1
|
Wagner J, Handley A, Donato CM, Lyons EA, Pavlic D, Ong DS, Bonnici R, Bogdanovic-Sakran N, Parker EPK, Bronowski C, Thobari JA, Satria CD, Nirwati H, Witte D, Jere KC, Mpakiza A, Watts E, Turner A, Boniface K, Mandolo J, Justice F, Bar-Zeev N, Iturriza-Gomara M, Buttery JP, Cunliffe NA, Soenarto Y, Bines JE. Early-life gut microbiome associates with positive vaccine take and shedding in neonatal schedule of the human neonatal rotavirus vaccine RV3-BB. Nat Commun 2025; 16:3432. [PMID: 40210877 PMCID: PMC11986061 DOI: 10.1038/s41467-025-58632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Rotavirus vaccines are less effective in high mortality regions. A rotavirus vaccine administered at birth may overcome challenges to vaccine uptake posed by a complex gut microbiome. We investigated the association between the microbiome and vaccine responses following RV3-BB vaccine (G3P[6]) administered in a neonatal schedule (dose 1: 0-5 days), or infant schedule (dose 1: 6-8 weeks) in Indonesia (Phase 2b efficacy study) (n = 478 samples/193 infants) (ACTRN12612001282875) and in Malawi (Immunigenicity study) (n = 355 samples/186 infants) (NCT03483116). Vaccine responses assessed using anti-rotavirus IgA seroconversion (IgA), stool shedding of vaccine virus and vaccine take (IgA seroconversion and/or shedding). Here we report, high alpha diversity, beta diversity differences and high abundance of Bacteroides is associated with positive vaccine take and shedding following RV3-BB administered in the neonatal schedule, but not with IgA seroconversion, or in the infant schedule. Higher alpha diversity was associated with shedding after three doses of RV3-BB in the neonatal schedule compared to non-shedders, or the placebo group. High abundance of Streptococcus and Staphylococcus is associated with no shedding in the neonatal schedule group. RV3-BB vaccine administered in a neonatal schedule modulates the early microbiome environment and presents a window of opportunity to optimise protection from rotavirus disease.
Collapse
Affiliation(s)
- Josef Wagner
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Respiratory Virus and Microbiome Initiative, Wellcome Sanger Institute, Hinxton, UK.
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
| | - Amanda Handley
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Medicines Development for Global Health, Melbourne, Victoria, Australia
| | - Celeste M Donato
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Eleanor A Lyons
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Daniel Pavlic
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | - Rhian Bonnici
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | - Edward P K Parker
- Department of Infectious Disease Epidemiology and International Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Christina Bronowski
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jarir At Thobari
- Department of Pharmacology and Therapy, Faculty of Medicine, Nursing and Universitas Gadjah Mada, Yogyakarta, Indonesia
- Pediatric Research Office, Department of Pediatrics, Faculty of Medicine, Nursing and Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cahya Dewi Satria
- Pediatric Research Office, Department of Pediatrics, Faculty of Medicine, Nursing and Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hera Nirwati
- Department of Microbiology, Faculty of Medicine, Nursing and Universitas Gadjah Mada, Yogyakarta, Indonesia, Faculty of Medicine, Nursing and Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Desiree Witte
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi Liverpool Wellcome Programme, Blantyre, P.O. Box 30096, Chichiri, Malawi
| | - Khuzwayo C Jere
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi Liverpool Wellcome Programme, Blantyre, P.O. Box 30096, Chichiri, Malawi
| | - Ashley Mpakiza
- Malawi Liverpool Wellcome Programme, Blantyre, P.O. Box 30096, Chichiri, Malawi
| | - Emma Watts
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ann Turner
- Malawi Liverpool Wellcome Programme, Blantyre, P.O. Box 30096, Chichiri, Malawi
| | - Karen Boniface
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jonathan Mandolo
- Malawi Liverpool Wellcome Programme, Blantyre, P.O. Box 30096, Chichiri, Malawi
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Frances Justice
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Naor Bar-Zeev
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miren Iturriza-Gomara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- GSK Vaccines for Global Health Institute, Sienna, Italy
| | - Jim P Buttery
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Infectious Diseases, Royal Children's Hospital, Parkville, Australia
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yati Soenarto
- Pediatric Research Office, Department of Pediatrics, Faculty of Medicine, Nursing and Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Julie E Bines
- Enteric Diseases, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Australia.
| |
Collapse
|
2
|
Fusco EM, Bower L, Polidoro R, Minns AM, Lindner SE, Schmidt NW. Microbiome-mediated modulation of immune memory to P. yoelii affects the resistance to secondary cerebral malaria challenge. Immunohorizons 2025; 9:vlaf009. [PMID: 40193560 DOI: 10.1093/immhor/vlaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/29/2025] [Indexed: 04/09/2025] Open
Abstract
Malaria is caused by protozoan parasites in the genus Plasmodium. Over time individuals slowly develop clinical immunity to malaria, but this process occurs at variable rates, and the mechanism of protection is not fully understood. We have recently demonstrated that in genetically identical C57BL/6N mice, gut microbiota composition dramatically impacts the quality of the humoral immune response to Plasmodium yoelii and subsequent protection against a lethal secondary challenge with Plasmodium berghei ANKA in C57BL/6N mice. Here, we utilize this genetically identical, gut microbiome-dependent model to investigate how the gut microbiota modulate immunological memory, hypothesizing that the gut microbiome impacts the formation and functionality of immune memory. In support of this hypothesis, P. yoelii hyperparasitemia-resistant C57BL/6N mice exhibit increased protection against P. berghei ANKA-induced experimental cerebral malaria (ECM) compared to P. yoelii hyperparasitemia-susceptible C57BL/6N mice. Despite differences in protection against ECM, P. yoelii-resistant and -susceptible mice accumulate similar numbers of memory B cells (MBCs) and memory T cells. Following challenge with P. berghei ANKA, P. yoelii-resistant mice generated more rapid germinal center reactions; however, P. yoelii-resistant and -susceptible mice had similar titers of P. yoelii- and P. berghei-specific antibodies. In contrast, P. yoelii-resistant mice had an increased number of regulatory T cells in response to secondary challenge with P. berghei ANKA, which may dampen the immune-mediated breakdown of the blood-brain barrier and susceptibility to P. berghei-induced ECM. These findings demonstrate the ability of the gut microbiome to shape immune memory and the potential to enhance resistance to severe malaria outcomes.
Collapse
Affiliation(s)
- Elizabeth M Fusco
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Layne Bower
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rafael Polidoro
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Allen M Minns
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Scott E Lindner
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Dutta S, Chatterjee N, Gallina NLF, Kar S, Koley H, Nanda PK, Biswas O, Das AK, Biswas S, Bhunia AK, Dhar P. Diet, microbiome, and probiotics establish a crucial link in vaccine efficacy. Crit Rev Microbiol 2025:1-26. [PMID: 40110742 DOI: 10.1080/1040841x.2025.2480230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Vaccination plays a critical role in public health by reducing the incidence and prevalence of infectious diseases. The efficacy of a vaccine has numerous determinants, which include age, sex, genetics, environment, geographic location, nutritional status, maternal antibodies, and prior exposure to pathogens. However, little is known about the role of gut microbiome in vaccine efficacy and how it can be targeted through dietary interventions to improve immunological responses. Unveiling this link is imperative, particularly in the post-pandemic world, considering impaired COVID-19 vaccine response observed in dysbiotic individuals. Therefore, this article aims to comprehensively review how diet and probiotics can modulate gut microbiome composition, which is linked to vaccine efficacy. Dietary fiber and polyphenolic compounds derived from plant-based foods improve gut microbial diversity and vaccine efficacy by promoting the growth of short-chain fatty acids-producing microbes. On the other hand, animal-based foods have mixed effects - whey protein and fish oil promote gut eubiosis and vaccine efficacy. In contrast, lard and red meat have adverse effects. Studies further indicate that probiotic supplements exert varied effects, mostly strain and dosage-specific. Interlinking diet, microbiome, probiotics, and vaccines will reveal opportunities for newer research on diet-induced microbiome-manipulated precision vaccination strategies against infectious diseases.
Collapse
Affiliation(s)
- Soumam Dutta
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Sanjukta Kar
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| |
Collapse
|
4
|
Loddo F, Laganà P, Rizzo CE, Calderone SM, Romeo B, Venuto R, Maisano D, Fedele F, Squeri R, Nicita A, Nirta A, Genovese G, Bartucciotto L, Genovese C. Intestinal Microbiota and Vaccinations: A Systematic Review of the Literature. Vaccines (Basel) 2025; 13:306. [PMID: 40266208 PMCID: PMC11946530 DOI: 10.3390/vaccines13030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Vaccination constitutes a low-cost, safe, and efficient public health measure that can help prevent the spread of infectious diseases and benefit the community. The fact that vaccination effectiveness varies among populations, and that the causes of this are still unclear, indicates that several factors are involved and should be thoroughly examined. The "intestinal microbiota" is the most crucial of these elements. Numerous clinical studies demonstrate the intestinal microbiota's significance in determining the alleged "immunogenicity" and efficacy of vaccines. This systematic review aimed to review all relevant scientific literature and highlight the role of intestinal microbiota in COVID-19, Salmonella typhi, Vibrio cholerae, and rotavirus vaccinations. Materials and Methods: The MESH terms "vaccines" and "microbiota" were used to search the major scientific databases PubMed, SciVerse Scopus, Web of Knowledge, and the Cochrane Central Register of Controlled Clinical Trials. Results: Between February 2024 and October 2024, the analysis was conducted using electronic databases, yielding a total of 235 references. Finally, 24 RCTs were chosen after meeting all inclusion criteria: eight studies of COVID-19, two studies of Salmonella typhi, three studies of Vibrio cholerae, and eleven studies of rotavirus. Only six of these demonstrated good study quality with a Jadad score of three or four. Conclusions: According to the review's results, the intestinal microbiota surely plays a role in vaccinations' enhanced immunogenicity, especially in younger people. As it is still unclear what mechanisms underlie this effect, more research is needed to better understand the role of the intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Giovanni Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| | | | - Cristina Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| |
Collapse
|
5
|
Rossouw C, Ryan FJ, Lynn DJ. The role of the gut microbiota in regulating responses to vaccination: current knowledge and future directions. FEBS J 2025; 292:1480-1499. [PMID: 39102299 PMCID: PMC11927049 DOI: 10.1111/febs.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Antigen-specific B and T cell responses play a critical role in vaccine-mediated protection against infectious diseases, but these responses are highly variable between individuals and vaccine immunogenicity is frequently sub-optimal in infants, the elderly and in people living in low- and middle-income countries. Although many factors such as nutrition, age, sex, genetics, environmental exposures, and infections may all contribute to variable vaccine immunogenicity, mounting evidence indicates that the gut microbiota is an important and targetable factor shaping optimal immune responses to vaccination. In this review, we discuss evidence from human, preclinical and experimental studies supporting a role for a healthy gut microbiota in mediating optimal vaccine immunogenicity, including the immunogenicity of COVID-19 vaccines. Furthermore, we provide an overview of the potential mechanisms through which this could occur and discuss strategies that could be used to target the microbiota to boost vaccine immunogenicity where it is currently sub-optimal.
