1
|
Lengerli D, Bakht A, Çalışkan K, Dahlke P, Bal NB, Jordan PM, Çalışkan B, Werz O, Banoglu E. Phenyl-benzyl-ureas with pyridazinone motif: Potent soluble epoxide hydrolase inhibitors with enhanced pharmacokinetics and efficacy in a paclitaxel-induced neuropathic pain model. Eur J Med Chem 2025; 290:117510. [PMID: 40101448 DOI: 10.1016/j.ejmech.2025.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
The severe pain linked to chemotherapy-induced peripheral neuropathy (CIPN) often becomes a critical factor limiting the effective dosage of life-saving chemotherapy treatments. This debilitating side effect not only hampers the effectiveness of cancer therapy but also poses challenges due to the adverse effects of current treatment options for managing CIPN-related pain complications. Soluble epoxide hydrolase (sEH) inhibitors, which elevate endogenous epoxy-fatty acid levels, have been shown to mitigate CIPN-related pain in different rodent models. In our quest to develop potent sEH inhibitors, we developed novel benzyl phenyl urea derivatives incorporating a pyridazinone ring alongside the urea group as a secondary pharmacophore. These compounds demonstrated remarkable potency in inhibiting sEH, with IC50 values ranging from 0.2 to 57 nM. Compound FP9 (IC50 = 0.2 nM), the most potent in this series, exhibited enhanced metabolic stability, translating into significantly improved oral bioavailability (F = 78 %). It consistently relieved pain perception in mice with paclitaxel-induced peripheral neuropathy, achieving a significant and sustained effect compared to gabapentin. In addition, docking studies and molecular dynamics simulations with FP9 provided valuable insights into the binding interactions between the inhibitor and the sEH binding site, offering direction for further optimization of new analogs. These findings align with recent research that highlights the beneficial effects of sEH inhibitors in reducing pain thresholds associated with CIPN.
Collapse
Affiliation(s)
- Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560, Ankara, Turkey
| | - Arooj Bakht
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560, Ankara, Turkey
| | - Kübra Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560, Ankara, Turkey
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany
| | - Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560, Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560, Ankara, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560, Ankara, Turkey.
| |
Collapse
|
2
|
Zahoor I, Bala R, Wani SN, Chauhan S, Madaan R, Kumar R, Hakeem KR, Malik IA. Potential role of NSAIDs loaded nano-formulations to treat inflammatory diseases. Inflammopharmacology 2025; 33:1189-1207. [PMID: 39953360 DOI: 10.1007/s10787-025-01644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/25/2024] [Indexed: 02/17/2025]
Abstract
Inflammation is a necessary immunological response that promotes survival and preserves tissue homeostasis, a common characteristic linked to various diseases. However, in some circumstances, the inflammatory response is deleterious and contributes to disease pathogenesis. Anti-inflammatory substances have poor affinity for inflamed tissues, resulting in low concentrations in the target tissue and a higher incidence of severe adverse effects. To address this issue, several potential approaches have been proposed, such as chemical modification of drug molecules and the development of nanocarriers for drug delivery. Since the development of nanotechnology at the beginning of the twenty-first century, researchers have been using the pathophysiological characteristics of inflammation, primarily leaky vasculature, and biomarker overexpression to develop nanomedicines that can deliver therapeutics via passive and active targeting mechanisms to sites of inflammation and produce therapeutic effects. Drug carriers based on nanoparticles can enhance the safety and efficacy of drugs by increasing their capacity, enhancing their solubility, combining several drugs, protecting them from metabolism, and regulating their release. An approach that shows promise in the treatment of various inflammatory diseases is the application of nanomedicines. Nanomedicine involves nanoparticles that have been loaded with a therapeutically active component. Nanomedicines can target inflammation by recognizing molecules highly expressed on endothelial cells or activated macrophage surfaces, enhancing the permeability of vessels, or even by biomimicry. A review of the research findings shows significant potential for the use of nanotechnology to enhance the quality of life for people using NSAIDs for chronic disorders by minimizing drug side effects or the duration of administration. After a brief introduction to inflammation, its various forms- acute and chronic inflammation, and the pathophysiology of inflammation, this review highlights the main innovative nanocarriers utilized for carrying various nonsteroidal anti-inflammatory drugs that have been utilized in treating various inflammatory disorders.
Collapse
Affiliation(s)
- Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Rajni Bala
- University School of Pharmaceutical Sciences, Rayat-Bhara University, Kharar, Punjab, India
| | - Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Aman Pharmacy College, Dholakhera Udaipurwati, Jhunjhunu, Rajasthan, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Adesh College of Pharmacy, NH1 Shahabad Kurukshetra, Haryana, India
| | - Rajesh Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Adualaziz University, 21589, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Irfan Ahmad Malik
- Department of Pharmacology, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, 423603, Maharashtra, India
| |
Collapse
|
3
|
Devesa I, Fernández-Ballester G, Fernandez-Carvajal A, Ferrer-Montiel A. A review of the patent literature surrounding TRPV1 modulators. Expert Opin Ther Pat 2025:1-15. [PMID: 39952645 DOI: 10.1080/13543776.2025.2467698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/25/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION TRPV1, a pivotal therapeutic target for chronic pain and pruritus, has been validated in the pathogenesis of several pathologies from diabetes to cancer. Despite the constellation of chemical structures and strategies, none of these molecules has yet been clinically developed as a new drug application due to safety concerns, particularly in thermoregulation. Thus, clinical development of TRPV1 modulators remains a challenge. AREAS COVERED This review covers the patent literature on TRPV1 modulators (2019-2024, PubMed, Google Patents, and Espacenet), from orthosteric ligands to innovative compounds of biotechnological origin such as interfering RNAs or antibodies, and dual modulators that can act on TRPV1 and associated proteins in different tissues. EXPERT OPINION Therapeutic strategies that preferentially act on dysfunctional TRPV1 channels appear essential, along with a superior understanding of the underlying mechanisms affecting changes in core body temperature (CBT). Recent findings describing differential receptor interactions of antagonists that do not affect CBT may pave the way to the next generation of orally active TRPV1 inhibitors. Although we have thus far experienced a bitter feeling in TRPV1 drug development, the recent progress in different disciplines, including human-based preclinical models, will set an interdisciplinary approach to design and develop clinically relevant TRPV1 modulators.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
4
|
Barekat K, Ricciotti E, Ghosh S, Herrmann C, Keat K, Assenmacher CA, Tanes C, Wilson N, Sengupta A, Das US, Joshi R, Ritchie MD, Bittinger K, Weljie A, Cadwell K, Bushman FD, Wu GD, FitzGerald GA. Concomitant suppression of COX-1 and COX-2 is insufficient to induce enteropathy associated with chronic NSAID use. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.22.624882. [PMID: 39651214 PMCID: PMC11623547 DOI: 10.1101/2024.11.22.624882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most widely used medications for the management of chronic pain; however, they are associated with numerous gastrointestinal (GI) adverse events. Although many mechanisms have been suggested, NSAID-induced enteropathy has been thought to be primarily due to inhibition of both cyclooxygenases (COX) -1 and -2, which results in suppression of prostaglandin synthesis. Yet surprisingly, we found that concomitant postnatal deletion of Cox-1 and -2 over 10 months failed to cause intestinal injury in mice unless they were treated with naproxen or its structural analog, phenylpropionic acid, which is not a COX inhibitor. Cox double knockout mice exhibit a distinct gut microbiome composition and cohousing them with controls rescues their dysbiosis and delays the onset of NSAID-induced GI bleeding. In both the UK Biobank and All of Us human cohorts, coadministration of antibiotics with NSAIDs is associated with an increased frequency of GI bleeding. These results show that prostaglandin suppression plays a trivial role in NSAID-induced enteropathy. However, Cox deletion causes dysbiosis of the gut microbiome that amplifies the enteropathic response to NSAIDs.
Collapse
|
5
|
Yalçın T, Jordan PM, Olğaç A, Dahlke P, Maz TG, Banoglu E, Werz O, Çalışkan B. 2-Phenylbenzothiazoles featuring heteroaryl sulfonamide end-capping substructures as developable mPGES-1 inhibitors. Arch Pharm (Weinheim) 2025; 358:e2400756. [PMID: 39817627 DOI: 10.1002/ardp.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
The inhibition of human microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1) is a promising therapeutic modality for developing next-generation anti-inflammatory medications. In this study, we present novel 2-phenylbenzothiazole derivatives featuring heteroaryl sulfonamide end-capping substructures as inhibitors of human mPGES-1, with IC50 values in the range of 0.72-3.40 µM in a cell-free assay of PGE2 formation. Notably, compound 21, featuring a quinoxalinedione ring in its sulfonamide segment, effectively suppresses PGE2 biosynthesis at a low micromolar concentration (IC50 = 0.72 µM) with exceptional selectivity against cyclooxygenase (COX)-1, COX-2, 5-lipoxygenase (5-LOX), and FLAP. This compound offers a novel chemical scaffold for developing safer and more effective anti-inflammatory agents.
Collapse
Affiliation(s)
- Tansu Yalçın
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Tuğçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Ergül AG, Jordan PM, Dahlke P, Bal NB, Olğaç A, Uludağ O, Werz O, Çalışkan B, Banoglu E. Novel Benzimidazole Derivatives as Potent Inhibitors of Microsomal Prostaglandin E 2 Synthase 1 for the Potential Treatment of Inflammation, Pain, and Fever. J Med Chem 2024; 67:21143-21162. [PMID: 39622054 DOI: 10.1021/acs.jmedchem.4c01883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Microsomal prostaglandin E2 synthase 1 (mPGES-1) is a promising target for treating inflammatory diseases and pain. This study introduces a novel series of benzimidazoles, with the most potent analogs exhibiting IC50 values of 0.27-7.0 nM in a cell-free assay for prostaglandin (PG)E2 production. Compound 44 (AGU654) demonstrated remarkable selectivity for mPGES-1 (IC50 = 2.9 nM) over COX-1, COX-2, 5-LOX, and FLAP, along with excellent bioavailability. Metabololipidomics analysis with activated human monocyte-derived macrophages and human whole blood revealed that AGU654 selectively suppresses PGE2 production triggered by bacterial exotoxins while sparing other prostaglandins. Furthermore, in vivo studies showed that AGU654 significantly alleviated fever, inflammation, and inflammatory pain in preclinical guinea pig models, suggesting that it could be an effective strategy for managing inflammatory diseases. In conclusion, these benzimidazole derivatives warrant further exploration into new and alternative analogs, potentially uncovering novel compounds with a favorable pharmacological profile possessing significant anti-inflammatory and analgesic properties.
Collapse
Affiliation(s)
- Azize Gizem Ergül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Orhan Uludağ
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| |
Collapse
|
7
|
Xiao Y, Chang Y, Liu YY, Li TT, Qu WR, Yuan C, Chen L, Huang S, Zhou XL. Biologically active franchetine-type diterpenoid alkaloids: Isolation, synthesis, anti-inflammatory, agalgesic activities, and molecular docking. Bioorg Chem 2024; 153:107834. [PMID: 39332071 DOI: 10.1016/j.bioorg.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
In this study, four franchetine-type diterpenoid alkaloids (1-4) were isolated from Aconitum sinoaxillare, and fourteen diverse franchetine analogs (5-18) were synthesized. Compounds 1, 2, 7 and 16 exhibited stronger inhibitory effects on NO production when compared to celecoxib. Among them, compound 1 had the best inhibitory effect on iNOS and COX-2 inflammatory proteins. The in vitro studies displayed that the anti-inflammatory effect of the most active compound 1 was ascribed to the inhibition of the TLR4-MyD88/NF-κB/MAPKs signalling pathway. Consequently, this led to a inhibition in the expression of inflammatory factors or mediators including NO, ROS, TNF-α, IL-6, IL-1β, iNOS, and COX-2. Additionally, compound 1 had low toxicity (LD50 > 20 mg/kg) in mice, and it had notable analgesic effects on acetic acid-induced visceral pain (ED50 = 2.15 ± 0.07 mg/kg). Moreover, compound 1 exhibited a distinct reduction in the NaV1.7 and NaV1.8 channel currents during both resting and half-inactivated states at 50 μM. The present study enriches the pharmacological activities of franchetine derivatives and provides valuable insights for the development of novel anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Yan Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Ye Chang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; School of School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yu-Yan Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China
| | - Ting-Ting Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Wen-Rong Qu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Cheng Yuan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; School of School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| |
Collapse
|
8
|
Gong D, Wu X, Wu M, Wang F. Knowledge, attitude, and practice toward nonsteroidal anti-inflammatory drugs among osteoarthritis patients: a cross-sectional study. Sci Rep 2024; 14:24953. [PMID: 39438736 PMCID: PMC11496538 DOI: 10.1038/s41598-024-76171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are common drugs in patients with osteoarthritis (OA). NSAIDs are generally used at home by patients, without supervision, requiring proper knowledge and attitudes for correct practice. This study investigated the knowledge, attitude, and practice (KAP) of patients with OA toward NSAIDs. Methods This cross-sectional study enrolled patients with OA at the Qingpu Branch of Zhongshan Hospital of Fudan University between January and March 2024. The KAP scores and demographic information of respondents were collected through a self-designed questionnaire. Results There were 645 participants, with 579 (89.8%) over 45 years old and 394 (61.1%) females. The average scores for knowledge, attitude, and practice were 16.26 ± 3.79 (possible range: 0-24), 18.12 ± 1.99 (possible range: 5-35), and 29.20 ± 5.52 (possible range: 10-50), respectively. The structural equation model (SEM) found that for individuals currently using NSAIDs, the attitude had a direct effect on practice (β = 0.978, P < 0.001). For individuals not using NSAIDs, the attitude had a direct effect on practice (β = 0.936, P < 0.001). Conclusion This study suggested that adequate NSAID knowledge is the prerequisite for correct NSAID-related medical decisions, while attitude has a crucial intermediary effect. Healthcare professionals and society should strengthen education regarding the relevant knowledge of NSAIDs and guide the cultivation of positive attitudes toward NSAIDs.
