intake significantly reduced the shear force, yellowness at 24 h, and C20:2 polyunsaturated fatty acids of lamb meat and malondialdehyde in serum and longissimus thoracis (LT) muscle. Meanwhile, the 0.3% CNT diet significantly increased average daily gain during the 1- 21 days and 64- 90 days, dry matter intake during the 1- 21 days, the slaughter weight, and liver index of lambs. The 0.3% CNT diet significantly increased C26:0 saturated fatty acids, total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase in LT muscle. The meat shelf life of 0.3% CNT and 0.6% CNT groups was prolonged by 8.7 h and 5.4 h, respectively. Transcriptomic analysis revealed that CNT supplementation can induce the expression of antioxidant enzyme gene (CAT, SOD1), and the differentially expressed genes were mainly involved in antioxidant activity, transferase activity, and adenosine triphosphate binding. These results suggest that 0.3% CNT intake can relieve the oxidative stress of lambs, and improve the stability of meat color and meat tenderness, due to the enhanced antioxidative capacity.
Collapse
Affiliation(s)
- Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Long Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Xing Ding
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Hui Xu
- Minqin Defu Agricultural Science and Technology Co., LTD, Minqin County, Gansu Province 733399, PR China.
| | - Shirong Li
- Animal Husbandry and Veterinary Extension Station of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Xinji Wang
- Animal Husbandry and Veterinary Extension Station of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Kaidong Li
- Animal Husbandry and Veterinary Extension Station in Chongxing Town of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| |
Collapse
|
14
|
Payen C, Kerouanton A, Novoa J, Pazos F, Benito C, Denis M, Guyard M, Moreno FJ, Chemaly M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023; 11:1464. [PMID: 37374967 DOI: 10.3390/microorganisms11061464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the ban on the use of antibiotics as growth stimulators in the livestock industry, the use of microbiota modulators appears to be an alternative solution to improve animal performance. This review aims to describe the effect of different families of modulators on the gastrointestinal microbiota of poultry, pigs and ruminants and their consequences on host physiology. To this end, 65, 32 and 4 controlled trials or systematic reviews were selected from PubMed for poultry, pigs and ruminants, respectively. Microorganisms and their derivatives were the most studied modulator family in poultry, while in pigs, the micronutrient family was the most investigated. With only four controlled trials selected for ruminants, it was difficult to conclude on the modulators of interest for this species. For some modulators, most studies showed a beneficial effect on both the phenotype and the microbiota. This was the case for probiotics and plants in poultry and minerals and probiotics in pigs. These modulators seem to be a good way for improving animal performance.
Collapse
Affiliation(s)
- Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Annaëlle Kerouanton
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Edificio 8E, Cam. de Vera, 46022 Valencia, Spain
| | - Martine Denis
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Muriel Guyard
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| |
Collapse
|
15
|
Tan L, Xi Y, Zhou C, Xu Y, Pang J, Peng X, Tang Z, Sun W, Sun Z. Supplementation with Antimicrobial Peptides or a Tannic Acid Can Effectively Replace the Pharmacological Effects of Zinc Oxide in the Early Stages of Weaning Piglets. Animals (Basel) 2023; 13:1797. [PMID: 37889691 PMCID: PMC10251958 DOI: 10.3390/ani13111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 10/29/2023] Open
Abstract
Zinc oxide (ZnO) harms the environment and can potentially increase the number of drug-resistant bacteria. Therefore, there is an urgent need to find safe and effective alternatives to improve gut health and reduce the incidence of diarrhea in weaned piglets. This study conducted an antibacterial test of ZnO, antibacterial peptides (AMPs), and tannic acid (TA) in vitro. Thirty piglets were randomly allotted to one of the following three dietary treatments: ZnO (2000 mg/kg ZnO diet), AMPs (700 mg/kg AMPs diet), and TA (1000 mg/kg TA diet). The results showed that the minimum inhibitory concentrations of ZnO and TA against Escherichia coli and Salmonella were lower than those of AMPs, and the minimum inhibitory concentrations of ZnO, AMPs, and TA against Staphylococcus aureus were the same. Compared to ZnO, AMPs increased the digestibility of dry, organic matter and the crude fat. Additionally, TA significantly (p < 0.05) increased the digestibility of dry and organic matter. On experimental day 14, the plasma interleukin-6 (IL-6) content of piglets supplemented with AMPs and TA was increased significantly (p < 0.05). On experimental day 28, alanine aminotransferase activity in the plasma of weaned piglets in the ZnO and TA groups was significantly (p < 0.05) higher than in piglets in the AMPs group. The levels of plasma IL-6 and immunoglobulin M (IgM) were significantly higher (p < 0.05) in the ZnO and AMPs groups than in the TA group. On experimental days 14 and 28, no significant differences were observed in the antioxidant capacity among the three experimental groups. Intestinal microbial diversity analysis showed that the Chao1 and ACE indices of piglets in the AMPs group were significantly higher (p < 0.05) than those in the ZnO and TA groups. At the genus level, the relative abundance of Treponema_2 was higher in the feces of piglets fed a diet supplemented with TA than in those fed diet supplemented with ZnO (p < 0.05). The relative abundance of Lachnospiraceae was higher in the feces of piglets fed a diet supplemented with AMPs than in those fed diet supplemented with ZnO or TA. Overall, AMPs and TA could be added to feed as substitutes for ZnO to reduce diarrhea, improve nutrient digestibility and immunity, and increase the abundance of beneficial intestinal bacteria in weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.T.); (Y.X.); (C.Z.); (Y.X.); (J.P.); (X.P.)
| |
Collapse
|
16
|
Bahelka I, Stupka R, Čítek J, Šprysl M, Bučko O, Fľak P. Eating Quality of Pork from Entire Male Pigs after Dietary Supplementation with Hydrolysable Tannins. Animals (Basel) 2023; 13:ani13050893. [PMID: 36899752 PMCID: PMC10000101 DOI: 10.3390/ani13050893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Boar taint is an unpleasant odour and flavour released during heat treatment of pork from uncastrated male pigs. The two main compounds responsible for boar taint are androstenone and skatole. Androstenone is a steroid hormone formed in the testis during sexual maturity. Skatole is a product of microbial degradation of the amino acid tryptophan in the hindgut of pigs. Both of these compounds are lipophilic, which means that they can be deposited in adipose tissue. Several studies have reported heritability estimates for their deposition from medium (skatole) to high magnitudes (androstenone). In addition to efforts to influence boar taint through genetic selection, much attention has also been paid to reducing its incidence using various feeding strategies. From this point of view, research has focused especially on the reduction in skatole content by supplementation of feed additives into the nutrition of entire male pigs. Promising results have been achieved using hydrolysable tannins in the diet. To date, most studies have investigated the effects of tannins on the production and accumulation of skatole in adipose tissue, intestinal microbiota, growth rate, carcasses and pork quality. Thus, the objective of this study was, in addition to determining the effects of tannins on androstenone and skatole accumulation, to assess the effects of tannins on the sensory traits of meat from entire males. The experiment was performed on 80 young boars-progeny of several hybrid sire lines. Animals were randomly assigned to one control and four experimental groups (each numbering 16). The control group (T0) received a standard diet without any tannin supplementation. Experimental groups were supplemented with 1% (T1), 2% (T2), 3% (T3) or 4% (T4) SCWE (sweet chestnut wood extract) rich in hydrolysable tannins (Farmatan). Pigs received this supplement for 40 days prior to slaughter. Subsequently, the pigs were slaughtered, and sensory analysis was applied to evaluate the odour, flavour, tenderness and juiciness of the pork. The results showed a significant effect of tannins on skatole accumulation in adipose tissue (p = 0.052-0.055). The odour and flavour of the pork were not affected by tannins. However, juiciness and tenderness were reduced by higher tannin supplementation (T3-T4) compared to the controls (p < 0.05), but these results were sex-dependent (in favour of men compared to women). Generally, women rated tenderness and juiciness worse than men regardless of the type of diet.
Collapse
Affiliation(s)
- Ivan Bahelka
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-224-383-059
| | - Roman Stupka
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Jaroslav Čítek
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Michal Šprysl
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Ondřej Bučko
- Faculty of Agrobiology and Food Resources, Slovak Agricultural University Nitra, 949 01 Nitra, Slovakia
| | - Pavel Fľak
- Faculty of Agrobiology and Food Resources, Slovak Agricultural University Nitra, 949 01 Nitra, Slovakia
| |
Collapse
|
17
|
Tannic Acid Induces Intestinal Dysfunction and Intestinal Microbial Dysregulation in Brandt's Voles ( Lasiopodomys brandtii). Animals (Basel) 2023; 13:ani13040586. [PMID: 36830373 PMCID: PMC9951651 DOI: 10.3390/ani13040586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Brandt's vole (Lasiopodomys brandtii) is a small herbivorous mammal that feeds on plants rich in secondary metabolites (PSMs), including tannins. However, plant defense mechanisms against herbivory by Brandt's voles are not clearly established. This study aimed to investigate the effects of dietary tannic acid (TA) on the growth performance, intestinal morphology, digestive enzyme activities, cecal fermentation, intestinal barrier function, and gut microbiota in Brandt's voles. The results showed that TA significantly hindered body weight gain, reduced daily food intake, changed the intestinal morphology, reduced digestive enzyme activity, and increased the serum zonulin levels (p < 0.05). The number of intestinal goblet and mast cells and the levels of serum cytokines and immunoglobulins (IgA, IgG, TNF-α, IL-6, and duodenal SlgA) were all reduced by TA (p < 0.05). Moreover, TA altered β-diversity in the colonic microbial community (p < 0.05). In conclusion, the results indicate that TA could damage the intestinal function of Brandt's voles by altering their intestinal morphology, decreasing digestive ability and intestinal barrier function, and altering microbiota composition. Our study investigated the effects of natural PSMs on the intestinal function of wildlife and improved our general understanding of plant-herbivore interactions and the ecological role of PSMs.