Collapse
Affiliation(s)
- Charné Rossouw
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| | - Feargal J. Ryan
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| | - David J. Lynn
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| |
Collapse
|
6
|
Mojgani N, Ashique S, Moradi M, Bagheri M, Garg A, Kaushik M, Hussain MS, Yasmin S, Ansari MY. Gut Microbiota and Postbiotic Metabolites: Biotic Intervention for Enhancing Vaccine Responses and Personalized Medicine for Disease Prevention. Probiotics Antimicrob Proteins 2025. [DOI: 10.1007/s12602-025-10477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 05/04/2025]
|
7
|
Burke RM, Ramani S, Lynch J, Cooper LV, Cho H, Bandyopadhyay AS, Kirkwood CD, Steele AD, Kang G. Geographic disparities impacting oral vaccine performance: Observations and future directions. Clin Exp Immunol 2025; 219:uxae124. [PMID: 39774633 PMCID: PMC11773816 DOI: 10.1093/cei/uxae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Oral vaccines have several advantages compared with parenteral administration: they can be relatively cheap to produce in high quantities, easier to administer, and induce intestinal mucosal immunity that can protect against infection. These characteristics have led to successful use of oral vaccines against rotavirus, polio, and cholera. Unfortunately, oral vaccines for all three diseases have demonstrated lower performance in the highest-burden settings where they are most needed. Rotavirus vaccines are estimated to have >85% effectiveness against hospitalization in children <12 months in countries with low child mortality, but only ~65% effectiveness in countries with high child mortality. Similarly, oral polio vaccines have lower immunogenicity in developing country settings compared with high-resource settings. Data are more limited for oral cholera vaccines, but suggest lower titers among children compared with adults, and, for some vaccines, lower efficacy in endemic settings compared with non-endemic settings. These disparities are likely multifactorial, and available evidence suggests a role for maternal factors (e.g. transplacental antibodies, breastmilk), host factors (e.g. genetic polymorphisms-with the best evidence for rotavirus-or previous infection), and environmental factors (e.g. gut microbiome, co-infections). Overall, these data highlight the rather ambiguous and often contradictory nature of evidence on factors affecting oral vaccine response, cautioning against broad extrapolation of outcomes based on one population or one vaccine type. Meaningful impact on performance of oral vaccines will likely only be possible with a suite of interventions, given the complex and multifactorial nature of the problem, and the degree to which contributing factors are intertwined.
Collapse
Affiliation(s)
- Rachel M Burke
- Global Development Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Julia Lynch
- Office of the Director General, International Vaccine Institute, Seoul, Republic of Korea
| | - Laura V Cooper
- School of Public Health, Imperial College London, London, UK
| | - Haeun Cho
- Department of Data Science and Innovation, International Vaccine Institute, Seoul, Republic of Korea
| | | | - Carl D Kirkwood
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - A Duncan Steele
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Gagandeep Kang
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
8
|
Haindongo NJ, Seheri M, Magwira CA. Significant abundance of bacterial flagellin and expression of its surface localized receptor toll-like receptor 5 and cytokine interleukin-22 in South African infants with poor oral rotavirus vaccine take. Gut Pathog 2025; 17:3. [PMID: 39825457 PMCID: PMC11740523 DOI: 10.1186/s13099-024-00672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
Bacterial flagellin, a potent intestinal innate immune activator, prevents murine rotavirus (RV) infection independent of adaptive immunity and interferons. The flagellin-induced immunity is mediated by Toll-like receptor (TLR5) and Nod-like receptor C4 (NLRC4), which elicit the production of interleukins 22 (IL-22) and IL-18, respectively. Here, we assessed whether a high abundance of flagellin at the time of vaccination would negatively affect the oral RV vaccine take. Fecal samples were collected from infants a week after first dose of Rotarix vaccination to establish vaccine shedders (n = 50) and non-shedders (n = 44). The abundance of flagellin and expression of flagellin-encoding fliC, TLR5 and NLRC4, IL-22 and IL-18 genes was determined by qPCR. There were no differences in the abundance of flagellin between vaccine shedders and non-shedders (p = 0.15). However, the expression of FliC was increased 7.5-fold in non-shedders versus shedders (p = 0.001). Similarly, TLR5 (p = 0.045), and not NLRC4 (p = 0.507,) was significantly expressed in non-shedders versus shedders. The expression of IL-22 (p = 0.054), and not IL-18 dependent NLRC4 (p = 0.650), was increased 3.4-fold in non-shedders versus shedders. Collectively, our observations suggest a possible negative impact of the abundance of viable flagellated bacteria at the time of vaccination on the replication and therefore the performance of RV vaccines.
Collapse
Affiliation(s)
- Nontlantla J Haindongo
- Diarrheal Pathogens Research Unit (DPRU), Department of Virology, Sefako Makgatho Health Sciences University, Ga-rankuwa, Pretoria, South Africa
| | - Mapaseka Seheri
- Diarrheal Pathogens Research Unit (DPRU), Department of Virology, Sefako Makgatho Health Sciences University, Ga-rankuwa, Pretoria, South Africa
| | - Cliff A Magwira
- Diarrheal Pathogens Research Unit (DPRU), Department of Virology, Sefako Makgatho Health Sciences University, Ga-rankuwa, Pretoria, South Africa.
- Department of Medical Virology, School of Medicine, Sefako Makgatho Health Sciences University, Molotlegi St, Ga-Rankuwa 0208, Pretoria, South Africa.
| |
Collapse
|
9
|
Obregon-Gutierrez P, Mahmmod Y, Barba-Vidal E, Sibila M, Correa-Fiz F, Aragón V. Pig nasal and rectal microbiotas are involved in the antibody response to Glaesserella parasuis. Sci Rep 2025; 15:2347. [PMID: 39824862 PMCID: PMC11742689 DOI: 10.1038/s41598-025-85867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Vaccination stands as one of the most sustainable and promising strategies to control infectious diseases in animal production. Nevertheless, the causes for antibody response variation among individuals are poorly understood. The animal microbiota has been shown to be involved in the correct development and function of the host immunity, including the antibody response. Here, we studied the nasal and rectal microbiota composition in association with the antibody response against the pathobiont Glaesserella parasuis. The nasal and rectal microbiotas of 24 piglets were sampled in two farms before vaccination and in one unvaccinated farm (naturally exposed to the pathobiont) at similar time. Microbiota composition was inferred by V3V4 16S rRNA gene sequencing and bioinformatics analysis, and the antibody response was quantified using the variation between the levels before and after vaccination (normalized per farm). Piglets with higher antibody responses showed more diverse nasal and rectal microbial communities compared to piglets with lower responses. Moreover, swine nasal core microbiota colonizers were associated with higher antibody levels, such as several members from Bacteroidales and Clostridiales orders and genera including Moraxella, Staphylococcus, Fusobacterium and Neisseria. Regarding taxa found in the rectal microbiota, associations with antibody responses were detected only at order level, pointing towards a positive role for Clostridiales while negative for Enterobacteriales. Altogether, these results suggest that the microbiota is associated with the antibody response to G. parasuis (and probably to other pathogens) and serves as starting point to understand the factors that contribute to immunization in pigs.
Collapse
Affiliation(s)
- Pau Obregon-Gutierrez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Yasser Mahmmod
- Department of Veterinary Clinical Sciences, College of Veterinary, Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | | | - Marina Sibila
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Florencia Correa-Fiz
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| | - Virginia Aragón
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
10
|
Vasquez R, Song JH, Mendoza RM, Hwang I, Bagon BB, Engstrand L, Valeriano VD, Kang D. Oral Immunisation With Non-GMO Surface Displayed SARS-CoV-2 Spike Epitopes on Bacteria-Like Particles Provokes Robust Humoral and Cellular Immune Responses, and Modulated the Gut Microbiome in Mice. Microb Biotechnol 2025; 18:e70073. [PMID: 39797809 PMCID: PMC11724470 DOI: 10.1111/1751-7915.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp., are promising strategies for developing safe and effective vaccines against SARS-CoV-2. In this study, we designed a non-GMO surface-displayed SARS-CoV-2 spike S1 epitope on Limosilactobacillus fermentum-derived bacteria-like particles (BLPs). After that, we evaluated its efficacy to induce immune responses in immunocompetent mice. Moreover, we examined the influence of oral immunisation on the gut microbiome and microbiota metabolites. Twenty-eight 6-week-old male C57BL/6 mice were orally immunised with the following: PBS (control), Lm. fermentum-derived BLPs only, BLPs displaying SARS-CoV-2 spike S1-2, or BLPs displaying SARS-CoV-2 spike S1-3 epitopes. Our results showed that mucosal immunisation of mice with surface-displayed SARS-CoV-2 spike epitopes provoked high-level secretory IgA and systemic IgG production. Moreover, the immunisation exhibited a Th1-like immune response, characterised by an elevated IgG2a-to-IgG1 ratio and high antiviral IFN-γ production. In addition, we observed gut microbiome modulation and increased butyrate production in immunised mice. Overall, the use of Lm. fermentum-derived BLPs and the anchor CshA to display SARS-CoV-2 spike S1epitopes is a promising novel strategy in developing a cost-effective, non-GMO mucosal vaccine alternative against SARS-CoV-2.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal BiotechnologyDankook UniversityCheonanKorea
| | - Ji Hoon Song
- Department of Animal BiotechnologyDankook UniversityCheonanKorea
| | | | - In‐Chan Hwang
- Department of Animal BiotechnologyDankook UniversityCheonanKorea
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR)Karolinska InstitutetStockholmSweden
| | | | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR)Karolinska InstitutetStockholmSweden
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR)Karolinska InstitutetStockholmSweden
| | - Dae‐Kyung Kang
- Department of Animal BiotechnologyDankook UniversityCheonanKorea
| |
Collapse
|
11
|
Ardura-Garcia C, Curtis N, Zimmermann P. Systematic review of the impact of intestinal microbiota on vaccine responses. NPJ Vaccines 2024; 9:254. [PMID: 39706841 DOI: 10.1038/s41541-024-01000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/17/2024] [Indexed: 12/23/2024] Open
Abstract
The intestinal microbiota plays a critical role in host immunity and might contribute to the significant variation between individuals' vaccine responses. A systematic search was done using MEDLINE and Embase to identify original human studies investigating the association between intestinal microbiota composition and humoral and cellular vaccine responses. In total, 30 publications (26 studies, 14 in infants, 12 in adults), were included. Of these, 26 publications found an association between intestinal microbiota composition and vaccine responses. A beneficial effect of Actynomycetota (particularly Bifidobacterium) and a detrimental effect of Pseudomonadota (particularly Gammaproteobacteria) were observed across studies. Study designs were highly heterogenous, with variation in vaccine type, outcome measure, timing of stool analysis and analysis methods. Overall, studies support the concept that the composition of the intestinal microbiota influences vaccine responses. Further adequately powered studies are needed to confirm this association and inform potential microbiota-targeted interventions to optimise vaccine responses.
