1
|
Liang M, Hu Q, Yu J, Zhang H, Liu S, Huang J, Sun Y. Baicalein combined with azoles against fungi in vitro. Front Microbiol 2025; 16:1537229. [PMID: 40182279 PMCID: PMC11966473 DOI: 10.3389/fmicb.2025.1537229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Background Invasive fungal infections (IFIs) constitute a significant health challenge, particularly among immunocompromised individuals, characterized by a high prevalence and associated mortality rates. The synergistic administration of Baicalein (BE) with azole antifungal agents could potentially herald a novel therapeutic paradigm. Materials and methods 54 Aspergillus strains and 23 strains of dematiaceous fungi were selected. The standard M38-A2 microbroth dilution method was used to test the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI) of fungi when BE combined with itraconazole (ITC), voriconazole (VRC), posaconazole (POS) and Isavuconazole (ISV). Results BE shows synergistic effects with POS and ITC, with 89.61% and 25.97% of fungal strains. The BE/POS regimen exerted synergistic effects in 87.04% of Aspergillus and an impressive 95.65% of dematiaceous fungi. In comparison, the BE/ITC combination showed significantly lower synergy, affecting 33.33% of Aspergillus and a mere 8.70% of dematiaceous strains. Antagonistic interactions were sporadically observed with BE in combination with ITC, VRC, POS and ISV. Within the azole class, the BE/POS pairing stood out for its frequent synergistic activity, in contrast to the absence of such effects when BE was paired with VRC or ISV. Highlighting the potential of BE/POS as a notably effective antifungal strategy. Conclusion In vitro, BE/POS combination emerged as the most effective antifungal strategy, exhibiting synergistic effects in the majority of Aspergillus and dematiaceous fungi strains, whereas BE/ITC showed significantly less synergy, and BE with VRC or ISV displayed no synergistic activity.
Collapse
Affiliation(s)
- Mengmin Liang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Qingwen Hu
- Department of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Junhao Yu
- Department of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Heng Zhang
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, China
| | - Sijie Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jiangrong Huang
- Endocrinology Department, The Third Clinical College of Yangtze University, Traditional Chinese Medicine of Jingzhou Hospital, Jingzhou, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, China
| |
Collapse
|
2
|
de León LR, Moreno-Perlín T, Castillo-Marenco T, Del Rayo Sánchez-Carbente M, Gostinčar C, Ramírez-Durán N, Ocaña AMF, Sánchez NC, Dávila-Ramos S, Gunde-Cimerman N, Batista-García RA. Polyextremotolerant, opportunistic, and melanin-driven resilient black yeast Exophiala dermatitidis in environmental and clinical contexts. Sci Rep 2025; 15:6472. [PMID: 39987208 PMCID: PMC11846982 DOI: 10.1038/s41598-025-88595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
Exophiala dermatitidis, a polyextremotolerant black yeast, thrives in diverse natural and human-made environments. Additionally, it is an opportunistic pathogen, capable of infecting immunocompromised individuals, particularly causing neurotropic infections. This study examined 41 E. dermatitidis strains from diverse environments, investigating their growth under different temperatures, NaCl concentrations, and pH levels. Optimal growth occurred at 28 °C, with large variations among strains at other temperatures, from 4 to 42 °C. Growth was enhanced at 5% NaCl, though strains also grew at 10% and 17% NaCl. Growth varied across different pH levels, from pH 2.5 to 12.5. Most strains showed the highest biofilm formation at 37 °C, α- and γ-hemolysis and resistance to antifungal agents. Better growth was detected on neurotransmitters than on (poly)aromatic compounds. High-throughput metabolic analyses revealed consistent oxidation patterns across 94 carbon sources in five selected strains. Genomic analysis revealed a diverse repertoire of carbohydrate-active enzymes and pathways for degrading polyaromatic hydrocarbons and neurotransmitters. Melanin biosynthesis inhibitor tricyclazole minimally affected E. dermatitidis growth under stress, but induced morphological changes in some cases. This study underscores E. dermatitidis' urban extremophilic nature, with high resilience, metabolic adaptability, and potential for heightened pathogenicity in evolving global conditions.
Collapse
Affiliation(s)
- Lyselle Ruíz de León
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR, Mexico
| | - Tonatiuh Moreno-Perlín
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR, Mexico
| | - Tania Castillo-Marenco
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR, Mexico
| | | | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ninfa Ramírez-Durán
- Department of Medicine, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Ana María Fernández Ocaña
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Nilda C Sánchez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR, Mexico
- School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR, Mexico
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR, Mexico.