Collapse
|
18
|
Li X, Sun R, Liu Q, Gong Y, Ou Y, Qi Q, Xie Y, Wang X, Hu C, Jiang S, Zhao G, Wei L. Effects of dietary supplementation with dandelion tannins or soybean isoflavones on growth performance, antioxidant function, intestinal morphology, and microbiota composition in Wenchang chickens. Front Vet Sci 2023; 9:1073659. [PMID: 36686185 PMCID: PMC9846561 DOI: 10.3389/fvets.2022.1073659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Many benefits have been found in supplementing tannins or soybean isoflavones to poultry, including increased body weight gain, antioxidant activity, and better intestinal morphology. However, few studies tested the influence of dandelion tannins or soybean isoflavones supplementation on Wenchang chickens. This study investigates the effects of dietary supplementation with dandelion tannins or soybean isoflavones on the growth performance, antioxidant function, and intestinal health of female Wenchang chickens. A total of 300 chickens were randomly divided into five groups, with six replicates per group and 10 broilers per replicate. The chickens in the control group (Con) were fed a basal diet; the four experimental groups were fed a basal diet with different supplements: 300 mg/kg of dandelion tannin (DT1), 500 mg/kg of dandelion tannin (DT2), 300 mg/kg of soybean isoflavone (SI1), or 500 mg/kg of soybean isoflavone (SI2). The experiment lasted 40 days. The results showed that the final body weight (BW) and average daily gain (ADG) were higher in the DT2 and SI1 groups than in the Con group (P < 0.05). In addition, dietary supplementation with dandelion tannin or soybean isoflavone increased the level of serum albumin (P <0.05); the concentrations of serum aspartate aminotransferase and glucose were significantly higher in the SI1 group (P < 0.05) than in the Con group and the concentration of triglycerides in the DT1 group (P < 0.05). The serum catalase (CAT) level was higher in the DT1 and SI1 groups than in the Con group (P < 0.05). The ileum pH value was lower in the DT2 or SI1 group than in the Con group (P < 0.05). The jejunum villus height and mucosal muscularis thickness were increased in the DT2 and SI1 groups (P < 0.05), whereas the jejunum crypt depth was decreased in the DT1 or DT2 group compared to the Con group (P < 0.05). In addition, the messenger RNA (mRNA) expression level of zonula occludens 1 (ZO-1) in the duodenum of the SI1 group and those of occludin, ZO-1, and claudin-1 in the ileum of the DT2 and SI1 groups were upregulated (P < 0.05) compared to the Con group. Moreover, the DT2 and SI1 groups exhibited reduced intestinal microbiota diversity relative to the Con group, as evidenced by decreased Simpson and Shannon indexes. Compared to the Con group, the relative abundance of Proteobacteria was lower and that of Barnesiella was higher in the DT2 group (P < 0.05). Overall, dietary supplementation with 500 mg/kg of dandelion tannin or 300 mg/kg of soybean isoflavone improved the growth performance, serum biochemical indexes, antioxidant function, and intestinal morphology and modulated the cecal microbiota composition of Wenchang chickens.
Collapse
Affiliation(s)
- Xiang Li
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Ruiping Sun
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China
| | - Yuanfang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Yangkun Ou
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Qi Qi
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yali Xie
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuping Wang
- Hainan (Tanniu) Wenchang Chicken Co., Ltd., Haikou, China
| | - Chenjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guiping Zhao
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,Guiping Zhao ✉
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,*Correspondence: Limin Wei ✉
| |
Collapse
|
19
|
Inulin and Chinese Gallotannin Affect Meat Quality and Lipid Metabolism on Hu Sheep. Animals (Basel) 2022; 13:ani13010160. [PMID: 36611769 PMCID: PMC9817504 DOI: 10.3390/ani13010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to investigate the impacts of inulin and Chinese gallotannin on the meat fatty acids and urinary metabolites in sheep. Twenty-four healthy (25.80 ± 3.85 kg) weaned Hu lambs of approximately 4.5 months old were equally divided into four groups: control group (basal diet), treatment group I (basal diet + 0.1% inulin), treatment group II (basal diet + 0.1% inulin + 2% Chinese gallotannin), and treatment group III (basal diet + 0.1% inulin + 2% Chinese gallotannin + 4% PEG). The contents of myristic acid (C14:0) and palmitic acid (C16:0) were found to be lower in treatment group II than in the control group (p < 0.05). Moreover, the palmitoleic acid (C16:1) content in treatment group II was notably higher than that in the control group (p < 0.05), while the elaidic acid (C18:1n9t) content in treatment group II was higher than that in other groups (p < 0.05). Besides, the linoleic acid (C18:2n6c) content was higher in the treatment II and control groups than in the treatment I and III groups. Furthermore, compared with the control group, both 4-pyridoxic acid and creatinine in treatment groups I and II were upregulated (p < 0.05), while other metabolites, such as nicotinuric acid, l-threonine, palmitic acid, and oleic acid, were drastically downregulated (p < 0.05). These differential metabolites were found to be mainly involved in nicotinate and nicotinamide metabolism (ko00760), vitamin B6 metabolism (ko00750), and the fatty acid biosynthesis pathway (ko00061). It is concluded that the combination of inulin and Chinese gallotannin in the diet could improve the energy and lipid metabolism of sheep, which may improve both mutton quality and production performance.
Collapse
|
20
|
Niu J, Wang Q, Jing C, Liu Y, Liu H, Jiao N, Huang L, Jiang S, Guan Q, Li Y, Yang W. Dietary Galla Chinensis tannic acid supplementation in the diets improves growth performance, immune function and liver health status of broiler chicken. Front Vet Sci 2022; 9:1024430. [PMID: 36311675 PMCID: PMC9614106 DOI: 10.3389/fvets.2022.1024430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
This experiment was conducted to investigate the effects of Galla Chinensis tannic acid (TA) on growth performance, immune function, and liver health status in broilers. A total of 288 1-day-old Arbor Acres broiler chickens were randomly divided into two groups in a 42-days study. The two groups were a basal diet (CON group) and a basal diet supplemented with 300 mg/kg Galla Chinensis tannic acid (TA group). The results showed that the TA group had significantly decreased feed-to-gain ratio (F/G) throughout the experiment (P < 0.05). The levels of total protein, albumin, low density lipoprotein, high density lipoprotein, urea, total cholesterol, and glucose in the TA group were significantly higher than in the CON group (P < 0.05). In addition, the serum immunoglobulin G, immunoglobulin M, and complements (C3, C4) levels in the TA group were significantly higher than those in the CON group (P < 0.05). Compared with the CON group, the hepatic interleukin-6, interleukin-18, NLRs family pyrin domain containing 3 (NLRP3), caspase-1, and caspase-3 in the TA group were significantly decreased (P < 0.05). Besides, TA group had significantly lower mRNA expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor-kappa B (NF-κB), and NLRP3 in liver (P < 0.05). The TA group had significantly higher the mRNA expression levels of Bcl-2 than CON group in liver (P < 0.05). Moreover, TA group tended to decrease Bax/Bcl-2 ratio in liver (P < 0.10). To sum up, dietary supplemented with microencapsulated TA from Galla Chinensis had beneficial effects on growth performance, immune function, and liver health status in broilers. The protective role of TA from Galla Chinensis in liver health of broilers might be related to the inhibition of hepatic apoptosis and pyroptosis via inactivation of TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Qinjin Wang
- Shandong Wonong Agro-tech Group Co., Ltd., Weifang, China
| | - Changwei Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hua Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Qinglin Guan
- Shandong Landoff Biotechnology Co., Ltd., Taian, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China,*Correspondence: Yang Li
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China,Weiren Yang
| |
Collapse
|
21
|
Salivary Gland Adaptation to Dietary Inclusion of Hydrolysable Tannins in Boars. Animals (Basel) 2022; 12:ani12172171. [PMID: 36077892 PMCID: PMC9454789 DOI: 10.3390/ani12172171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Tannins have traditionally been avoided in animal nutrition due to their anti-nutritive effects. However, recent studies reported hydrolysable tannins as beneficial additives that have antimutagenic, anticarcinogenic, antidiarrheal, and antiulcerogenic effects on animals. In a study testing the inclusion of hydrolysable tannins as a potential nutritive factor to reduce boar taint in entire males, significant enlargement of the parotid glands (parotidomegaly) was observed. In this study, we aimed to determine the morphological and immunohistochemical basis for the observed parotidomegaly. We discovered that enlargement of glandular lobules and acinar area, an increased ratio between the nucleus and cytoplasm of serous cells, and increased excretion of proline-rich proteins (PRPs) were characteristic of the experimental group that received the highest dietary tannin intake. The mandibular salivary gland, on the other hand, did not show significant morphological changes among the experimental groups. This suggests increased functional activity of the parotid salivary glands as the first and most important line of defense against high dietary tannin and its potential negative effects. Abstract The ingestion of hydrolysable tannins as a potential nutrient to reduce boar odor in entire males results in the significant enlargement of parotid glands (parotidomegaly). The objective of this study was to characterize the effects of different levels of hydrolysable tannins in the diet of fattening boars (n = 24) on salivary gland morphology and proline-rich protein (PRP) expression at the histological level. Four treatment groups of pigs (n = 6 per group) were fed either a control (T0) or experimental diet, where the T0 diet was supplemented with 1% (T1), 2% (T2), or 3% (T3) of the hydrolysable tannin-rich extract Farmatan®. After slaughter, the parotid and mandibular glands of the experimental pigs were harvested and dissected for staining using Goldner’s Trichrome method, and immunohistochemical studies with antibodies against PRPs. Morphometric analysis was performed on microtome sections of both salivary glands, to measure the acinar area, the lobular area, the area of the secretory ductal cells, and the sizes of glandular cells and their nuclei. Histological assessment revealed that significant parotidomegaly was only present in the T3 group, based on the presence of larger glandular lobules, acinar areas, and their higher nucleus to cytoplasm ratio. The immunohistochemical method, supported by color intensity measurements, indicated significant increases in basic PRPs (PRB2) in the T3 and acidic PRPs (PRH1/2) in the T1 groups. Tannin supplementation did not affect the histo-morphological properties of the mandibular gland. This study confirms that pigs can adapt to a tannin-rich diet by making structural changes in their parotid salivary gland, indicating its higher functional activity.
Collapse
|
22
|
Evaluation of a Dietary Grape Extract on Oxidative Status, Intestinal Morphology, Plasma Acute-Phase Proteins and Inflammation Parameters of Weaning Piglets at Various Points of Time. Antioxidants (Basel) 2022; 11:antiox11081428. [PMID: 35892630 PMCID: PMC9394324 DOI: 10.3390/antiox11081428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Reports of the underlying mechanisms of dietary grape extract (GE) in overcoming weaning challenges in piglets have been partly inconsistent. Furthermore, evaluations of the effects of GE at weaning in comparison to those of widely used therapeutic antibiotics have been scarce. To explore the mode of action of GE in selected tissues and plasma, we evaluated gut morphology, antioxidant and inflammation indices. Accordingly, 180 weaning piglets were allocated to three treatment groups: negative control (NC), NC and antibiotic treatment for the first 5 days of the trial (positive control, PC), and NC and GE (entire trial). The villus surface was positively affected by GE and PC on day 27/28 of the trial in the jejunum and on day 55/56 of the trial in the ileum. In the colon, NC tended (p < 0.10) to increase crypt parameters compared to PC on day 55/56. The PC group tended (p < 0.10) to increase catalase activity in the ileum and decrease Cu/Zn-SOD activity in the jejunum, both compared to NC. There were no additional effects on antioxidant measurements of tissue and plasma, tissue gene expression, or plasma acute-phase proteins. In conclusion, GE supplementation beneficially affected the villus surface of the small intestine. However, these changes were not linked to the antioxidant and anti-inflammatory properties of GE.