Collapse
Affiliation(s)
- Dongliang Gong
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital of Fudan University, Shanghai, 201700, China
| | - Xiao Wu
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital of Fudan University, Shanghai, 201700, China
| | - Minghu Wu
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital of Fudan University, Shanghai, 201700, China
| | - Fuyong Wang
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital of Fudan University, Shanghai, 201700, China.
| |
Collapse
|
9
|
Cheung MML, Shah A. Minimizing Narcotic Use in Rhinoplasty: An Updated Narrative Review and Protocol. Life (Basel) 2024; 14:1272. [PMID: 39459572 PMCID: PMC11509072 DOI: 10.3390/life14101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Opioids are commonly used to reduce pain after surgery; however, there are severe side effects and complications associated with opioid use, with addiction being of particular concern. Recent practice has shifted to reduce opioid consumption in surgery, although a specific protocol for rhinoplasty is still in progress. This paper aims to expand on the protocol previously established by the senior author based on updated evidence and details. This was accomplished by first high-lighting and summarizing analgesic agents with known opioid-reducing effects in the surgical field, with a particular focus on rhinoplasty, then compiling these analgesic options into a recommended protocol based on the most effective timing of administration (preoperative, intraoperative, postoperative). The senior author's previous article on the subject was referenced to compile a list of analgesic agents of importance. Each analgesic agent was then searched in PubMed in conjunction with "rhinoplasty" or "opioid sparing" to find relevant primary sources and systematic reviews. The preferred analgesic agents included, as follows: preoperative, 1000 mg oral acetaminophen, 200 mg of oral celecoxib twice daily for 5 days, and 1200 mg oral gabapentin; intraoperative, 0.75 μg/kg of intravenous dexmedetomidine and 1-2 mg/kg injected lidocaine with additional 2-4 mg/kg per hour or 1.5 cc total bupivacaine nerve block injected along the infraorbital area bilaterally and in the subnasal region; and postoperatively, 5 mg oral acetaminophen and 400 mg of oral celecoxib. When choosing specific analgesic agents, considerations include potential side effects, contraindications, and the drug-specific mode of administration.
Collapse
Affiliation(s)
- Madison Mai-Lan Cheung
- College of Medicine at Rockford, University of Illinois Chicago, Rockford, IL 61107, USA
| | - Anil Shah
- Department of Surgery, Section of Otolaryngology, University of Chicago, Chicago, IL 60637, USA
- Shah Aesthetics, Chicago, IL 60654, USA
| |
Collapse
|
10
|
Engert LC, Ledderose C, Biniamin C, Birriel P, Buraks O, Chatterton B, Dang R, Daniel S, Eske A, Reed T, Tang A, Bertisch SM, Mullington JM, Junger WG, Haack M. Effects of low-dose acetylsalicylic acid on the inflammatory response to experimental sleep restriction in healthy humans. Brain Behav Immun 2024; 121:142-154. [PMID: 39043348 PMCID: PMC11389483 DOI: 10.1016/j.bbi.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Sleep deficiencies, such as manifested in short sleep duration or insomnia symptoms, are known to increase the risk for multiple disease conditions involving immunopathology. Inflammation is hypothesized to be a mechanism through which deficient sleep acts as a risk factor for these conditions. Thus, one potential way to mitigate negative health consequences associated with deficient sleep is to target inflammation. Few interventional sleep studies investigated whether improving sleep affects inflammatory processes, but results suggest that complementary approaches may be necessary to target inflammation associated with sleep deficiencies. We investigated whether targeting inflammation through low-dose acetylsalicylic acid (ASA, i.e., aspirin) is able to blunt the inflammatory response to experimental sleep restriction. METHODS 46 healthy participants (19F/27M, age range 19-63 years) were studied in a double-blind randomized placebo-controlled crossover trial with three protocols each consisting of a 14-day at-home monitoring phase followed by an 11-day (10-night) in-laboratory stay (sleep restriction/ASA, sleep restriction/placebo, control sleep/placebo). In the sleep restriction/ASA condition, participants took low-dose ASA (81 mg/day) daily in the evening (22:00) during the at-home phase and the subsequent in-laboratory stay. In the sleep restriction/placebo and control sleep/placebo conditions, participants took placebo daily. Each in-laboratory stay started with 2 nights with a sleep opportunity of 8 h/night (23:00-07:00) for adaptation and baseline measurements. Under the two sleep restriction conditions, participants were exposed to 5 nights of sleep restricted to a sleep opportunity of 4 h/night (03:00-07:00) followed by 3 nights of recovery sleep with a sleep opportunity of 8 h/night. Under the control sleep condition, participants had a sleep opportunity of 8 h/night throughout the in-laboratory stay. During each in-laboratory stay, participants had 3 days of intensive monitoring (at baseline, 5th day of sleep restriction/control sleep, and 2nd day of recovery sleep). Variables, including pro-inflammatory immune cell function, C-reactive protein (CRP), and actigraphy-estimated measures of sleep, were analyzed using generalized linear mixed models. RESULTS Low-dose ASA administration reduced the interleukin (IL)-6 expression in LPS-stimulated monocytes (p<0.05 for condition*day) and reduced serum CRP levels (p<0.01 for condition) after 5 nights of sleep restriction compared to placebo administration in the sleep restriction condition. Low-dose ASA also reduced the amount of cyclooxygenase (COX)-1/COX-2 double positive cells among LPS-stimulated monocytes after 2 nights of recovery sleep following 5 nights of sleep restriction compared to placebo (p<0.05 for condition). Low-dose ASA further decreased wake after sleep onset (WASO) and increased sleep efficiency (SE) during the first 2 nights of recovery sleep (p<0.001 for condition and condition*day). Baseline comparisons revealed no differences between conditions for all of the investigated variables (p>0.05 for condition). CONCLUSION This study shows that inflammatory responses to sleep restriction can be reduced by preemptive administration of low-dose ASA. This finding may open new therapeutic approaches to prevent or control inflammation and its consequences in those experiencing sleep deficiencies. TRIAL REGISTRATION ClinicalTrials.gov NCT03377543.
Collapse
Affiliation(s)
- Larissa C Engert
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Careen Biniamin
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Paola Birriel
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Olivia Buraks
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bryan Chatterton
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rammy Dang
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Surya Daniel
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Annika Eske
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Taylor Reed
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ava Tang
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Suzanne M Bertisch
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Yang Y, Hahn JH, Kim MS, Jo M, Lee YP, Kim H, Kim HK, Kwon J, Lee KH, Han HS. Therapeutic Effect of Anti-inflammatory Tripeptide Cream in Hand-Foot Syndrome/Skin Reaction Related to Anticancer Drugs: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Cancer Res Treat 2024; 56:1050-1057. [PMID: 38853540 PMCID: PMC11491238 DOI: 10.4143/crt.2024.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
PURPOSE Hand-foot syndrome (HFS) and hand-foot skin reaction (HFSR) are relatively common toxicities that interfere with the quality of life (QoL) of patients with cancer. Anti-inflammatory tripeptide cream (ATPC) is a complex formulation of anti-inflammatory tripeptides, the CD99-agonist Binterin and the Wnt-antagonist Winhibin. The present study aimed to assess the therapeutic effects of ATPC in HFS/HFSR associated with anticancer drugs. MATERIALS AND METHODS This was a single-center, randomized, double-blind, placebo-controlled trial. Patients who developed grade 1 HFS/HFSR after systemic anticancer treatments were enrolled, and randomly assigned to receive either ATPC or placebo cream (PC) and followed up at 3-week intervals for up to 9 weeks. Primary endpoint was the development of grade ≥ 2 HFS/HFSR. RESULTS Between April 2019 and July 2022, 60 patients (31 in the ATPC and 29 in the PC group) completed the study. The incidence of grade ≥ 2 HFS/HFSR was significantly lower in the ATPC than in the PC group (25.8% vs. 51.7%, p=0.039). The ATPC showed trends towards a better QoL score, assessed by a HFSR and QoL questionnaire at 9 weeks (26.0 vs. 29.9, p=0.574), and a lower frequency of discontinuation, interruption, or dose reduction of anticancer drugs (51.6% vs. 58.6%, p=0.586) than the PC group over 9 weeks, though without statistical significance. CONCLUSION Our results showed that ATPC significantly decreased the development of grade ≥ 2 HFS/HFSR in patients already with HFS/HFSR. Therefore, ATPC may be an effective treatment for HFS/HFSR associated with anticancer drugs.
Collapse
Affiliation(s)
- Yaewon Yang
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jang-Hee Hahn
- Department of Anatomy and Cell Biology, Kangwon National University School of Medicine, Chuncheon, Korea
- SupadElixir Co., Ltd., Chuncheon, Korea
| | | | - Minkwan Jo
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Yong-Pyo Lee
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Hongsik Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jihyun Kwon
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ki Hyeong Lee
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Hye Sook Han
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| |
Collapse
|
12
|
Vij S, Too A, Tsang V, Kreutzwiser D. Analgesic medication considerations for chronic pain management post-bariatric surgery. Expert Opin Drug Metab Toxicol 2024; 20:967-976. [PMID: 39193986 DOI: 10.1080/17425255.2024.2398631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Bariatric surgery, an option for obesity management, can significantly alter gastrointestinal structure and processes. These changes can impact the pharmacokinetics (PK) of medications, which can translate to clinical differences in efficacy and safety. Chronic pain is prevalent in obesity and often persists post-bariatric surgery. AREAS COVERED This narrative review examines the PubMed literature from 1990 to January 2024 for the impact of bariatric surgery on the management of chronic pain medications including non-opioid (acetaminophen, non-steroidal anti-inflammatory drugs, antidepressants, and cannabinoids) and opioid medications. EXPERT OPINION An individualized medication management approach is ideal for post-bariatric surgery patients, as PK parameters, type of surgery, time since surgery, and patient-specific factors make it difficult to support blanket recommendations. Close monitoring of efficacy and safety outcomes is essential in chronic pain management. While the PK of acetaminophen and opioids are impacted, the value of these medications in the setting of chronic pain is dwindling as more efficacy and safety data emerges. A life-long ban of NSAIDs due to marginal ulcer risk is not endorsed; rather, we advocate for shifting the focus to marginal ulcer prevention strategies, individualized benefit-risk analysis, and safety monitoring using surrogate markers.
