1
|
Palrasu M, Kakar K, Marudamuthu A, Hamida H, Thada S, Zhong Y, Staley S, Busbee PB, Li J, Garcia-Buitrago M, Nagarkatti M, Nagarkatti P. AhR Activation Transcriptionally Induces Anti-Microbial Peptide Alpha-Defensin 1 Leading to Reversal of Gut Microbiota Dysbiosis and Colitis. Gut Microbes 2025; 17:2460538. [PMID: 39894796 PMCID: PMC11792800 DOI: 10.1080/19490976.2025.2460538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/07/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025] Open
Abstract
Alpha-defensin 1 is a small antimicrobial peptide that acts as the first line of defense against pathogens. It is induced following microbial cues and inflammatory signals in neutrophils and Paneth cells in the small intestine, which suggests that it plays a role in microbial homeostasis in the gut. The gut microbial products also serve as ligands for the aryl hydrocarbon receptor (AhR), an environmental sensor. In the current study, we investigated if there is any crosstalk between AhR and alpha-defensin 1. Interestingly, we found a positive correlation between AhR and alpha-defensin 1 protein levels in ileal tissues from active Crohn's' (CD) patients and epithelial cells (IECs) from multiple models of murine colitis. In vitro downregulation of AhR led to inhibition of α-defensin 1, while activation of AhR induced α-defensin 1 in IECs. AhR directly targeted the dioxin response element 3 (DRE3) region on the α-defensin 1 promoter in IECs. AhR-mediated induction of α-defensin 1 in colitis mice reversed the gut microbial dysbiosis and alleviated colitis. Our data identify a novel signaling pathway in which AhR acts as a transcription factor for α-defensin 1, leading to regulation of homeostasis between gut microbiota, intestinal mucosa, and mucosal immunity.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Khadija Kakar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Amarnath Marudamuthu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Hamida Hamida
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Shruthi Thada
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Yin Zhong
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Shanieka Staley
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Philip Brandon Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Monica Garcia-Buitrago
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
2
|
Li N, Shang X, Shi L, Li Y, Mao T, Wang Q, Li J, Peng G. Effects of three Chinese herbal therapies on gut microbiota and short-chain fatty acid metabolism in patients with mild, moderate, and severe ulcerative colitis: Multi-center, randomized, controlled trials. Int Immunopharmacol 2025; 152:114444. [PMID: 40088871 DOI: 10.1016/j.intimp.2025.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Traditional Chinese medicines, as a burgeoning field of medication, significantly alleviate ulcerative colitis (UC) by improving intestinal microbiota-metabolism. Our previous studies demonstrated the significant efficacy of Hudi Enteric-coated capsules (HDEC), Qingchang Wenzhong decoction (QCWZ), and Modified Wumei pill (MWMP) using a mouse model of colitis. However, the mechanism of these therapies through the modulation of microbiota-metabolism remains uncertain. OBJECTIVE Three multicenter randomized controlled trials were designed to explore the effects of three therapies on the microbiota-metabolism of UC patients with different severity. METHODS A total of 143 patients with different severities of UC were recruited from 10 hospitals. The clinical efficacy of HDEC for mild UC, QCWZ for moderate UC, and MWMP for severe UC (SUCs) was evaluated by colorectal Mayo scores and systemic inflammatory indicators. The 16S rRNA sequencing and metabolomics were used to analyze intestinal microbiota and metabolite profiles. RESULTS Three therapies used alone or combined with mesalazine (MS) were comparable to MS alone in improving Mayo scores and hematic inflammatory parameters. Microbial diversities and architectures of SUCs showed the greatest response to MWMP+MS than other medications, as reflected by the enriched Ruminococcus and Anaerostipes together with the reduced Enterococcus, Streptococcus, and Streptococcus anginosus. Furthermore, MWMP+MS boosted the production of the microbiota-derived short-chain fatty acids (SCFAs) of SUCs. These differential microbes and metabolites further displayed significant statistical relationships with clinical parameters. CONCLUSION Herbal therapies, especially MWMP+MS, effectively improve microbiota composition and SCFA metabolism, which correlates with the improvements of serum inflammatory markers and endoscopic findings in patients.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuekai Shang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yalan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Florio M, Crudele L, Sallustio F, Moschetta A, Cariello M, Gadaleta RM. Disentangling the nutrition-microbiota liaison in inflammatory bowel disease. Mol Aspects Med 2025; 102:101349. [PMID: 39922085 DOI: 10.1016/j.mam.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/24/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a set of chronic intestinal inflammatory disorders affecting the gastrointestinal (GI) tract. Beside compromised intestinal barrier function and immune hyperactivation, a common IBD feature is dysbiosis, characterized by a reduction of some strains of Firmicutes, Bacteroidetes, Actinobacteria and an increase in Proteobacteria and pathobionts. Emerging evidence points to diet and nutrition-dependent gut microbiota (GM) modulation, as etiopathogenetic factors and adjuvant therapies in IBD. Currently, no nutritional regimen shows universal efficacy, and advice are controversial, especially those involving restrictive diets potentially resulting in malnutrition. This review provides an overview of the role of macronutrients, dietary protocols and GM modulation in IBD patients. A Western-like diet contributes to an aberrant mucosal immune response to commensal bacteria and impairment of the intestinal barrier integrity, thereby triggering intestinal inflammation. Conversely, a Mediterranean nutritional pattern appears to be one of the most beneficial dietetic regimens able to restore the host intestinal physiology, by promoting eubiosis and preserving the intestinal barrier and immune function, which in turn create a virtuous cycle improving patient adherence to the pattern. Further clinical studies are warranted, to corroborate current IBD nutritional guidelines, and develop more accurate models to move forward precision nutrition and ameliorate patients' quality of life.
Collapse
Affiliation(s)
- Marilina Florio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Raffaella M Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
4
|
Tian B, Ye P, Zhou X, Hu J, Wang P, Cai M, Yang K, Sun P, Zou X. Gallic Acid Ameliorated Chronic DSS-Induced Colitis Through Gut Microbiota Modulation, Intestinal Barrier Improvement, and Inflammation. Mol Nutr Food Res 2025:e70024. [PMID: 40123223 DOI: 10.1002/mnfr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
SCOPE Gallic acid (GA) is recognized for its purported antiinflammatory properties. GA has been demonstrated to prevent and alleviate the symptoms of chronic colitis through the modulation of the gut microbiota, improvement of the intestinal barrier, and reduction of inflammation. METHODS AND RESULTS In order to determine the mechanism by which GA exerts its protective effect against chronic colitis, mice were induced by dextran sulfate sodium (DSS). The reduction in the disease activity index by 25% and the decrease in colon tissue damage indicated that 36 days of GA intervention alleviated chronic DSS-induced colitis symptoms. GA was observed to mitigate weight loss by 2.5% and the shortening of colon by 17.3%, and to diminish the expression of pivotal proteins within the TLR4/nuclear factor κB (NF-κB) signaling cascades, consequently lowering the generation of inflammatory cytokines. Furthermore, GA effectively corrected the gut microbiota imbalance, increased the content of short-chain fatty acids (SCFAs), which in turn suppressed inflammation, and enhanced tight junction protein expression, thereby strengthening the intestinal barrier. CONCLUSION GA has the capacity to enhance the efficacy of chronic colitis through a multifaceted mechanism, influencing the gut microbiota, intestinal barrier function, and inflammatory processes. The findings highlight the potential of GA as a preventative strategy for chronic colitis.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Peng Ye
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xue Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Jiangning Hu
- Zhejiang Institute of Modern TCM and Natural Medicine Co., Ltd, Hangzhou, PR China
| | - Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| |
Collapse
|
5
|
Hodgkiss R, Acharjee A. Unravelling metabolite-microbiome interactions in inflammatory bowel disease through AI and interaction-based modelling. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167618. [PMID: 39662756 DOI: 10.1016/j.bbadis.2024.167618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Inflammatory Bowel Diseases (IBDs) are chronic inflammatory disorders of the gastrointestinal tract and colon affecting approximately 7 million individuals worldwide. The knowledge of specific pathology and aetiological mechanisms leading to IBD is limited, however a reduced immune system, antibiotic use and reserved diet may initiate symptoms. Dysbiosis of the gut microbiome, and consequently a varied composition of the metabolome, has been extensively linked to these risk factors and IBD. Metagenomic sequencing and liquid-chromatography mass spectrometry (LC-MS) of N = 220 fecal samples by Fransoza et al., provided abundance data on microbial genera and metabolites for use in this study. Identification of differentially abundant microbes and metabolites was performed using a Wilcoxon test, followed by feature selection of random forest (RF), gradient-boosting (XGBoost) and least absolute shrinkage operator (LASSO) models. The performance of these features was then validated using RF models on the Human Microbiome Project 2 (HMP2) dataset and a microbial community (MICOM) model was utilised to predict and interpret the interactions between key microbes and metabolites. The Flavronifractor genus and microbes of the families Lachnospiraceae and Oscillospiraceae were found differential by all models. Metabolic pathways commonly influenced by such microbes in IBD were CoA biosynthesis, bile acid metabolism and amino acid production and degradation. This study highlights distinct interactive microbiome and metabolome profiles within IBD and the highly potential pathways causing disease pathology. It therefore paves way for future investigation into new therapeutic targets and non-invasive diagnostic tools for IBD.