Collapse
|
23
|
Yang K, Jian S, Wen C, Guo D, Liao P, Wen J, Kuang T, Han S, Liu Q, Deng B. Gallnut Tannic Acid Exerts Anti-stress Effects on Stress-Induced Inflammatory Response, Dysbiotic Gut Microbiota, and Alterations of Serum Metabolic Profile in Beagle Dogs. Front Nutr 2022; 9:847966. [PMID: 35571952 PMCID: PMC9094144 DOI: 10.3389/fnut.2022.847966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
Stress exposure is a potential threat to humans who live or work in extreme environments, often leading to oxidative stress, inflammatory response, intestinal dysbiosis, and metabolic disorders. Gallnut tannic acid (TA), a naturally occurring polyphenolic compound, has become a compelling source due to its favorable anti-diarrheal, anti-oxidative, anti-inflammatory, and anti-microbial activities. Thus, this study aimed to evaluate the anti-stress effects of gallnut TA on the stress-induced inflammatory response, dysbiotic gut microbiota, and alterations of serum metabolic profile using beagle models. A total of 13 beagle dogs were randomly divided into the stress (ST) and ST + TA groups. Dietary supplementation with TA at 2.5 g/kg was individually fed to each dog in the ST + TA group for 14 consecutive days. On day 7, all dogs were transported for 3 h from a stressful environment (days 1–7) to a livable site (days 8–14). In our results, TA relieved environmental stress-induced diarrheal symptoms in dogs and were shown to protect from myocardial injury and help improve immunity by serum biochemistry and hematology analysis. Also, TA inhibited the secretion of serum hormones [cortisol (COR), glucocorticoid (GC), and adrenocorticotropic hormone (ACTH)] and the expression of heat shock protein (HSP) 70 to protect dogs from stress-induced injury, thereby relieving oxidative stress and inflammatory response. Fecal 16S rRNA gene sequencing revealed that TA stimulated the growth of beneficial bacteria (Allobaculum, Dubosiella, Coriobacteriaceae_UCG-002, and Faecalibaculum) and suppressed the growth of pathogenic bacteria (Escherichia-Shigella and Streptococcus), thereby increasing fecal butyrate levels. Serum metabolomics further showed that phytosphingosine, indoleacetic acid, arachidonic acid, and biotin, related to the metabolism of sphingolipid, tryptophan, arachidonic acid, and biotin, respectively, could serve as potential biomarkers of stress exposure. Furthermore, Spearman’s correlation analysis showed strong relationships between the four potential serum biomarkers and differential bacteria. Overall, gallnut TA may be a potential prebiotic for the prevention and treatment of stress-induced metabolic disorders by targeting intestinal microbiota.
Collapse
Affiliation(s)
- Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dan Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pinfeng Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiawei Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tao Kuang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sufang Han
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingshen Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Xu T, Ma X, Zhou X, Qian M, Yang Z, Cao P, Han X. Coated tannin supplementation improves growth performance, nutrients digestibility, and intestinal function in weaned piglets. J Anim Sci 2022; 100:skac088. [PMID: 35298652 PMCID: PMC9109020 DOI: 10.1093/jas/skac088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
To explore the effect of coated tannin (CT) on the growth performance, nutrients digestibility, and intestinal function in weaned piglets, a total of 180 piglets Duroc × Landrace × Yorkshire (28 d old) weighing about 8.6 kg were randomly allotted to three treatments: 1) Con: basal diet (contains ZnSO4); 2) Tan: basal diet + 0.15% CT; and 3) ZnO: basal diet + ZnO (Zn content is 1,600 mg/kg). The results showed that 0.15% CT could highly increase the average daily gain and average daily feed intake of weaned piglets compared with the control group, especially decreasing diarrhea incidence significantly (P < 0.05). Compared with the control group, crude protein apparent digestibility and digestive enzyme activity of the piglets fed with 0.15% CT were enhanced obviously (P < 0.05). Meanwhile, the intestinal villi and microvilli arranged more densely, while the content of serum diamine oxidase was decreased, and the protein expressions of zonula occludens-1 (ZO-1) and claudin-1 were significantly upregulated (P < 0.05). In addition, CT altered the structure of intestinal microbiota and augmented some butyrate-producing bacteria such as Ruminococcaceae and Megasphaera. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) analysis also showed that the abundances of pathways related to butyrate metabolism and tryptophan metabolism were increased; however, the function of lipopolysaccharide biosynthesis proteins was significantly decreased. The results demonstrated that 0.15% CT could improve growth performance, digestibility, and intestinal function of weaned piglets, and it had the potential to replace ZnO applied to farming.
Collapse
Affiliation(s)
- Tingting Xu
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Ma
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinchen Zhou
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, Hainan 572025, China
| | - Mengqi Qian
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiren Yang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, Hainan 572025, China
| | - Peiwen Cao
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyan Han
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, Hainan 572025, China
| |
Collapse
|
25
|
The Effects of Protease Supplementation and Faba Bean Extrusion on Growth, Gastrointestinal Tract Physiology and Selected Blood Indices of Weaned Pigs. Animals (Basel) 2022; 12:ani12050563. [PMID: 35268132 PMCID: PMC8908839 DOI: 10.3390/ani12050563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Faba beans could be a valuable raw material in pigs’ diets, but the presence of anti-nutritional factors limits their wide use. The aim of the study was to investigate how the extrusion of faba bean seeds and/or the addition of protease to pigs’ diets affected the animals’ growth parameters, digestibility of nutrients, selected physiological parameters of the digestive tract, and biochemical blood parameters. Our research showed that extrusion increased the nutritional value of faba bean seeds, especially by reducing antinutritional factors, but in comparison with raw seeds, it did not improve the pigs’ growth performance, digestibility of nutrients, intestinal structure, and physiology when the content of faba beans in the diet was below 10%. Thanks to protease supplementation in our study, protein and oil levels in the diet were reduced while maintaining the same pigs’ performance, which cut the cost of feeding. The extrusion and enzyme additives did not improve the pigs’ growth performance in this experiment, but protease appears to be highly promising in the commercial nutrition of pigs. Abstract The aim of the study was to investigate how the extrusion of faba bean seeds (var. Albus) and/or the addition of protease to pigs’ diets affected the animals’ growth parameters, digestibility of nutrients, selected physiological parameters of the digestive tract, and biochemical blood parameters. A 28-day experiment was conducted on 32 pigs weighing 9 ± 0.2 kg. The animals were allocated to four treatments in a 2 × 2 factorial arrangement with the main effects of extrusion (raw or extruded) and effects of protease supplementation (0 and 0.05%). Extrusion reduced the levels of neutral detergent fibre, trypsin inhibitor, phytate-P, and resistant starch but did not improve the digestibility of protein and dry matter in faba bean seeds. The pigs’ growth performance, ileal digestibility, enzyme activity, and morphometric parameters of the ileum were not significantly affected by extrusion, except for a higher feed intake between the 15th and 28th day of the experiment. The protease supplementation gave comparable results as the diet without protease, except the feed conversion ratio (in the periods of 15–28th day and 0–28th day), which was higher than in the groups without protease. The extrusion and protease increased acetate and acetoacetate contents in the cecal digesta, but propionate, butyrate, and isovalerate concentrations in the digesta of the pigs in this group were lower. Thanks to protease supplementation, protein and oil levels in the diet were reduced, which cut the cost of feed mixtures. The extrusion and protease additive combined together did not improve the pigs’ growth performance in this experiment.
Collapse
|
26
|
Effects of Bacillus subtilis BS-Z15 on Intestinal Microbiota Structure and Body Weight Gain in Mice. Probiotics Antimicrob Proteins 2022; 15:706-715. [PMID: 35029788 DOI: 10.1007/s12602-021-09897-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
In our previous study, we identified a metabolite of Bacillus subtilis BS-Z15 (a strain with probiotic characteristics) that could improve immunity in mice. In the present study, we examined the effects of B. subtilis BS-Z15 and its metabolites on body weight gain and the intestinal microbiota of mice. Sixty 25-day-old male Kunming white mice were selected and randomly divided into four groups: control group (A), daily saline gavage; B. subtilis-treated group (B), single gavage (1 × 109 CFU/time/animal/day); group D, 14 consecutive gavages (1 × 109 CFU/time/animal/day); and B. subtilis metabolite-treated group (E), 30 consecutive gavages (90 mg kg-1/time/animal/day). High-throughput sequencing technology was used to analyze intergroup differences in the mouse intestinal microbiota. The results showed that the three treated groups had significantly slower body weight gain compared with the control group, which lasted until the 45 days (P < 0.05), and the daily food intake of the treated mice was higher (P < 0.05). The intestinal microbiota structure of the mice in the treated groups was significantly altered compared with that in the control group, suggesting that B. subtilis BS-Z15 may regulate the weight gain of animals by affecting their intestinal bacterial composition. After stopping the gavage of B. subtilis BS-Z15, the abundance of this strain in the small intestine of the mice gradually decreased and its presence was undetectable at 45 days, indicating that B. subtilis BS-Z15 could not colonize the intestine of these mice. These findings suggest that B. subtilis BS-Z15 may regulate intestinal microbiota through its metabolites to reduce weight gain.
Collapse
|
27
|
Tong Z, He W, Fan X, Guo A. Biological Function of Plant Tannin and Its Application in Animal Health. Front Vet Sci 2022; 8:803657. [PMID: 35083309 PMCID: PMC8784788 DOI: 10.3389/fvets.2021.803657] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Plant tannins are widely found in plants and can be divided into hydrolyzed tannins and condensed tannins. In recent years, researchers have become more and more interested in using tannin-rich plants and plant extracts in ruminant diets to improve the quality of animal products. Some research results show that plant tannins can effectively improve the quality of meat and milk, and enhance the oxidative stability of the product. In this paper, the classification and extraction sources of plant tannins are reviewed, as well as the biological functions of plant tannins in animals. The antioxidant function of plant tannins is discussed, and the influence of their structure on antioxidation is analyzed. The effects of plant tannins against pathogenic bacteria and the mechanism of action are discussed, and the relationship between antibacterial action and antioxidant action is analyzed. The inhibitory effect of plant tannins on many kinds of pathogenic viruses and their action pathways are discussed, as are the antiparasitic properties of plant tannins. The anti-inflammatory action of tannins and its mechanism are analyzed. The function of plant tannins in antidiarrheal action and its influencing factors are discussed. In addition, the effects of plant tannins as feed additives on animals and the influencing factors are reviewed in this paper to provide a reference for further research.