Collapse
MESH Headings
- Humans
- Bariatric Surgery/adverse effects
- Bariatric Surgery/methods
- Chronic Pain/drug therapy
- Chronic Pain/etiology
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacokinetics
- Analgesics, Opioid/adverse effects
- Obesity/surgery
- Analgesics/administration & dosage
- Analgesics/pharmacokinetics
- Analgesics/adverse effects
- Pain, Postoperative/drug therapy
- Pain Management/methods
- Analgesics, Non-Narcotic/administration & dosage
- Analgesics, Non-Narcotic/pharmacokinetics
- Analgesics, Non-Narcotic/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
Collapse
Affiliation(s)
- Sumani Vij
- Pharmacy Department, St. Joseph's Health Care London, London, Ontario, Canada
| | - Adriana Too
- Pharmacy Department, St. Joseph's Health Care London, London, Ontario, Canada
| | - Victor Tsang
- Pharmacy Department, St. Joseph's Health Care London, London, Ontario, Canada
| | - Denise Kreutzwiser
- Pharmacy Department and Pain Management Program, St. Joseph's Health Care London, London, Ontario, Canada
| |
Collapse
|
13
|
Guo RX, Zhang H, Chen Y, Li P, Du B. Identification of peptides from Corneum Galli Gigeri Endothelium and inhibiting H2O2-induced gastric mucosa associated with the Rho signaling pathway. FOOD BIOSCI 2024; 61:104418. [DOI: 10.1016/j.fbio.2024.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Shentu CY, Wang HB, Peng X, Xu DC, Qian LN, Chen Y, Peng LH. Progress and Challenges of Topical Delivery Technologies Meditated Drug Therapy for Osteoarthritis. Int J Nanomedicine 2024; 19:8337-8352. [PMID: 39161359 PMCID: PMC11330747 DOI: 10.2147/ijn.s466437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease commonly seen in middle-aged and elderly people. Multiple cytokines are involved in the local tissue damage in OA. Currently, non-pharmacologic and surgical interventions are the main conventional approaches for the treatment of OA. In terms of pharmaceutical drug therapy, NSAIDs and acetaminophen are mainly used to treat OA. However, it is prone to various adverse reactions such as digestive tract ulcer, thromboembolism, prosthesis loosening, nerve injury and so on. With the in-depth study of OA, more and more novel topical drug delivery strategies and vehicles have been developed, which can make up for the shortcomings of traditional dosage forms, improve the bioavailability of drugs, and significantly reduce drug side effects. This review summarizes the immunopathogenesis, treatment guidelines, and progress and challenges of topical delivery technologies of OA, with some perspectives on the future pharmacological treatment of OA proposed.
Collapse
Affiliation(s)
- Cheng-Yu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hao-Bin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiao Peng
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
| | - Dong-Chen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Li-Na Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, People’s Republic of China
| |
Collapse
|
15
|
Miorando D, Steffler AM, Vecchia CAD, Simomura VL, Veloso JJ, Buzatto MV, Nunes RKS, Somensi LB, Gutiérrez MV, Melim LISH, Pontes FMM, Silva LM, Veselinova A, González-Sánchez L, Jambrina PG, Junior WAR. Gastroprotective role of a flavonoid-rich subfraction from Fridericia chica (Bonpl.) L. G. Lohmann: a medicinal plant used in the Amazon region. Inflammopharmacology 2024:10.1007/s10787-024-01544-6. [PMID: 39126568 DOI: 10.1007/s10787-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Fridericia chica is an Amazonian plant used to treat stomach disorders. However, the pharmacological activity of flavonoids in the extract has yet to be investigated. Therefore, we considered that a flavonoid-rich F. chica subfraction (FRS) has gastroprotective functions. For this, before the induction of gastric ulcers with ethanol or piroxicam, the rats received vehicle (water), omeprazole (30 mg/kg), or FRS (30 mg/kg), and the ulcer area was measured macro and microscopically, and the antisecretory action was investigated in pylorus-ligated rats. In addition, the roles of nitric oxide (NO) and nonprotein sulfhydryl compounds (NP-SH) in the gastroprotective effects of FRS were studied. FRS reduced ethanol- and piroxicam-induced ulcerations by 81% and 77%, respectively, as confirmed histologically. Antioxidant effects were observed for FRS through the maintenance of GSH and LPO levels, and the SOD and CAT activity similar to those found in the nonulcerated group. Moreover, FRS avoided the increase in MPO activity and TNF, IL-6, IL-4 and IL-10 levels. Moreover, mucin staining increased in ulcerated rats receiving FRS, and the pharmacological mechanism gastroprotective seems to involve the NO and NP-SH in addition to antisecretory actions. The chemical study by mass spectrometry confirmed the presence of flavonoids in FRS, and molecular docking studies have shown that these compounds interact with cyclooxygenase-1 and NO synthase. Furthermore, there was no indication that FRS had cytotoxic effects. Our results support the popular use of F. chica, and we conclude that the gastroprotection effect promoted by FRS can be attributed to the combined effect of the flavonoids.
Collapse
Affiliation(s)
- Daniela Miorando
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Amanda M Steffler
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Cristian A Dalla Vecchia
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Viviane L Simomura
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Jaqueline J Veloso
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Maike V Buzatto
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Ruan K S Nunes
- Postgraduate Program in Pharmaceutical Sciences, University of Vale Do Itajaí, Itajaí, SC, Brazil
| | - Lincon B Somensi
- Postgraduate Program in Development and Society, University of Alto Vale Do Rio Do Peixe, Caçador, SC, Brazil
| | - Max V Gutiérrez
- Department of Chemical, Biological and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico
| | | | | | - Luisa M Silva
- Laboratory of TGI Pharmacology and Interactions, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Anzhela Veselinova
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Lola González-Sánchez
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Pablo G Jambrina
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Walter A Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil.
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil.
| |
Collapse
|
16
|
Park JM, Hahm KB. Dietary Walnuts Prevented Indomethacin-Induced Gastric Damage via AP-1 Transcribed 15-PGDH, Nrf2-Mediated HO-1, and n-3 PUFA-Derived Resolvin E1. Int J Mol Sci 2024; 25:7239. [PMID: 39000345 PMCID: PMC11242660 DOI: 10.3390/ijms25137239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), the most highly prescribed drugs in the world for the treatment of pain, inflammation, and fever, cause gastric mucosal damage, including ulcers, directly or indirectly, by which the development of GI-safer (-sparing) NSAIDs relates to unmet medical needs. This study aimed to document the preventive effects of walnut polyphenol extracts (WPEs) against NSAID-induced gastric damage along with the molecular mechanisms. RGM-1 gastric mucosal cells were administered with indomethacin, and the expressions of the inflammatory mediators between indomethacin alone or a combination with WPEs were compared. The expressions of the inflammatory mediators, including COX-1 and COX-2, prostaglandin E2, 15-hydroxyprostaglandin dehydrogenase (15-PGDH), and antioxidant capacity, were analyzed by Western blot analysis, RT-PCR, and ELISA, respectively. HO-1, Nrf-2, and keap1 were investigated. The in vivo animal models were followed with in vitro investigations. The NSAIDs increased the expression of COX-2 and decreased COX-1 and 15-PGDH, but the WPEs significantly attenuated the NSAID-induced COX-2 expression. Interestingly, the WPEs induced the expression of 15-PGDH. By using the deletion constructs of the 15-PGDH promoter, we found that c-Jun is the most essential determinant of the WPE-induced up-regulation of 15-PGDH expression. We confirmed that the knockdown of c-Jun abolished the ability of the WPEs to up-regulate the 15-PGDH expression. In addition, the WPEs significantly increased the HO-1 expression. The WPEs increased the nuclear translocation of Nrf2 by Keap-1 degradation, and silencing Nrf2 markedly reduced the WPE-induced HO-1 expression. We found that the WPE-induced HO-1 up-regulation was attenuated in the cells harboring the mutant Keap1, in which the cysteine 151 residue was replaced by serine. These in vitro findings were exactly validated in indomethacin-induced gastric rat models. Daily walnut intake can be a promising nutritional supplement providing potent anti-inflammatory, antioxidative, and mucosa-protective effects against NSAID-induced GI damage.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, Seongnam 13488, Republic of Korea
| |
Collapse
|
17
|
Gobba S, Kibone W, Kiguba R. Self-reported gastrointestinal adverse effects of non-steroidal anti-inflammatory drugs in female students with dysmenorrhoea at Makerere University: prevalence, discontinuation and associated factors. a cross sectional study. BMJ Open 2024; 14:e079660. [PMID: 38844394 PMCID: PMC11163621 DOI: 10.1136/bmjopen-2023-079660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Primary dysmenorrhoea occurs in up to 50% of menstruating females. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly used therapeutic remedies for dysmenorrhoea in Uganda. However, NSAIDs are associated with a 3-5 fold increase in the risk of gastrointestinal (GI) adverse drug effects. OBJECTIVES We aimed to determine the prevalence and associated factors of self-reported NSAID-related GI adverse effects in female students who use NSAIDs in managing dysmenorrhoea-associated pain at Makerere University. DESIGN A cross-sectional study. SETTING Makerere University's main campus, situated North of Kampala, Uganda. PARTICIPANTS 314 female students pursuing an undergraduate programme at Makerere University and residing in different halls of residence and hostels. OUTCOMES Social demographic data, menstrual history and treatment data. RESULTS Overall, 314 valid responses were received from female students with a median age of 22 years (IQR: 18-29 years). The median age at menarche was 13 years (IQR: 9-18 years). 41% (n=129/314) of the respondents had used medication for dysmenorrhoea and 32% (n=41/129) of whom reported NSAID-associated GI adverse effects with nausea being the most frequently reported (44%, n=18/41)Factors independently associated with GI adverse effects were: age at menarche (p=0.026), duration of menstruation (p=0.030) and use of ibuprofen (p=0.005). Females taking ibuprofen for dysmenorrhoea were about four times as likely to have NSAID-associated GI adverse effects (adjusted OR 3.87, 95% CI 1.51 to 9.91) than those who did not receive ibuprofen. Logistic regression was used to determine factors associated with self-reported adverse effects of NSAIDs among the female students. A p<0.05 was considered statistically significant. CONCLUSION We found a considerably high prevalence of NSAID-related GI adverse effects driven by factors such as age at menarche and ibuprofen use.
Collapse
Affiliation(s)
| | | | - Ronald Kiguba
- Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
18
|
Denisenko NP, Zhiryakova AS, Sychev IV, Kryukov AV, Tuchkova SN, Vakulenko OY, Averkov OV, Vechorko VI, Mirzaev KB, Sychev DA. Clinical and pharmacogenetic features of patients with upper gastrointestinal lesions at a multidisciplinary hospital: the role of nonsteroidal anti-inflammatory drugs. Drug Metab Pers Ther 2024; 39:69-79. [PMID: 38996813 DOI: 10.1515/dmpt-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVES Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed medications, but their use can be associated with a number of adverse reactions, including upper gastrointestinal lesions. The aim of the study was to identify clinical and pharmacogenetic factors associated with upper gastrointestinal lesions, including those linked to NSAIDs, in patients at a multidisciplinary hospital. METHODS The study included 92 patients (mean age 59.4±16.5 years; 47 women), who underwent esophagogastroduodenoscopy during inpatient treatment. Patients' intake of NSAIDs and gastroprotectors during the year before hospitalization was considered. Demographic, clinical, laboratory data of patients were compared between groups, including genotyping for CYP2C9*2 rs179985, CYP2C9*3 rs1057910, CYP2C8*3 rs11572080, CYP2C8*3 rs10509681, PTGS-1 rs10306135, PTGS-1 rs12353214, and PTGS-2 rs20417 using real-time PCR. RESULTS In NSAIDs+ patients, PTGS1 rs10306135 AT+TT genotypes increased the chance of developing gastrointestinal complications by 5.4 times (95 % CI=1.30-22.27). In total sample, smoking (OR=3.12, 95 % CI=1.15-8.46), and alcohol intake (OR=4.09, 95 % CI=1.05-15.87) increased odds of gastrointestinal damage. In NSAIDs+ patients omeprazole, famotidine and both famotidine and omeprazole during the last year were as ineffective as not taking gastroprotectors; in total sample famotidine (OR=0.19, 95 % CI=0.04-0.93) and two gastroprotectors (OR=0.13, 95 % CI=0.02-0.75) reduced the chance of upper gastrointestinal lesions. CONCLUSIONS Pharmacogenetic features of patients may significantly contribute to the development NSAIDs-induced upper gastrointestinal injuries.