Collapse
Affiliation(s)
- Cristina Ardura-Garcia
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department for Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
12
|
Gulliver EL, Di Simone SK, Chonwerawong M, Forster SC. Unlocking the potential for microbiome-based therapeutics to address the sustainable development goal of good health and wellbeing. Microb Biotechnol 2024; 17:e70041. [PMID: 39487814 PMCID: PMC11531172 DOI: 10.1111/1751-7915.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Recent years have witnessed major advances and an ever-growing list of healthcare applications for microbiome-based therapeutics. However, these advances have disproportionately targeted diseases common in high-income countries (HICs). Within low- to middle-income countries (LMIC), opportunities for microbiome-based therapeutics include sexual health epidemics, maternal health, early life mortality, malnutrition, vaccine response and infectious diseases. In this review we detail the advances that have been achieved in microbiome-based therapeutics for these areas of healthcare and identify where further work is required. Current efforts to characterise microbiomes from LMICs will aid in targeting and optimisation of therapeutics and preventative strategies specifically suited to the unmet needs within these populations. Once achieved, opportunities from disease treatment and improved treatment efficacy through to disease prevention and vector control can be effectively addressed using probiotics and live biotherapeutics. Together these strategies have the potential to increase individual health, overcome logistical challenges and reduce overall medical, individual, societal and economic costs.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Sara K. Di Simone
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Ritchie Centre, HudsonInstitute of Medical ResearchMelbourneVictoriaAustralia
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
13
|
Hu J, Wu J, Cao H, Luan N, Lin K, Zhang H, Gao D, Lei Z, Li H, Liu C. Effects of Rotavirus NSP4 on the Immune Response and Protection of Rotavirus-Norovirus Recombinant Subunit Vaccines in Different Immune Pathways. Vaccines (Basel) 2024; 12:1025. [PMID: 39340055 PMCID: PMC11436106 DOI: 10.3390/vaccines12091025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Diarrheal disease continues to be a major cause of global morbidity and mortality among children under 5 years of age. To address the current issues associated with oral attenuated rotavirus vaccines, the study of parenteral rotavirus vaccines has promising prospects. In our previous study, we reported that rotavirus nonstructural protein 4 (NSP4) did not increase the IgG antibody titer of co-immune antigen but did have a protective effect against diarrhea via the intramuscular injection method. Here, we explored whether NSP4 can exert adjuvant effects on mucosal immune pathways. In this study, we immunized mice via muscle and nasal routes, gavaged them with the rotavirus Wa strain or the rotavirus SA11 strain, and then tested the protective effects of immune sera against both viruses. The results revealed that the serum-specific VP8* IgG antibody titers of the mice immunized via the nasal route were much lower than those of the mice immunized by intramuscular injection, and the specific IgA antibodies were almost undetectable in the bronchoalveolar lavage fluid (BALF). NSP4 did not increase the titer of specific VP8* antibodies in either immune pathway. Therefore, in the two vaccines (PP-NSP4-VP8* and PP-VP8*+NSP4) used in this study, NSP4 was unable to perform its potential adjuvant role through the mucosal immune pathway. Instead, NSP4 was used as a co-immunized antigen to stimulate the mice to produce specific binding antibodies that play a protective role against diarrhea.
Collapse
Affiliation(s)
- Jingping Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Dandan Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhentao Lei
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
14
|
Liu Y, Zhou J, Yang Y, Chen X, Chen L, Wu Y. Intestinal Microbiota and Its Effect on Vaccine-Induced Immune Amplification and Tolerance. Vaccines (Basel) 2024; 12:868. [PMID: 39203994 PMCID: PMC11359036 DOI: 10.3390/vaccines12080868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
This review provides the potential of intestinal microbiota in vaccine design and application, exploring the current insights into the interplay between the intestinal microbiota and the immune system, with a focus on its intermediary function in vaccine efficacy. It summarizes families and genera of bacteria that are part of the intestinal microbiota that may enhance or diminish vaccine efficacy and discusses the foundational principles of vaccine sequence design and the application of gut microbial characteristics in vaccine development. Future research should further investigate the use of multi-omics technologies to elucidate the interactive mechanisms between intestinal microbiota and vaccine-induced immune responses, aiming to optimize and improve vaccine design.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yangping Wu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, China
| |
Collapse
|
15
|
Cárcamo-Calvo R, Boscá-Sánchez I, López-Navarro S, Navarro-Lleó N, Peña-Gil N, Santiso-Bellón C, Buesa J, Gozalbo-Rovira R, Rodríguez-Díaz J. Immunogenicity of a Rotavirus VP8* Multivalent Subunit Vaccine in Mice. Viruses 2024; 16:1135. [PMID: 39066297 PMCID: PMC11281511 DOI: 10.3390/v16071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Rotavirus remains a significant public health threat, especially in low-income countries, where it is the leading cause of severe acute childhood gastroenteritis, contributing to over 128,500 deaths annually. Although the introduction of the Rotarix and RotaTeq vaccines in 2006 marked a milestone in reducing mortality rates, approximately 83,158 preventable deaths persisted, showing ongoing challenges in vaccine accessibility and effectiveness. To address these issues, a novel subcutaneous vaccine formulation targeting multiple rotavirus genotypes has been developed. This vaccine consists of nine VP8* proteins from nine distinct rotavirus genotypes and sub-genotypes (P[4], P[6], P[8]LI, P[8]LIII, P[8]LIV, P[9], P[11], P[14], and P[25]) expressed in E. coli. Two groups of mice were immunized either with a single immunogen, the VP8* from the rotavirus Wa strain (P[8]LI), or with the nonavalent formulation. Preliminary results from mouse immunization studies showed promising outcomes, eliciting antibody responses against six of the nine immunogens. Notably, significantly higher antibody titers against VP8* P[8]LI were observed in the group immunized with the nonavalent vaccine compared to mice specifically immunized against this genotype alone. Overall, the development of parenteral vaccines targeting multiple rotavirus genotypes represents a promising strategy in mitigating the global burden of rotavirus-related morbidity and mortality, offering new avenues for disease prevention and control.
Collapse
Affiliation(s)
- Roberto Cárcamo-Calvo
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Irene Boscá-Sánchez
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
| | - Sergi López-Navarro
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Noemi Navarro-Lleó
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
| | - Nazaret Peña-Gil
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| |
Collapse
|
16
|
Heston SM, Hurst JH, Kelly MS. Understanding the influence of the microbiome on childhood infections. Expert Rev Anti Infect Ther 2024; 22:529-545. [PMID: 38605646 PMCID: PMC11464204 DOI: 10.1080/14787210.2024.2340664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION The microbiome is known to have a substantial impact on human health and disease. However, the impacts of the microbiome on immune system development, susceptibility to infectious diseases, and vaccine-elicited immune responses are emerging areas of interest. AREAS COVERED In this review, we provide an overview of development of the microbiome during childhood. We highlight available data suggesting that the microbiome is critical to maturation of the immune system and modifies susceptibility to a variety of infections during childhood and adolescence, including respiratory tract infections, Clostridioides difficile infection, and sexually transmitted infections. We discuss currently available and investigational therapeutics that have the potential to modify the microbiome to prevent or treat infections among children. Finally, we review the accumulating evidence that the gut microbiome influences vaccine-elicited immune responses among children. EXPERT OPINION Recent advances in sequencing technologies have led to an explosion of studies associating the human microbiome with the risk and severity of infectious diseases. As our knowledge of the extent to which the microbiome influences childhood infections continues to grow, microbiome-based diagnostics and therapeutics will increasingly be incorporated into clinical practice to improve the prevention, diagnosis, and treatment of infectious diseases among children.