Collapse
Affiliation(s)
- Rebecca Hodgkiss
- College of Medicine and Health, Cancer and Genomic Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Animesh Acharjee
- College of Medicine and Health, Cancer and Genomic Sciences, University of Birmingham, B15 2TT Birmingham, UK; Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, UK; MRC Health Data Research UK (HDR), Midlands Site, UK; Centre for Health Data Research, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Junca H, Steube A, Mrowietz S, Stallhofer J, Vital M, dos Anjos Borges LG, Pieper DH, Stallmach A. Bacterial and viral assemblages in ulcerative colitis patients following fecal microbiota and fecal filtrate transfer. ISME COMMUNICATIONS 2025; 5:ycae167. [PMID: 39830095 PMCID: PMC11740987 DOI: 10.1093/ismeco/ycae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Fecal microbiota filtrate transfer is discussed as a safe alternative to fecal microbiota transfer (FMT) to treat ulcerative colitis. We investigated modulation of viral and bacterial composition during fecal microbiota filtrate transfer followed by FMT in six patients with active ulcerative colitis (where clinical activity improved in three patients after filtrate transfer) and combined 16S ribosomal RNA gene amplicon sequencing with a virome analysis pipeline including fast viral particle enrichment and metagenome mapping to detect frequencies of 45,033 reference bacteriophage genomes. We showed that after antibiotic treatment and during filtrate transfer, the bacterial community typically adopted a stable composition distinct to that before antibiotic treatment, with no change toward a donor community. FMT in contrast typically changed the bacterial community to a community with similarity to donor(s). There were no indications of an establishment of predominant donor viruses during filtrate transfer but a remodeling of the virome. In contrast, the establishment of donor viruses during FMT correlated with the predicted hosts established during such transfer. Our approach warrants further investigation in a randomized trial to evaluate larger therapeutic interventions in a comparable and efficient manner.
Collapse
Affiliation(s)
- Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Arndt Steube
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), University Hospital Jena, D-07747 Jena, Germany
| | - Simon Mrowietz
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), University Hospital Jena, D-07747 Jena, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), University Hospital Jena, D-07747 Jena, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Luiz Gustavo dos Anjos Borges
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), University Hospital Jena, D-07747 Jena, Germany
| |
Collapse
|
7
|
Xiao Q, Luo L, Zhu X, Yan Y, Li S, Chen L, Wang X, Zhang J, Liu D, Liu R, Zhong Y. Formononetin alleviates ulcerative colitis via reshaping the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156153. [PMID: 39423480 DOI: 10.1016/j.phymed.2024.156153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), a type of inflammatory bowel disease, presents substantial challenges in clinical treatment due to the limitations of current medications. Formononetin (FN), a naturally compound with widespread availability, exhibits anti-inflammatory, antioxidant, and immunomodulatory properties. PURPOSE This study aimed to investigate the efficacy of FN against UC and its potential regulatory mechanism. METHODS Here, dextran sulfate sodium (DSS) was employed to replicate experimental colitis in mice with concomitant FN treatment. The distribution and localisation of CD68 and F4/80 macrophages in colonic tissues were visualized by immunofluorescence, their chemokine and inflammatory cytokine concentrations were determined by ELISA, and macrophages and M1/M2 subpopulations were determined by flow cytometry. Additionally, 16 s rRNA and LC-MS techniques were used to detect the colonic intestinal microbiota and metabolite profiles, respectively. Correlation analyses was performed to clarify the interactions between differential bacteria, metabolites and M1/M2 macrophages, and pseudo sterile mice were constructed by depletion of gut flora with quadruple antibiotics, followed by faecal microbial transplantation to evaluate its effects on colitis and M1/M2 macrophage polarisation. RESULTS FN dose-dependently alleviated clinical symptoms and inflammatory injury in colonic tissues of colitis mice, with its high-dose efficacy comparable to that of 5-ASA. Concurrently, FN not only inhibited inflammatory infiltration of macrophages and their M1/M2 polarisation balance in colitis mice, but also improved the composition of colonic microbiota and metabolite profiles. However, FN lost its protective effects against DSS-induced colitis and failed to restore the equilibrium of M1/M2 macrophage differentiation following intestinal flora depletion through quadruple antibiotic treatment. Importantly, fecal microbiota transplantation from FN-treated mice restored FN's protective effects against DSS-induced colitis and reestablished its regulatory role in M1/M2 macrophage polarization. CONCLUSION Collectively, FN ameliorated UC through modulating the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Effective Material Basis of TCM, Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lin Luo
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiyan Zhu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yuhao Yan
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Shanshan Li
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Liling Chen
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jie Zhang
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duanyong Liu
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Nursing, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Prevention and Treatment of Immunological and Metabolic Diseases Related to Prescription and Syndrome, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Effective Material Basis of TCM, Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Youbao Zhong
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Prevention and Treatment of Immunological and Metabolic Diseases Related to Prescription and Syndrome, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
8
|
Zobrist Y, Doulberis M, Biedermann L, Leventhal GE, Rogler G. Anthocyanin-Rich Extract Mitigates the Contribution of the Pathobiont Genus Haemophilus in Mild-to-Moderate Ulcerative Colitis Patients. Microorganisms 2024; 12:2376. [PMID: 39597764 PMCID: PMC11596099 DOI: 10.3390/microorganisms12112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Anthocyanins (ACs) have been shown to elicit anti-inflammatory and antioxidant effects in animal models of ulcerative colitis (UC). Furthermore, we previously observed in a double-blind randomized trial in UC patients that biochemical disease activity tended to be lower in patients that were exposed to AC. Here, we report on the changes in the fecal microbiome composition in these patients upon AC exposure. UC patients received a 3 g daily dose of an AC-rich bilberry extract (ACRE) for eight weeks. We determined the microbiome composition in longitudinal stool samples from 24 patients and quantified the degree of change over time. We also correlated the relative abundances of individual microbial taxa at different timepoints to fecal concentrations of calprotectin, a proxy for inflammation. Microbiome composition did not change over time as a result of the intervention, in terms of both alpha and beta diversity. However, before the intervention, the abundance of Haemophilus parainfluenzae was positively correlated with fecal calprotectin concentrations, and this correlation persisted in placebo-treated subjects throughout the study. In contrast, the correlation between H. parainfluenzae and calprotectin vanished in ACRE-treated subjects, while the relative abundance of H. parainfluenzae did not change. Our results suggest that ACRE treatment mitigates the contribution of H. parainfluenzae to inflammation. Further research is warranted to better comprehend the role of microbial composition in response to medical therapy including AC-rich extract in UC patients.
Collapse
Affiliation(s)
| | - Michael Doulberis
- Department of Gastroenterology and Hepatology, Department of Medicine, Zurich University Hospital, 8091 Zurich, Switzerland; (M.D.); (L.B.)
- Gastroklinik, Private Gastroenterological Practice, 8810 Horgen, Switzerland
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, Department of Medicine, Zurich University Hospital, 8091 Zurich, Switzerland; (M.D.); (L.B.)
| | | | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, Department of Medicine, Zurich University Hospital, 8091 Zurich, Switzerland; (M.D.); (L.B.)
| |
Collapse
|
9
|
Bonazzi E, Lorenzon G, Maniero D, De Barba C, Bertin L, Barberio B, Salvador R, Valmasoni M, Zingone F, Ghisa M, Savarino EV. The Esophageal Microbiota in Esophageal Health and Disease. GASTROENTEROLOGY INSIGHTS 2024; 15:998-1013. [DOI: 10.3390/gastroent15040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The esophagus, traditionally viewed as a sterile conduit, is now recognized as a dynamic habitat for diverse microbial communities. The emerging evidence suggests that the esophageal microbiota plays an important role in maintaining esophageal health and contributing to disease. The aim of this systematic review was to synthesize the current knowledge on the esophageal microbiota composition, its variation between healthy individuals and those with esophageal diseases, and the potential mechanisms through which these microorganisms influence esophageal pathology. A systematic literature search was conducted using multiple databases, including PubMed, Scopus, and Web of Science, to identify relevant studies published up to July 2024. The inclusion criteria encompassed original research articles that used molecular techniques to characterize the esophageal microbiota in human subjects, comparing healthy individuals with patients affected by esophageal conditions such as gastroesophageal reflux disease (GERD), Barrett’s esophagus, eosinophilic esophagitis, and esophageal cancer. The primary outcomes were the composition and diversity of the esophageal microbiota, and the secondary outcomes included the correlations between microbial profiles and disease states. The esophageal microbiota of healthy individuals was dominated by Gram-positive bacteria, particularly Streptococcus. Conversely, the esophageal microbiota is considerably altered in disease states, with decreased microbial diversity and specific microbial signatures associated with these conditions, which may serve as biomarkers for disease progression and as targets for therapeutic intervention. However, the heterogeneous study designs, populations, and analytical methods underscore the need for standardized approaches in future research. Understanding the esophageal microbiota’s role in health and disease could guide microbiota-based diagnostics and treatments, offering novel avenues for managing esophageal conditions.