Collapse
Affiliation(s)
- Natalia P Denisenko
- Research Institute of Molecular and Personalized Medicine, 442138 Russian Medical Academy of Continuous Professional Education , Moscow, Russian Federation
| | - Anna S Zhiryakova
- Department of Clinical Pharmacology and Therapeutics named after Academician B.E. Votchal, Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
- Department of Clinical pharmacology, Municipal Clinical Hospital No. 15 named after O.M. Filatov, Moscow, Russian Federation
| | - Ivan V Sychev
- Research Institute of Molecular and Personalized Medicine, 442138 Russian Medical Academy of Continuous Professional Education , Moscow, Russian Federation
| | - Alexander V Kryukov
- Department of Clinical Pharmacology and Therapeutics named after Academician B.E. Votchal, Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
- Department of Clinical pharmacology, Municipal Clinical Hospital No. 15 named after O.M. Filatov, Moscow, Russian Federation
| | - Svetlana N Tuchkova
- Research Institute of Molecular and Personalized Medicine, 442138 Russian Medical Academy of Continuous Professional Education , Moscow, Russian Federation
| | - Olga Y Vakulenko
- Clinical Diagnostic Department, Municipal Clinical Hospital No. 15 named after O.M. Filatov, Moscow, Russian Federation
| | - Oleg V Averkov
- The Regional Vascular Center, Municipal Clinical Hospital No. 15 named after O.M. Filatov, Moscow, Russian Federation
| | - Valery I Vechorko
- Municipal Clinical Hospital No. 15 named after O.M. Filatov, Moscow, Russian Federation
| | - Karin B Mirzaev
- Research Institute of Molecular and Personalized Medicine, 442138 Russian Medical Academy of Continuous Professional Education , Moscow, Russian Federation
| | - Dmitry A Sychev
- Department of Clinical Pharmacology and Therapeutics named after Academician B.E. Votchal, Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| |
Collapse
|
19
|
Qin HM, Luo ZK, Zhou HL, Zhu J, Xiao XY, Xiao Y, Zhuang T, Zhang GS. Novel drug-drug salt crystals of metformin with ibuprofen or naproxen: Improved solubility, dissolution rate, and synergistic antinociceptive effects. Int J Pharm 2024; 657:124126. [PMID: 38626845 DOI: 10.1016/j.ijpharm.2024.124126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
As the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method. The structures of these crystals were confirmed by single crystal and powder X-ray diffraction, Hirshfeld surface, Fourier transform infrared spectroscopy and thermal analysis. Both MET-IBU and MET-NAP showed significantly improved solubility and intrinsic dissolution rate than the pure IBU or NAP. The stability test indicated that MET-IBU and MET-NAP have excellent physical stability under stressing test (10 days) and accelerated conditions (3 months). Moreover, isobolographic analysis suggested that MET-IBU and MET-NAP exerted potent and synergistic antinociceptive effects in λ-Carrageenan-induced inflammatory pain in mice, and both of them had an advantage in rapid pain relief. These results demonstrated the potential of MET-IBU and MET-NAP to achieve synergistic antinociceptive effects by developing drug-drug salt crystals.
Collapse
Affiliation(s)
- Hui-Min Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zheng-Kang Luo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui-Ling Zhou
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin-Yi Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yang Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Gui-Sen Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
20
|
Markov PA, Sokolov AS, Artemyeva IA, Gilmutdinova IR, Fesyun AD, Eremin PS. Collagen hydrogel protects intestinal epithelial cells from indomethacin-induced damage: results of an in vitro experiment. BULLETIN OF REHABILITATION MEDICINE 2024; 23:25-33. [DOI: 10.38025/2078-1962-2024-23-2-25-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
INTRODUCTION. Indomethacin is a derivative of indoleacetic acid and has anti-inflammatory, analgesic and antipyretic effects. However, the results of numerous studies show that indomethacin, like many other nonsteroidal anti-inflammatory drugs (NSAIDs), have an inhibitory effect on the viability and functional activity of enterocytes. In this regard, the search for new ways to reduce the severity of side effects from the use of NSAIDs remains relevant. One of these approaches may be to enrich patients’ diets with non-drug biologically active compounds, including proteins. However, the effect of dietary proteins and biologically active peptides on NSAID-induced damage to the wall of the small intestine and stomach has not been sufficiently studied.
AIM. To evaluate the ability of a collagen-containing dietary supplement to protect human duodenal epithelial cells (HuTu-80 line) from indomethacin-induced damage.
MATERIALS AND METHODS. The composite collagen-containing hydrogel was provided by «FIRST ALIVE COLLAGEN» LLC (Russia) and is a registered dietary supplement. The work used a commercial culture of human skin fibroblast cells and human duodenal epithelial cells (line HuTu-80). The viability of intestinal cells and fibroblasts was assessed using light and fluorescence microscopy and flow cytometry methods.
RESULTS AND DISCUSSION. It has been established that indomethacin inhibits cell growth, causes apoptosis and death of enterocytes, and also leads to the accumulation of cells in the S-phase, which indicates a disruption in the regulation of the cell cycle. It was revealed that collagen hydrogel prevents cell death caused by indomethacin and reduces the number of apoptotic cells in the population. The protective effect of collagen hydrogel is characterized by normalization of the cell cycle of enterocytes and restoration of their growth and proliferative activity.
CONCLUSION. Thus, collagen hydrogel, in vitro, is able to reduce the pathogenic effect of indomethacin on human intestinal epithelial cells. The protective effect of collagen hydrogel is characterized by maintaining viability, inhibiting apoptotic processes, and maintaining cell cycle stability. The results obtained indicate the prospects of using a dietary supplement based on a composite collagen hydrogel as a prophylactic agent to reduce the risk of NSAID-associated gastrointestinal diseases. However, to confirm the therapeutic effectiveness of the dietary supplement, further research is necessary, both using experimental animal modeling of NSAID-associated diseases of the human gastrointestinal tract, and clinical studies.
Collapse
Affiliation(s)
- Pavel A. Markov
- National Medical Research Center for Rehabilitation and Balneology
| | | | | | | | | | - Petr S. Eremin
- National Medical Research Center for Rehabilitation and Balneology
| |
Collapse
|
21
|
Maheshwari R, Sharma M, Chidrawar VR. Niosomes based formulation containing tenoxicam: A newer solution for the rheumatic diseases. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:473-482. [PMID: 37923009 DOI: 10.1016/j.pharma.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE This investigation aimed to explore the potential of non-ionic surfactant based niosomal vesicles encapsulating tenoxicam (TN; anti-rheumatic drug) for the treatment of rheumatic diseases. MATERIAL AND METHODS Mechanical dispersion technique with controlled pressure was employed to prepare different niosomal formulations. The effects of different ratios of surfactant (span-60), lipid, and sodium deoxycholate on noisome's physicochemical properties have been examined. Moreover, inhibition of TNF-α in lipopolysaccharide-activated cultured Human leukemia monocytic (THP-1) cells were demonstrated to assess the in vitro inflammation profile. Finally, the optimized niosomal formulation (TN3) was prepared in gel matrix consist of carbopol 934 (termed as TN34) and stability was also tested at 4±2 ̊C, 25±2 ̊C, 37±2 ̊C and 45±2 ̊C for 6 months. RESULTS The optimized niosomal formulation exhibited a small vesicle size (165±14nm) and high drug encapsulation (79.64±1.5%). Niosomal gel formulation TN34 showed pH (6.7), viscosity (6810±3.34 cps), spreadability (19.11±1.87gm.cm/sec) and also displayed sustained release pattern of drug release (98.16±0.07% TN released from gel matrix in 24h) in vitro release study. TN34 exhibited substantial anti-inflammatory response, with ∼75% inhibition of TNF-α in 48h. Stability investigation revealed that refrigerator temperature is most suitable for the storage of niosomal gel. CONCLUSION Transdermal niosomal formulation displayed promising potential in the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla-509301, Hyderabad, India.
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur-425405, MH, India
| | - Vijay R Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla-509301, Hyderabad, India
| |
Collapse
|
22
|
Ruan J, Shi Z, Cao X, Dang Z, Zhang Q, Zhang W, Wu L, Zhang Y, Wang T. Research Progress on Anti-Inflammatory Effects and Related Mechanisms of Astragalin. Int J Mol Sci 2024; 25:4476. [PMID: 38674061 PMCID: PMC11050484 DOI: 10.3390/ijms25084476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic inflammation is a significant contributor to the development of cancer, cardiovascular disease, diabetes, obesity, autoimmune disease, inflammatory bowel disease, and other illnesses. In the academic field, there is a constant demand for effective methods to alleviate inflammation. Astragalin (AST), a type of flavonoid glycoside that is the primary component in several widely used traditional Chinese anti-inflammatory medications in clinical practice, has garnered attention from numerous experts and scholars. This article focuses on the anti-inflammatory effects of AST and conducts research on relevant literature from 2003 to 2023. The findings indicate that AST demonstrates promising anti-inflammatory potential in various models of inflammatory diseases. Specifically, AST is believed to possess inhibitory effects on inflammation-related factors and protein levels in various in vitro cell models, such as macrophages, microglia, and epithelial cells. In vivo studies have shown that AST effectively alleviates neuroinflammation and brain damage while also exhibiting potential for treating moderate diseases such as depression and stroke; it also demonstrates significant anti-inflammatory effects on both large and small intestinal epithelial cells. Animal experiments have further demonstrated that AST exerts therapeutic effects on colitis mice. Molecular biology studies have revealed that AST regulates complex signaling networks, including NF-κB, MAPK, JAK/STAT pathways, etc. In conclusion, this review will provide insights and references for the development of AST as an anti-inflammatory agent as well as for related drug development.
Collapse
Affiliation(s)
- Jingya Ruan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Zhongwei Shi
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Xiaoyan Cao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
| | - Zhunan Dang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
| | - Qianqian Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Wei Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Lijie Wu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Yi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Tao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| |
Collapse
|
23
|
Mohseni M, Shokrollahi P, Barzin J. Gelatin/O-carboxymethyl chitosan injectable self-healing hydrogels for ibuprofen and naproxen dual release. Int J Biol Macromol 2024; 263:130266. [PMID: 38368982 DOI: 10.1016/j.ijbiomac.2024.130266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Recently, a significantly greater clinical benefit has been reported with a combination of glucosamine sulfate and nonsteroidal anti-inflammatory drugs (NSAIDs) compared to either treatment alone for the growing osteoarthritis (OA) disease. So, this study introduces hydrogels using O-carboxymethyl chitosan (O-CMC, structurally akin glucosamine glycan), and Gelatin type A (GA) in a 1:2 ratio with β-glycerophosphate (βGPh) at varying percentages (5 %, 12.5 %, and 15 %). We show that hydrogel properties, adaptable for drug delivery or tissue engineering, can be fine-tuned based on OCMC:βGPh ratio. CMC/GA/βGPh-12.5 exhibited a swelling rate of 189 %, compressive stress of 164 kPa, and compressive modulus of 3.4 kPa. The self-healing hydrogel also exhibited excellent injectability through a 21-gauge needle, requiring only 5 N of force. Ibuprofen and Naproxen release from CMC/GA/βGPh-12.5 and CMC/GA/βGPh-15 of designed dimensions (bi-layer structures of different diameter and height) were measured, and drug release kinetics were estimated using mathematical equations (MATLAB and polyfit program). CMC/GA/βGPh-12.5 demonstrated significant antibacterial effects against E. coli and S. aureus, a high cell survival rate of 89 % against L929 fibroblasts, and strong cell adhesion, all indicating biocompatibility. These findings underscore potential of these hydrogels as promising candidates for treating inflammatory diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Mahshad Mohseni
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute (IPPI), Tehran 14975-112, Iran
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute (IPPI), Tehran 14975-112, Iran.
| | - Jalal Barzin
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute (IPPI), Tehran 14975-112, Iran
| |
Collapse
|
24
|
Li Y, Ma M, Wang X, Li J, Fang Z, Li J, Yang B, Lu Y, Xu X, Li Y. Celecoxib alleviates the DSS-induced ulcerative colitis in mice by enhancing intestinal barrier function, inhibiting ferroptosis and suppressing apoptosis. Immunopharmacol Immunotoxicol 2024; 46:240-254. [PMID: 38156770 DOI: 10.1080/08923973.2023.2300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is an inflammatory intestine disease characterized by dysfunction of the intestinal mucosal barrier, ferroptosis, and apoptosis. Previous researches suggest that celecoxib, a nonsteroidal anti-inflammatory drug, holds promise in alleviating inflammation in UC. Therefore, this study aims to investigate the effects and mechanisms of celecoxib in UC. METHODS To identify ferroptosis-related drugs and genes associated with UC, we utilized the Gene Expression Omnibus (GEO), FerrDb databases, and DGIdb database. Subsequently, we established a 2.5% DSS (Dextran sulfate sodium)-induced colitis model in mice and treated them with 10 mg/kg of celecoxib to validate the bioinformatics results. We evaluated histological pathologies, inflammatory response, intestinal barrier function, ferroptosis markers, and apoptosis regulators. RESULTS Celecoxib treatment significantly ameliorated DSS-induced UC in mice, as evidenced by the body weight change curve, colon length change curve, disease activity index (DAI) score, and histological index score. Celecoxib treatment reduced the level of pro-inflammatory factors and promoted the expressions of intestinal tight junction proteins such as Claudin-1 and Occludin, thereby restoring the integrity of the intestinal mucosal barrier. Furthermore, celecoxib treatment reversed the ferroptosis characteristics in DSS-induced mice by increasing glutathione (GSH), decreasing malondialdehyde (MDA), and increasing the expression of GPX-4 and xCT. Additionally, apoptosis was induced in mice with UC, as evidenced by increased Caspase3, BAD, P53, BAX, Caspase9 and Aifm1 production, and decreased expression of BCL-XL and BCL2. Celecoxib treatment significantly reversed the apoptotic changes in DSS-induced mice. CONCLUSION Our findings suggest that celecoxib effectively treats DSS-induced UC in mice by inhibiting ferroptosis and apoptosis.