Collapse
|
28
|
Ma M, Chambers JK, Uchida K, Ikeda M, Watanabe M, Goda Y, Yamanaka D, Takahashi SI, Kuwahara M, Li J. Effects of Supplementation with a Quebracho Tannin Product as an Alternative to Antibiotics on Growth Performance, Diarrhea, and Overall Health in Early-Weaned Piglets. Animals (Basel) 2021; 11:ani11113316. [PMID: 34828046 PMCID: PMC8614404 DOI: 10.3390/ani11113316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The restriction of the use of antibiotics in swine production worldwide has influenced pork production efficiency. New in-feed additives must be sustainable, prevent diarrhea in early weaning piglets, and promote growth performance. Novel in-feed additives, probiotics, prebiotics, organic compounds, mineral salts and vegetable extract have been extensively studied; most have shown some limitations that discourage extensive use. We investigated the plant extract MGM-P (a quebracho tannin product) as an alternative animal feed additive to antibiotics. We considered its unique structure, antibacterial, antioxidant, radical scavenging, and anti-inflammatory activities, and sustainability. We began with a low-level addition trial; 0.3% MGM-P had a more robust effect than 0.2% MGM-P. The findings demonstrated that 0.3% MGM-P supplementation prevented diarrhea in 21-day-old weaned piglets, improving piglet health without adversely influencing growth performance. Practical studies of the mechanisms underlying the effects of MGM-P and the optimal amount for supplementation are needed to confirm our findings. Abstract This study assessed the feasibility of using a vegetable extract, MGM-P (quebracho tannin product), as an alternative to antibiotics for weaned piglets; it investigated MGM-P effects on growth performance, diarrhea, and overall health in early-weaned piglets. In total, 24 piglets were allocated to three treatment groups fed basal diets supplemented with 0, 0.2%, or 0.3% MGM-P for 20 days. The addition of 0.3% MGM-P to the diet of early-weaned piglets improved diarrhea incidence, hematological parameters, and intestinal mucosa structure. Furthermore, the addition of 0.2% or 0.3% MGM-P to the diet of early-weaned piglets did not affect their overall health. Importantly, MGM-P had no effects on average daily gain (ADG), average daily feed intake (ADFI), or feed conversion ratio (FCR). Gut morphology analysis showed that treatment with 0.3% MGM-P enhanced the jejunal villus height (p < 0.05) while reducing the ileal crypt depth (p < 0.05) and colon mucosal thickness (p < 0.05). Collectively, the findings suggested that the use of MGM-P as an alternative to dietary antibiotics could improve diarrhea incidence in early-weaned piglets without negative effects on growth performance or overall health.
Collapse
Affiliation(s)
- Min Ma
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 3190206, Japan; (M.M.); (M.I.); (M.W.)
- Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan;
| | - James K. Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan; (J.K.C.); (K.U.)
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan; (J.K.C.); (K.U.)
| | - Masanori Ikeda
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 3190206, Japan; (M.M.); (M.I.); (M.W.)
| | - Makiko Watanabe
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 3190206, Japan; (M.M.); (M.I.); (M.W.)
| | - Yuki Goda
- Laboratory of Cell Regulation, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan; (Y.G.); (S.-I.T.)
| | - Daisuke Yamanaka
- Laboratory of Food and Physiological Models, Graduate School of Agriculture and Life Science, The University of Tokyo, Kasama 3190206, Japan;
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan; (Y.G.); (S.-I.T.)
| | - Masayoshi Kuwahara
- Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan;
| | - Junyou Li
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 3190206, Japan; (M.M.); (M.I.); (M.W.)
- Correspondence: ; Tel.: +81-299-45-2606; Fax: +81-299-45-5950
| |
Collapse
|
29
|
Tannic acid extracted from gallnut prevents post-weaning diarrhea and improves intestinal health of weaned piglets. ACTA ACUST UNITED AC 2021; 7:1078-1086. [PMID: 34738038 PMCID: PMC8546364 DOI: 10.1016/j.aninu.2021.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
This experiment was conducted to evaluate the effects of different levels of tannic acid (TA) on growth performance, diarrhea rate, nutrient digestibility and intestinal health in weaned piglets. A total of 180 weaned piglets (Duroc × Landrace × Yorkshire, 24 d of age, initial average BW = 7.77 ± 0.17 kg) were allotted to 5 groups (6 pigs/pen and 6 replicates/group) in a randomized complete block design according to their gender and body weight. Piglets were fed a basal diet, or the basal diet supplemented with 0.05%, 0.1%, 0.2% or 0.4% TA for 28 d. The supplementary levels of TA in the diets were obtained by adding tannalbin containing 51% TA and 40.17% protein. The results showed that, compared with the CON group, dietary TA did not affect ADFI, ADG or F:G, and linearly reduced (P < 0.01) the diarrhea rate and diarrhea index of piglets. There were no significant effects on apparent total tract digestibility (ATTD) in the 0.05%, 0.1% and 0.2% TA groups, while negative effects (P < 0.05) on apparent digestibility of crude protein and gross energy were observed in the 0.4% TA group. In addition, the nutrient digestibility of dry matter, crude protein and gross energy linearly decreased (P < 0.01) with the increase of TA dosage. Supplementation of TA increased (P < 0.05) the villus height of the duodenum and jejunum, as well as increased (P < 0.05) catalase (CAT) activity in serum. Dietary TA improved (P < 0.05) the Bacillus counts in cecal digesta. Further, TA significantly improved (P < 0.05) Bacillus counts and reduced (P < 0.05) the Escherichia coli counts in colonic digesta. The concentration of acetic acid, propionic acid, butyric acid and isovaleric acid in cecal digesta were significantly increased (P < 0.05). The mRNA expression level of zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), and claudin-2 (CLDN-2) in the jejunum were greater (P < 0.05) in TA supplemented groups. The study showed that, compared to the control, TA prevented post-weaning diarrhea and improved intestinal health of weaned piglets, and the appropriate level of TA supplementation would be from 0.1% to 0.2%.
Collapse
|
30
|
López M, Madrid J, Hernández F, Ros MA, Segura JC, López MJ, Pallarés FJ, Sánchez CJ, Martínez-Miró S. Effect of Feed Supplementation with Clostridium butyricum, Alone or in Combination with Carob Meal or Citrus Pulp, on Digestive and Metabolic Status of Piglets. Animals (Basel) 2021; 11:ani11102924. [PMID: 34679945 PMCID: PMC8532904 DOI: 10.3390/ani11102924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary During the intensive production of weaned piglets, frequent digestive disorders need to be avoided, as it is a critical phase; however, there are limitations to using antibiotics and ZnO at high levels. In this study, we investigate the inclusion of a probiotic (Clostridium butyricum) in combination with sources of fiber that might have a potential prebiotic effect, generating an optimal digestive status for weaned piglets. A trial is carried out using 30 post-weaning piglets for 27 days using five dietary treatments: a negative control, a positive control with high levels of ZnO, and three dietary treatments supplemented with Clostridium butyricum (alone or in combination with carob meal or citrus pulp). Supplementation with this probiotic could improve the piglets’ intestinal wellness status by increasing butyric acid, without being altered by the inclusion of carob meal or citrus pulp at 5%, obtaining digestibility values comparable with those realized by the incorporation of high levels of ZnO in the diet. In addition, carob meal could decrease the concentration of serum interleukin-8 (a type of pro-inflammatory cytokine). However, a growth performance trial of piglets in commercial conditions needs to be developed to confirm these effects. Abstract This work studied the effects of the inclusion of Clostridium butyricum on feed, alone or with carob meal or citrus pulp, on the digestive and metabolic status of weaned piglets. A total of 30 male piglets (weaned at 21 days) is used. There are five dietary treatments: negative without ZnO at high doses (C−), a positive control supplemented with ZnO at 2500 ppm of Zn (C+), supplemented with Clostridium butyricum as a probiotic (PRO), and supplemented with probiotic and 5% carob meal (PROC) or 5% citrus pulp (PROP). During the experiment (27 days), the piglets were periodically weighed and sampled for a serum biochemical, fecal microbiological, intestine histological, and digestive status analysis. The body weight, apparent ileal digestibility of dry matter (DM), and fecal microbiology were not affected by the treatments (p ≥ 0.05). However, the apparent fecal digestibility of DM was lower for the C− treatment than for C+ (p < 0.05), and the total concentration of volatile fatty acids (VFAs) in feces with C+ was lower than that for the PROC treatment (p < 0.05). The treatments with the probiotic had a higher molar proportion of butyric acid in feces than C+, and it was found that C− reached an intermediate value (p < 0.01). No general effects of diet were found on the histological measures performed on the jejunum and ileum, and in the serum biochemical analysis (p ≥ 0.05), only the concentration of interleukin-8 was lower for the PROC treatment compared to the C−, C+, and PRO treatments (p < 0.05). In conclusion, the intestinal wellness of piglets could be improved with the supplementation of Clostridium butyricum by increasing butyric acid, and this effect was not altered with the inclusion of carob meal or citrus pulp. More studies under commercial conditions are needed, as the effects might be different in more challenging environmental circumstances.
Collapse
Affiliation(s)
- Marina López
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| | - Josefa Madrid
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
- Correspondence: ; Tel.: +34-868-884-750
| | - Fuensanta Hernández
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| | - Martín Antonio Ros
- Agrarian Transformation Society, Number 2439, La Hoya, 30816 Lorca, Spain; (M.A.R.); (J.C.S.)
| | - Juan Carlos Segura
- Agrarian Transformation Society, Number 2439, La Hoya, 30816 Lorca, Spain; (M.A.R.); (J.C.S.)
| | - Miguel José López
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence–ceiA3, University of Córdoba, 14014 Córdoba, Spain;
| | - Cristian Jesús Sánchez
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| | - Silvia Martínez-Miró
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| |
Collapse
|
31
|
Rajković E, Schwarz C, Tischler D, Schedle K, Reisinger N, Emsenhuber C, Ocelova V, Roth N, Frieten D, Dusel G, Gierus M. Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon. Animals (Basel) 2021; 11:ani11102771. [PMID: 34679793 PMCID: PMC8532789 DOI: 10.3390/ani11102771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Diarrhea as a symptom of different enteric infections leads to poor animal health and performance at weaning, followed by economic losses. Phytogenic feed additives, e.g., grape extracts, have shown antimicrobial and anti-inflammatory properties and these might have beneficial effects on growth trends of weaning piglets and, thereby, potentially reduce the need for antibiotic treatments following weaning. An 8-week feeding trial investigated the potential effects of grape extract (GE) in a model with a negative control (NC) and positive control (PC; antibiotic treatment). Despite no changes in animal performance, dietary GE improved the digestibility of selected nutrients at the same, or even at higher level, as PC. Additionally, there was no clear effect of dietary intervention on the microbial metabolites from the ileum and colon at the end of the trial. These results indicated beneficial effects of GE compared to antibiotic treatment, as often applied at weaning. Abstract Enteric diseases in piglets, such as post-weaning diarrhea (PWD), often require antibiotic treatment of the entire litter. Grape polyphenols may help overcome PWD and thereby reduce the need for antibiotics. The potential of a grape extract (GE; continuous in-feed supplementation) on performance of weaning piglets, compared with both negative (NC; corn-based diet) and positive control (PC; NC + in-feed antibiotic (amoxicillin) in a therapeutic dosage for day 1–day 5 post weaning) was assessed. Apparent total tract digestibility (ATTD) and microbial metabolites were also evaluated on two sampling points (day 27/28 and day 55/56). We assigned 180 weaning piglets (6.9 ± 0.1 kg body weight (BW)) to 6 male and 6 female pens per treatment with 5 piglets each. Animals from PC showed higher BW on day 13 compared with NC and GE, and a tendency for higher BW on day 56 (p = 0.080) compared to NC. Furthermore, PC increased the average daily feed intake in the starter phase (day 1–day 13), and the average daily gain in the early grower phase (day 14–day 24). Overall, GE improved the ATTD at the same level as PC (ash, acid-hydrolyzed ether extract), or at a higher level than PC (dry matter, organic matter, gross energy, crude protein, P). There were no effects on microbial metabolites apart from minor trends for lactic acid and ammonia. Dietary inclusion of GE may have beneficial effects compared to therapeutic antibiotics, as frequently used at weaning.