Collapse
Affiliation(s)
- Sarah M Heston
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Jillian H Hurst
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Matthew S Kelly
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| |
Collapse
|
17
|
Mohanty I, Allaband C, Mannochio-Russo H, El Abiead Y, Hagey LR, Knight R, Dorrestein PC. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024; 21:493-516. [PMID: 38575682 DOI: 10.1038/s41575-024-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Kelly AM, McCarthy KN, Claxton TJ, Carlile SR, O'Brien EC, Vozza EG, Mills KH, McLoughlin RM. IL-10 inhibition during immunization improves vaccine-induced protection against Staphylococcus aureus infection. JCI Insight 2024; 9:e178216. [PMID: 38973612 PMCID: PMC11383370 DOI: 10.1172/jci.insight.178216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Staphylococcus aureus is a major human pathogen. An effective anti-S. aureus vaccine remains elusive as the correlates of protection are ill-defined. Targeting specific T cell populations is an important strategy for improving anti-S. aureus vaccine efficacy. Potential bottlenecks that remain are S. aureus-induced immunosuppression and the impact this might have on vaccine-induced immunity. S. aureus induces IL-10, which impedes effector T cell responses, facilitating persistence during both colonization and infection. Thus, it was hypothesized that transient targeting of IL-10 might represent an innovative way to improve vaccine efficacy. In this study, IL-10 expression was elevated in the nares of persistent carriers of S. aureus, and this was associated with reduced systemic S. aureus-specific Th1 responses. This suggests that systemic responses are remodeled because of commensal exposure to S. aureus, which negatively implicates vaccine function. To provide proof of concept that targeting immunosuppressive responses during immunization may be a useful approach to improve vaccine efficacy, we immunized mice with T cell-activating vaccines in combination with IL-10-neutralizing antibodies. Blocking IL-10 during vaccination enhanced effector T cell responses and improved bacterial clearance during subsequent systemic and subcutaneous infection. Taken together, these results reveal a potentially novel strategy for improving anti-S. aureus vaccine efficacy.
Collapse
Affiliation(s)
| | - Karen N McCarthy
- Host-Pathogen Interactions Group and
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | - Kingston Hg Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
19
|
Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024; 21:348-364. [PMID: 38383804 PMCID: PMC11558780 DOI: 10.1038/s41575-024-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
20
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
21
|
Manouana GP, Kuk S, Linh LTK, Pallerla SR, Niendorf S, Kremsner PG, Adegnika AA, Velavan TP. Gut microbiota in vaccine naïve Gabonese children with rotavirus A gastroenteritis. Heliyon 2024; 10:e28727. [PMID: 38576575 PMCID: PMC10990958 DOI: 10.1016/j.heliyon.2024.e28727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Background While the gut microbiome modulates the pathogenesis of enteric viruses, how infections caused by rotavirus A (RVA), with or without diarrhoea, alter the gut microbiota has been sparsely studied. Methods From a cohort of 224 vaccine naïve Gabonese children with and without diarrhoea (n = 177 and n = 67, respectively), 48 stool samples were analysed: (i) RVA with diarrhoea (n = 12); (ii) RVA without diarrhoea (n = 12); (iii) diarrhoea without RVA (n = 12); (iv) healthy controls without diarrhoea and RVA (n = 12). The 16S rRNA metabarcoding using Oxford Nanopore sequencing data was analysed for taxonomic composition, abundance, alpha and beta diversity, and metabolic pathways. Findings Alpha diversity showed that children with acute diarrhoea (with and without RVA infection), and children with acute diarrhoea without RVA had low microbial diversity compared to healthy children (p = 0.001 and p = 0.006, respectively). No significant differences observed when comparing children with RVA with or without diarrhoea. Beta diversity revealed high microbial heterogeneity in children without diarrhoea. Proteobacteria (68%) and Firmicutes (69%) were most common in the diarrhoea and non-diarrhoea groups, respectively. Proteobacteria (53%) were most common in children without RVA, while Firmicutes (55%) were most common with RVA. At the genus level, Escherichia (21%), Klebsiella (10%) and Salmonella (4%) were abundant in children with diarrhoea, while Blautia (11%), Clostridium (8%), Lachnoclostridium (6%) and Ruminococcus (5%) were abundant in children without diarrhoea. Metabolites involved in amino acid, carbohydrate, lipid, nucleotide, and vitamin metabolism were quantitatively altered. Interpretation Although host physiology dictates the intestinal milieu, diarrhoea per se can alter a balanced gut microbiota, whereas infectious diarrhoea disrupts the gut microbiome and reduces its diversity.
Collapse
Affiliation(s)
- Gédéon Prince Manouana
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Salih Kuk
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), 10000, Hanoi, Viet Nam
| | | | - Sandra Niendorf
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
- Fondation pour la Recherche Scientifique, Cotonou, Benin
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), 10000, Hanoi, Viet Nam
- Faculty of Medicine, Duy Tan University, 50000, Da Nang, Viet Nam
| |
Collapse
|
22
|
Zimmermann P, Pittet LF, Jakob W, Messina NL, Falquet L, Curtis N. The Effect of Bacille Calmette-Guérin Vaccination on the Composition of the Intestinal Microbiome in Neonates From the MIS BAIR Trial. Pediatr Infect Dis J 2024; 43:378-389. [PMID: 38145402 DOI: 10.1097/inf.0000000000004223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
INTRODUCTION The early-life intestinal microbiome plays an important role in the development and regulation of the immune system. It is unknown whether the administration of vaccines influences the composition of the intestinal microbiome. OBJECTIVE To investigate whether Bacille Calmette-Guérin (BCG) vaccine given in the first few days of life influences the abundance of bacterial taxa and metabolic pathways in the intestinal microbiome at 1 week of age. METHODS Healthy, term-born neonates were randomized at birth to receive BCG or no vaccine within the first few days of life. Stool samples were collected at 1 week of age from 335 neonates and analyzed using shotgun metagenomic sequencing and functional analyses. RESULTS The composition of the intestinal microbiome was different between neonates born by cesarean section (CS) and those born vaginally. Differences in the composition between BCG-vaccinated and BCG-naïve neonates were only minimal. CS-born BCG-vaccinated neonates had a higher abundance of Staphylococcus lugdunensis compared with CS-born BCG-naïve neonates. The latter had a higher abundance of Streptococcus infantis and Trabulsiella guamensis . Vaginally-born BCG-vaccinated neonates had a higher abundance of Clostridiaceae and Streptococcus parasanguinis compared with vaginally-born BCG-naïve neonates, and a lower abundance of Veillonella atypica and Butyricimonas faecalis. Metabolic pathways that were differently abundant between BCG-vaccinated and BCG-naïve neonates were mainly those involved in sugar degradation and nucleotide/nucleoside biosynthesis. CONCLUSION BCG given in the first few days of life has little effect on the composition of the intestinal microbiome at 1 week of age but does influence the abundance of certain metabolic pathways.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Department for Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Laure F Pittet
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia
- Pediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - William Jakob
- Microbiology Laboratory, Fribourg Hospital, Fribourg, Switzerland
| | - Nicole L Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Laurent Falquet
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia
- Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
| |
Collapse
|
23
|
Hossain MJ, Svennerholm AM, Carlin N, D’Alessandro U, Wierzba TF. A Perspective on the Strategy for Advancing ETVAX ®, An Anti-ETEC Diarrheal Disease Vaccine, into a Field Efficacy Trial in Gambian Children: Rationale, Challenges, Lessons Learned, and Future Directions. Microorganisms 2023; 12:90. [PMID: 38257916 PMCID: PMC10819518 DOI: 10.3390/microorganisms12010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
For the first time in over 20 years, an Enterotoxigenic Escherichia coli (ETEC) vaccine candidate, ETVAX®, has advanced into a phase 2b field efficacy trial for children 6-18 months of age in a low-income country. ETVAX® is an inactivated whole cell vaccine that has gone through a series of clinical trials to provide a rationale for the design elements of the Phase 2b trial. This trial is now underway in The Gambia and will be a precursor to an upcoming pivotal phase 3 trial. To reach this point, numerous findings were brought together to define factors such as safe and immunogenic doses for children, and the possible benefit of a mucosal adjuvant, double mutant labile toxin (dmLT). Considering the promising but still underexplored potential of inactivated whole cells in oral vaccination, we present a perspective compiling key observations from past ETVAX® trials that informed The Gambian trial design. This report will update the trial's status and explore future directions for ETEC vaccine trials. Our aim is to provide not only an update on the most advanced ETEC vaccine candidate but also to offer insights beneficial for the development of other much-needed oral whole-cell vaccines against enteric and other pathogens.
Collapse
Affiliation(s)
- M. Jahangir Hossain
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul P.O. Box 273, The Gambia
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Gothenburg University Research Institute (GUVAX), Gothenburg University, 40530 Gothenburg, Sweden
| | - Nils Carlin
- Scandinavian Biopharma, Industrivägen 1, 17148 Solna, Sweden
| | - Umberto D’Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul P.O. Box 273, The Gambia
| | - Thomas F. Wierzba
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
24
|
Johnson AMF, Hager K, Alameh MG, Van P, Potchen N, Mayer-Blackwell K, Fiore-Gartland A, Minot S, Lin PJC, Tam YK, Weissman D, Kublin JG. The Regulation of Nucleic Acid Vaccine Responses by the Microbiome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1680-1692. [PMID: 37850965 PMCID: PMC10656434 DOI: 10.4049/jimmunol.2300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. Although the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle immunization, the microbiome suppresses Ig and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA lipid nanoparticle vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for continued therapeutic development and deployment of these vaccines.