Collapse
Affiliation(s)
- Yaxian Li
- General Surgery Department, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengdi Ma
- General Surgery Department, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaodong Wang
- The Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany
| | - Jing Li
- General Surgery Department, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziqing Fang
- General Surgery Department, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianhui Li
- General Surgery Department, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Yang
- General Surgery Department, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yida Lu
- General Surgery Department, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Xu
- General Surgery Department, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- General Surgery Department, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Neamatallah T. Caffeic acid phenethyl ester attenuates indomethacin-induced gastric ulcer in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1791-1801. [PMID: 37740773 DOI: 10.1007/s00210-023-02730-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Gastric ulcer is one of the most frequent gastrointestinal ailments worldwide. Indomethacin, one of the most potent NSAIDs, suffers undesirable ulcerogenic activity. Caffeic acid phenethyl ester (CAPE) has known health benefits. The current study examined the potential of CAPE to combat indomethacin-induced gastric ulcers in rats. Animals were randomized into 5 groups: control, Indomethacin (50 mg/kg) mg/kg), Indomethacin + CAPE (5 mg/kg/day), Indomethacin + CAPE (10 mg/kg), and Indomethacin + Omeprazole (30 mg/kg). CAPE prevented the rise in ulcer index, attenuated histopathological changes and preserved gastric mucin concentration. CAPE efficiently significantly prevented accumulation of malondialdehude (MDA) and prevented exhaustion of the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Further, CAPE prevented the rise in the expression of tumor necrosis factor-α (TNF-α), cyclo-oxygenase-2 (COX-2) and nuclear factor kapp-B (NFκB). This was associated with down-regulation of Bax and up-regulation of Bcl-2 mRNA. Finally, CAPE prevented induced indomethacin-induced decrease in heat shock protein 70 (HSP70) in gastric tissues. In conclusion, CAPE possesses the ability to prevent indomethacin-induced gastric ulcer in rats. This involves, at least partially, antioxidation, anti-inflammation, anti-apoptosis and enhancement of HSP70 expression.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
26
|
Wang Z, Yang L, Xu L, Liao J, Lu P, Jiang J. Central and peripheral mechanism of MOTS-c attenuates pain hypersensitivity in a mice model of inflammatory pain. Neurol Res 2024; 46:165-177. [PMID: 37899006 DOI: 10.1080/01616412.2023.2258584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Inflammatory pain is caused by damaged tissue or noxious stimuli, accompanied by the release of inflammatory mediators that often leads to severe hyperalgesia and allodynia with limited therapy options. Recently, a novel mitochondrial-derived peptide (named MOTS-c) was reported to regulate obesity, metabolic homeostasis and inflammatory response. The aim of this study was to investigate the effects of MOTS-c and its related regulatory mechanisms involved in inflammatory pain. METHODS Male Kunming mice (8-10 weeks-old) were intraplantar injected with formalin, capsaicin, λ-Carrageenan and complete Freund adjuvant (CFA) to establish acute and chronic inflammatory pain. The effects of MOTS-c on the above inflammatory pain mice and its underlying mechanisms were examined by behavioral tests, quantitative polymerase chain reaction (qPCR), western blotting, enzyme linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and immunofluorescence (IF). RESULTS Behavioral experiments investigated the potential beneficial effects of MOTS-c on multiple acute and chronic inflammatory pain in mice. The results showed that MOTS-c treatment produced potent anti-allodynic effects in formalin-induced acute inflammatory pain, capsaicin-induced nocifensive behaviors and λ-Carrageenan/CFA-induced chronic inflammatory pain model. Further mechanistic studies revealed that central MOTS-c treatment significantly ameliorated CFA-evoked the release of inflammatory factors and activation of glial cells and neurons in the spinal dorsal horn. Moreover, peripheral MOTS-c treatment reduced CFA-evoked inflammatory responses in the surface structure of hindpaw skin, accompanied by inhibiting excitation of peripheral calcitonin gene-related peptide (CGRP) and P2X3 nociceptive neurons. CONCLUSIONS The present study indicates that MOTS-c may serve as a promising therapeutic target for inflammatory pain.
Collapse
Affiliation(s)
- Zhe Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Long Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingfei Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinglei Liao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
27
|
Zheng L, Chen Y, Gu X, Li Y, Zhao H, Shao W, Ma T, Wu C, Wang Q. Co-delivery of drugs by adhesive transdermal patches equipped with dissolving microneedles for the treatment of rheumatoid arthritis. J Control Release 2024; 365:274-285. [PMID: 37979695 DOI: 10.1016/j.jconrel.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In this study, a dosage form consisting of dissolving (D) microneedles (M) and an adhesive (A) transdermal patch (P; DMAP) was designed and pre-clinically evaluated for the treatment of rheumatoid arthritis (RA). The tip of the dissolving microneedles (DMNs) was loaded with the macromolecular drug melittin (Mel@DMNs), this to treat joint inflammation and bone damage, while the adhesive transdermal patches contained the low molecular weight drug diclofenac sodium (DS; DS@AP) for pain relief. Mel@DMNs and DS@AP were ingeniously connected through an isolation layer for compounding Mel-DS@DMAP for the simultaneous delivery of the drugs. In vitro and in vivo experiments showed that DS@AP did not affect the mechanical properties and dissolution process of Mel@DMNs while the pores formed by the microneedles promoted the skin penetration of DS. Treatment of rats suffering from RA with Mel-DS@DMAP reduced paw swelling and damage of the synovium, joint and cartilage, suggesting that the 'patch-microneedle' dosage form might be promising for the treatment and management of RA.
Collapse
Affiliation(s)
- Lijie Zheng
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yuanzheng Chen
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xun Gu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yingying Li
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Hanqing Zhao
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Wenjun Shao
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Chuanbin Wu
- School of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Qingqing Wang
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China.
| |
Collapse
|
28
|
Wang H, Chen Z, Dang X, Wang H. Rheumatoid arthritis and gastroesophageal reflux disease: a bidirectional and multivariable two-sample Mendelian randomization study. Front Genet 2023; 14:1280378. [PMID: 38155708 PMCID: PMC10753795 DOI: 10.3389/fgene.2023.1280378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Aims/hypothesis: The association between gastroesophageal reflux disease (GERD) and rheumatoid arthritis (RA) has been reported by many observational studies in the Asian population. This study aimed to examine the bidirectional causal effects between GERD and RA by two-sample Mendelian randomization (MR) analyses using genetic evidence. Methods: Two-sample Mendelian randomization analyses were performed to determine the causal effect of GERD (129,080 cases vs. 602,604 control participants) on RA (6,236 cases vs. 147,221 control participants) and RA on GERD, respectively. The inverse-variance weighted (IVW) method was used as the primary analysis. Weighted median and MR-Egger regression were taken as supplementary analyses. Cochran's Q test evaluated the heterogeneity. Horizontal pleiotropy was detected by estimating the intercept term of MR-Egger regression. Furthermore, multivariable MR analyses were performed to exclude the influence of confounding factors, including the years of schooling, BMI, and time spent watching television, between GERD and RA. Result: Both univariate MR (UVMR) and multivariable MR (MVMR) provided valid evidence that RA was causally and positively influenced by GERD (UVMR: OR = 1.49, 95% CI = 1.25-1.76, p = 6.18*10-6; MVMR: OR = 1.69, 95% CI = 1.24-2.31, p = 8.62*10-4), whereas GERD was not influenced by RA (UVMR: OR = 1.03, 95% CI = 1.00-1.06, p = 0.042; MVMR: OR = 1.04, 95% CI = 1.00-1.07, p = 0.0271). Conclusion: Our comprehensive bidirectional MR analysis found that for the European population, GERD can induce the occurrence of RA (OR = 1.69, p < 0.00125), whereas RA only has no significant influence on GERD. In particular, patients with GERD are suffering a 69% increased risk of RA occurrence, which means GERD is a substantial risk factor for RA.
Collapse
Affiliation(s)
| | | | | | - Haoyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
29
|
Zhu K, Wang L, Liao T, Li W, Zhou J, You Y, Shi J. Progress in the development of TRPV1 small-molecule antagonists: Novel Strategies for pain management. Eur J Med Chem 2023; 261:115806. [PMID: 37713804 DOI: 10.1016/j.ejmech.2023.115806] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels are widely distributed in sensory nerve endings, the central nervous system, and other tissues, functioning as ion channel proteins responsive to thermal pain and chemical stimuli. In recent years, the TRPV1 receptor has garnered significant interest as a potential therapeutic approach for various pain-related disorders, particularly TRPV1 antagonists. The present review offers a comprehensive, systematic exploration of both first- and second-generation TRPV1 antagonists in the context of pain management. Antagonists are categorized and explicated according to their structural characteristics. Detailed examination of binding modes, structural features, and pharmacological activities, alongside a critical appraisal of the advantages and limitations inherent to typical compounds within each structural category, are undertaken. Detailed discussions of the binding modes, structural features, pharmacological activities, advantages, and limitations of typical compounds within each structural category offer valuable insights and guidance for the future research and development of safer, more effective, and more targeted TRPV1 antagonists.
Collapse
Affiliation(s)
- Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lin Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - TingTing Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
30
|
Basile A, Spagnuolo R, Cosco V, Rodinò S, Luzza F, Abenavoli L. Esophageal rupture after Heimlich maneuver: a case report and literature review. Minerva Gastroenterol (Torino) 2023; 69:566-570. [PMID: 37695097 DOI: 10.23736/s2724-5985.23.03543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The Heimlich maneuver (HM) is lifesaving in a patient choked by a foreign body. It is safe and effective and does not require specific instruments. Nevertheless, rare severe complications have been reported, such as traumatic injury of the gastrointestinal tract, pneumomediastinum, rib fracture, diaphragm rupture, acute thrombosis of abdominal aortic aneurysm and mesenteric laceration. Abdominal injuries are the most common complications, especially esophageal and gastric wall rupture. This anatomic site is the most common location of organ injuries, in consequence of the main target of the force generated by the HM. Furthermore, the execution of HM by an untrained person may increase the risk for possible serious complications. Usually, HM complications are treated surgically, but based on clinical conditions, a conservative approach is possible. In our report, we described a case of esophageal rupture after a forceful HM, and we made a brief revision of literature concerning HM complications. We have also assessed the correlation between HM complications, abuse of non-steroidal anti-inflammatory drugs and the execution of the abdominal thrusts by untrained rescuers.
Collapse
Affiliation(s)
- Antonio Basile
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Rocco Spagnuolo
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Vincenzo Cosco
- Division of Gastroenterology, Pugliese-Ciaccio District, Renato Dulbecco Hospital, Catanzaro, Italy
| | - Stefano Rodinò
- Division of Gastroenterology, Pugliese-Ciaccio District, Renato Dulbecco Hospital, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy -
| |
Collapse
|
31
|
Helal NI, El-Khodary NM, Omran GA, El-Masry SM. Effects of Resveratrol Co-Administration on Celecoxib Disposition and Pharmacokinetics in Healthy Volunteers. Drug Res (Stuttg) 2023; 73:520-527. [PMID: 37935204 DOI: 10.1055/a-2160-2186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The objective of the current study was to investigate the effects of resveratrol (RSV), a natural herbal remedy used as an adjacent anti-inflammatory supplement on, the pharmacokinetics of celecoxib in healthy male volunteers. Twelve healthy human participants were involved in two-period open-labeled trial. Celecoxib (200 mg) was given as a single oral dose under fasting conditions as a control phase. Afterward, RSV (500 mg) commenced as a single oral dose for ten days as a treatment phase. Blood samples were collected during the control and treatment phases and analyzed using the validated High-performance liquid chromatography (HPLC) method. RSV pre-exposure significantly increased the area under the curve (AUC0-24), peak plasma concentration (Cmax), absorption rate constant (ka), and prolongated half-life (t1/2), along with a decrease in elimination rate constant (ke). Meanwhile, the volume of distribution (Vd/F) and apparent total body clearance (CL/F) were significantly decreased for celecoxib. There was no significant change in the time it takes for celecoxib to reach the maximum concentration (tmax) was observed. The obtained results suggested the presence of a beneficial pharmacokinetic interaction between RSV and celecoxib. Consequently, combining resveratrol as an herbal remedy and celecoxib as an anti-inflammatory drug may synergistically reduce inflammation and osteoarthritis with minimal side effects.