Collapse
Affiliation(s)
- Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Brigida Barberio
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Renato Salvador
- Chirurgia Generale 1, Azienda Ospedale Università of Padua, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
| | - Michele Valmasoni
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Matteo Ghisa
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| |
Collapse
|
10
|
Leibovitzh H, Sarbagili Shabat C, Hirsch A, Zittan E, Mentella MC, Petito V, Cohen NA, Ron Y, Fliss Isakov N, Pfeffer J, Yaakov M, Fanali C, Turchini L, Masucci L, Quaranta G, Kolonimos N, Godneva A, Weinberger A, Scaldaferri F, Maharshak N. Faecal Transplantation for Ulcerative Colitis From Diet Conditioned Donors Followed by Dietary Intervention Results in Favourable Gut Microbial Profile Compared to Faecal Transplantation Alone. J Crohns Colitis 2024; 18:1606-1614. [PMID: 38720628 DOI: 10.1093/ecco-jcc/jjae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Several faecal microbial transplantation [FMT] approaches for ulcerative colitis [UC] have been investigated with conflicting results. We have recently published the clinical outcomes from the CRAFT UC Trial using FMT with the UC Exclusion Diet [UCED], compared with FMT alone. Here we aimed to compare the two FMT strategies in terms of microbial profile and function. METHODS Subjects recruited to the CRAFT UC study with available pre- and post-intervention faecal samples were included. Donors received diet conditioning for 14 days based on the UCED principles. Group 1 received single FMT by colonoscopy [Day 1] and enemas [Days 2 and 14] without donors' dietary conditioning [N = 11]. Group 2 received FMT but with donors' dietary pre-conditioning and UCED for the patients [N = 10]. Faecal samples were assessed by DNA shotgun metagenomic sequencing. RESULTS Following diet conditioning, donors showed depletion in metabolic pathways involved in biosynthesis of sulphur-containing amino acids. Only Group 2 showed significant shifts towards the donors' microbial composition [ADONIS: R2 = 0.15, p = 0.008] and significantly increased Eubacterium_sp_AF228LB post-intervention [β-coefficient 2.66, 95% confidence interval 2.1-3.3, q < 0.05] which was inversely correlated with faecal calprotectin [rho = -0.52, p = 0.035]. Moreover, pathways involved in gut inflammation and barrier function including branched chain amino acids were enriched post-intervention in Group 2 and were significantly inversely correlated with faecal calprotectin. CONCLUSION FMT from diet conditioned donors followed by the UCED led to microbial alterations associated with favourable microbial profiles which correlated with decreased faecal calprotectin. Our findings support further exploration of the additive benefit of dietary intervention for both donors and patients undergoing FMT as a potential treatment of UC.
Collapse
Affiliation(s)
- Haim Leibovitzh
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Chen Sarbagili Shabat
- Pediatric Gastroenterology Unit, PIBD Research Center, Wolfson Medical Center, Holon, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ayal Hirsch
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Zittan
- Gastroenterology Institute, IBD Unit, Haemek Medical Center, Afula, Israel
| | - Maria Chiara Mentella
- UOC di Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Petito
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Nathaniel Aviv Cohen
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Ron
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Fliss Isakov
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Health, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jorge Pfeffer
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Yaakov
- Pediatric Gastroenterology Unit, PIBD Research Center, Wolfson Medical Center, Holon, Israel
| | - Caterina Fanali
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Laura Turchini
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Luca Masucci
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore - Fondazione Policlinico 'A. Gemelli' IRCSS, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Quaranta
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore - Fondazione Policlinico 'A. Gemelli' IRCSS, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nitzan Kolonimos
- Gastroenterology Institute, IBD Unit, Haemek Medical Center, Afula, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Franco Scaldaferri
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore- Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Nitsan Maharshak
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Chen J, Tao R, Qiu Y, Yuan Q. CMFHMDA: a prediction framework for human disease-microbe associations based on cross-domain matrix factorization. Brief Bioinform 2024; 25:bbae481. [PMID: 39327064 PMCID: PMC11427075 DOI: 10.1093/bib/bbae481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Predicting associations between microbes and diseases opens up new avenues for developing diagnostic, preventive, and therapeutic strategies. Given that laboratory-based biological tests to verify these associations are often time-consuming and expensive, there is a critical need for innovative computational frameworks to predict new microbe-disease associations. In this work, we introduce a novel prediction algorithm called Predicting Human Disease-Microbe Associations using Cross-Domain Matrix Factorization (CMFHMDA). Initially, we calculate the composite similarity of diseases and the Gaussian interaction profile similarity of microbes. We then apply the Weighted K Nearest Known Neighbors (WKNKN) algorithm to refine the microbe-disease association matrix. Our CMFHMDA model is subsequently developed by integrating the network data of both microbes and diseases to predict potential associations. The key innovations of this method include using the WKNKN algorithm to preprocess missing values in the association matrix and incorporating cross-domain information from microbes and diseases into the CMFHMDA model. To validate CMFHMDA, we employed three different cross-validation techniques to evaluate the model's accuracy. The results indicate that the CMFHMDA model achieved Area Under the Receiver Operating Characteristic Curve scores of 0.9172, 0.8551, and 0.9351$\pm $0.0052 in global Leave-One-Out Cross-Validation (LOOCV), local LOOCV, and five-fold CV, respectively. Furthermore, many predicted associations have been confirmed by published experimental studies, establishing CMFHMDA as an effective tool for predicting potential disease-associated microbes.
Collapse
Affiliation(s)
- Jing Chen
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Ran Tao
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Yi Qiu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Qun Yuan
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, 215153 Suzhou, China
| |
Collapse
|
12
|
Meng Q, Ning J, Lu J, Zhang J, Zu M, Zhang J, Han X, Zheng H, Gong Y, Hao X, Xiong Y, Gu F, Han W, Fu W, Wang J, Ding S. Cmtm4 deficiency exacerbates colitis by inducing gut dysbiosis and S100a8/9 expression. J Genet Genomics 2024; 51:811-823. [PMID: 38575111 DOI: 10.1016/j.jgg.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
The dysfunction of innate immunity components is one of the major drivers for ulcerative colitis (UC), and increasing reports indicate that the gut microbiome serves as an intermediate between genetic mutations and UC development. Here, we find that the IL-17 receptor subunit, CMTM4, is reduced in UC patients and dextran sulfate sodium (DSS)-induced colitis. The deletion of CMTM4 (Cmtm4-/-) in mice leads to a higher susceptibility to DSS-induced colitis than in wild-type, and the gut microbiome significantly changes in composition. The causal role of the gut microbiome is confirmed with a cohousing experiment. We further identify that S100a8/9 is significantly up-regulated in Cmtm4-/- colitis, with the block of its receptor RAGE that reverses the phenotype associated with the CMTM4 deficiency. CMTM4 deficiency rather suppresses S100a8/9 expression in vitro via the IL17 pathway, further supporting that the elevation of S100a8/9 in vivo is most likely a result of microbial dysbiosis. Taken together, the results suggest that CMTM4 is involved in the maintenance of intestinal homeostasis, suppression of S100a8/9, and prevention of colitis development. Our study further shows CMTM4 as a crucial innate immunity component, confirming its important role in UC development and providing insights into potential targets for the development of future therapies.
Collapse
Affiliation(s)
- Qiao Meng
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Jingjing Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Ming Zu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Xiurui Han
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Yueqing Gong
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Xinyu Hao
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Ying Xiong
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Fang Gu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology (Peking University), Beijing 100191, China; Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China.
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing 100191, China.
| |
Collapse
|
13
|
Bosselaar S, Dhelin L, Dautel E, Titecat M, Duthoy S, Stelmaszczyk M, Delory N, De Sousa Violante M, Machuron F, Ait-Abderrahim H, Desreumaux P, Foligné B, Monnet C. Taxonomic and phenotypic analysis of bifidobacteria isolated from IBD patients as potential probiotic strains. BMC Microbiol 2024; 24:233. [PMID: 38951788 PMCID: PMC11218132 DOI: 10.1186/s12866-024-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.
Collapse
Affiliation(s)
- Sabine Bosselaar
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France.