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain.
| |
Collapse
|
3
|
Embrador D, Quill Z, Tucker JR, Shah K, Badea A, Wijekoon C. Survey of fungal endophytes in barley under Fusarium head blight infection. Can J Microbiol 2025; 71:1-16. [PMID: 40184631 DOI: 10.1139/cjm-2024-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease caused by Fusarium graminearum, which affects barley (Hordeum vulgare L.) and other small cereal grains. Fungal endophytes are microorganisms that reside inside tissues and considered that they may have been involved in various roles of the plants. This study involved the comparison of fungal endophytes between "non-infected/clean" and "FHB-infected" barley genotypes in various tissues collected at different plant developmental stages and were grown under different conditions (i.e., greenhouse, research field, and FHB-field nursery). We hypothesized that fungal endophytes diversity and abundance may differ between plant tissues in various barley genotypes that were non-infected and FHB-infected. The 18S-internal transcribed spacer sequencing analysis revealed a greater number of fungal operational taxonomic units (OTUs) and endophyte species in FHB-infected barley compared to clean barley. A one-way ANOVA and Tukey's pairwise comparison test (p ≤ 0.05) were performed to test significant differences. Higher seed endophyte diversity was found in FHB-infected (120 OTUs) compared to non-infected (113 OTUs) harvested in 2021. The increase in diversity of endophytes that contributes to different roles in plant protection and defense, such as biocontrol agents, may prevent the growth of Fusarium species and decrease FHB-infection.
Collapse
Affiliation(s)
- Denice Embrador
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R3C 1B2, Canada
| | - Zoe Quill
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R3C 1B2, Canada
| | - James R Tucker
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Keval Shah
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Champa Wijekoon
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R3C 1B2, Canada
| |
Collapse
|
4
|
Heath CP, Sharma PC, Sontakke S, Smith DJ, Jhaveri TA. The Brief Case: Hidden in plain sight- Exophiala jeanselmei subcutaneous phaeohyphomycosis of hand masquerading as a hematoma. J Clin Microbiol 2024; 62:e0106824. [PMID: 39660859 PMCID: PMC11633120 DOI: 10.1128/jcm.01068-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Affiliation(s)
- Cara P. Heath
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Poonam C. Sharma
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sumit Sontakke
- Department of Medical Foundation, Ross University School of Medicine, Bridgetown, Barbados
| | - Dallas J. Smith
- Mycotic Diseases Branch, Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tulip A. Jhaveri
- Division of Infectious Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
5
|
Schweitzer M, Kögl I, Wassermann B, Abdelfattah A, Wicaksono WA, Berg G. Urban air quality affects the apple microbiome assembly. ENVIRONMENTAL RESEARCH 2024; 262:119858. [PMID: 39197489 DOI: 10.1016/j.envres.2024.119858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Exposure to air pollution affects health of all organisms on earth but the impact on the plant microbiome is less understood. Here, we link the Air Quality Index with the dust and apple epiphytic and endophytic microbiome across the city of Graz (Austria). The microbiome of the apple episphere, peel endosphere and pulp endosphere, and surrounding dust was analyzed. Our results show that the fungal communities were more influenced by air quality than bacterial communities. Bacterial communities, instead, were more specific for the individual sample types, especially noticeable in the pulp endosphere. The microbiome of each sample type was comprised of distinct microbial communities. Overall, the bacterial communities were highly dominated by Proteobacteria followed by Bacteroidota and Actinobacteriota, and the fungal communities were dominated by Ascomycota followed by Basidiomycota. With lower air quality, the relative abundance of the fungal orders Hypocreales and Pleosporales decreased in the apple episphere and the peel endosphere, respectively. Interestingly, an unexpectedly high level of similarity was observed between the bacterial communities of dust and peel endosphere, while the epiphytic bacterial community was significantly different compared to the other samples. We suggested that dust served as a potential microbial colonization route for the fruit microbiome as most bacteria (55%) colonizing the peel endosphere originated from dust. In conclusion, air quality affects the microbiome of edible plants, which can cause health consequences in humans. Therefore, this knowledge should be considered in urban and horticultural farming strategies.