Collapse
Affiliation(s)
- Emina Rajković
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria; (E.R.); (D.T.)
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| | - Christiane Schwarz
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
- Correspondence: ; Tel.: +43-1-47654-97615
| | - David Tischler
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria; (E.R.); (D.T.)
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| | - Karl Schedle
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| | | | | | | | - Nataliya Roth
- BIOMIN Holding GmbH, 3131 Getzersdorf, Austria; (V.O.); (N.R.)
| | - Dörte Frieten
- Department of Animal Nutrition, University of Applied Sciences, 55411 Bingen am Rhein, Germany; (D.F.); (G.D.)
| | - Georg Dusel
- Department of Animal Nutrition, University of Applied Sciences, 55411 Bingen am Rhein, Germany; (D.F.); (G.D.)
| | - Martin Gierus
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| |
Collapse
|
32
|
Maito CD, Melo ADB, Oliveira ACDFD, Genova JL, Filho JRE, Macedo REFD, Monteiro KM, Weber SH, Koppenol A, Costa LB. Simultaneous feeding of calcium butyrate and tannin extract decreased the incidence of diarrhea and proinflammatory markers in weaned piglets. Anim Biosci 2021; 35:87-95. [PMID: 34237915 PMCID: PMC8738937 DOI: 10.5713/ab.21.0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/28/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE This study was conducted to investigate the effect of associating calcium butyrate with tannin extract, compared to an antimicrobial on the growth performance, incidence of diarrhea, intestinal histology, immune-expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNF-α) in piglets. METHODS Seventy-two piglets (36 barrows and 36 gilts) weaned at 28±2 d and initial body weight of 7.17±1.07 kg were allocated to 3 treatments in a randomized complete block design with 8 replicates per treatment and 3 animals per experimental unit. Treatments were composed of NC, negative control: basal diet without additives; PC, positive control: basal diet + 40 mg/kg of colistin sulfate; or BT, basal diet + calcium butyrate + tannin extract. The butyrate and tannin inclusion levels were 0.15% in the pre-starter phase and 0.075% in the starter phase. Incidence of diarrhea was monitored daily, and on d 14 and 35 of experiment, 1 animal from each experimental unit was slaughtered to collect intestinal samples. RESULTS No significant differences were observed for growth performance. The butyrate-and tannin-based additive resulted in reduced (p<0.05) incidence of diarrhea in piglets during d 1 to 14 and d 1 to 35 in comparison with the other treatments. Piglets that consumed the diet containing the calcium-butyrate and tannin showed a lower (p<0.05) crypt depth in the duodenum than those receiving the NC treatment at 14 d of experimentation. The BT treatment provided a lower (p<0.05) immune-expression of COX-2 at 14 d and TNF-α at 35 d in the duodenum. CONCLUSION Association between calcium butyrate and tannin extract resulted in a significant decrease in the incidence of diarrhea and inflammatory process in the duodenum of piglets. Therefore, calcium-butyrate combined with tannin could be a part of an alternative program to reduce the use of antimicrobials in the diet of weaned piglets.
Collapse
Affiliation(s)
- Camila Demarco Maito
- Graduate Program of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215- 901, Brazil
| | - Antonio Diego Brandão Melo
- Graduate Program of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215- 901, Brazil
| | | | - Jansller Luiz Genova
- Graduate Program of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215- 901, Brazil
| | - Jair Rodini Engracia Filho
- Graduate Program of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215- 901, Brazil
| | - Renata Ernlund Freitas de Macedo
- Graduate Program of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215- 901, Brazil
| | - Kelly Mazutti Monteiro
- Graduate Program of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215- 901, Brazil
| | - Saulo Henrique Weber
- Graduate Program of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215- 901, Brazil
| | | | - Leandro Batista Costa
- Graduate Program of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215- 901, Brazil
| |
Collapse
|
33
|
Use of Hydrolyzed Chinese Gallnut Tannic Acid in Weaned Piglets as an Alternative to Zinc Oxide: Overview on the Gut Microbiota. Animals (Basel) 2021; 11:ani11072000. [PMID: 34359128 PMCID: PMC8300422 DOI: 10.3390/ani11072000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary The effects of dietary hydrolyzed Chinese gallnut tannic acid (GCT) as a replacement for ZnO were investigated on weaned piglets. A total of 72 piglets (31 ± 1 day) were selected and divided randomly into two groups: a control group, with a basal diet of + 1600 mg/kg ZnO; and a treated group, with a basal diet of + 1899.5 mg/kg GCT. The diarrhea rate of piglets in the treated group declined on days 14–21 than in the control group. Additionally, we found GCT can reduce the crypt depth of the ileum and improve antioxidant capacity. High throughput sequencing showed that the GCT increased the richness of bacteria (Lachnospiraceae, Prevotella, and Lactobacillus amylovorus) associated with the degradation of cellulose and hemicellulose. These data indicate that 1899.5 mg/kg GCT could be an alternative for 1600 mg/kg ZnO in the diet of piglets. Abstract The effects of dietary hydrolyzed Chinese gallnut tannic acid(GCT) as a replacement for ZnO were investigated on weaned piglets. A total of 72 weaned piglets at 31 ± 1 day (six replicate pens per treatment with six piglets per pen) were selected and divided randomly into two groups: a control group, with a basal diet of + 1600 mg/kg ZnO; and a treated group, with a basal diet of + 1899.5 mg/kg GCT. Data analysis showed that the significance of average daily gain and average daily feed intake between the two groups was p = 0.731 and p = 0.799, respectively. Compared with the control group, the diarrhea rate of piglets in the treated group underwent no noticeable change on days 0–7 (p = 0.383) and 7–14 (p = 0.263), but decreased significantly on days 14–21 (p < 0.05). Additionally, we found GCT can reduce the crypt depth of the ileum and improve its antioxidant capacity (p < 0.05). High throughput sequencing showed that GCT increased the richness of the bacteria Lachnospiraceae (p = 0.005), Prevotella_2 (p = 0.046) and Lactobacillus amylovorus (p = 0.081), which are associated with the degradation of cellulose and hemicellulose. The study indicated that 1899.5 mg/kg GCT could be an alternative for 1600 mg/kg ZnO in the diet of piglets.
Collapse
|
34
|
The Effect of a Diet Containing Extruded Faba Bean Seeds on Growth Performance and Selected Microbial Activity Indices in the Large Intestine of Piglets. Animals (Basel) 2021; 11:ani11061703. [PMID: 34200368 PMCID: PMC8226840 DOI: 10.3390/ani11061703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Grain legumes are cultivated for food and feed purposes in all regions of the world. Legumes are the main source of protein for a large part of the world population where animal protein is hardly available. The potential of grain legumes is increasing primarily due to the genetic improvement of their agricultural and nutritional characteristics and expansion of organic farming. They are also fed to animals as a component of concentrates and on farms producing “organic” food. Therefore, studies on the composition, nutritional value and factors affecting quality of legume protein contribute to a more efficient utilization of seeds as feed and food ingredients. Faba bean is rich in both starch and protein and is an important alternative protein source in animal nutrition; however, its potential is not yet fully exploited, particularly in pig diets. The aim of the study was to evaluate the effect of diets containing various levels of extruded faba bean seeds on growth performance and selected microbial activity indices in the large intestine of pigs. Treatments with faba bean seeds did not negatively affect growth performance (except for the highest level of faba bean) and microbial activity in the large intestine, and can be applied in piglet diets. Abstract The study investigated the effect of replacing soybean meal with extruded faba bean seeds on piglet growth performance and selected microbial activity indices in the large intestine. In total, 24, 35-day-old, healthy, castrated piglets of similar body weight were divided into four groups with six replicates. Animals in the control group (C) were fed with soybean meal without extruded faba bean seeds. In other experimental groups, pigs were fed diets with the addition of 20 (FB20), 25 (FB25) or 30% (FB30) extruded faba bean seeds instead of soybean meal and wheat starch. Growth performance, histology of the large intestine, short-chain fatty acids (SCFA) and ammonia concentration, as well as the activity of bacterial enzymes in digesta samples, were analyzed. The intake of the FB25 diet resulted in an increased feed:gain ratio in comparison to the FB30 group. Feeding the FB30 diet increased tunica muscularis thickness in the caecum as compared to other groups. Moreover, dietary inclusion of extruded faba bean seeds had no effect on SCFA and ammonia concentration. In addition, feeding diets with a different level of extruded faba bean seeds did not affect the activity of bacterial enzymes in the colon.