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France.
| | - Lucile Dhelin
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Ellena Dautel
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Titecat
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Stéphanie Duthoy
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Stelmaszczyk
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Nathan Delory
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Madeleine De Sousa Violante
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - François Machuron
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Hassina Ait-Abderrahim
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Pierre Desreumaux
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037, Lille, France
| | - Benoit Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Céline Monnet
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| |
Collapse
|
14
|
Wang N, Li Z, Cao L, Cui Z. Trilobatin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice via the NF-κB pathway and alterations in gut microbiota. PLoS One 2024; 19:e0305926. [PMID: 38913606 PMCID: PMC11195961 DOI: 10.1371/journal.pone.0305926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the effects of trilobatin (TLB) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and further explore the underlying mechanisms from the perspectives of signaling pathway and gut microbiota. METHODS A mouse model of UC was established using DSS. Trilobatin was administered via oral gavage. Disease severity was assessed based on body weight, disease activity index (DAI), colon length, histological detection, inflammation markers, and colonic mucosal barrier damage. Alternations in the NF-κB and PI3K/Akt pathways were detected by marker proteins. High-throughput 16S rRNA sequencing was performed to investigate the gut microbiota of mice. RESULTS In the DSS-induced UC mice, TLB (30 μg/g) treatment significantly increased the body weight, reduced the DAI score, alleviated colon length shortening, improved histopathological changes in colon tissue, inhibited the secretion and expression of inflammation factors (TNF-α, IL-1β, and IL-6), and increased the expression of tight-junction proteins (ZO-1 and occludin). Furthermore, TLB (30 μg/g) treatment significantly suppressed the activation of NF-κB pathway and altered the composition and diversity of the gut microbiota, as observed in the variations of the relative abundances of Proteobacteria, Actinobacteriota, and Bacteroidota, in UC mice. CONCLUSION TLB effectively alleviates DSS-induced UC in mice. Regulation of the NF-κB pathway and gut microbiota contributes to TLB-mediated therapeutic effects. Our study not only identified a novel drug candidate for the treatment of UC, but also enhanced our understanding of the biological functions of TLB.
Collapse
Affiliation(s)
- Nanbo Wang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaohui Li
- Changchun People’s Hospital of Jilin Province, Changchun, China
| | - Lingling Cao
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Zhihua Cui
- The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Yang YN, Han B, Zhang MQ, Chai NN, Yu FL, Qi WH, Tian MY, Sun DZ, Huang Y, Song QX, Li Y, Zhu MC, Zhang Y, Li X. Therapeutic effects and mechanisms of isoxanthohumol on DSS-induced colitis: regulating T cell development, restoring gut microbiota, and improving metabolic disorders. Inflammopharmacology 2024; 32:1983-1998. [PMID: 38642223 DOI: 10.1007/s10787-024-01472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Ulcerative colitis (UC) is a severe hazard to human health. Since pathogenesis of UC is still unclear, current therapy for UC treatment is far from optimal. Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, possesses anti-microbial, anti-oxidant, anti-inflammatory, and anti-angiogenic properties. However, the potential effects of IXN on the alleviation of colitis and the action of the mechanism is rarely studied. Here, we found that administration of IXN (60 mg/kg/day, gavage) significantly attenuated dextran sodium sulfate (DSS)-induced colitis, evidenced by reduced DAI scores and histological improvements, as well as suppressed the pro-inflammatory Th17/Th1 cells but promoted the anti-inflammatory Treg cells. Mechanically, oral IXN regulated T cell development, including inhibiting CD4+ T cell proliferation, promoting apoptosis, and regulating Treg/Th17 balance. Furthermore, IXN relieved colitis by restoring gut microbiota disorder and increasing gut microbiota diversity, which was manifested by maintaining the ratio of Firmicutes/Bacteroidetes balance, promoting abundance of Bacteroidetes and Ruminococcus, and suppressing abundance of proteobacteria. At the same time, the untargeted metabolic analysis of serum samples showed that IXN promoted the upregulation of D-( +)-mannose and L-threonine and regulated pyruvate metabolic pathway. Collectively, our findings revealed that IXN could be applied as a functional food component and served as a therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Na-Nan Chai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Wen-Hui Qi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Meng-Yuan Tian
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Dong-Zhi Sun
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Ying Huang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qing-Xin Song
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yan Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mao-Cui Zhu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
16
|
Li Y, Sun X, Wang M, Jiang Y, Ge QQ, Li T, Hou Z, Shi P, Yao K, Yin J. Meta-analysis and machine learning reveal the antiobesity effects of melatonin on obese rodents. Obes Rev 2024; 25:e13701. [PMID: 38311366 DOI: 10.1111/obr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Melatonin appears to be a promising supplement for obesity treatment. The antiobesity effects of melatonin on obese rodents are influenced by various factors, including the species, sex, the dosage of melatonin, treatment duration, administration via, daily treatment time, and initial body weight (IBW). Therefore, we conducted a meta-analysis and machine learning study to evaluate the antiobesity effect of melatonin on obese mice or rats from 31 publications. The results showed that melatonin significantly reduced body weight, serum glucose (GLU), triglycerides (TGs), low-density lipoprotein (LDL), and cholesterol (TC) levels in obese mice or rats but increased high-density lipoprotein (HDL) levels. Melatonin showed a slight positive effect on clock-related genes, although the number of studies was limited. Meta-regression analysis and machine learning indicated that the dosage of melatonin was the primary factor influencing body weight, with higher melatonin dosages leading to a stronger weight reduction effect. Together, male obese C57BL/6 mice and Sprague-Dawley rats with an IBW of 100-200 g showed better body weight reduction when supplemented with a dose of 10-30 mg/kg melatonin administered at night via injection for 5-8 weeks.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xihang Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yayun Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Qian Ge
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tiejun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
17
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
18
|
Carnevale S, Ponzetta A, Rigatelli A, Carriero R, Puccio S, Supino D, Grieco G, Molisso P, Di Ceglie I, Scavello F, Perucchini C, Pasqualini F, Recordati C, Tripodo C, Belmonte B, Mariancini A, Kunderfranco P, Sciumè G, Lugli E, Bonavita E, Magrini E, Garlanda C, Mantovani A, Jaillon S. Neutrophils Mediate Protection Against Colitis and Carcinogenesis by Controlling Bacterial Invasion and IL22 Production by γδ T Cells. Cancer Immunol Res 2024; 12:413-426. [PMID: 38349973 PMCID: PMC10985471 DOI: 10.1158/2326-6066.cir-23-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.
Collapse
Affiliation(s)
| | | | - Anna Rigatelli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Simone Puccio
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | | | | | - Fabio Pasqualini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Mouse & Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, University of Palermo, School of Medicine, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Science, University of Palermo, School of Medicine, Palermo, Italy
| | - Andrea Mariancini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Enrico Lugli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Eduardo Bonavita
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elena Magrini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
19
|
Wang Z, Gao M, Kan J, Cheng Q, Chen X, Tang C, Chen D, Zong S, Jin C. Resistant Starch from Purple Sweet Potatoes Alleviates Dextran Sulfate Sodium-Induced Colitis through Modulating the Homeostasis of the Gut Microbiota. Foods 2024; 13:1028. [PMID: 38611336 PMCID: PMC11011479 DOI: 10.3390/foods13071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is a complicated inflammatory disease with a continually growing incidence. In this study, resistant starch was obtained from purple sweet potato (PSPRS) by the enzymatic isolation method. Then, the structural properties of PSPRS and its protective function in dextran sulfate sodium (DSS)-induced colitis were investigated. The structural characterization results revealed that the crystallinity of PSPRS changed from CA-type to A-type, and the lamellar structure was totally destroyed during enzymatic hydrolysis. Compared to DSS-induced colitis mice, PSPRS administration significantly improved the pathological phenotype and colon inflammation in a dose-dependent manner. ELISA results indicated that DSS-induced colitis mice administered with PSPRS showed higher IL-10 and IgA levels but lower TNF-α, IL-1β, and IL-6 levels. Meanwhile, high doses (300 mg/kg) of PSPRS significantly increased the production of acetate, propionate, and butyrate. 16S rDNA high-throughput sequencing results showed that the ratio of Firmicutes to Bacteroidetes and the potential probiotic bacteria levels were notably increased in the PSPRS treatment group, such as Lactobacillus, Alloprevotella, Lachnospiraceae_NK4A136_group, and Bifidobacterium. Simultaneously, harmful bacteria like Bacteroides, Staphylococcus, and Akkermansia were significantly inhibited by the administration of a high dose of PSPRS (p < 0.05). Therefore, PSPRS has the potential to be a functional food for promoting intestinal health and alleviating UC.