Collapse
Affiliation(s)
- Nagwa I Helal
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy Damanhour University, Damanhour City, Egypt
| | - Noha M El-Khodary
- Department of Clinical Pharmacy, Faculty of Pharmacy Kafrelsheikh University, Kafrelsheikh City, Egypt
| | - Gamal A Omran
- Department of Biochemistry, Faculty of Pharmacy Damanhour University, Damanhour City, Egypt
| | - Soha M El-Masry
- Department of Pharmaceutics, Faculty of Pharmacy Damanhour University, Damanhour City, Egypt
| |
Collapse
|
32
|
Lanas A, Werz O, Mikhail E. Comparison of gastrointestinal adverse events between fast release tablets and regular acetylsalicylic acid (aspirin) galenics after short-term use: a meta-analysis of randomized clinical trials. Inflammopharmacology 2023; 31:2369-2381. [PMID: 37603157 PMCID: PMC10518280 DOI: 10.1007/s10787-023-01264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/07/2023] [Indexed: 08/22/2023]
Abstract
This study aimed at determining whether there is a difference in the safety profile between fast release (FR) aspirin tablets and regular galenic formulations of aspirin. This study was based on a clinical study database pool (Bayer HealthCare) including 84 clinical studies and 16,095 human subjects. The meta-analysis included 72 studies applying a single dose of aspirin of at most 1000 mg and was, therefore, based on individual data from 9288 subjects. Of these, 6029 subjects took aspirin and 3259 subjects took placebo. Endpoints were adverse events (AEs) of any kind and, especially of gastrointestinal (GI) nature. Event incidence and odds ratios (OR) based on Mantel-Haenszel risk estimates were calcuated. Subjects on aspirin FR had a significantly decreased OR of 0.65 [0.48, 0.90] [95% confidence interval] for all AEs and of 0.39 [0.20, 0.79] for drug-related all AEs versus placebo. The risk of all GI AEs tended to be reduced for subjects on aspirin FR (0.65 [0.41; 1.03]), but not for drug-related GI AEs. Subject on aspirin mono and aspirin mono (plain only, w/o FR) showed an increased risk of drug-related all AEs compared to placebo (1.34 [1.11; 1.62] and 1.43 [1.13; 1.80]). However, subjects on aspirin FR and those on regular aspirin had almost the same risk of all determined AEs. In conclusion, aspirin FR tablets showed a comparable GI tolerability to regular galenic formulations of aspirin after short-term treatment. Major GI complication did not occur after intake of any galenic formulation of aspirin.
Collapse
Affiliation(s)
- Angel Lanas
- University of Zaragoza, Aragón Health Research Institute (IIS Aragón), CIBERehd, Saragossa, Spain.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | | |
Collapse
|
33
|
Abdelbari MA, Elshafeey AH, Abdelbary AA, Mosallam S. Implementing Nanovesicles for Boosting the Skin Permeation of Non-steroidal Anti-inflammatory Drugs. AAPS PharmSciTech 2023; 24:195. [PMID: 37770750 DOI: 10.1208/s12249-023-02649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased lately around the world, as they are considered essential and popular drugs for effective reduction of pain and inflammation. They have analgesic, antipyretic, and anti-inflammatory activities; also, it was reported recently that they protect against various critical disorders like heart attacks and cancer. However, oral use of NSAIDs may cause several pulmonary, gastrointestinal, hepatic, cardiovascular, cerebral, and renal complications. Therefore, topical NSAIDs were recommended as a substitute to oral NSAIDs for the treatment of inflammation and pain. Still, the skin permeation of NSAIDs is considered a challenge, as the skin have an effective barrier function. Therefore, this review investigates various advanced vesicular nanocarriers and their applications through the skin, to augment the topical delivery of NSAIDs through stratum corneum over the conventional systems, enhance their effectiveness, and reduce the unwanted side effects. These innovative systems can manage bioavailability, solubility, stability, safety, and efficacy issues present in conventional systems.
Collapse
Affiliation(s)
- Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Aly Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
34
|
Belahcene S, Kebsa W, Omoboyowa DA, Alshihri AA, Alelyani M, Bakkour Y, Leghouchi E. Unveiling the Chemical Profiling Antioxidant and Anti-Inflammatory Activities of Algerian Myrtus communis L. Essential Oils, and Exploring Molecular Docking to Predict the Inhibitory Compounds against Cyclooxygenase-2. Pharmaceuticals (Basel) 2023; 16:1343. [PMID: 37895814 PMCID: PMC10609887 DOI: 10.3390/ph16101343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Considering the large spectrum of side effects caused by synthetic drugs and the development of natural alternatives utilizing Algerian flora, this study aimed to place a spotlight on the chemical profile and antioxidant and anti-inflammatory activities of Myrtus communis L. essential oils (MCEOs). In this study, essential oils (EOs) were collected via hydro-distillation of the plant's leaves, and a chemical constituent analysis was performed using gas chromatography-mass spectrophotometry (GC-MS). The in vitro antioxidant activity was evaluated using DPPH, ABTS, and hydroxyl radical scavenging tests. The in vitro anti-inflammatory capacity was estimated by studying the antidenaturation effect using bovine serum albumin (BSA) as a protein model. The in vivo anti-inflammatory activity was carried out by utilizing the classical model of carrageenan-induced paw edema in rats, using diclofenac (DCF) as the reference drug. Moreover, the molecular interaction of the compounds obtained from the GC-MS analysis was studied within the binding site of cyclooxygenase-2 (COX-2) using an in silico approach as the confirmatory tool of the in vitro and in vivo experiments. The GC-MS analysis revealed that MCEOs were mainly composed of oxygenated monoterpenes (70.56%), oxygenated sesquiterpenes (3.1%), sesquiterpenes (4.17%), and monoterpenes (8.75%). Furthermore, 1,8-cineole was the major compound (19.05%), followed by cis-geranyl acetate (11.74%), methyl eugenol (5.58%), α-terpineol (4.62%), and β-myrcene (4.40%). MCEOs exhibited remarkable concentration-dependent free radical scavenging activity, with an IC50 of 15.317 ± 0.340 µg/mL, 18.890 ± 2.190 µg/mL, and 31.877 ± 0.742 µg/mL for DPPH, ABTS, and hydroxyl radical, respectively. The significant in vitro anti-inflammatory activity due to the inhibition of BSA denaturation was proportional to the EO concentration, where the highest value was recorded at 100 μg/mL with an approximately 63.35% percentage inhibition and an IC50 of 60.351 ± 5.832 μg/mL. MCEOs showed a good in vivo anti-inflammatory effect by limiting the development of carrageenan-induced paw thickness. The in silico study indicated that, among the 60 compounds identified by the GC-MS analysis, 9 compounds were observed to have a high binding energy to cyclooxygenase-2 as compared to diclofenac. Our study revealed that EOs from Algerian Myrtus communis L. can be considered to be a promising candidate for alleviating many debilitating health problems and may provide new insights in the fields of drug design, agriculture, and the food industry.
Collapse
Affiliation(s)
- Samia Belahcene
- Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| | - Widad Kebsa
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| | - Damilola A Omoboyowa
- Laboratory of Phyto-Medicine and Computational Biology, Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko 342111, Ondo State, Nigeria
| | - Abdulaziz A Alshihri
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Magbool Alelyani
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Youssef Bakkour
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Essaid Leghouchi
- Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| |
Collapse
|
35
|
Kwon KW, Jang WY, Kim JW, Noh JK, Yi DK, Cho JY. Anti-Inflammatory Effect of Meriania hexamera Sprague by Targeting Syk Kinase in NF-κB Signaling. PLANTS (BASEL, SWITZERLAND) 2023; 12:3044. [PMID: 37687291 PMCID: PMC10490091 DOI: 10.3390/plants12173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Inflammation is a protective mechanism against harmful stimuli. There are two types of inflammation, acute and chronic, and severe diseases such as cardiovascular disease and cancer can be caused by chronic inflammation. Therefore, this research was conducted to discover new anti-inflammatory drugs. Meriania hexamera Sprague is a common herb in the Amazon region in South America. It is used as a traditional medical herb by natives, but no studies to date have investigated its anti-inflammatory activity. Using lipopolysaccharide (LPS), pam3CSK4 (Pam3), and poly(I:C), we studied the M. hexamera Sprague-Methanol Extract's (Mh-ME) in vitro anti-inflammatory functions. Using RAW264.7 cells, we detected the released nitric oxide (NO) and mRNA expression extent of inducible nitric oxide synthase (iNOS) with pro-inflammatory proteins like tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and iterleukin-1 beta (IL-1β). It was found that Mh-ME suppressed the inflammatory activities in a dose-dependent manner. In the luciferase assay, the nuclear factor kappa light chain enhancer of the activated B cells (NF-κB) pathway was inhibited by Mh-ME. Mh-ME especially acted as an inhibitor of Syk kinase according to the results from CETSA. We also confirmed that Mh-ME mitigates acute gastritis derived from HCl/EtOH in ICR mice, ameliorating the expression of IL-1β and tumor necrosis factor-alpha (TNF-α). In conclusion, Mh-ME is an herb with anti-inflammatory effects that targets Syk in the NF-κB pathway, suggesting that Mh-ME could be used as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Ki Woong Kwon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (K.W.K.); (W.Y.J.); (J.W.K.)
| | - Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (K.W.K.); (W.Y.J.); (J.W.K.)
| | - Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (K.W.K.); (W.Y.J.); (J.W.K.)
| | - Jin Kyoung Noh
- Instituto de BioEconomia, El Batan, Quito 170135, Ecuador
| | - Dong-Keun Yi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (K.W.K.); (W.Y.J.); (J.W.K.)
| |
Collapse
|
36
|
Kato M, Huynh M, Chan N, Elliott J, Trinh A, Lucero K, Vu J, Parker D, Cheruzel LE. A one-pot Pd- and P450-catalyzed chemoenzymatic synthesis of a library of oxyfunctionalized biaryl alkanoic acids leveraging a substrate anchoring approach. J Inorg Biochem 2023; 245:112240. [PMID: 37245283 DOI: 10.1016/j.jinorgbio.2023.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023]
Abstract
A one-pot chemoenzymatic approach was developed by combining Palladium-catalysis with selective cytochrome P450 enzyme oxyfunctionalization. Various iodophenyl alkanoic acids could be coupled with alkylphenyl boronic acids to generate a series of alkyl substituted biarylalkanoic acids in overall high yield. The identity of the products could be confirmed by various analytical and chromatographic techniques. Addition of an engineered cytochrome P450 heme domain mutant with peroxygenase activity upon completion of the chemical reaction resulted in the selective oxyfunctionalization of those compounds, primarily at the benzylic position. Moreover, in order to increase the biocatalytic product conversion, a reversible substrate engineering approach was developed. This involves the coupling of a bulky amino acid such as L- phenylalanine or tryptophan, to the carboxylic acid moiety. The approach resulted in a 14 to 49% overall biocatalytic product conversion increase associated with a change in regioselectivity of hydroxylation towards less favored positions.