Collapse
|
35
|
Miragoli F, Patrone V, Prandini A, Sigolo S, Dell’Anno M, Rossi L, Barbato M, Senizza A, Morelli L, Callegari ML. A mixture of quebracho and chestnut tannins drives butyrate-producing bacteria populations shift in the gut microbiota of weaned piglets. PLoS One 2021; 16:e0250874. [PMID: 33914832 PMCID: PMC8084250 DOI: 10.1371/journal.pone.0250874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Weaning is a critical period for piglets, in which unbalanced gut microbiota and/or pathogen colonisation can contribute to diseases that interfere with animal performance. Tannins are natural compounds that could be used as functional ingredients to improve gut health in pig farming thanks to their antibacterial, antioxidant, and antidiarrhoeal properties. In this study, a mixture of quebracho and chestnut tannins (1.25%) was evaluated for its efficacy in reducing the negative weaning effects on piglet growth. Microbiota composition was assessed by Illumina MiSeq 16S rRNA gene sequencing of DNA extracted from stools at the end of the trial. Sequence analysis revealed an increase in the genera Shuttleworthia, Pseudobutyrivibrio, Peptococcus, Anaerostipes, and Solobacterium in the tannin-supplemented group. Conversely, this dietary intervention reduced the abundance of the genera Syntrophococcus, Atopobium, Mitsuokella, Sharpea, and Prevotella. The populations of butyrate-producing bacteria were modulated by tannin, and higher butyrate concentrations in stools were detected in the tannin-fed pigs. Co-occurrence analysis revealed that the operational taxonomic units (OTUs) belonging to the families Veillonellaceae, Lachnospiraceae, and Coriobacteriaceae occupied the central part of the network in both the control and the tannin-fed animals. Instead, in the tannin group, the OTUs belonging to the families Acidaminococcaceae, Alcaligenaceae, and Spirochaetaceae characterised its network, whereas Family XIII Incertae Sedis occupied a more central position than in the control group. Conversely, the presence of Desulfovibrionaceae characterised the network of the control group, and this family was not present in the network of the tannin group. Moreover, the prediction of metabolic pathways revealed that the gut microbiome of the tannin group possessed an enhanced potential for carbohydrate transport and metabolism, as well as a lower abundance of pathways related to cell wall/membrane/envelope biogenesis and inorganic ion transport. In conclusion, the tested tannins seem to modulate the gut microbiota, favouring groups of butyrate-producing bacteria.
Collapse
Affiliation(s)
- Francesco Miragoli
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Aldo Prandini
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Samantha Sigolo
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Mario Barbato
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alice Senizza
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Luisa Callegari
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, Cremona, Italy
| |
Collapse
|
36
|
Mahfuz S, Shang Q, Piao X. Phenolic compounds as natural feed additives in poultry and swine diets: a review. J Anim Sci Biotechnol 2021; 12:48. [PMID: 33823919 PMCID: PMC8025492 DOI: 10.1186/s40104-021-00565-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Due to ban on using antibiotics in feed industry, awareness of using natural feed additives have led to a great demand. The interest of plants phenolic compounds as a potential natural antioxidant source has been considered in research community due to their predictable potential role as feed additives in poultry and swine production. However, the mode of action for their functional role and dosage recommendation in animal diets are still remain indistinct. Taking into account, the present review study highlights an outline about the mode of action of phenolic compound and their experimental uses in poultry and swine focusing on the growth performance, antioxidant function, immune function, antimicrobial role and overall health status, justified with the past findings till to date. Finally, the present review study concluded that supplementation of phenolic compounds as natural feed additives may have a role on the antioxidant, immunity, antimicrobial and overall production performance in poultry and swine.
Collapse
Affiliation(s)
- Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
37
|
Bahelka I, Bučko O, Fľak P. Can Hydrolysable Tannins in Diet of Entire Male Pigs Affect Carcass, Pork Quality Traits, Amino and Fatty Acid Profiles, and Boar Taint, Skatole and Androstenone Levels? Animals (Basel) 2021; 11:896. [PMID: 33801044 PMCID: PMC8003867 DOI: 10.3390/ani11030896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
The slaughtering of entire males increases the probability of incidence of tainted pork due to the presence two main compounds-androstenone and skatole. If a surgical castration of young entire male pigs is stopped in the EU countries, fattening of boars is likely to become one of the most commonly used systems in pig farming. Since skatole production and accumulation in fat tissue can be controlled by dietary approaches, several studies have investigated various feed additives to reduce this compound of boar taint. Ones of the most promising is tannins. The aim of this study was to determine the effect of different dietary tannin level supplementation on carcass, pork quality, chemical, amino and fatty acid composition. as well as perception of boar taint and accumulation of skatole and androstenone in adipose tissue. Eighty entire males were randomly distributed to control (T0) and four experimental groups. Control pigs received standard feed mixture (16.8% CP, 13.9 MJ ME) without any tannin supplementation. Experimental pigs received the same diet with administration of 1% (T1), 2% (T2), 3% (T3) and 4% (T4)-sweet chestnut extract rich in hydrolysable tannins for 40 days (from average live weight of 80 kg until slaughter at average weight 122.28 kg ± 5.63 kg). Dietary tannins supplementation did not show any significant effect on chemical composition, cholesterol content, and amino acid composition of muscle as well as fatty acid composition and androstenone accumulation in adipose tissue. A slight or small effect was observed on carcass and meat quality, respectively. Pigs in groups T4 and/or T3-T4 had higher electrical conductivity in semimembranosus muscle and cooking loss value compared to T1, T2 or T0, T1, and T2 groups (p < 0.05). Tannins in the pig's diet greatly affected fatty acid profile in meat of entire males. The highest tannin levels (4%) increased concentrations of lauric, myristic, vaccenic, linoleic, total PUFA, and n-6 PUFA in muscle compared to the control. Similar results were found in group T3 except for vaccenic, linoleic, and total PUFA. On the contrary, concentrations of heptadecanoic and oleic acids in groups T3 and T4 were lower than those in T1 and T2 groups. Perception of boar taint using "hot iron" method (insertion a hot iron tip of soldering iron into adipose tissue) tended to decrease in T2 group compared with control. Skatole accumulation in fat tissue was reduced in groups T2-T4 at significance level (p = 0.052-0.055) compared to the control pigs. In summary, tannins supplementation had no effect on chemical and amino acid composition as well as fatty acid profile in adipose tissue, and only slight on carcass value. However, 4% concentration of tannins significantly increased content of some fatty acids compared to control group.
Collapse
Affiliation(s)
- Ivan Bahelka
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Ondřej Bučko
- Faculty of Agrobiology and Food Resources, Slovak Agricultural University Nitra, 949 01 Nitra, Slovakia; (O.B.); (P.F.)
| | - Pavol Fľak
- Faculty of Agrobiology and Food Resources, Slovak Agricultural University Nitra, 949 01 Nitra, Slovakia; (O.B.); (P.F.)
| |
Collapse
|
38
|
Núñez Y, Radović Č, Savić R, García-Casco JM, Čandek-Potokar M, Benítez R, Radojković D, Lukić M, Gogić M, Muñoz M, Fontanesi L, Óvilo C. Muscle Transcriptome Analysis Reveals Molecular Pathways Related to Oxidative Phosphorylation, Antioxidant Defense, Fatness and Growth in Mangalitsa and Moravka Pigs. Animals (Basel) 2021; 11:ani11030844. [PMID: 33809803 PMCID: PMC8002519 DOI: 10.3390/ani11030844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/28/2022] Open
Abstract
This work was aimed at evaluating loin transcriptome and metabolic pathway differences between the two main Serbian local pig breeds with divergent characteristics regarding muscle growth and fatness, as well as exploring nutrigenomic effects of tannin supplementation in Mangalitsa (MA) pigs. The study comprised 24 Mangalitsa and 10 Moravka (MO) males, which were kept under identical management conditions. Mangalitsa animals were divided in two nutritional groups (n = 12) receiving a standard (control) or tannin-supplemented diet (1.5%; MAT). Moravka pigs were fed the standard mixture. All animals were slaughtered at a similar age; 120 kg of average live weight (LW) and loin tissue was used for RNA-seq analysis. Results showed 306 differentially expressed genes (DEGs) according to breed, enriched in genes involved in growth, lipid metabolism, protein metabolism and muscle development, such as PDK4, FABP4, MYOD1 and STAT3, as well as a relevant number of genes involved in mitochondrial respiratory activity (MT-NDs, NDUFAs among others). Oxidative phosphorylation was the most significantly affected pathway, activated in Mangalitsa muscle, revealing the basis of a different muscle metabolism. Also, many other relevant pathways were affected by breed and involved in oxidative stress response, fat accumulation and development of skeletal muscle. Results also allowed the identification of potential regulators and causal networks such as those controlled by FLCN, PPARGC1A or PRKAB1 with relevant regulatory roles on DEGs involved in mitochondrial and lipid metabolism, or IL3 and TRAF2 potentially controlling DEGs involved in muscle development. The Tannin effect on transcriptome was small, with only 23 DEGs, but included interesting ones involved in lipid deposition such as PPARGC1B. The results indicate a significant effect of the breed on muscle tissue gene expression, affecting relevant biological pathways and allowing the identification of strong regulatory candidate genes to underlie the gene expression and phenotypic differences between the compared groups.
Collapse
Affiliation(s)
- Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Čedomir Radović
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | | | - Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Dragan Radojković
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Miloš Lukić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Marija Gogić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
- Correspondence: ; Tel.: +34-913471492
| |
Collapse
|
39
|
Caprarulo V, Giromini C, Rossi L. Review: Chestnut and quebracho tannins in pig nutrition: the effects on performance and intestinal health. Animal 2020; 15:100064. [PMID: 33516022 DOI: 10.1016/j.animal.2020.100064] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Natural extracts are frequently adopted as a valuable alternative to antibiotics in intensive animal farming. Their diverse bioactive constituents such as phytosterols, glucosinolates, carotenoids and polyphenols have shown antioxidant, anti-inflammatory and antibacterial effects. Tannins are the largest class of polyphenol compounds of plant extracts, which can be classified into two hydrolysable or condensed subgroups. Poultry and swine nutrition are the most important sectors in which tannins have been used, firstly adopting tannin-rich feedstuffs and more recently, using tannin extracts from different plants. Several commercial products are available containing tannins extracted from the European chestnut tree (Castanea sativa Mill.) and the American quebracho (Schinopsis spp.). Tannins extracted from these plants have been applied on intensive swine farms due to their ability to improve animal performance and health. These positive and prominent effects are frequently associated with the antinutritional effects in reducing feed palatability, digestibility and protein utilization of feed. Some criticisms and contrasting results regarding pig performance and intestinal health have been reported. This paper provides an overview of the effects of chestnut and quebracho tannins on growth performance and intestinal health of pigs in order to clarify the appropriate dosage and response in the various physiological stages.