Collapse
Affiliation(s)
| | | | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.W.); (M.G.); (Q.C.); (X.C.); (C.T.); (D.C.); (S.Z.); (C.J.)
| | | | | | | | | | | | | |
Collapse
|
20
|
Kushkevych I, Martínková K, Mráková L, Giudici F, Baldi S, Novak D, Gajdács M, Vítězová M, Dordevic D, Amedei A, Rittmann SKMR. Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:79-89. [PMID: 38486888 PMCID: PMC10939707 DOI: 10.15698/mic2024.03.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Considerable evidence has accumulated regarding the molecular relationship between gut microbiota (GM) composition and the onset (clinical presentation and prognosis of ulcerative colitis (UC)). In addition, it is well documented that short-chain fatty acid (SCFA)-producing bacteria may play a fundamental role in maintaining an anti-inflammatory intestinal homeostasis, but sulfate- and sulfite reducing bacteria may be responsible for the production of toxic metabolites, such as hydrogen sulfide and acetate. Hence, the present study aimed to assess the GM composition - focusing on sulfate-reducing bacteria (SRB) - in patients with severe, severe-active and moderate UC. Each one of the six enrolled patients provided two stool samples in the following way: one sample was cultivated in a modified SRB-medium before 16S rRNA sequencing and the other was not cultivated. Comparative phylogenetic analysis was conducted on each sample. Percentage of detected gut microbial genera showed considerable variation based on the patients' disease severity and cultivation in the SRB medium. In detail, samples without cultivation from patients with moderate UC showed a high abundance of the genera Bacteroides, Bifidobacterium and Ruminococcus, but after SRB cultivation, the dominant genera were Bacteroides, Klebsiella and Bilophila. On the other hand, before SRB cultivation, the main represented genera in patients with severe UC were Escherichia-Shigella, Proteus, Methanothermobacter and Methanobacterium. However, after incubation in the SRB medium Bacteroides, Proteus, Alistipes and Lachnoclostridium were predominant. Information regarding GM compositional changes in UC patients may aid the development of novel therapeutic strategies (e.g., probiotic preparations containing specific bacterial strains) to counteract the mechanisms of virulence of harmful bacteria and the subsequent inflammatory response that is closely related to the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Kristýna Martínková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Lenka Mráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - David Novak
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simon K.-M. R. Rittmann
- Department of Functional and Evolutionary Ecology, Archaea Physiology & Biotechnology Group, Universität Wien, 1030 Wien, Austria
| |
Collapse
|
21
|
Lv W, Jin W, Lin J, Wang Z, Ma Y, Zhang W, Zhu Y, Hu Y, Qu Q, Guo S. Forsythia suspensa polyphenols regulate macrophage M1 polarization to alleviate intestinal inflammation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155336. [PMID: 38295660 DOI: 10.1016/j.phymed.2024.155336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) was a chronic intestinal disease related to autoimmunity, and its pathogenesis was complex. Forsythia suspensa (F. suspensa) had good anti-inflammatory and antioxidant effects. The active component polyphenols had significant effects in the treatment of intestinal inflammation. Researches had found that polarization, pyroptosis and apoptosis of macrophages can drive the occurrence and development of colitis. PURPOSE In this study, we examined whether F. suspensa polyphenols (FPP) mitigated DSS-induced colitis, and explored its potential mechanisms. METHODS The potential targets of F. suspensa in intestinal inflammation were predicted through network pharmacology. Using LPS and IFN-γ induced macrophage M1 polarization in J774A.1 cells. Macrophage polarization was detected through RT-qPCR, flow cytometry and ELISA. Ulcerative colitis (UC) in mice was induced by 2.5% DSS for 7 days, and then oral administrated different doses of FPP for another 7 days. Then we assessed the body weight, diarrhea, bleeding in stool, colon length, cytokines of serum and pathology of colon. The effects of FPP on the gut microbiota in mice also tested and evaluated. RESULTS Our results showed that the main active ingredient of F. suspensa in protecting intestinal inflammation were polyphenols and F. suspensa was multi-targeted in the treatment of intestinal inflammation. FPP inhibited M1 polarization and polarizes towards M2 in J774A.1 cells. FPP inhibited pyroptosis and apoptosis to exert anti-inflammatory effects. FPP had a good protective effect on DSS induced UC in mice. In unison, FPP inhibited M1 polarization, apoptosis, and pyroptosis in UC mice. FPP regulated intestinal homeostasis in mice with UC by improving the gut microbiota and enhancing the intestinal metabolites short-chain fatty acid (SCFAs). CONCLUSIONS These data indicated that FPP may alleviate UC by inhibiting M1 polarization in mice. Collectively, these findings suggest that the reduction of colitis by FPP may related to macrophage polarization, pyroptosis and apoptosis.
Collapse
Affiliation(s)
- Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhihua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenbo Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifan Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
22
|
Gao K, Wang PX, Mei X, Yang T, Yu K. Untapped potential of gut microbiome for hypertension management. Gut Microbes 2024; 16:2356278. [PMID: 38825779 PMCID: PMC11152106 DOI: 10.1080/19490976.2024.2356278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.
Collapse
Affiliation(s)
- Kan Gao
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pu Xiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Mei
- School of Pharmacy, Institute of Materia Medica, North Sichuan Medical College, Nanchang, Sichuan, China
| | - Tao Yang
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Kai Yu
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Florio M, Crudele L, Moschetta A, Gadaleta RM. Discovering the Nutrition-Microbiota Interplay in Inflammatory Bowel Disease: Are We There Yet? Endocrinology 2024:333-371. [DOI: 10.1007/978-3-031-35064-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Li N, Ma P, Li Y, Shang X, Nan X, Shi L, Han X, Liu J, Hong Y, Li Q, Cui J, Li J, Peng G. Gut microbiota-derived 12-ketolithocholic acid suppresses the IL-17A secretion from colonic group 3 innate lymphoid cells to prevent the acute exacerbation of ulcerative colitis. Gut Microbes 2023; 15:2290315. [PMID: 38062857 PMCID: PMC10730201 DOI: 10.1080/19490976.2023.2290315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Intestinal microbiota dysbiosis and metabolic disruption are well-known as the primary triggers of ulcerative colitis (UC). However, their role in regulating the group 3 innate lymphoid cells (ILC3s), which are essential for intestinal health, remains unexplored during the development of disease severity. Here, our results showed that the microbiota structure of patients with severe UC (SUCs) differed from those with mild UC (MiUCs), moderate UC (MoUCs), and healthy controls (HCs). Microbes producing secondary bile acids (SBAs) and SBAs decreased with the aggravation of UC, and a strong positive correlation existed between them. Next, fecal microbiota transfer was used to reproduce the human-derived microbiota in mice and decipher the microbiota-mediated inflammatory modulation during an increase in disease severity. Mice receiving SUC-derived microbiota exhibited enhancive inflammation, a lowered percentage of ILC3s, and the down-regulated expressions of bile acid receptors, including vitamin D receptor (VDR) and pregnane X receptor (PXR), in the colon. Similar to clinical results, SBA-producing microbes, deoxycholic acids (DCA), and 12-ketolithocholic acids (12-KLCA) were diminished in the intestine of these recipients. Finally, we compared the therapeutic potential of DCA and 12-KLCA in preventing colitis and the regulatory mechanisms mediated by ILC3s. 12-KLCA but not DCA represented a strong anti-inflammatory effect associated with the higher expression of VDR and the lower secretion of IL-17A from colonic ILC3s. Collectively, these findings provide new signatures for monitoring the acute deterioration of UC by targeting gut microbiota and bile acid metabolism and demonstrate the therapeutic and preventive potential of a novel microbiota-derived metabolite, 12-KLCA.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Peiguang Ma
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yalan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xuekai Shang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinmei Nan
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lei Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiao Han
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiajing Liu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yanfei Hong
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qiuyi Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiaqi Cui
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Junxiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
25
|
Zhou J, Yang X, Yang Y, Wei Y, Lu D, Xie Y, Liang H, Cui P, Ye L, Huang J. Human microbiota dysbiosis after SARS-CoV-2 infection have the potential to predict disease prognosis. BMC Infect Dis 2023; 23:841. [PMID: 38031010 PMCID: PMC10685584 DOI: 10.1186/s12879-023-08784-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The studies on SARS-CoV-2 and human microbiota have yielded inconsistent results regarding microbiota α-diversity and key microbiota. To address these issues and explore the predictive ability of human microbiota for the prognosis of SARS-CoV-2 infection, we conducted a reanalysis of existing studies. METHODS We reviewed the existing studies on SARS-CoV-2 and human microbiota in the Pubmed and Bioproject databases (from inception through October 29, 2021) and extracted the available raw 16S rRNA sequencing data of human microbiota. Firstly, we used meta-analysis and bioinformatics methods to reanalyze the raw data and evaluate the impact of SARS-CoV-2 on human microbial α-diversity. Secondly, machine learning (ML) was employed to assess the ability of microbiota to predict the prognosis of SARS-CoV-2 infection. Finally, we aimed to identify the key microbiota associated with SARS-CoV-2 infection. RESULTS A total of 20 studies related to SARS-CoV-2 and human microbiota were included, involving gut (n = 9), respiratory (n = 11), oral (n = 3), and skin (n = 1) microbiota. Meta-analysis showed that in gut studies, when limiting factors were studies ruled out the effect of antibiotics, cross-sectional and case-control studies, Chinese studies, American studies, and Illumina MiSeq sequencing studies, SARS-CoV-2 infection was associated with down-regulation of microbiota α-diversity (P < 0.05). In respiratory studies, SARS-CoV-2 infection was associated with down-regulation of α-diversity when the limiting factor was V4 sequencing region (P < 0.05). Additionally, the α-diversity of skin microbiota was down-regulated at multiple time points following SARS-CoV-2 infection (P < 0.05). However, no significant difference in oral microbiota α-diversity was observed after SARS-CoV-2 infection. ML models based on baseline respiratory (oropharynx) microbiota profiles exhibited the ability to predict outcomes (survival and death, Random Forest, AUC = 0.847, Sensitivity = 0.833, Specificity = 0.750) after SARS-CoV-2 infection. The shared differential Prevotella and Streptococcus in the gut, respiratory tract, and oral cavity was associated with the severity and recovery of SARS-CoV-2 infection. CONCLUSIONS SARS-CoV-2 infection was related to the down-regulation of α-diversity in the human gut and respiratory microbiota. The respiratory microbiota had the potential to predict the prognosis of individuals infected with SARS-CoV-2. Prevotella and Streptococcus might be key microbiota in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Xiping Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Yuecong Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Yiru Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Dongjia Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Yulan Xie
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Nanning, Guangxi, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Nanning, Guangxi, China.