Collapse
Affiliation(s)
- Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Michael Huynh
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Nicholas Chan
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Julien Elliott
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Amie Trinh
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Kathreena Lucero
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Julia Vu
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Daniel Parker
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Lionel E Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
37
|
Gemici B, Birsen İ, İzgüt-Uysal VN. The apelin-apela receptor APJ is necessary for formation and healing of ischemia reperfusion-induced gastric ulcer in rats. Peptides 2023; 166:171027. [PMID: 37245722 DOI: 10.1016/j.peptides.2023.171027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
The apelinergic system widely expressed and regulates hormone-enzyme secretion, motility, and protective mechanisms of the stomach. This system consists of the apelin receptor (APJ) and two peptides known as apela and apelin. The IR-induced experimental gastric ulcer model is a well-known and commonly used one that induces hypoxia and causes the release of proinflammatory cytokines. Expressions of apelin and its receptor APJ are induced by hypoxia and inflammation in the gastrointestinal tract. Apelin has been shown to affect angiogenesis positively, considered the most critical component of the healing process. Although it is known that apelin and AJP expressions are induced by inflammatory stimuli and hypoxia, stimulate endothelial cell proliferation and have a role in regenerative angiogenesis, no information or has been found in the literature regarding the role of APJ in the formation and healing of gastric mucosal lesions induced by I/R. So, we conducted a study to clarify the role of APJ in formation and healing mechanisms of IR-induced gastric lesions. Male Wistar rats were divided into five groups; control, sham-operated, IR, APJ antagonist treated-IR group (F13A+IR), and the healing groups. F13A was intravenously given to the animals. Gastric lesion index, mucosal blood flow, PGE2, NOx, 4-HNE-MDA, HO activity, and protein expressions of VEGF and HO-1 were measured. F13A application before the IR increased the mucosal injury, F13A application following the ischemia delayed the mucosal healing during the reperfusion period. Consequently, blocking apelin receptors may worsen gastric injury due to the IR and delay mucosal healing.
Collapse
Affiliation(s)
- Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| | - İlknur Birsen
- Akdeniz University, Faculty of Science, Department of Chemistry, 07070 Antalya, Turkey
| | - V Nimet İzgüt-Uysal
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07070 Antalya, Turkey
| |
Collapse
|
38
|
Cao H, Zhou XC, Li H, Wang M, Wu W, Zou J. Exercise for osteoarthritis: A global articles bibliometric analysis from 1975 to 2021. Sci Sports 2023; 38:488-497. [DOI: 10.1016/j.scispo.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|
39
|
Silva F, Costa G, Veiga F, Cardoso C, Paiva-Santos AC. Parenteral Ready-to-Use Fixed-Dose Combinations Including NSAIDs with Paracetamol or Metamizole for Multimodal Analgesia-Approved Products and Challenges. Pharmaceuticals (Basel) 2023; 16:1084. [PMID: 37630999 PMCID: PMC10459253 DOI: 10.3390/ph16081084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The combination of non-steroidal anti-inflammatory drugs (NSAIDs) with non-opioid analgesics is common in clinical practice for the treatment of acute painful conditions like post-operative and post-traumatic pain. Despite the satisfactory results achieved by oral analgesics, parenteral analgesia remains a key tool in the treatment of painful conditions when the enteral routes of administration are inconvenient. Parenteral ready-to-use fixed-dose combinations of non-opioid analgesics combinations, including NSAIDs and paracetamol or metamizole, could play a central role in the treatment of painful conditions by combining the advantages of multimodal and parenteral analgesia in a single formulation. Surprisingly, only in 2020, a parenteral ready-to-use fixed-dose combination of ibuprofen/paracetamol was launched to the market. This review aims to investigate the current availability of combinations of NSAIDs with paracetamol or metamizole in both European and American markets, and how the combination of such drugs could play a central role in a multimodal analgesia strategy. Also, we explored how the parenteral formulations of NSAIDs, paracetamol, and metamizole could serve as starting elements for the development of new parenteral ready-to-use fixed-dose combinations. We concluded that, despite the well-recognized utility of combining NSAIDs with paracetamol or metamizole, several randomized clinical trial studies demonstrate no clear advantages concerning their efficacy and safety. Future clinical trials specifically designed to assess the efficacy and safety of pre-formulated fixed-dose combinations are required to generate solid evidence about their clinical advantages.
Collapse
Affiliation(s)
- Fernando Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gustavo Costa
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Parque Industrial Manuel Lourenço Ferreira, Lote 15, 3450-232 Mortágua, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
40
|
Zhao ZJ, Sun YL, Ruan XF. Bornyl acetate: A promising agent in phytomedicine for inflammation and immune modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154781. [PMID: 37028250 DOI: 10.1016/j.phymed.2023.154781] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Bornyl acetate (BA), as a bicyclic monoterpene, is an active volatile component widely found in plants across the globe. BA can be used as essence and food flavor agent and is widely used in perfumes and food additives. It remains a key component in several proprietary Chinese medicines. PURPOSE This review summarized the pharmacological activity and research prospects of BA, making it the first of its kind to do so. Our aim is to provide a valuable resource for those pursuing research on BA. METHODS Databases including PubMed, Web of Science, and CNKI were used based on search formula "(bornyl acetate) NOT (review)" from 1967 to 2022. For the relevant knowledge of TCM, we quoted Chinese literature. Articles related to agriculture, industry, and economics were excluded. RESULTS BA showed rich pharmacological activities: It inhibits the NF-κB signal pathway via affecting the phosphorylation of IKB and the production of IKKs, inhibits the MAPK signal pathway via inhibiting the phosphorylation of ERK, JNK, and p38, down-regulates pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, up-regulates IL-11, reduces NO production, regulates immune response via up-regulating CD86+, decreases catecholamine secretion, and reduces tau protein phosphorylation. In addition to the pharmacological activities of BA, its toxicity and pharmacokinetics were also discussed in this paper. CONCLUSION BA has promising pharmacological properties, especially anti-inflammatory and immunomodulatory effects. It also has sedative properties and potential for use in aromatherapy. Compared to traditional NSAIDs, it has a more favorable safety profile while maintaining efficacy. BA has potential for developing novel drugs for treating various conditions.
Collapse
Affiliation(s)
- Zhe-Jun Zhao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Long Sun
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Fen Ruan
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
41
|
Tang G, Liu M, Ding G, Liu S, Chu Y, Cui Y, Wu J. The Efficacy of Cyclooxygenase-2 Inhibitors for the Male Treatment of Lower Urinary Tract Symptoms: A Systematic Review and Meta-Analysis. Am J Mens Health 2023; 17:15579883231176667. [PMID: 37249083 PMCID: PMC10236251 DOI: 10.1177/15579883231176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
To investigate the potential use of cyclooxygenase-2 (COX-2) inhibitors in the treatment of lower urinary tract symptoms (LUTS) in male patients, we conducted a comprehensive meta-analysis. Our study involved the identification and collection of randomized controlled trials (RCTs) from leading databases including PubMed, MEDLINE, EMBASE, and Cochrane Library. The primary objective of this analysis was to evaluate the effectiveness of COX-2 inhibitors for the treatment of LUTS. Our analysis involved six short-term (within 3 months) RCTs involving 707 patients. We found that COX-2 inhibitor treatment significantly improved the International Prostate Symptom Score (IPSS) of patients (mean difference [MD] = -2.99, 95% confidence interval (CI): -3.65 to -2.33, p < .00001), nocturia frequency (MD = -1.90; 95% CI: -3.18 to -0.61, p = .004), and maximum flow rate (Qmax) (MD = 1.02; 95% CI: 0.06 to 1.98, p = .04). However, no significant differences were found between patients in terms of changes in prostate-specific antigen (PSA) (MD = 0.02; 95% CI: -0.39 to 0.43, p = .92) and total prostate volume (TPV) (MD = -2.93; 95% CI: -6.45 to 0.59, p = .10). Therefore COX-2 inhibitors are an effective treatment for LUTS.
Collapse
Affiliation(s)
- Gonglin Tang
- Department of Urology, The Affiliated
Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ming Liu
- Department of Urology, The Affiliated
Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Second Clinical Medical College,
Binzhou Medical University, Yantai, China
| | - Guixin Ding
- Department of Urology, The Affiliated
Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shangjing Liu
- Department of Urology, The Affiliated
Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yongli Chu
- Department of Scientific Research, The
Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated
Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jitao Wu
- Department of Urology, The Affiliated
Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
42
|
van de Laar MAFJ, Schöfl R, Prevoo M, Jastorff J. Predictive value of gastrointestinal symptoms and patient risk factors for NSAID-associated gastrointestinal ulcers defined by endoscopy? Insights from a pooled analysis of two naproxen clinical trials. PLoS One 2023; 18:e0284358. [PMID: 37053160 PMCID: PMC10101403 DOI: 10.1371/journal.pone.0284358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat pain and rheumatic conditions. To facilitate patient management, we determined the predictive value of gastrointestinal (GI) symptoms and risk factors for the development of NSAID-associated GI injuries. METHODS Post-hoc analysis of pooled data from naproxen treatment arms of two identical, randomized, double-blind, controlled phase 3 trials in arthritis patients at risk of GI adverse events. Endoscopic incidence of GI ulcers at baseline, and 1, 3, and 6 months was employed as a surrogate parameter for GI injury. For GI symptom analysis, Severity of Dyspepsia Assessment questionnaire was used. For GI risk factor analysis, the high risk factors: previous GI injury, concomitant selective serotonin reuptake inhibitors or corticosteroids, ulcer history, concomitant low-dose aspirin, and age >65 years were employed. RESULTS Data of 426 naproxen patients were analyzed. Distribution of GI symptoms between patients with and without ulcer was similar; about one third of patients developing an ulcer reported no GI pain symptoms. GI symptoms experienced under naproxen treatment were thus not indicative of GI injury. The proportion of patients developing an ulcer increased with the number of risk factors present, however, about a quarter of patients without any of the analyzed risk factors still developed an ulcer. CONCLUSION GI symptoms and the number of risk factors are not reliable predictors of NSAID-induced GI injury to decide which patients need gastroprotection and will lead to a large group of patients with GI injuries. A preventive rather than reactive approach should be taken.
Collapse
Affiliation(s)
| | - Rainer Schöfl
- Department of Internal Medicine IV, Ordensklinikum Barmherzige Schwestern, Linz, Austria
| | | | | |
Collapse
|
43
|
Sohail R, Mathew M, Patel KK, Reddy SA, Haider Z, Naria M, Habib A, Abdin ZU, Razzaq Chaudhry W, Akbar A. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 2023; 15:e37080. [PMID: 37153279 PMCID: PMC10156439 DOI: 10.7759/cureus.37080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for their anti-inflammatory, antipyretic, and analgesic properties. However, their use is often associated with gastrointestinal tract (GIT) side effects due to the inhibition of both cyclooxygenase (COX)-1 and COX-2 enzymes, leading to a decrease in gastroprotective prostaglandins (PG). To minimize these adverse effects, various approaches have been explored, including selective COX-2 inhibitors, NO-NSAIDs (nitric oxide-releasing NSAIDs), and dual COX/LOX (lipoxygenase) NSAIDs. However, the effects of these gastroprotective NSAIDs on the GIT and their efficacy remains uncertain. This review aims to provide an overview of the current understanding of the effects of traditional NSAIDs and gastroprotective NSAIDs on GIT. We discuss the underlying mechanisms of GIT damage caused by NSAIDs, including mucosal injury, ulceration, and bleeding, and the potential of gastroprotective NSAIDs to mitigate these effects. We also summarize recent studies on the efficacy and safety of various gastroprotective NSAIDs and highlight the limitations and challenges of these approaches. The review concludes with recommendations for future research in this field.
Collapse
Affiliation(s)
- Rohab Sohail
- Internal Medicine, Quaid-e-Azam Medical College, Bahawalpur, PAK
| | - Midhun Mathew
- Department of Internal Medicine, Pennsylvania Hospital, Philadelphia, USA
| | - Khushbu K Patel
- Internal Medicine, Index Medical College Hospital & Research Center, Indore, IND
| | - Srija A Reddy
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, IND
| | - Zaroon Haider
- Internal Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Mansi Naria
- Internal Medicine, American University of Barbados, Bridgetown, BRB
| | - Ayesha Habib
- Internal Medicine, Punjab Medical College, Faisalabad, PAK
| | - Zain U Abdin
- Medicine, District Head Quarter Hospital, Faisalabad, PAK
| | | | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
44
|
Selenocoxib-3, a novel anti-inflammatory therapeutic effectively resolves colitis. Mol Cell Biochem 2023; 478:621-636. [PMID: 36001205 DOI: 10.1007/s11010-022-04532-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic and relapsing colonic inflammatory disease. Despite the involvement of diverse intricate mechanisms, COX mediated inflammatory pathway is crucial in the pathophysiology of colitis. Thus, COX inhibition is imperative for managing colitis-associated inflammation. However, the use of COX inhibitory classical non-steroidal anti-inflammatory drugs (NSAIDs) for inflammation resolution has been linked to sudden increased flare-ups. Therefore, considering the anti-inflammatory and pro-resolution effects of antioxidant and essential trace element Selenium (Se), a Seleno-derivative of Celecoxib called Selenocoxib-3 was characterized and evaluated for its favourable pharmacokinetics, safety margins and anti-inflammatory therapeutic potential in DSS-induced experimental colitis. The serum pharmacokinetic profiling [elimination rate constant (K) and clearance (Cl) and toxicity profiling suggested enhanced efficacy, therapeutic potential and lesser toxicity of Selenocoxib-3 as compared to its parent NSAID Celecoxib. In vivo studies demonstrated that Selenocoxib-3 efficiently resolves the gross morphological signs of DSS-induced colitis such as diarrhoea, bloody stools, weight loss and colon shortening. Further, intestinal damage evaluated by H & E staining and MPO activity suggested of histopathological disruptions, such as neutrophil infiltration, mucodepletion and cryptitis, by Selenocoxib-3. The expression profiles of COX-1/2 demonstrated mitigation of pro-inflammatory mediators thereby promoting anti-inflammatory efficacy of Selenocoxib-3 when compared with Celecoxib. The current study suggests translational applicability of Se-containing novel class of COX inhibitors for efficiently managing inflammatory disorders such as UC.