Collapse
Affiliation(s)
- V Caprarulo
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy.
| | - C Giromini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; CRC I-WE (Coordinating Research Center: Innovation for Well-Being and Environment), Università degli Studi di Milano, 20134 Milan, Italy
| | - L Rossi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| |
Collapse
|
40
|
Gallic acid affects intestinal-epithelial-cell integrity and selected amino-acid uptake in porcine in vitro and ex vivo permeability models. Br J Nutr 2020; 126:492-500. [DOI: 10.1017/s0007114520004328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGallic acid (GA) is widely used as a dietary supplement due to several health-promoting effects, although its effects on intestinal-epithelial-cell integrity and transport remain mostly unknown. The present study aims to clarify the effects of GA on tight junctions and intestinal nutrient uptake through in vitro and ex vivo models. Both intestinal porcine enterocyte cell line-J2 cells and porcine middle-jejunum segments were treated with 5 (T5), 25 (T25) and 50 (T50) µm GA and mounted in Ussing chambers to determine transepithelial resistance (TEER), claudin-1 (CLDN1), occludin (OCLN), zonula occludens-1 (ZO-1) protein (in tissues and cells) and mRNA (in cells) expression. In addition, uptake of l-glutamate (l-Glut), l-arginine (l-Arg), l-lysine (l-Lys) and l-methionine (l-Meth) together with cationic-amino-acid transporter-1 (CAT-1) and excitatory-amino-acid transporter-3 (EAAT3) expression was evaluated. No apoptosis was observed in GA-treated cells, but TEER and CLDN1 protein abundance was lower with T50 compared with untreated cells. l-Arg and l-Lys uptake was greater with T5 than with T25 and T50. Ex vivo, T50 decreased the TEER values and the protein levels of CLDN1, OCLN and ZO-1, whereas T5 and T25 only decreased CLDN1 protein expression compared with untreated tissues. Moreover, T25 increased l-Glut and l-Arg uptake, the latter confirmed by an increased protein expression of CAT-1. GA influences intestinal uptake of the tested cationic amino acids at low concentrations and decreases the intestinal-cell barrier function at high concentrations. Similarities were observed between in vitro and ex vivo, but different treatment times and structures must be considered.
Collapse
|
41
|
Condensed tannins enhanced antioxidant capacity and hypoxic stress survivability but not growth performance and fatty acid profile of juvenile Japanese seabass (Lateolabrax japonicus). Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114671] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Bee G, Quiniou N, Maribo H, Zamaratskaia G, Lawlor PG. Strategies to Meet Nutritional Requirements and Reduce Boar Taint in Meat from Entire Male Pigs and Immunocastrates. Animals (Basel) 2020; 10:E1950. [PMID: 33114075 PMCID: PMC7690666 DOI: 10.3390/ani10111950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/23/2022] Open
Abstract
This paper reviews the current knowledge on the nutritional requirements of entire male and immunocastrated pigs to obtain an efficient growth, low boar taint level, and good carcass and meat quality. We present the reasons for offering entire males ad libitum access to the diets in order to optimize their protein deposition potential. Boar taint is one of the major issues in the production of entire males; therefore, the impact of various skatole- and indole-reducing feed ingredients is discussed regarding their efficiency and the possible mechanism affecting skatole and indole production in the hindgut. Entire males have lean carcasses, so their intramuscular fat content can be lower than that of surgical castrates or females and the adipose tissue can be highly unsaturated. The possible nutritional strategies to counteract these effects are summarized. We conclude that immunocastrates can be fed similarly to entire males until the second vaccination. However, due to the metabolic changes occurring shortly after the second vaccination, the requirements for essential amino acids are markedly lower in immunocastrates than in entire males.
Collapse
Affiliation(s)
- Giuseppe Bee
- Agroscope, Institute for Livestock Sciences, La Tioleyre 4, 1725 Posieux, Switzerland
| | - Nathalie Quiniou
- IFIP-Institut du Porc, La Motte au Vicomte, 35650 Le Rheu, France;
| | - Hanne Maribo
- Pig Research Centre, Danish Agriculture & Food Council, Axeltorv 3, DK-1609 Copenhagen, Denmark;
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden;
| | - Peadar G. Lawlor
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland;
| |
Collapse
|
43
|
Caprarulo V, Hejna M, Giromini C, Liu Y, Dell’Anno M, Sotira S, Reggi S, Sgoifo-Rossi CA, Callegari ML, Rossi L. Evaluation of Dietary Administration of Chestnut and Quebracho Tannins on Growth, Serum Metabolites and Fecal Parameters of Weaned Piglets. Animals (Basel) 2020; 10:E1945. [PMID: 33105748 PMCID: PMC7690424 DOI: 10.3390/ani10111945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
In pig livestock, alternatives to in-feed antibiotics are needed to control enteric infections. Plant extracts such as tannins can represent an alternative as a natural source of functional compounds. The aim of this study was to evaluate the in vitro digestibility and in vivo effects of oral supplementation of combined chestnut (Ch) and quebracho (Qu) tannins in order to establish if they can induce a positive effect on weaned piglets' performance, metabolic status and fecal parameters. In vitro digestibility (dry matter, DM) of diets was calculated using a multi-step enzymatic technique. In vitro digested diet samples were further tested on an intestinal porcine enterocyte cell line (IPEC-J2). Weaned piglets (n = 120; 28 ± 2 day old) were randomly allotted to two groups (12 pens in total with 10 pigs per pen): control (Ctrl) and treatment (Ch/Qu). After one week of adaptation (day 0), 35-day-old piglets in the Ctrl group were fed a Ctrl diet and the Ch/Qu group were fed with 1.25% Ch/Qu for 40 days. Body weight and feed intake per pen were recorded weekly. At day 40, blood and fecal samples were collected. Principal metabolic parameters were evaluated from blood samples by enzymatic colorimetric analysis. Total phenolic compounds, urea, and ammonia in feces were analyzed (Megazyme International, Bray, Ireland). In vitro digestibility and cell viability assays showed that the inclusion of 1.25% Ch/Qu slightly reduced diet digestibility compared with the Ctrl diet, while intestinal cell viability was not altered with low concentrations of Ch/Qu digesta compared with Ctrl. In vivo results did not show any adverse effects of Ch/Qu on feed intake and growth performance, confirming that dietary inclusion of Ch/Qu at a concentration of 1.25% did not impair animal performance. The decreased diet DM digestibility in the Ch/Qu diet may cause increased serum concentration of albumin (Ctrl: 19.30 ± 0.88; Ch/Qu: 23.05 ± 0.88) and albumin/globulin ratio (Ctrl: 0.58 ± 0.04; Ch/Qu: 0.82 ± 0.04), but decreased creatinine (Ctrl: 78.92 ± 4.18; Ch/Qu: 54.82 ± 4.18) and urea (Ctrl: 2.18 ± 0.19; Ch/Qu: 0.95 ± 0.19) compared with Ctrl. Pigs in the Ch/Qu group contained higher (p < 0.05) concentrations of fecal phenolic compounds and nitrogen than the Ctrl group, while fecal ammonia and urea were not affected by tannins. In conclusion, Ch/Qu tannin supplementation did not influence growth performance. Although lower digestibility was observed in the diet supplemented with Ch/Qu tannins, Ch/Qu supplementation did not show any adverse effect on intestinal epithelial cell viability.
Collapse
Affiliation(s)
- Valentina Caprarulo
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Monika Hejna
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Carlotta Giromini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Stefania Sotira
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Carlo Angelo Sgoifo-Rossi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Maria Luisa Callegari
- Department of sustainable food process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| |
Collapse
|
44
|
Hassan ZM, Manyelo TG, Selaledi L, Mabelebele M. The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients. Molecules 2020; 25:molecules25204680. [PMID: 33066367 PMCID: PMC7587385 DOI: 10.3390/molecules25204680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/21/2023] Open
Abstract
Over recent years, the monogastric animal industry has witnessed an increase in feed prices due to several factors, and this trend is likely to continue. The hike in feed prices is mostly due to extreme competition over commonly used conventional ingredients. For this trend to be subdued, alternative ingredients of both plant and animal origin need to be sourced. These types of ingredients are investigated with the aim of substituting all or some of the conventional compounds. However, alternative ingredients often have a double-edged sword effect, in that they can supply animals with the necessary nutrients although they contain antinutritional factors such as tannins. Tannins are complex secondary metabolites commonly present in the plant kingdom, known to bind with protein and make it unavailable; however, recently they have been proven to have the potential to replace conventional ingredients, in addition to their health benefits, particularly the control of zoonotic pathogens such as Salmonella. Thus, the purpose of this review is to (1) classify the types of tannins present in alternative feed ingredients, and (2) outline the effects and benefits of tannins in monogastric animals. Several processing methods have been reported to reduce tannins in diets for monogastric animals; furthermore, these need to be cost-effective. It can thus be concluded that the level of inclusion of tannins in diets will depend on the type of ingredient and the animal species.
Collapse
Affiliation(s)
- Zahra Mohammed Hassan
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (Z.M.H.); (T.G.M.); (L.S.)
| | - Tlou Grace Manyelo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (Z.M.H.); (T.G.M.); (L.S.)
- Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga 0727, South Africa
| | - Letlhogonolo Selaledi
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (Z.M.H.); (T.G.M.); (L.S.)
- Department of Zoology and Entomology, Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield 0028, South Africa
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (Z.M.H.); (T.G.M.); (L.S.)
- Correspondence: ; Tel.: +27-11-471-3983
| |
Collapse
|
45
|
Bajić M, Oberlintner A, Kõrge K, Likozar B, Novak U. Formulation of active food packaging by design: Linking composition of the film-forming solution to properties of the chitosan-based film by response surface methodology (RSM) modelling. Int J Biol Macromol 2020; 160:971-978. [DOI: 10.1016/j.ijbiomac.2020.05.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
|
46
|
Liu HS, Mahfuz SU, Wu D, Shang QH, Piao XS. Effect of chestnut wood extract on performance, meat quality, antioxidant status, immune function, and cholesterol metabolism in broilers. Poult Sci 2020; 99:4488-4495. [PMID: 32867992 PMCID: PMC7598123 DOI: 10.1016/j.psj.2020.05.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 01/13/2023] Open
Abstract
Plant extracts have been proved as natural antioxidants resources as well as alternative feed additives in livestock and poultry species. Chestnut wood extract (CWE) as a source of hydrolysable tannic acid was used to evaluate the growth performance, nutrient retention, meat quality, antioxidant status, and immune function of broilers. A total of 168, day-old Arbor Acre male broilers (weight 46.59 ± 0.44 g) were randomly divided to 3 treatments, 7 replicate pens per treatment, 8 broilers per pen. The treatments contain a control diet, CON (corn-soybean meal basal diet); an antibiotic diet, CTC (basal diet + 75 mg/kg chlortetracycline); and chestnut wood extract diet, CWE (basal diet + 1,000 mg/kg chestnut tannins). At the finisher phase, final body weight was higher (P < 0.05) in CWE supplemented diet than in CON. Average daily body weight gain was higher (P < 0.05) and feed gain ratio was lower (P < 0.05) in broilers fed CWE than in those fed CON at the finisher phase. Crude protein digestibility was higher (P < 0.05) in broilers offered CWE than that in broilers fed CON and CTC diets. Breast muscle pH value at 24 h (pH24 h) was higher (P < 0.05) in broilers fed CWE than that in those fed CON and CTC diets. The bursa weight was higher (P < 0.05) in broilers offered CWE than that in those fed CON and CTC. Total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) values were higher (P < 0.05) in both breast muscle and thigh muscle of broilers offered CWE supplemented diet than those in broilers fed CON and CTC diets. Similarly, broilers offered with CWE diets showed higher (P < 0.05) T-AOC, GSH-PX, and SOD value in serum than those fed CON and CTC diets. Serum concentration of IgG was higher (P < 0.05) in broilers offered with CWE diets than that in those fed CON and CTC diets. Total cholesterol, low-density lipoprotein cholesterol, and urea-N concentration were lower (P < 0.05) in broilers offered CWE diet than those in broilers fed CON and CTC diets. It was recommended to supply CWE at the 1,000 mg/kg level for improving antioxidant status, cholesterol metabolism, and growth performance without affecting normal meat quality in broilers.