Collapse
Affiliation(s)
- Andrew M. F. Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kevin Hager
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Phuong Van
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nicole Potchen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - Samuel Minot
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - Drew Weissman
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
25
|
Pichichero ME. Variability of vaccine responsiveness in early life. Cell Immunol 2023; 393-394:104777. [PMID: 37866234 DOI: 10.1016/j.cellimm.2023.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Vaccinations in early life elicit variable antibody and cellular immune responses, sometimes leaving fully vaccinated children unprotected against life-threatening infectious diseases. Specific immune cell populations and immune networks may have a critical period of development and calibration in a window of opportunity occurring during the first 100 days of early life. Among the early life determinants of vaccine responses, this review will focus on modifiable factors involving development of the infant microbiota and metabolome: antibiotic exposure, breast versus formula feeding, and Caesarian section versus vaginal delivery of newborns. How microbiota may serve as natural adjuvants for vaccine responses and how microbiota-derived metabolites influence vaccine responses are also reviewed. Early life poor vaccine responsiveness can be linked to increased infection susceptibility because both phenotypes share similar immunity dysregulation profiles. An early life pre-vaccination endotype, when interventions have the highest potential for success, should be sought that predicts vaccine response trajectories.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, 1425 Portland Ave, Rochester, NY 14621, USA.
| |
Collapse
|
26
|
Elizalde-Torrent A, Borgognone A, Casadellà M, Romero-Martin L, Escribà T, Parera M, Rosales-Salgado Y, Díaz-Pedroza J, Català-Moll F, Noguera-Julian M, Brander C, Paredes R, Olvera A. Vaccination with an HIV T-Cell Immunogen (HTI) Using DNA Primes Followed by a ChAdOx1-MVA Boost Is Immunogenic in Gut Microbiota-Depleted Mice despite Low IL-22 Serum Levels. Vaccines (Basel) 2023; 11:1663. [PMID: 38005995 PMCID: PMC10675013 DOI: 10.3390/vaccines11111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the important role of gut microbiota in the maturation of the immune system, little is known about its impact on the development of T-cell responses to vaccination. Here, we immunized C57BL/6 mice with a prime-boost regimen using DNA plasmid, the Chimpanzee Adenovirus, and the modified Vaccinia Ankara virus expressing a candidate HIV T-cell immunogen and compared the T-cell responses between individuals with an intact or antibiotic-depleted microbiota. Overall, the depletion of the gut microbiota did not result in significant differences in the magnitude or breadth of the immunogen-specific IFNγ T-cell response after vaccination. However, we observed marked changes in the serum levels of four cytokines after vaccinating microbiota-depleted animals, particularly a significant reduction in IL-22 levels. Interestingly, the level of IL-22 in serum correlated with the abundance of Roseburia in the large intestine of mice in the mock and vaccinated groups with intact microbiota. This short-chain fatty acid (SCFA)-producing bacterium was significantly reduced in the vaccinated, microbiota-depleted group. Therefore, our results indicate that, although microbiota depletion reduces serum levels of IL-22, the powerful vaccine regime used could have overcome the impact of microbiota depletion on IFNγ-producing T-cell responses.
Collapse
Affiliation(s)
- Aleix Elizalde-Torrent
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Alessandra Borgognone
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Maria Casadellà
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Luis Romero-Martin
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona (UAB), 08193 Cerdanyola del Valles, Spain
| | - Tuixent Escribà
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Mariona Parera
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Yaiza Rosales-Salgado
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (Y.R.-S.); (J.D.-P.)
| | - Jorge Díaz-Pedroza
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (Y.R.-S.); (J.D.-P.)
| | - Francesc Català-Moll
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Marc Noguera-Julian
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
| | - Christian Brander
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Aelix Therapeutics, 08028 Barcelona, Spain
| | - Roger Paredes
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Fight AIDS Foundation, Infectious Diseases Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Alex Olvera
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| |
Collapse
|
27
|
Han Z, Min Y, Pang K, Wu D. Therapeutic Approach Targeting Gut Microbiome in Gastrointestinal Infectious Diseases. Int J Mol Sci 2023; 24:15654. [PMID: 37958637 PMCID: PMC10650060 DOI: 10.3390/ijms242115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
While emerging evidence highlights the significance of gut microbiome in gastrointestinal infectious diseases, treatments like Fecal Microbiota Transplantation (FMT) and probiotics are gaining popularity, especially for diarrhea patients. However, the specific role of the gut microbiome in different gastrointestinal infectious diseases remains uncertain. There is no consensus on whether gut modulation therapy is universally effective for all such infections. In this comprehensive review, we examine recent developments of the gut microbiome's involvement in several gastrointestinal infectious diseases, including infection of Helicobacter pylori, Clostridium difficile, Vibrio cholerae, enteric viruses, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa Staphylococcus aureus, Candida albicans, and Giardia duodenalis. We have also incorporated information about fungi and engineered bacteria in gastrointestinal infectious diseases, aiming for a more comprehensive overview of the role of the gut microbiome. This review will provide insights into the pathogenic mechanisms of the gut microbiome while exploring the microbiome's potential in the prevention, diagnosis, prediction, and treatment of gastrointestinal infections.
Collapse
Affiliation(s)
- Ziying Han
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| | - Yiyang Min
- Peking Union Medical College, Beijing 100730, China
| | - Ke Pang
- Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| |
Collapse
|
28
|
Ponziani FR, Coppola G, Rio P, Caldarelli M, Borriello R, Gambassi G, Gasbarrini A, Cianci R. Factors Influencing Microbiota in Modulating Vaccine Immune Response: A Long Way to Go. Vaccines (Basel) 2023; 11:1609. [PMID: 37897011 PMCID: PMC10611107 DOI: 10.3390/vaccines11101609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Vaccine immunogenicity still represents an unmet need in specific populations, such as people from developing countries and "edge populations". Both intrinsic and extrinsic factors, such as the environment, age, and dietary habits, influence cellular and humoral immune responses. The human microbiota represents a potential key to understanding how these factors impact the immune response to vaccination, with its modulation being a potential step to address vaccine immunogenicity. The aim of this narrative review is to explore the intricate interactions between the microbiota and the immune system in response to vaccines, highlighting the state of the art in gut microbiota modulation as a novel therapeutic approach to enhancing vaccine immunogenicity and laying the foundation for future, more solid data for its translation to the clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy (G.C.); (P.R.); (M.C.); (R.B.); (G.G.); (A.G.)
| |
Collapse
|
29
|
Happel AU, Rametse L, Perumaul B, Diener C, Gibbons SM, Nyangahu DD, Donald KA, Gray C, Jaspan HB. Bifidobacterium infantis supplementation versus placebo in early life to improve immunity in infants exposed to HIV: a protocol for a randomized trial. BMC Complement Med Ther 2023; 23:367. [PMID: 37853370 PMCID: PMC10583347 DOI: 10.1186/s12906-023-04208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION Infants who are born from mothers with HIV (infants who are HIV exposed but uninfected; iHEU) are at higher risk of morbidity and display multiple immune alterations compared to infants who are HIV-unexposed (iHU). Easily implementable strategies to improve immunity of iHEU, and possibly subsequent clinical health outcomes, are needed. iHEU have altered gut microbiome composition and bifidobacterial depletion, and relative abundance of Bifidobacterium infantis has been associated with immune ontogeny, including humoral and cellular vaccine responses. Therefore, we will assess microbiological and immunological phenotypes and clinical outcomes in a randomized, double-blinded trial of B. infantis Rosell®-33 versus placebo given during the first month of life in South African iHEU. METHODS This is a parallel, randomised, controlled trial. Two-hundred breastfed iHEU will be enrolled from the Khayelitsha Site B Midwife Obstetric Unit in Cape Town, South Africa and 1:1 randomised to receive 8 × 109 CFU B. infantis Rosell®-33 daily or placebo for the first 4 weeks of life, starting on day 1-3 of life. Infants will be followed over 36 weeks with extensive collection of meta-data and samples. Primary outcomes include gut microbiome composition and diversity, intestinal inflammation and microbial translocation and cellular vaccine responses. Additional outcomes include biological (e.g. gut metabolome and T cell phenotypes) and clinical (e.g. growth and morbidity) outcome measures. DISCUSSION The results of this trial will provide evidence whether B. infantis supplementation during early life could improve health outcomes for iHEU. ETHICS AND DISSEMINATION Approval for this study has been obtained from the ethics committees at the University of Cape Town (HREC Ref 697/2022) and Seattle Children's Research Institute (STUDY00003679). TRIAL REGISTRATION Pan African Clinical Trials Registry Identifier: PACTR202301748714019. CLINICAL TRIALS gov: NCT05923333. PROTOCOL VERSION Version 1.8, dated 18 July 2023.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| | - Lerato Rametse
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Brandon Perumaul
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | | | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Donald D Nyangahu
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
| | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road Rondebosch, Cape Town, 7700, South Africa
- The Neuroscience Institute, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Clive Gray
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Francie Van Zijl Drive, Tygerberg, 7505, South Africa
| | - Heather B Jaspan
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA, 98195, USA
| |
Collapse
|
30
|
Qu R, Zhang Y, Ma Y, Zhou X, Sun L, Jiang C, Zhang Z, Fu W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205563. [PMID: 37263983 PMCID: PMC10427379 DOI: 10.1002/advs.202205563] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system with high mortality and morbidity rates. Gut microbiota is found in the intestines, especially the colorectum, and has structured crosstalk interactions with the host that affect several physiological processes. The gut microbiota include CRC-promoting bacterial species, such as Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis, and CRC-protecting bacterial species, such as Clostridium butyricum, Streptococcus thermophilus, and Lacticaseibacillus paracasei, which along with other microorganisms, such as viruses and fungi, play critical roles in the development of CRC. Different bacterial features are identified in patients with early-onset CRC, combined with different patterns between fecal and intratumoral microbiota. The gut microbiota may be beneficial in the diagnosis and treatment of CRC; some bacteria may serve as biomarkers while others as regulators of chemotherapy and immunotherapy. Furthermore, metabolites produced by the gut microbiota play essential roles in the crosstalk with CRC cells. Harmful metabolites include some primary bile acids and short-chain fatty acids, whereas others, including ursodeoxycholic acid and butyrate, are beneficial and impede tumor development and progression. This review focuses on the gut microbiota and its metabolites, and their potential roles in the development, diagnosis, and treatment of CRC.