Collapse
|
45
|
Qiu H, Wang W, Hu K, Liu W, Pan S, Lv Q, Xu G, Yu Q. EuHD1 protects against inflammatory injury driven by NLRP3 inflammasome. Int Immunopharmacol 2023; 115:109712. [PMID: 37724954 DOI: 10.1016/j.intimp.2023.109712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) possessing anti-inflammatory, analgesic and antipyretic activities, are widely used in the treatment of osteoarthritis, rheumatism and rheumatoid arthritis. However, its long-term or large use will cause serious gastrointestinal injury or cardiovascular adverse reactions, which limits its clinical application. We have synthesized a new class of NSAIDs, EuHD1, which can release hydrogen sulfide and have better gastrointestinal safety. However, the anti-inflammatory molecular mechanism of the drug is still unclear. In this paper, we explored the mechanism of EuHD1 on NLRP3 inflammasome and its effects on acute lung injury and acute liver injury in mice. In vitro results demonstrated that EuHD1 inhibited macrophage pyroptosis and LDH release induced by LPS combined with ATP. In addition, EuHD1 blocked NLRP3 inflammasome activation and suppressed following Caspase-1 activation and secretion of mature IL-1β. EuHD1 restrained intracellular ROS production and the formation of ASC oligomers, which inhibited the assembly and activation of NLRP3 inflammasome. In vivo results further showed that EuHD1 alleviated LPS-induced acute lung injury in mice, and inhibited the production of mature IL-1β and Caspase-1 (p20). Besides, EuHD1 improved D-GalN/LPS-induced acute liver injury, and inhibited SOD/MDA levels and oxidative stress injury, and blocked the activation of NLRP3 inflammasome. In summary, we found that EuHD1 inhibits the assembly and activation of NLRP3 inflammasome through restraining the production of ROS and the formation of ASC oligomers, and has therapeutic effects on acute lung injury and liver injury in mice, indicating that EuHD1 has the potential to treat NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Huanhuan Qiu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Kejun Hu
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Wangwang Liu
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shumin Pan
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Qi Lv
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Guanglin Xu
- College of Life Science, Nanjing Normal University, Nanjing, China; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Qingfeng Yu
- School of Science, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
46
|
Chen W, Xu Q, Ma X, Mo J, Lin G, He G, Chu Z, Li J. Synthesis and biological evaluation of N-(benzene sulfonyl)acetamide derivatives as anti-inflammatory and analgesic agents with COX-2/5-LOX/TRPV1 multifunctional inhibitory activity. Bioorg Med Chem Lett 2023; 80:129101. [PMID: 36481449 DOI: 10.1016/j.bmcl.2022.129101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
In this study, a series of structurally novel N-(benzene sulfonyl) acetamide derivatives were designed, synthesized, and biologically evaluated as COX-2/5-LOX/TRPV1 multitarget inhibitors for anti-inflammatory and analgesic therapy. Among them, 9a and 9b displayed favorable COX-2 (9a IC50 = 0.011 μM, 9b IC50 = 0.023 μM), 5-LOX (9a IC50 = 0.046 μM, 9b IC50 = 0.31 μM) and TRPV1 (9a IC50 = 0.008 μM, 9b IC50 = 0.14 μM) inhibitory activities. The pharmacokinetic (PK) study of 9a in SD rats at the dosage of 10 mg/kg demonstrated a high oral exposure, an acceptable clearance and a favorable bioavailability (Cmax = 5807.18 ± 2657.83 ng/mL, CL = 3.24 ± 1.47 mL/min/kg, F = 96.8 %). Further in vivo efficacy studies illustrated that 9a was capable of ameliorating formalin-induced pain and inhibiting capsaicin-induced ear edema.
Collapse
Affiliation(s)
- Wenli Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Qinlong Xu
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Xiaodong Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiajia Mo
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Gaofeng Lin
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Guangwei He
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Zhaoxing Chu
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China.
| | - Jiaming Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
47
|
Abo-El Fetoh ME, Abdel-Fattah MM, Mohamed WR, Ramadan LAA, Afify H. Cyclooxygenase-2 activates EGFR-ERK1/2 pathway via PGE2-mediated ADAM-17 signaling in testosterone-induced benign prostatic hyperplasia. Inflammopharmacology 2023; 31:499-516. [PMID: 36586043 PMCID: PMC9958186 DOI: 10.1007/s10787-022-01123-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/25/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE AND DESIGN Prostatic inflammation is the driving force in benign prostatic hyperplasia (BPH). This work investigated the potential modulatory effect of COX-2 inhibition on ADAM-17/EGFR/ERK1/2 axis. MATERIALS OR SUBJECTS Adult male Wistar rats were used. TREATMENT Celecoxib (10 and 20 mg/kg; i.p.) was injected i.p. daily for three weeks. Testosterone (TST) (3 mg/kg; s.c.) was used to induce BPH. METHODS Prostatic inflammation and hyperplasia were assessed by organ weight and histopathology. Inflammatory mediators were measured using ELISA technique. Protein analysis was performed using western blotting and immunohistochemistry. Gene expression analysis was performed using qRT-PCR. Statistical analyses included one-way ANOVA and Tukey's multiple comparison test. RESULTS Testosterone-treated rats had a marked increase in COX-2, prostate weight, and index. Moreover, TST-induced COX-2 was inferred from cytoskeletal changes and was attributable to the overexpression of PGE2, NF-κB (p65), and IL-6. COX-2-derived PGE2 increased the activity of ADAM-17, TGF-α, and TNF-α. Consequently, EGFR-ERK1/2 pathway was over-activated, disrupting anti-apoptotic Bcl-2, cyclin D1, and pro-apoptotic Bax. Celecoxib reversed these effects. CONCLUSION COX-2 stimulates the ERK1/2 pathway via PGE2-ADAM-17-catalyzed shedding of TGF-α in testosterone-induced BPH. The results indicate a functional correlation between inflammation and hyperplasia in BPH.
Collapse
Affiliation(s)
- Mohammed E. Abo-El Fetoh
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Maha M. Abdel-Fattah
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Wafaa R. Mohamed
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Laila A. A. Ramadan
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| |
Collapse
|
48
|
Mikhail DS, El-Nassan HB, Mahmoud ST, Fahim SH. Nonacidic thiophene-based derivatives as potential analgesic and design, synthesis, biological evaluation, and metabolic stability study. Drug Dev Res 2022; 83:1739-1757. [PMID: 36074734 DOI: 10.1002/ddr.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
Nonsteroidal anti-inflammatory drugs represent one of the most popularly used classes of drugs. However, their long-term administration is associated with various side effects including gastrointestinal ulceration. One of the major reasons of NSAIDs ulcerogenicity is direct damage of the epithelial lining cells by the acidic moieties present in many drugs. Another drawback for this acidic group is its rapid metabolism and clearance through Phase II conjugation. Three series of thiophene and thienopyrimidine derivatives were designed and synthesized as nonacidic anti-inflammatory agents. In vivo testing of their analgesic activity indicated that compounds 2b and 7a-d showed higher PI values than that of the positive control drugs, indomethacin and celecoxib. The latter compounds 2b and 7a-d were subjected to further anti-inflammatory activity testing where they showed comparable percentage edema inhibition to that of indomethacin and celecoxib. Compounds 2b, 7a, 7c, and 7d inhibited PGE2 synthesis by 61.10%-74.54% (71.47% for indomethacin, and 80.11% for celecoxib). The same compounds inhibited the expression of rat mPGES-1 and cPGES3 by 74%-83% (77% for indomethacin, and 82% for celecoxib) and 48%-70% (62% for indomethacin, and 70% for celecoxib), respectively. The stability of the most active compound 2b in Nonenzymatic gastrointestinal fluids and in human plasma was tested. Additionally, studying the metabolic stability of compound 2b in S9 rat liver fraction showed that it displayed a slow in vitro clearance with half-life time 1.5-fold longer than indomethacin. The metabolites of 2b were predicted via UPLC-MS/MS. In silico ADMET profiling study was also included.
Collapse
Affiliation(s)
- Demiana S Mikhail
- Department, of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department, of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
49
|
Shentu CY, Yan G, Xu DC, Chen Y, Peng LH. Emerging pharmaceutical therapeutics and delivery technologies for osteoarthritis therapy. Front Pharmacol 2022; 13:945876. [PMID: 36467045 PMCID: PMC9712996 DOI: 10.3389/fphar.2022.945876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 10/03/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common joint degenerative diseases in the world. At present, the management of OA depends on the lifestyle modification and joint replacement surgery, with the lifespan of prosthesis quite limited yet. Effective drug treatment of OA is essential. However, the current drugs, such as the non-steroidal anti-inflammatory drugs and acetaminophen, as well as glucosamine, chondroitin sulfate, hyaluronic acid, are accompanied by obvious side effects, with the therapeutic efficacy to be enhanced. Recently, novel reagents such as IL-1 antagonists and nerve growth factor inhibitors have entered clinical trials. Moreover, increasing evidence demonstrated that active ingredients of natural plants have great potential for treating OA. Meanwhile, the use of novel drug delivery strategies may overcome the shortcomings of conventional preparations and enhance the bioavailability of drugs, as well as decrease the side effects significantly. This review therefore summarizes the pathological mechanisms, management strategies, and research progress in the drug molecules including the newly identified active ingredient derived from medicinal plants for OA therapy, with the drug delivery technologies also summarized, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for OA therapy.
Collapse
Affiliation(s)
- Cheng-Yu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Chen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
50
|
Matheny RW, Kolb AL, Geddis AV, Roberts BM. Celecoxib impairs primary human myoblast proliferation and differentiation independent of cyclooxygenase 2 inhibition. Physiol Rep 2022; 10:e15481. [PMID: 36325583 PMCID: PMC9630763 DOI: 10.14814/phy2.15481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) for treatment of musculoskeletal injuries is commonplace in the general, athletic, and military populations. While NSAIDs have been studied in a variety of tissues, the effects of NSAIDs on skeletal muscle have not been fully defined. To address this, we investigated the degree to which the cyclooxygenase (COX)-2-selective NSAID celecoxib affects muscle cell proliferation, differentiation, anabolic signaling, and mitochondrial function in primary human skeletal myoblasts and myotubes. Primary muscle cells were treated with celecoxib or NS-398 (a pharmacological inhibitor of COX-2) as a control. Celecoxib administration significantly reduced myoblast proliferation, viability, fusion, and myotube area in a dose-dependent manner, whereas NS-398 had no effect on any of these outcomes. Celecoxib treatment was also associated with reduced phosphorylation of ribosomal protein S6 in myoblasts, and reduced phosphorylation of AKT, p70S6K, S6, and ERK in myotubes. In contrast, NS-398 did not alter phosphorylation of these molecules in myoblasts or myotubes. In myoblasts, celecoxib significantly reduced mitochondrial membrane potential and respiration, as evidenced by the decreased citric acid cycle (CAC) intermediates cis-aconitic acid, alpha-keto-glutarate acid, succinate acid, and malic acid. Similar results were observed in myotubes, although celecoxib also reduced pyruvic acid, citric acid, and fumaric acid. NS-398 did not affect CAC intermediates in myoblasts or myotubes. Together, these data reveal that celecoxib inhibits proliferation, differentiation, intracellular signaling, and mitochondrial function in primary human myoblasts and myotubes independent of its function as a COX-2 inhibitor.
Collapse
Affiliation(s)
- Ronald W. Matheny
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Military Operational Medicine Research ProgramFt. DetrickMarylandUSA
| | - Alexander L. Kolb
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Alyssa V. Geddis
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Brandon M. Roberts
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|