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China.
| |
Collapse
|
26
|
Wang C, Bai J, Wang B, Yu L, Tian F, Zhao J, Zhang H, Suo H, Chen W, Zhai Q. Stachyose modulates gut microbiota and alleviates DSS-induced ulcerative colitis in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
27
|
An Y, Zhai Z, Wang X, Ding Y, He L, Li L, Mo Q, Mu C, Xie R, Liu T, Zhong W, Wang B, Cao H. Targeting Desulfovibrio vulgaris flagellin-induced NAIP/NLRC4 inflammasome activation in macrophages attenuates ulcerative colitis. J Adv Res 2023; 52:219-232. [PMID: 37586642 PMCID: PMC10555950 DOI: 10.1016/j.jare.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION The perturbations of gut microbiota could interact with excessively activated immune responses and play key roles in the etiopathogenesis of ulcerative colitis (UC). Desulfovibrio, the most predominant sulfate reducing bacteria (SRB) resided in the human gut, was observed to overgrow in patients with UC. The interactions between specific gut microbiota and drugs and their impacts on UC treatment have not been demonstrated well. OBJECTIVES This study aimed to elucidate whether Desulfovibrio vulgaris (D. vulgaris, DSV) and its flagellin could activate nucleotide-binding oligomerization domain-like receptors (NLR) family of apoptosis inhibitory proteins (NAIP) / NLR family caspase activation and recruitment domain-containing protein 4 (NLRC4) inflammasome and promote colitis, and further evaluate the efficacy of eugeniin targeting the interaction interface of D. vulgaris flagellin (DVF) and NAIP to attenuate UC. METHODS The abundance of DSV and the occurrence of macrophage pyroptosis in human UC tissues were investigated. Colitis in mice was established by dextran sulfate sodium (DSS) and gavaged with DSV or its purified flagellin. NAIP/NLRC4 inflammasome activation and macrophage pyroptosis were evaluated in vivo and in vitro. The effects of eugeniin on blocking the interaction of DVF and NAIP/NLRC4 and relieving colitis were also assessed. RESULTS The abundance of DSV increased in the feces of patients with UC and was found to be associated with disease activity. DSV and its flagellin facilitated DSS-induced colitis in mice. Mechanistically, RNA sequencing showed that gene expression associated with inflammasome complex and pyroptosis was upregulated after DVF treatment in macrophages. DVF was further demonstrated to induce significant macrophage pyroptosis in vitro, depending on NAIP/NLRC4 inflammasome activation. Furthermore, eugeniin was screened as an inhibitor of the interface between DVF and NAIP and successfully alleviated the proinflammatory effect of DVF in colitis. CONCLUSION Targeting DVF-induced NAIP/NLRC4 inflammasome activation and macrophage pyroptosis ameliorates UC. This finding is of great significance for exploring the gut microbiota-host interactions in UC development and providing new insights for precise treatment.
Collapse
Affiliation(s)
- Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Zihan Zhai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Linlin He
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lingfeng Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qi Mo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
28
|
Choi SI, Shin YC, Lee JS, Yoon YC, Kim JM, Sung MK. N-Acetylglucosamine and its dimer ameliorate inflammation in murine colitis by strengthening the gut barrier function. Food Funct 2023; 14:8533-8544. [PMID: 37655824 DOI: 10.1039/d3fo00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Ulcerative colitis (UC) is a chronic gastrointestinal disease whose incidence is increasing rapidly worldwide. Anti-inflammatory medications, including 5-aminosalicylic acid (5-ASA), corticosteroids, and immunosuppressants, are used for its treatment; however, new alternatives would be required due to the serious side effects of some of these medications. N-Acetylglucosamine (NAG) is an amino sugar composed of mucin that is secreted by intestinal epithelial cells. It is also used to promote the growth of intestinal bacteria. The current study aimed to determine the efficacy of NAG against dextran sulfate sodium (DSS)-induced chronic colitis and elucidate its mechanism of action. Mice were randomly divided into control, DSS, 0.1% sulfasalazine, 0.1% NAG, 0.3% NAG, and 0.3% NAG-dimer (NAG-D) groups, and results showed that colitis-induced body weight loss, disease activity, colonic tissue damage, colon length shortening, and the loss of mucin-secreting area were significantly improved in the NAG-D group. The intestinal permeability indicator, serum CD 14 level, and expression of the tight junction protein, occludin, were both improved in the 0.3% NAG group. Inflammatory biomarkers, including GATA3, IFN-γ, p-IκBα, COX2, TGF-β1, and Smad7, were significantly lower in the 0.3% NAG and NAG-D groups than in the DSS group. The intestinal microbial composition was most significantly altered in the 0.3% NAG group, showing decreased ratios of pathogenic bacteria, such as Betaproteobacteria, especially Burkholderiales. The results overall suggested that NAG or NAG-D supplementation can alleviate inflammation by strengthening the intestinal barrier function and maintaining gut microbiota homeostasis in a DSS-induced colitis mouse model.
Collapse
Affiliation(s)
- Sung-In Choi
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Chungpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea.
| | | | - Joong Su Lee
- Amicogen Inc., Jinju-si 52621, Republic of Korea
| | - Yeo Cho Yoon
- Amicogen Inc., Jinju-si 52621, Republic of Korea
| | - Ju Myung Kim
- Amicogen Inc., Jinju-si 52621, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Chungpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea.
| |
Collapse
|
29
|
Chen J, Zhu J, Lu W, Wang H, Pan M, Tian P, Zhao J, Zhang H, Chen W. Uncovering Predictive Factors and Interventions for Restoring Microecological Diversity after Antibiotic Disturbance. Nutrients 2023; 15:3925. [PMID: 37764709 PMCID: PMC10536327 DOI: 10.3390/nu15183925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic treatment can lead to a loss of diversity of gut microbiota and may adversely affect gut microbiota composition and host health. Previous studies have indicated that the recovery of gut microbes from antibiotic-induced disruption may be guided by specific microbial species. We expect to predict recovery or non-recovery using these crucial species or other indices after antibiotic treatment only when the gut microbiota changes. This study focused on this prediction problem using a novel ensemble learning framework to identify a set of common and reasonably predictive recovery-associated bacterial species (p-RABs), enabling us to predict the host microbiome recovery status under broad-spectrum antibiotic treatment. Our findings also propose other predictive indicators, suggesting that higher taxonomic and functional diversity may correlate with an increased likelihood of successful recovery. Furthermore, to explore the validity of p-RABs, we performed a metabolic support analysis and identified Akkermansia muciniphila and Bacteroides uniformis as potential key supporting species for reconstruction interventions. Experimental results from a C57BL/6J male mouse model demonstrated the effectiveness of p-RABs in facilitating intestinal microbial reconstitution. Thus, we proved the reliability of the new p-RABs and validated a practical intervention scheme for gut microbiota reconstruction under antibiotic disturbance.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingluo Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.C.); (W.L.); (H.W.); (M.P.); (P.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Deschênes T, Tohoundjona FWE, Plante PL, Di Marzo V, Raymond F. Gene-based microbiome representation enhances host phenotype classification. mSystems 2023; 8:e0053123. [PMID: 37404032 PMCID: PMC10469787 DOI: 10.1128/msystems.00531-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
With the concomitant advances in both the microbiome and machine learning fields, the gut microbiome has become of great interest for the potential discovery of biomarkers to be used in the classification of the host health status. Shotgun metagenomics data derived from the human microbiome is composed of a high-dimensional set of microbial features. The use of such complex data for the modeling of host-microbiome interactions remains a challenge as retaining de novo content yields a highly granular set of microbial features. In this study, we compared the prediction performances of machine learning approaches according to different types of data representations derived from shotgun metagenomics. These representations include commonly used taxonomic and functional profiles and the more granular gene cluster approach. For the five case-control datasets used in this study (Type 2 diabetes, obesity, liver cirrhosis, colorectal cancer, and inflammatory bowel disease), gene-based approaches, whether used alone or in combination with reference-based data types, allowed improved or similar classification performances as the taxonomic and functional profiles. In addition, we show that using subsets of gene families from specific functional categories of genes highlight the importance of these functions on the host phenotype. This study demonstrates that both reference-free microbiome representations and curated metagenomic annotations can provide relevant representations for machine learning based on metagenomic data. IMPORTANCE Data representation is an essential part of machine learning performance when using metagenomic data. In this work, we show that different microbiome representations provide varied host phenotype classification performance depending on the dataset. In classification tasks, untargeted microbiome gene content can provide similar or improved classification compared to taxonomical profiling. Feature selection based on biological function also improves classification performance for some pathologies. Function-based feature selection combined with interpretable machine learning algorithms can generate new hypotheses that can potentially be assayed mechanistically. This work thus proposes new approaches to represent microbiome data for machine learning that can potentiate the findings associated with metagenomic data.