Collapse
Affiliation(s)
- H S Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - S U Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - D Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Q H Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - X S Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Tannic acid prevents post-weaning diarrhea by improving intestinal barrier integrity and function in weaned piglets. J Anim Sci Biotechnol 2020; 11:87. [PMID: 32884745 PMCID: PMC7460753 DOI: 10.1186/s40104-020-00496-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tannic acid (TA) is potential to reduce diarrhea in weaning pigs, but knowledge about the influence of TA on intestinal barrier integrity and function is still scarce. This experiment was conducted to investigate the effects of dietary TA supplementation on growth performance, diarrhea rate, intestinal barrier integrity and function of weaned pigs. Methods A total of 108 crossbred (Duroc × Landrace × Yorkshire) piglets, with an initial average body weight of 6.60 ± 0.27 kg, were allotted to 3 groups (6 pigs/pen and 6 replicates/group) in a randomized complete block design according to their gender and body weight. Piglets were fed the basal diet with 0 (control, CON), 0.2% and 1.0% TA, respectively. The trial lasted for 28 d. Results Compared with the CON group, dietary 0.2% and 1.0% TA supplementation didn’t affect ADFI, ADG and F:G (P > 0.05), but reduced diarrhea rate, diarrhea index and diarrhea score of piglets (P < 0.05), reduced diamine oxidase (DAO) activity and D-lactic acid concentration in serum (P < 0.01). The higher occludin expression and localization were observed in the duodenum, jejunum and ileum after supplementation with 0.2% or 1.0% TA (P < 0.05). Adding 0.2% TA to diet significantly decreased crypt depth, increased villus height/crypt depth ratio in the duodenum (P < 0.05), and dietary 1.0% TA tended to decrease crypt depth (P < 0.10) and significantly decreased villus height (P < 0.05) of the ileum. Moreover, lower malondialdehyde content in the ileum was detected in the pigs fed 1.0% TA (P < 0.05). In the duodenum, both 0.2% and 1.0% TA groups had higher occludin (OCLN) mRNA and 0.2% TA group had higher zonula occludens-2 (ZO-2) level (P < 0.05). Meanwhile, dietary 1.0% TA supplementation tended to up-regulate OCLN mRNA levels in the jejunum (P < 0.10) and 0.2% TA supplementation tended to up-regulate zonula occludens-1 (ZO-1) mRNA levels in the ileum (P < 0.10). Conclusion In conclusion, dietary supplementation of 0.2% or 1.0% TA could effectively alleviate post-weaning diarrhea without altering growth performance in weaned piglets, which might be achieved by improving intestinal barrier integrity and function.
Collapse
|
48
|
Zanotto S, Khazaei H, Elessawy FM, Vandenberg A, Purves RW. Do Faba Bean Genotypes Carrying Different Zero-Tannin Genes ( zt1 and zt2) Differ in Phenolic Profiles? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7530-7540. [PMID: 32628473 DOI: 10.1021/acs.jafc.9b07866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Faba bean is a cool season grain legume that produces seeds with a high protein content. Seed coat tannins limit its use in food and feed. A low-tannin phenotype is controlled by either of two unlinked recessive genes zt1 and zt2. Liquid chromatography-mass spectrometry was used to characterize phenolic profiles of seed coat and flower tissue of three faba bean genotypes: CDC Snowdrop (zt1 gene), Disco/2 (zt2 gene), and ILB 938/2 (tannin-containing). For both tissues, clear differences in phenolic profiles of ILB 938/2 were observed in comparison to both low-tannin lines. Although seed coat phenolic profiles of zt1 and zt2 genotypes were similar, distinct differences were evident in flower tissue, suggesting that the gene action results in some different end products of the phenolic biosynthetic pathway. These distinctive compounds could be used as biochemical markers to distinguish between low-tannin phenotypes.
Collapse
Affiliation(s)
- Stefano Zanotto
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Hamid Khazaei
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Fatma M Elessawy
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Randy W Purves
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
- Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, Saskatoon, Saskatchewan S7N 2R3, Canada
| |
Collapse
|
49
|
Wang M, Huang H, Hu Y, Huang J, Yang H, Wang L, Chen S, Chen C, He S. Effects of dietary microencapsulated tannic acid supplementation on the growth performance, intestinal morphology, and intestinal microbiota in weaning piglets. J Anim Sci 2020; 98:skaa112. [PMID: 32255185 PMCID: PMC7199885 DOI: 10.1093/jas/skaa112] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Antibiotics are commonly overused to reduce weaning stress that leads to economic loss in swine production. As potential substitutes of antibiotics, plant extracts have attracted the attention of researchers. However, one of the plant extracts, tannic acid (TA), has an adverse effect on the growth performance, palatability, and intestinal absorption in weaning piglets when used at a large amount. Thus, this study aimed to investigate the effects of a proper dose of microencapsulated TA on the growth performance, organ and intestinal development, intestinal morphology, intestinal nutrient transporters, and colonic microbiota in weaning piglets. Forty-five Duroc × [Landrace × Yorkshire] (initial body weight = 5.99 ± 0.13 kg, weaned days = 21 d) piglets were randomly divided into five treatment groups (n = 9) and raised in 14 d. The piglets in the control group were raised on a basal diet; the piglets in the antibiotic test group were raised on a basal diet with three antibiotics (375 mg/kg Chlortetracycline 20%, 500 mg/kg Enramycin 4%, 1,500 mg/kg Oxytetracycline calcium 20%); and the other three groups were raised on a basal diet with three doses of microencapsulated TA (TA1, 500 mg/kg; TA2, 1,000 mg/kg; TA3, 1,500 mg/kg). All the piglets were raised in the same environment and given the same amount of nutrients for 2 wk. The results showed that both TA1 and TA2 groups had no adverse effect on the growth performance, organ weight and intestinal growth, and the pH value of gastrointestinal content. TA2 treatment improved the duodenal morphology (P < 0.05), increased the gene expression level of solute carrier family 6, member 19 and solute carrier family 15, member 1 (P < 0.05) in the ileum, and modulated the colonic bacteria composition (P < 0.05), but inhibited the activity of maltase in the ileum (P < 0.05) and the jejunal gene expression level of solute carrier family 5, member 1 (P < 0.05). In conclusion, our study suggests that a dosage between 500 and 1,000 mg/kg of microencapsulated TA is safe to be included in the swine diet and that 1,000 mg/kg of microencapsulated TA has beneficial effects on intestinal morphology, intestinal nutrient transporter, and intestinal microbiota in weaning piglets. These findings provide new insights into suitable alternatives to antibiotics for improving growth performance and colonic microbiota.
Collapse
Affiliation(s)
- Meiwei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huijun Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yangping Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Lei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shuai Chen
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China
| | - Chiqing Chen
- Wufeng Chicheng Biotechnology Company Limited, Yichang, Hubei, China
| | - Shanping He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
50
|
Liu H, Hu J, Mahfuz S, Piao X. Effects of Hydrolysable Tannins as Zinc Oxide Substitutes on Antioxidant Status, Immune Function, Intestinal Morphology, and Digestive Enzyme Activities in Weaned Piglets. Animals (Basel) 2020; 10:ani10050757. [PMID: 32349238 PMCID: PMC7277717 DOI: 10.3390/ani10050757] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Zinc oxide (ZnO) is generally used to control diarrhea and improve gut health in weaned piglets. To protect weaned pigs from intestinal injuries and to decrease environmental zinc load, it is essential to find an alternative to ZnO. In the present study, hydrolysable tannins (HT) showed decreased diarrhea rate and improving gut health via multiple pathways. Herein we demonstrate that HT supplementation may be a potential alternative of ZnO in weaned piglets. Abstract Zinc oxide (ZnO) has negative environmental effects and bioavailability in weaned piglets. Thus, finding safe and effective ZnO substitutes to improve intestinal health and to prevent diarrhea of weaned piglets is urgently required. Therefore, this experiment was conducted to evaluate the effects of hydrolysable tannins (HT), ZnO and HT versus ZnO on growth performance, antioxidant status, serum immunity, intestinal morphology, and digestive enzyme activities in weaned pigs. A total of 144 piglets (28 d-old, initial body weight 7.81 ± 0.99 kg) were assigned to 4 treatments with 6 replicates of 6 piglets each. The experiment lasted 28 d (d 1 to 14 as for phase 1 and d 15 to 28 as for phase 2). The dietary treatments include a corn-soybean meal basal diet (CON); ZnO diet (CON + 2000 mg/kg ZnO in phase 1 and 137.5 mg/kg ZnO in phase 2); HT diet (CON + 1000 mg/kg HT in the overall period (d 1 to 28); HT + ZnO diet (CON + 2000 mg/kg ZnO + 1000 mg/kg HT in phase 1, and 137.5 mg/kg ZnO + 1000 mg/kg HT in phase 2). In phase 1, the incidence of diarrhea was lower (p < 0.05) in the HT + ZnO group than CON. Serum catalase (CAT) and glutathione peroxidase (GSH-Px) were increased (p < 0.01) and malondialdehyde (MDA) was decreased (p < 0.01) in the HT + ZnO group than CON. Compared with CON, immunoglobulin M (IgM), immunoglobulin A (IgA) were increased (p < 0.05) in the HT + ZnO group. In phase 2, both HT and HT + ZnO had a trend to improve (p < 0.10) daily gain. The concentration of total antioxidant capacity (T-AOC) and IgM in serum was higher (p < 0.01) in HT compared with CON. Supplementation of HT improved (p < 0.01) GSH-Px activities in ileum mucosa than the ZnO group. Compared with CON, trypsin, lipase activities, and villus height of jejunum were improved (p < 0.05) in HT and HT + ZnO. The ratio of villus height to crypt depth in the jejunum was improved (p < 0.05) in the HT + ZnO group and which also was increased (p < 0.05) in ileum in the HT group compared with CON. Propionic acid, butyric acid, and acetic acid concentrations in the colon were increased (p < 0.05) in the HT group than CON. Overall, HT + ZnO treatments could be used to replace ZnO for reducing diarrhea and improving antioxidant capacity, immunity, and digestive enzyme activities in weaned piglets.
Collapse
Affiliation(s)
| | | | | | - Xiangshu Piao
- Correspondence: ; Tel.: +86-10-6273-3588; Fax: +86-10-6273-3688
| |
Collapse
|