Collapse
Affiliation(s)
- Ruize Qu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yi Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yanpeng Ma
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Xin Zhou
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility PromotionPeking UniversityBeijing100191P. R. China
- Department of Endocrinology and MetabolismPeking University Third HospitalBeijing100191P. R. China
| | - Changtao Jiang
- Center of Basic Medical ResearchInstitute of Medical Innovation and ResearchThird HospitalPeking UniversityBeijing100191P. R. China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesPeking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University)Ministry of EducationBeijing100191P. R. China
- Center for Obesity and Metabolic Disease ResearchSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhipeng Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Wei Fu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
31
|
Chauwa A, Bosomprah S, Laban NM, Phiri B, Chibuye M, Chilyabanyama ON, Munsaka S, Simuyandi M, Mwape I, Mubanga C, Chobe MC, Chisenga C, Chilengi R. Maternal and Infant Histo-Blood Group Antigen (HBGA) Profiles and Their Influence on Oral Rotavirus Vaccine (Rotarix TM) Immunogenicity among Infants in Zambia. Vaccines (Basel) 2023; 11:1303. [PMID: 37631871 PMCID: PMC10458424 DOI: 10.3390/vaccines11081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Live-attenuated, oral rotavirus vaccines have significantly reduced rotavirus-associated diarrhoea morbidity and infant mortality. However, vaccine immunogenicity is diminished in low-income countries. We investigated whether maternal and infant intrinsic susceptibility to rotavirus infection via histo-blood group antigen (HBGA) profiles influenced rotavirus (ROTARIX®) vaccine-induced responses in Zambia. We studied 135 mother-infant pairs under a rotavirus vaccine clinical trial, with infants aged 6 to 12 weeks at pre-vaccination up to 12 months old. We determined maternal and infant ABO/H, Lewis, and secretor HBGA phenotypes, and infant FUT2 HBGA genotypes. Vaccine immunogenicity was measured as anti-rotavirus IgA antibody titres. Overall, 34 (31.3%) children were seroconverted at 14 weeks, and no statistically significant difference in seroconversion was observed across the various HBGA profiles in early infant life. We also observed a statistically significant difference in rotavirus-IgA titres across infant HBGA profiles at 12 months, though no statistically significant difference was observed between the study arms. There was no association between maternal HBGA profiles and infant vaccine immunogenicity. Overall, infant HBGAs were associated with RV vaccine immunogenicity at 12 months as opposed to in early infant life. Further investigation into the low efficacy of ROTARIX® and appropriate intervention is key to unlocking the full vaccine benefits for U5 children.
Collapse
Affiliation(s)
- Adriace Chauwa
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia;
| | - Samuel Bosomprah
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Biostatistics, School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana
| | - Natasha Makabilo Laban
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Bernard Phiri
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Mwelwa Chibuye
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Obvious Nchimunya Chilyabanyama
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia;
| | - Michelo Simuyandi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Innocent Mwape
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Cynthia Mubanga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Masuzyo Chirwa Chobe
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Caroline Chisenga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| |
Collapse
|
32
|
Adams JRG, Mehat J, La Ragione R, Behboudi S. Preventing bacterial disease in poultry in the post-antibiotic era: a case for innate immunity modulation as an alternative to antibiotic use. Front Immunol 2023; 14:1205869. [PMID: 37469519 PMCID: PMC10352996 DOI: 10.3389/fimmu.2023.1205869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
The widespread use of antibiotics in the poultry industry has led to the emergence of antibiotic-resistant bacteria, which pose a significant health risk to humans and animals. These public health concerns, which have led to legislation limiting antibiotic use in animals, drive the need to find alternative strategies for controlling and treating bacterial infections. Modulation of the avian innate immune system using immunostimulatory compounds provides a promising solution to enhance poultry immune responses to a broad range of bacterial infections without the risk of generating antibiotic resistance. An array of immunomodulatory compounds have been investigated for their impact on poultry performance and immune responses. However, further research is required to identify compounds capable of controlling bacterial infections without detrimentally affecting bird performance. It is also crucial to determine the safety and effectiveness of these compounds in conjunction with poultry vaccines. This review provides an overview of the various immune modulators known to enhance innate immunity against avian bacterial pathogens in chickens, and describes the mechanisms involved.
Collapse
Affiliation(s)
- James R. G. Adams
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Avian Immunology, The Pirbright Institute, Woking, United Kingdom
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
33
|
Huang B, Wang J, Li L. Recent five-year progress in the impact of gut microbiota on vaccination and possible mechanisms. Gut Pathog 2023; 15:27. [PMID: 37308966 DOI: 10.1186/s13099-023-00547-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
Vaccine is the most effective way to prevent the spread of communicable diseases, but the immune response induced by it varies greatly between individuals and populations in different regions of the world. Current studies have identified the composition and function of the gut microbiota as key factors in modulating the immune response to vaccination. This article mainly reviews the differences in gut microbiota among different groups of vaccinated people and animals, explores the possible mechanism of vaccine immunity affected by gut microbiota, and reviews the strategies for targeting gut microbiota to improve vaccine efficacy.
Collapse
Affiliation(s)
- Biqing Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University school of medicine, Hangzhou, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences & Peking Union Medical College, Hangzhou, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University school of medicine, Hangzhou, China.
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University school of medicine, Hangzhou, China.
| |
Collapse
|
34
|
Zhang P, Zhang D, Lai J, Fu Y, Wu L, Huang H, Pan Y, Jiang J, Xi C, Che Z, Song X, Hu S. Characteristics of the gut microbiota in bipolar depressive disorder patients with distinct weight. CNS Neurosci Ther 2023; 29 Suppl 1:74-83. [PMID: 36604186 PMCID: PMC10314097 DOI: 10.1111/cns.14078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Preliminary studies have indicated metabolic dysfunction and gut dysbiosis in patients with bipolar disorder (BD). In this study, we aimed to clarify the impact of the gut microbial composition and function on metabolic dysfunction in BD patients with an acute depressive episode. METHODS Fresh fecal samples were provided from 58 patients with BD depression, including 29 with normal weight (NW) and 29 with overweight/obesity (OW), and 31 healthy controls (HCs). The hypervariable region of 16 S rRNA gene (V3-V4) sequencing was performed using IonS5TMXL platform to evaluate the bacterial communities. Differences of microbial community and correlation to clinical parameters across different groups were analyzed. RESULTS Compared to NW and HCs, the OW group showed a decreased tendency in alpha diversity index. Beta diversity was markedly different among these groups (PERMANOVA: R2 = 0.034, p = 0.01) and was higher in patients versus HCs. A total number of 24 taxa displayed significantly different abundance among OW, NW, and HCs. At the family level, the abundance of three taxa was remarkably increased in NW, one in OW, and one in HCs. At the genus level, five taxa were enriched in OW, eight in NW, and two in HCs. The relative abundance of the genera Megamonas was positively associated with BMI, while Eggerthella was negatively correlated with BMI. Functional prediction analysis revealed the metabolism of cofactors and vitamins and amino acid were highly enriched in OW compared to HCs. In addition, microbial functions involved in "lipid metabolism" were depleted while the "fructose and mannose metabolism" was enriched in OW compared to NW group. CONCLUSIONS Specific bacterial taxa involved in pathways regulating the lipid, energy, and amino acid metabolisms may underlie the weight concerns in depressed BD patients. Potential targeting gut microbial therapy is provided for overweight/obesity patients with BD, which still need further studies in the future.
Collapse
Affiliation(s)
- Peifen Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
- MOE Frontier Science Center for Brain Science & Brain‐Machine IntegrationZhejiang University
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lingling Wu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | | | - Yanmeng Pan
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiajun Jiang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Caixi Xi
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ziyuan Che
- College of Agriculture & BiotechnologyZhejiang UniversityHangzhouChina
| | - Xueqin Song
- The First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
- MOE Frontier Science Center for Brain Science & Brain‐Machine IntegrationZhejiang University
| |
Collapse
|
35
|
Hensley C, Nyblade C, Zhou P, Parreño V, Ramesh A, Frazier A, Frazier M, Garrison S, Fantasia-Davis A, Cai R, Huang PW, Xia M, Tan M, Yuan L. Combined Live Oral Priming and Intramuscular Boosting Regimen with Rotarix ® and a Nanoparticle-Based Trivalent Rotavirus Vaccine Evaluated in Gnotobiotic Pig Models of G4P[6] and G1P[8] Human Rotavirus Infection. Vaccines (Basel) 2023; 11:927. [PMID: 37243031 PMCID: PMC10223133 DOI: 10.3390/vaccines11050927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Human rotavirus (HRV) is the causative agent of severe dehydrating diarrhea in children under the age of five, resulting in up to 215,000 deaths each year. These deaths almost exclusively occur in low- and middle-income countries where vaccine efficacy is the lowest due to chronic malnutrition, gut dysbiosis, and concurrent enteric viral infection. Parenteral vaccines for HRV are particularly attractive as they avoid many of the concerns associated with currently used live oral vaccines. In this study, a two-dose intramuscular (IM) regimen of the trivalent, nanoparticle-based, nonreplicating HRV vaccine (trivalent S60-VP8*), utilizing the shell (S) domain of the capsid of norovirus as an HRV VP8* antigen display platform, was evaluated for immunogenicity and protective efficacy against P[6] and P[8] HRV using gnotobiotic pig models. A prime-boost strategy using one dose of the oral Rotarix® vaccine, followed by one dose of the IM trivalent nanoparticle vaccine was also evaluated. Both regimens were highly immunogenic in inducing serum virus neutralizing, IgG, and IgA antibodies. The two vaccine regimens failed to confer significant protection against diarrhea; however, the prime-boost regimen significantly shortened the duration of virus shedding in pigs challenged orally with the virulent Wa (G1P[8]) HRV and significantly shortened the mean duration of virus shedding, mean peak titer, and area under the curve of virus shedding after challenge with Arg (G4P[6]) HRV. Prime-boost-vaccinated pigs challenged with P[8] HRV had significantly higher P[8]-specific IgG antibody-secreting cells (ASCs) in the spleen post-challenge. Prime-boost-vaccinated pigs challenged with P[6] HRV had significantly higher numbers of P[6]- and P[8]-specific IgG ASCs in the ileum, as well as significantly higher numbers of P[8]-specific IgA ASCs in the spleen post-challenge. These results suggest the promise of and warrant further investigation into the oral priming and parenteral boosting strategy for future HRV vaccines.