Collapse
Affiliation(s)
- Thomas Deschênes
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
- Institut Intelligence et Données, Université Laval, Québec, Canada
| | - Fred Wilfried Elom Tohoundjona
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
| | - Pier-Luc Plante
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
- Institut Intelligence et Données, Université Laval, Québec, Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
- École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec, Canada
- Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
- Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec City, Canada
| | - Frédéric Raymond
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
- Institut Intelligence et Données, Université Laval, Québec, Canada
- École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec, Canada
| |
Collapse
|
31
|
Zhang J, Sun S, Chen H, Feng Y, Li Y, Dong Z. Advances in natural compound-based nanomedicine and the interaction with gut microbiota in ulcerative colitis therapy. Front Pharmacol 2023; 14:1197144. [PMID: 37521480 PMCID: PMC10372797 DOI: 10.3389/fphar.2023.1197144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disorder of the large intestine. Previous studies have indicated that the gut microbiota plays an important role in the triggers, development, and treatment response of UC. Natural active molecules and their nanoformulations show huge potential for treating UC. The nanoparticles can regulate the gut microbiota and metabolites, whereas gut microbiota-mediated effects on nanomedicines can also bring additional therapeutic benefits. Therefore, this review aims to integrate current research on natural active molecule-based nanomedicines for UC therapy and their interaction with the gut microbiota. Here, this discussion focuses on the effects and functions of gut microbiota and metabolites in UC. The use of active molecules and the nanoformulation from natural compounds for UC therapy have been provided. The interactions between the gut microbiota and nanomedicines are derived from natural products and elucidate the possible biological mechanisms involved. Finally, the challenges and future directions for enhancing the therapeutic efficacy of nanomedicine in treating UC are proposed.
Collapse
Affiliation(s)
- Jinlan Zhang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuhui Sun
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yifan Feng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Li H, Christman LM, Yagiz Y, Washington TL, Wang GP, Gu L. Dealcoholized muscadine wine was partially effective in preventing and treating dextran sulfate sodium-induced colitis and restoring gut dysbiosis in mice. Food Funct 2023; 14:5994-6011. [PMID: 37310366 DOI: 10.1039/d3fo00047h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Muscadine wine has a unique polyphenol profile consisting of anthocyanins, ellagic acids, and flavonols. This study aims to compare the prevention, treatment, and combined activity (P + T) of dealcoholized muscadine wine (DMW) on DSS-induced colitis in mice and its impact on the gut microbiome. Male C57BL/6 mice in the healthy and colitis group received an AIN-93M diet for 28 days. In the prevention, treatment, and P + T (prevention + treatment) groups, mice received an AIN-93M diet containing 2.79% (v/w) DMW on days 1-14, 15-28, and 1-28, respectively. Except for mice in the healthy group, all mice were given water with 2.5% (w/v) DSS on days 8-14 to induce colitis. DMW in all three receiving groups reduced myeloperoxidase activity, histology scores, and phosphorylation of Iκb-α in the colon. Colon shortening, serum IL-6, and colonic mRNA of TNF-α were blunted only in the P + T group. Gut permeability was reduced in the treatment and P + T groups. DMW in P + T group showed higher activity to increase microbiome evenness, modulate β-diversity, elevate the cecal content of SCFAs, and enrich SCFA-producing bacteria, including Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Peptococcaceae. This was accompanied by a decrease in pathogenic Burkholderiaceae in mice. This study suggests that muscadine wine has partial preventive and therapeutic effects against inflammatory bowel disease. The combination of prevention and treatment using DMW showed better activities than either prevention or treatment.
Collapse
Affiliation(s)
- Hao Li
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Lindsey M Christman
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Yavuz Yagiz
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Taylor L Washington
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Gary P Wang
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida 32611, USA
| | - Liwei Gu
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| |
Collapse
|
33
|
Hu X, Li Y, Wu J, Zhang H, Huang Y, Tan X, Wen L, Zhou X, Xie P, Olasunkanmi OI, Zhou J, Sun Z, Liu M, Zhang G, Yang J, Zheng P, Xie P. Changes of gut microbiota reflect the severity of major depressive disorder: a cross sectional study. Transl Psychiatry 2023; 13:137. [PMID: 37117202 PMCID: PMC10147706 DOI: 10.1038/s41398-023-02436-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Disturbed gut microbiota is a potential factor in the pathogenesis of major depressive disorder (MDD), yet whether gut microbiota dysbiosis is associated with the severity of MDD remains unclear. Here, we performed shotgun metagenomic profiling of cross-sectional stool samples from MDD (n = 138) and healthy controls (n = 155). The patients with MDD were divided into three groups according to Hamilton Depression Rating Scale 17 (HAMD-17), including mild (n = 24), moderate (n = 72) and severe (n = 42) individuals, respectively. We found that microbial diversity was closely related to the severity of MDD. Compared to HCs, the abundance of Bacteroides was significantly increased in both moderate and severe MDD, while Ruminococcus and Eubacterium depleted mainly in severe group. In addition, we identified 99 bacteria species specific to severity of depression. Furthermore, a panel of microbiota marker comprising of 37 bacteria species enabled to effectively distinguish MDD patients with different severity. Together, we identified different perturbation patterns of gut microbiota in mild-to-severe depression, and identified potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Xi Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xunmin Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peijun Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Guofu Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
34
|
Lin C, Zheng Y, Lu J, Zhang H, Wang G, Chen W. Differential reinforcement of intestinal barrier function by various Lactobacillus reuteri strains in mice with DSS-induced acute colitis. Life Sci 2023; 314:121309. [PMID: 36563843 DOI: 10.1016/j.lfs.2022.121309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
AIMS Inflammatory bowel disease is a complex, refractory disorder characterised by chronic gastrointestinal inflammation. Studies have reported that Lactobacillus reuteri alleviates gastrointestinal inflammation and strengthens the intestinal barrier. However, further biochemical and genetic studies are required to correctly understand the therapeutic potential of L. reuteri. MATERIALS AND METHODS This study sought to further understand the anti-colitis effect of L. reuteri isolated from faecal samples of healthy locals by focusing on biochemical (immunological, mechanical, chemical and biological barriers) and genetic studies. KEY FINDINGS In this study, we assessed and compared the benefits and efficacy of L. reuteri FYNDL13 and FCQHC8L in the treatment of colitis and found strain FYNDL13 to be superior to FCQHC8L in this regard. Compared with FCQHC8L, FYNDL13 was associated with more diverse and powerful regulatory pathways. Meanwhile, it encouraged butyric acid formation, upregulated antimicrobial peptide-coding gene transcription and prevented hyperimmune reactions on the intestinal periphery and within the intestine. Moreover, it enhanced the abundance of beneficial bacteria (Bifidobacterium, Akkermansia, Blautia and Oscillospira), thereby limiting the relative abundance of harmful bacteria (Bacteroides and Sutterella). Furthermore, the advantage might be attributed to metabolism- and defence system-related genomic characteristics. SIGNIFICANCE Taken together, our study compares and summarizes a pathway paradigm of these two L. reuteri strains in reinforcing the intestinal barrier against colitis and identifies candidate genes responsible for microbiota-immune axis balance.
Collapse
Affiliation(s)
- Chunxiu Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yuxing Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jingyu Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
35
|
Zheng J, Sun Q, Zhang J, Ng SC. The role of gut microbiome in inflammatory bowel disease diagnosis and prognosis. United European Gastroenterol J 2022; 10:1091-1102. [PMID: 36461896 PMCID: PMC9752296 DOI: 10.1002/ueg2.12338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated intestinal disease consisting of ulcerative colitis and Crohn's disease. Inflammatory bowel disease is believed to be developed as a result of interactions between environmental, immune-mediated and microbial factors in a genetically susceptible host. Recent advances in high-throughput sequencing technologies have aided the identification of consistent alterations of the gut microbiome in patients with IBD. Preclinical and murine models have also shed light on the role of beneficial and pathogenic bacteria in IBD. These findings have stimulated interest in development of non-invasive microbial and metabolite biomarkers for predicting disease risk, disease progression, recurrence after surgery and responses to therapeutics. This review briefly summarizes the current evidence on the role of gut microbiome in IBD pathogenesis and mainly discusses the latest literature on the utilization of potential microbial biomarkers in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Jiaying Zheng
- Microbiota I‐Center (MagIC)Hong KongChina
- Department of Medicine and TherapeuticsInstitute of Digestive DiseaseThe Chinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health ScienceState Key Laboratory of Digestive DiseasesThe Chinese University of Hong KongHong KongChina
| | - Qianru Sun
- Microbiota I‐Center (MagIC)Hong KongChina
- Department of Medicine and TherapeuticsInstitute of Digestive DiseaseThe Chinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health ScienceState Key Laboratory of Digestive DiseasesThe Chinese University of Hong KongHong KongChina
| | - Jingwan Zhang
- Microbiota I‐Center (MagIC)Hong KongChina
- Department of Medicine and TherapeuticsInstitute of Digestive DiseaseThe Chinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health ScienceState Key Laboratory of Digestive DiseasesThe Chinese University of Hong KongHong KongChina
| | - Siew C. Ng
- Microbiota I‐Center (MagIC)Hong KongChina
- Department of Medicine and TherapeuticsInstitute of Digestive DiseaseThe Chinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health ScienceState Key Laboratory of Digestive DiseasesThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
36
|
Zhu S, Han M, Liu S, Fan L, Shi H, Li P. Composition and diverse differences of intestinal microbiota in ulcerative colitis patients. Front Cell Infect Microbiol 2022; 12:953962. [PMID: 36111238 PMCID: PMC9468541 DOI: 10.3389/fcimb.2022.953962] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the composition of the intestinal microbiota in ulcerative colitis (UC) patients and to identify differences in the microbiota between patients with active disease and those in remission. Methods Between September 2020 and June 2021, we enrolled into our study, and collected stool samples from, patients with active UC or in remission and healthy control subjects. The diagnosis of UC was based on clinical, endoscopic, radiological, and histological findings. The composition of the intestinal microbiota was determined by sequencing of the 16S rRNA V3–V4 region and by bioinformatic methods. The functional composition of the intestinal microbiota was predicted using PICRUSt 2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) software. Results We found that the intestinal flora was significantly less rich and diverse in UC patients than in healthy control subjects. Beta diversity analysis revealed notable differences in the intestinal flora compositions among the three groups, but there was no statistical difference in alpha diversity between UC patients with active disease and those in remission. At the phylum level, the relative abundances of Proteobacteria and Patescibacteria were significantly higher, and the relative abundances of Desulfobacterota and Verrucomicrobiota were lower, in UC patients with active disease than in the healthy control group. Higher levels of potential pathogens and lower levels of butyrate-producing bacteria were also detected in UC patients with active disease. Linear discriminant analysis Effect Size (LefSe) revealed that 71 bacterial taxa could serve as biomarkers, with 26 biomarkers at the genus level. In addition, network analysis showed that there was a positive correlation between Roseburia and Lachnospira. Functional predictions indicated that gene functions involving the metabolism of some substances, such as methane, lipopolysaccharide, geraniol, and ansamycins, were significantly different among the three groups. Conclusion The richness and diversity of the intestinal microbiota differed significantly among the three groups. Richness describes the state of being rich in number of intestinal bacteria, whereas diversity is the number of different species of intestinal bacteria. Different bacterial taxa could be used as biomarkers, expanding our understanding of the relationship between the intestinal microbiota microenvironment and UC in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Li
- *Correspondence: Haiyun Shi, ; Peng Li,
| |
Collapse
|
37
|
Lee JE, Kim KS, Koh H, Lee DW, Kang NJ. Diet-Induced Host-Microbe Interactions: Personalized Diet Strategies for Improving Inflammatory Bowel Disease. Curr Dev Nutr 2022; 6:nzac110. [PMID: 36060223 PMCID: PMC9429970 DOI: 10.1093/cdn/nzac110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease. Environmental sanitization, modern lifestyles, advanced medicines, ethnic origins, host genetics and immune systems, mucosal barrier function, and the gut microbiota have been delineated to explain how they cause mucosal inflammation. However, the pathogenesis of IBD and its therapeutic targets remain elusive. Recent studies have highlighted the importance of the human gut microbiota in health and disease, suggesting that the pathogenesis of IBD is highly associated with imbalances of the gut microbiota or alterations of epithelial barrier function in the gastrointestinal (GI) tract. Moreover, diet-induced alterations of the gut microbiota in the GI tract modulate immune responses and perturb metabolic homeostasis. This review summarizes recent findings on IBD and its association with diet-induced changes in the gut microbiota; furthermore, it discusses how diets can modulate host gut microbes and immune systems, potentiating the impact of personalized diets on therapeutic targets for IBD.
Collapse
Affiliation(s)
- Jae-Eun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hong Koh
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
38
|
Milletich PL, Ahrens AP, Russell JT, Petrone JR, Berryman MA, Agardh D, Ludvigsson JF, Triplett EW, Ludvigsson J. Gut microbiome markers in subgroups of HLA class II genotyped infants signal future celiac disease in the general population: ABIS study. Front Cell Infect Microbiol 2022; 12:920735. [PMID: 35959362 PMCID: PMC9357981 DOI: 10.3389/fcimb.2022.920735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Although gut microbiome dysbiosis has been illustrated in celiac disease (CD), there are disagreements about what constitutes these microbial signatures and the timeline by which they precede diagnosis is largely unknown. The study of high-genetic-risk patients or those already with CD limits our knowledge of dysbiosis that may occur early in life in a generalized population. To explore early gut microbial imbalances correlated with future celiac disease (fCD), we analyzed the stool of 1478 infants aged one year, 26 of whom later acquired CD, with a mean age of diagnosis of 10.96 ± 5.6 years. With a novel iterative control-matching algorithm using the prospective general population cohort, All Babies In Southeast Sweden, we found nine core microbes with prevalence differences and seven differentially abundant bacteria between fCD infants and controls. The differences were validated using 100 separate, iterative permutations of matched controls, which suggests the bacterial signatures are significant in fCD even when accounting for the inherent variability in a general population. This work is the first to our knowledge to demonstrate that gut microbial differences in prevalence and abundance exist in infants aged one year up to 19 years before a diagnosis of CD in a general population.
Collapse
Affiliation(s)
- Patricia L. Milletich
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Angelica P. Ahrens
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jordan T. Russell
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph R. Petrone
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Meghan A. Berryman
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jonas F. Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- *Correspondence: Eric W. Triplett,
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
39
|
Cernava T, Rybakova D, Buscot F, Clavel T, McHardy AC, Meyer F, Meyer F, Overmann J, Stecher B, Sessitsch A, Schloter M, Berg G. Metadata harmonization-Standards are the key for a better usage of omics data for integrative microbiome analysis. ENVIRONMENTAL MICROBIOME 2022; 17:33. [PMID: 35751093 PMCID: PMC9233336 DOI: 10.1186/s40793-022-00425-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tremendous amounts of data generated from microbiome research studies during the last decades require not only standards for sampling and preparation of omics data but also clear concepts of how the metadata is prepared to ensure re-use for integrative and interdisciplinary microbiome analysis. RESULTS In this Commentary, we present our views on the key issues related to the current system for metadata submission in omics research, and propose the development of a global metadata system. Such a system should be easy to use, clearly structured in a hierarchical way, and should be compatible with all existing microbiome data repositories, following common standards for minimal required information and common ontology. Although minimum metadata requirements are essential for microbiome datasets, the immense technological progress requires a flexible system, which will have to be constantly improved and re-thought. While FAIR principles (Findable, Accessible, Interoperable, and Reusable) are already considered, international legal issues on genetic resource and sequence sharing provided by the Convention on Biological Diversity need more awareness and engagement of the scientific community. CONCLUSIONS The suggested approach for metadata entries would strongly improve retrieving and re-using data as demonstrated in several representative use cases. These integrative analyses, in turn, would further advance the potential of microbiome research for novel scientific discoveries and the development of microbiome-derived products.
Collapse
Affiliation(s)
- Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Daria Rybakova
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - François Buscot
- 2Soil Ecology Department, Helmholtz Centre for Environmental Research (UFZ), Halle (Saale), Germany
- 3German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Alice Carolyn McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig site, Hannover, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
| | - Fernando Meyer
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Jörg Overmann
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University of Braunschweig, Braunschweig, Germany
| | - Bärbel Stecher
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz-Institute for Agricultural Engineering Potsdam (ATB), Potsdam, Germany
- University of Potsdam, Potsdam, Germany
| |
Collapse
|