Collapse
Affiliation(s)
- Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Charlotte Nyblade
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Viviana Parreño
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), Instituto Nacional de Tecnología Agropecuaria (INTA)-CONICET, Buenos Aires C1033AAE, Argentina
| | - Ashwin Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Annie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Maggie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Sarah Garrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Ariana Fantasia-Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Ruiqing Cai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Peng-Wei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
36
|
Hong SH. Influence of Microbiota on Vaccine Effectiveness: "Is the Microbiota the Key to Vaccine-induced Responses?". J Microbiol 2023:10.1007/s12275-023-00044-6. [PMID: 37052795 PMCID: PMC10098251 DOI: 10.1007/s12275-023-00044-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Vaccines are one of the most powerful tools for preventing infectious diseases. To effectively fight pathogens, vaccines should induce potent and long-lasting immune responses that are specific to the pathogens. However, not all vaccines can induce effective immune responses, and the responses vary greatly among individuals and populations. Although several factors, such as age, host genetics, nutritional status, and region, affect the effectiveness of vaccines, increasing data have suggested that the gut microbiota is critically associated with vaccine-induced immune responses. In this review, I discuss how gut microbiota affects vaccine effectiveness based on the clinical and preclinical data, and summarize possible underlying mechanisms related to the adjuvant effects of microbiota. A better understanding of the link between vaccine-induced immune responses and the gut microbiota using high-throughput technology and sophisticated system vaccinology approaches could provide crucial insights for designing effective personalized preventive and therapeutic vaccination strategies.
Collapse
Affiliation(s)
- So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| |
Collapse
|
37
|
Zimmermann P. The immunological interplay between vaccination and the intestinal microbiota. NPJ Vaccines 2023; 8:24. [PMID: 36823142 PMCID: PMC9947885 DOI: 10.1038/s41541-023-00627-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- Petra Zimmermann
- Department for Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland. .,Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland. .,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia. .,Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Johnson AMF, Hager K, Alameh MG, Van P, Potchen N, Mayer-Blackwell K, Fiore-Gartland A, Minot S, Lin PJC, Tam YK, Weissman D, Kublin JG. The Regulation of Nucleic Acid Vaccine Responses by the Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529093. [PMID: 36824851 PMCID: PMC9949122 DOI: 10.1101/2023.02.18.529093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific-pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. While the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle (LNP) immunization, the microbiome suppresses immunoglobulin and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA-LNP vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for their continued therapeutic development and deployment.
Collapse
|
39
|
Association between Gut Microbiota and SARS-CoV-2 Infection and Vaccine Immunogenicity. Microorganisms 2023; 11:microorganisms11020452. [PMID: 36838417 PMCID: PMC9961186 DOI: 10.3390/microorganisms11020452] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Gut microbiota is increasingly recognized to play a pivotal role in various human physiological functions and diseases. Amidst the COVID-19 pandemic, research has suggested that dysbiosis of the gut microbiota is also involved in the development and severity of COVID-19 symptoms by regulating SARS-CoV-2 entry and modulating inflammation. Previous studies have also suggested that gut microbiota and their metabolites could have immunomodulatory effects on vaccine immunogenicity, including influenza vaccines and oral rotavirus vaccines. In light of these observations, it is possible that gut microbiota plays a role in influencing the immune responses to COVID-19 vaccinations via similar mechanisms including effects of lipopolysaccharides, flagellin, peptidoglycan, and short-chain fatty acids. In this review, we give an overview of the current understanding on the role of the gut microbiota in COVID-19 manifestations and vaccine immunogenicity. We then discuss the limitations of currently published studies on the associations between gut microbiota and COVID-19 vaccine outcomes. Future research directions shall be focused on the development of microbiota-based interventions on improving immune response to SARS-CoV-2 infection and vaccinations.
Collapse
|
40
|
Moroishi Y, Gui J, Nadeau KC, Morrison HG, Madan J, Karagas MR. A prospective study of the infant gut microbiome in relation to vaccine response. Pediatr Res 2023; 93:725-731. [PMID: 35717483 PMCID: PMC10115145 DOI: 10.1038/s41390-022-02154-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The establishment of the gut microbiome plays a key symbiotic role in the developing immune system; however, its influence on vaccine response is yet uncertain. We prospectively investigated the composition and diversity of the early-life gut microbiome in relation to infant antibody response to two routinely administered vaccines. METHODS Eighty-three infants enrolled in the New Hampshire Birth Cohort Study were included in the analysis. We collected blood samples at 12 months of age and assayed the isolated serum to quantify total IgG and measured antibody to pneumococcal capsular polysaccharide and tetanus toxoid. Stool samples were collected from infants at 6 weeks of age and sequenced using 16S rRNA, and a subset of 61 samples were sequenced using shotgun metagenomics sequencing. RESULTS We observed differences in beta diversity for 16S 6-week stool microbiota and pneumococcal and tetanus IgG antibody responses. Metagenomics analyses identified species and metabolic pathways in 6-week stool associated with tetanus antibody response, in particular, negative associations with the relative abundance of Aeriscardovia aeriphila species and positive associations with the relative abundance of species associated with CDP-diacylglycerol biosynthesis pathways. CONCLUSIONS The early gut microbiome composition may influence an infant's vaccine response. IMPACT Early intestinal microbiome acquisition plays a critical role in immune maturation and in both adaptive and innate immune response in infancy. We identified associations between early life microbiome composition and response to two routinely administered vaccines-pneumococcal capsular polysaccharide and tetanus toxoid-measured at approximately 1 year of age. Our findings highlight the potential impact of the gut microbiome on infant immune response that may open up opportunities for future interventions.
Collapse
Affiliation(s)
- Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University School of Medicine, Stanford, CA, USA
| | - Hilary G Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Juliette Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Pediatrics, Children's Hospital at Dartmouth, Lebanon, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
41
|
Alexander JL, Mullish BH, Danckert NP, Liu Z, Olbei ML, Saifuddin A, Torkizadeh M, Ibraheim H, Blanco JM, Roberts LA, Bewshea CM, Nice R, Lin S, Prabhudev H, Sands C, Horneffer-van der Sluis V, Lewis M, Sebastian S, Lees CW, Teare JP, Hart A, Goodhand JR, Kennedy NA, Korcsmaros T, Marchesi JR, Ahmad T, Powell N. The gut microbiota and metabolome are associated with diminished COVID-19 vaccine-induced antibody responses in immunosuppressed inflammatory bowel disease patients. EBioMedicine 2023; 88:104430. [PMID: 36634565 PMCID: PMC9831064 DOI: 10.1016/j.ebiom.2022.104430] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) treated with anti-TNF therapy exhibit attenuated humoral immune responses to vaccination against SARS-CoV-2. The gut microbiota and its functional metabolic output, which are perturbed in IBD, play an important role in shaping host immune responses. We explored whether the gut microbiota and metabolome could explain variation in anti-SARS-CoV-2 vaccination responses in immunosuppressed IBD patients. METHODS Faecal and serum samples were prospectively collected from infliximab-treated patients with IBD in the CLARITY-IBD study undergoing vaccination against SARS-CoV-2. Antibody responses were measured following two doses of either ChAdOx1 nCoV-19 or BNT162b2 vaccine. Patients were classified as having responses above or below the geometric mean of the wider CLARITY-IBD cohort. 16S rRNA gene amplicon sequencing, nuclear magnetic resonance (NMR) spectroscopy and bile acid profiling with ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) were performed on faecal samples. Univariate, multivariable and correlation analyses were performed to determine gut microbial and metabolomic predictors of response to vaccination. FINDINGS Forty-three infliximab-treated patients with IBD were recruited (30 Crohn's disease, 12 ulcerative colitis, 1 IBD-unclassified; 26 with concomitant thiopurine therapy). Eight patients had evidence of prior SARS-CoV-2 infection. Seventeen patients (39.5%) had a serological response below the geometric mean. Gut microbiota diversity was lower in below average responders (p = 0.037). Bilophila abundance was associated with better serological response, while Streptococcus was associated with poorer response. The faecal metabolome was distinct between above and below average responders (OPLS-DA R2X 0.25, R2Y 0.26, Q2 0.15; CV-ANOVA p = 0.038). Trimethylamine, isobutyrate and omega-muricholic acid were associated with better response, while succinate, phenylalanine, taurolithocholate and taurodeoxycholate were associated with poorer response. INTERPRETATION Our data suggest that there is an association between the gut microbiota and variable serological response to vaccination against SARS-CoV-2 in immunocompromised patients. Microbial metabolites including trimethylamine may be important in mitigating anti-TNF-induced attenuation of the immune response. FUNDING JLA is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-502), funded by Imperial College London and The Joyce and Norman Freed Charitable Trust. BHM is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-002). The Division of Digestive Diseases at Imperial College London receives financial and infrastructure support from the NIHR Imperial Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. Metabolomics studies were performed at the MRC-NIHR National Phenome Centre at Imperial College London; this work was supported by the Medical Research Council (MRC), the National Institute of Health Research (NIHR) (grant number MC_PC_12025) and infrastructure support was provided by the NIHR Imperial Biomedical Research Centre (BRC). The NIHR Exeter Clinical Research Facility is a partnership between the University of Exeter Medical School College of Medicine and Health, and Royal Devon and Exeter NHS Foundation Trust. This project is supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care.
Collapse
Affiliation(s)
- James L Alexander
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Nathan P Danckert
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Zhigang Liu
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Marton L Olbei
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aamir Saifuddin
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; St Mark's Hospital and Academic Institute, Harrow, London, United Kingdom
| | - Melissa Torkizadeh
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; King's College London, London, United Kingdom
| | - Hajir Ibraheim
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jesús Miguéns Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Lauren A Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Rachel Nice
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Simeng Lin
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Hemanth Prabhudev
- Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Caroline Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Verena Horneffer-van der Sluis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shaji Sebastian
- Hull University Teaching Hospitals NHS Trust, Gastroenterology, Hull, United Kingdom; University of Hull, Hull York Medical School, Hull, United Kingdom
| | - Charlie W Lees
- Western General Hospital, Edinburgh, United Kingdom; The University of Edinburgh Centre for Genomic and Experimental Medicine, Edinburgh, United Kingdom
| | - Julian P Teare
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ailsa Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; St Mark's Hospital and Academic Institute, Harrow, London, United Kingdom
| | - James R Goodhand
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Nicholas A Kennedy
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Earlham Institute, Norwich, United Kingdom; Quadram Institute Bioscience, Norwich, United Kingdom
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tariq Ahmad
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Nick Powell
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
42
|
Vaccination with an HIV T-cell immunogen induces alterations in the mouse gut microbiota. NPJ Biofilms Microbiomes 2022; 8:104. [PMID: 36585401 PMCID: PMC9801356 DOI: 10.1038/s41522-022-00368-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
The gut microbiota is emerging as a crucial factor modulating vaccine responses; however, few studies have investigated if vaccines, in turn, can alter the microbiota and to what extent such changes may improve vaccine efficacy. To understand the effect of T-cell vaccination on the gut microbiome, we administered an HIV-1 T-cell immunogen (HTI arm) or PBS (control, Mock arm) to C57Bl/6 mice following a heterologous prime-boost scheme. The longitudinal dynamics of the mice gut microbiota was characterized by 16 S ribosomal RNA sequencing in fecal samples collected from cages, as well as from three gut sections (cecum, small and large intestine). Serum and spleen cells were obtained at the last time point of the study to assess immune correlates using IFNγ ELISPOT and cytokine Luminex® assays. Compared with Mock, HTI-vaccinated mice were enriched in Clostridiales genera (Eubacterium xylanophilum group, Roseburia and Ruminococcus) known as primary contributors of anti-inflammatory metabolites, such as short-chain fatty acids. Such shift was observed after the first HTI dose and remained throughout the study follow-up (18 weeks). However, the enriched Clostridiales genera were different between feces and gut sections. The abundance of bacteria enriched in vaccinated animals positively correlated with HTI-specific T-cell responses and a set of pro-inflammatory cytokines, such as IL-6. This longitudinal analysis indicates that, in mice, T-cell vaccination may promote an increase in gut bacteria known to produce anti-inflammatory molecules, which in turn correlate with proinflammatory cytokines, suggesting an adaptation of the gut microbial milieu to T-cell-induced systemic inflammation.
Collapse
|
43
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
44
|
Stefanetti G, Kasper DL. Impact of the Host Microbiome on Vaccine Responsiveness: Lessons Learned and Future Perspective. Biochemistry 2022; 61:2849-2855. [PMID: 35993915 PMCID: PMC9782311 DOI: 10.1021/acs.biochem.2c00309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vaccination shows high variability in the elicited immune responses among individuals and populations for reasons still poorly understood. An increasing number of studies is supporting the evidence that gut microbiota, along with other interplaying variables, is able to modulate both humoral and cellular responses to infection and vaccination. Importantly, vaccine immunogenicity is often suboptimal at the extremes of age and also in low- and middle-income countries (LMICs), where the microbiota is believed to have an important role on immune responses. Still, contrasting findings and lack of causal evidence are calling for sophisticated methodologies to be able to overcome scientific and technical challenges to better decipher the immunomodulatory role of microbiota. In this perspective, we briefly review the status of the vaccine field in relation to the microbiome and offer possible scientific approaches to better understand the impact of the host microbiome on vaccine responsiveness.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, 61029 Urbino, Italy,
| | - Dennis L. Kasper
- Department
of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, Massachusetts 02115, United States,
| |
Collapse
|
45
|
Bacorn M, Romero-Soto HN, Levy S, Chen Q, Hourigan SK. The Gut Microbiome of Children during the COVID-19 Pandemic. Microorganisms 2022; 10:microorganisms10122460. [PMID: 36557713 PMCID: PMC9783902 DOI: 10.3390/microorganisms10122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome has been shown to play a critical role in maintaining a healthy state. Dysbiosis of the gut microbiome is involved in modulating disease severity and potentially contributes to long-term outcomes in adults with COVID-19. Due to children having a significantly lower risk of severe illness and limited sample availability, much less is known about the role of the gut microbiome in children with COVID-19. It is well recognized that the developing gut microbiome of children differs from that of adults, but it is unclear if this difference contributes to the different clinical presentations and complications. In this review, we discuss the current knowledge of the gut microbiome in children with COVID-19, with gut microbiome dysbiosis being found in pediatric COVID-19 but specific taxa change often differing from those described in adults. Additionally, we discuss possible mechanisms of how the gut microbiome may mediate the presentation and complications of COVID-19 in children and the potential role for microbial therapeutics.
Collapse
|
46
|
Dong X, Guthrie BGH, Alexander M, Noecker C, Ramirez L, Glasser NR, Turnbaugh PJ, Balskus EP. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nat Commun 2022; 13:7624. [PMID: 36494336 PMCID: PMC9734109 DOI: 10.1038/s41467-022-33576-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
Eggerthella lenta is a prevalent human gut Actinobacterium implicated in drug, dietary phytochemical, and bile acid metabolism and associated with multiple human diseases. No genetic tools are currently available for the direct manipulation of E. lenta. Here, we construct shuttle vectors and develop methods to transform E. lenta and other Coriobacteriia. With these tools, we characterize endogenous E. lenta constitutive and inducible promoters using a reporter system and construct inducible expression systems, enabling tunable gene regulation. We also achieve genome editing by harnessing an endogenous type I-C CRISPR-Cas system. Using these tools to perform genetic knockout and complementation, we dissect the functions of regulatory proteins and enzymes involved in catechol metabolism, revealing a previously unappreciated family of membrane-spanning LuxR-type transcriptional regulators. Finally, we employ our genetic toolbox to study the effects of E. lenta genes on mammalian host biology. By greatly expanding our ability to study and engineer gut Coriobacteriia, these tools will reveal mechanistic details of host-microbe interactions and provide a roadmap for genetic manipulation of other understudied human gut bacteria.
Collapse
Affiliation(s)
- Xueyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ben G H Guthrie
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Margaret Alexander
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cecilia Noecker
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
47
|
Dodd D, Cann I. Tutorial: Microbiome studies in drug metabolism. Clin Transl Sci 2022; 15:2812-2837. [PMID: 36099474 PMCID: PMC9747132 DOI: 10.1111/cts.13416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
The human gastrointestinal tract is home to a dense population of microorganisms whose metabolism impacts human health and physiology. The gut microbiome encodes millions of genes, the products of which endow our bodies with unique biochemical activities. In the context of drug metabolism, microbial biochemistry in the gut influences humans in two major ways: (1) by producing small molecules that modulate expression and activity of human phase I and II pathways; and (2) by directly modifying drugs administered to humans to yield active, inactive, or toxic metabolites. Although the capacity of the microbiome to modulate drug metabolism has long been known, recent studies have explored these interactions on a much broader scale and have revealed an unprecedented scope of microbial drug metabolism. The implication of this work is that we might be able to predict the capacity of an individual's microbiome to metabolize drugs and use this information to avoid toxicity and inform proper dosing. Here, we provide a tutorial of how to study the microbiome in the context of drug metabolism, focusing on in vitro, rodent, and human studies. We then highlight some limitations and opportunities for the field.
Collapse
Affiliation(s)
- Dylan Dodd
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA,Department of Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Isaac Cann
- Department of Animal ScienceUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme)University of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Division of Nutritional SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Center for East Asian & Pacific StudiesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
48
|
Mode of delivery modulates the intestinal microbiota and impacts the response to vaccination. Nat Commun 2022; 13:6638. [PMID: 36380002 PMCID: PMC9666625 DOI: 10.1038/s41467-022-34155-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota in early life, when critical immune maturation takes place, may influence the immunogenicity of childhood vaccinations. Here we assess the association between mode of delivery, gut microbiota development in the first year of life, and mucosal antigen-specific antibody responses against pneumococcal vaccination in 101 infants at age 12 months and against meningococcal vaccination in 66 infants at age 18 months. Birth by vaginal delivery is associated with higher antibody responses against both vaccines. Relative abundances of vaginal birth-associated Bifidobacterium and Escherichia coli in the first weeks of life are positively associated with anti-pneumococcal antibody responses, and relative abundance of E. coli in the same period is also positively associated with anti-meningococcal antibody responses. In this study, we show that mode of delivery-induced microbiota profiles of the gut are associated with subsequent antibody responses to routine childhood vaccines.
Collapse
|
49
|
Kazemifard N, Dehkohneh A, Baradaran Ghavami S. Probiotics and probiotic-based vaccines: A novel approach for improving vaccine efficacy. Front Med (Lausanne) 2022; 9:940454. [PMID: 36313997 PMCID: PMC9606607 DOI: 10.3389/fmed.2022.940454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination is defined as the stimulation and development of the adaptive immune system by administering specific antigens. Vaccines' efficacy, in inducing immunity, varies in different societies due to economic, social, and biological conditions. One of the influential biological factors is gut microbiota. Cross-talks between gut bacteria and the host immune system are initiated at birth during microbial colonization and directly control the immune responses and protection against pathogen colonization. Imbalances in the gut microbiota composition, termed dysbiosis, can trigger several immune disorders through the activity of the adaptive immune system and impair the adequate response to the vaccination. The bacteria used in probiotics are often members of the gut microbiota, which have health benefits for the host. Probiotics are generally consumed as a component of fermented foods, affect both innate and acquired immune systems, and decrease infections. This review aimed to discuss the gut microbiota's role in regulating immune responses to vaccination and how probiotics can help induce immune responses against pathogens. Finally, probiotic-based oral vaccines and their efficacy have been discussed.
Collapse
Affiliation(s)
- Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Dehkohneh
- Department for Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany,Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Shaghayegh Baradaran Ghavami
| |
Collapse
|
50
|
Jordan A, Carding SR, Hall LJ. The early-life gut microbiome and vaccine efficacy. THE LANCET. MICROBE 2022; 3:e787-e794. [PMID: 36088916 DOI: 10.1016/s2666-5247(22)00185-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022]
Abstract
Vaccines are one of the greatest successes of public health, preventing millions of cases of disease and death in children each year. However, the efficacy of many vaccines can vary greatly between infants from geographically and socioeconomically distinct locations. Differences in the composition of the intestinal microbiome have emerged as one of the main factors that can account for variations in immunisation outcomes. In this Review, we assess the influence of the gut microbiota upon early life immunity, focusing on two important members of the microbiota with health-promoting and immunomodulatory properties: Bifidobacterium and Bacteroides. Additionally, we discuss their immune stimulatory microbial properties, interactions with the host, and their effect on vaccine responses and efficacy in infants. We also provide an overview of current microbiota-based approaches to enhance vaccine outcomes, and describe novel microbe-derived components that could lead to safer, more effective vaccines and vaccine adjuvants.
Collapse
Affiliation(s)
- Anne Jordan
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Simon R Carding
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK; Intestinal Microbiome, School of Life Sciences, ZIEL Institute for Food & Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|