Collapse
Affiliation(s)
- Matthias Schweitzer
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Isabella Kögl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Krenngasse 37, 8010, Graz, Austria
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Ahmed Abdelfattah
- Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
6
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, et alWijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
7
|
Setoguchi D, Iwanaga N, Ito Y, Hirayama T, Yoshida M, Takeda K, Ide S, Takemoto S, Tashiro M, Hosogaya N, Takazono T, Kosai K, Ishimoto H, Sakamoto N, Obase Y, Nishino T, Izumikawa K, Yanagihara K, Mukae H. Neglected Pulmonary Infection Caused by Exophiala dermatitidis Misidentified as Rhodotorula spp. Mycoses 2024; 67:e13804. [PMID: 39438422 DOI: 10.1111/myc.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Exophiala dermatitidis is an emerging black fungus that causes pulmonary infections that may be underestimated by conventional culture methods. We encountered one case that initially appeared to be yeast and was misidentified as Rhodotorula spp. using a commercial identification kit. Thus, genetic identification and clinical background investigations were conducted on 46 strains of Rhodotorula spp. The sequences of the internal transcribed spacer and large-subunit RNA genes (D1/D2 regions) of 43 isolates, excluding two environmental isolates and one difficult-to-culture isolate, were determined and genetically identified. Notably, 22 isolates were identified as E. dermatitidis and misidentified as Rhodotorula spp. using the conventional method. Based on the exclusion criteria, the clinical information of 11 patients was retrospectively reviewed. Five cases (definite) had definite exacerbation of pulmonary infections due to E. dermatitidis, and six cases (possible) had undeniable infections. Of the 11 cases of pulmonary infection suggested to be caused by E. dermatitidis, comorbidities included two cases of chronic pulmonary aspergillosis (CPA), three cases of pulmonary non-tuberculous mycobacterial (NTM) infection and one case of pulmonary nocardiosis, suggesting a trend towards simultaneous detection of chronic pulmonary infections. Steroid and immunosuppressive drug use was observed in five cases, and β-D-glucan elevation was observed in three of five definite cases of pulmonary infections due to E. dermatitidis. The possibility of E. dermatitidis infection should be considered when Rhodotorula spp. are isolated from cultures of airway-derived specimens, and, in addition to CPA and NTM, identification of E. dermatitidis may be important in chronic pulmonary infections.
Collapse
Affiliation(s)
- Daichi Setoguchi
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Respiratory Medicine, Goto Cyuoh Hospital, Nagasaki, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yuya Ito
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Tatsuro Hirayama
- Department of Pharmacotherapeutics, Nagasaki University Hospital, Nagasaki, Japan
| | - Masataka Yoshida
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Shotaro Ide
- Infectious Diseases Experts Training Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Hosogaya
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yasushi Obase
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
8
|
Spruijtenburg B, Meis JF, Verweij PE, de Groot T, Meijer EFJ. Short Tandem Repeat Genotyping of Medically Important Fungi: A Comprehensive Review of a Powerful Tool with Extensive Future Potential. Mycopathologia 2024; 189:72. [PMID: 39096450 PMCID: PMC11297828 DOI: 10.1007/s11046-024-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 08/05/2024]
Abstract
Fungal infections pose an increasing threat to public health. New pathogens and changing epidemiology are a pronounced risk for nosocomial outbreaks. To investigate clonal transmission between patients and trace the source, genotyping is required. In the last decades, various typing assays have been developed and applied to different medically important fungal species. While these different typing methods will be briefly discussed, this review will focus on the development and application of short tandem repeat (STR) genotyping. This method relies on the amplification and comparison of highly variable STR markers between isolates. For most common fungal pathogens, STR schemes were developed and compared to other methods, like multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) and whole genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. The pros and cons of STR typing as compared to the other methods are discussed, as well as the requirements for the development of a solid STR typing assay. The resolution of STR typing, in general, is higher than MLST and AFLP, with WGS SNP analysis being the gold standard when it comes to resolution. Although most modern laboratories are capable to perform STR typing, little progress has been made to standardize typing schemes. Allelic ladders, as developed for Aspergillus fumigatus, facilitate the comparison of STR results between laboratories and develop global typing databases. Overall, STR genotyping is an extremely powerful tool, often complimentary to whole genome sequencing. Crucial details for STR assay development, its applications and merit are discussed in this review.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, Institute of Translational Research, University of Cologne, Cologne, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul E Verweij
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Eelco F J Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands.
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands.
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
10
|
Ma N, Zhao Y, Tang M, Xia H, Li D, Lu G. Concurrent infection of Exophiala dermatitidis and Angiostrongylus cantonensis in central nervous system of a child with inherited CARD9 deficiency: A case report and literature review. J Mycol Med 2024; 34:101455. [PMID: 38042015 DOI: 10.1016/j.mycmed.2023.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Exophiala dermatitidis is a relatively common environmental black yeast with a worldwide distribution that rarely causes fungal infection. Here, we report a case of a 6-year-old girl with central nervous system (CNS) encephalitis caused by E. dermatitidis and Angiostrongylus cantonensis. E. dermatitidis was identified by both cerebrospinal fluid culture and metagenomic next-generation sequencing (mNGS). Angiostrongylus cantonensis infection was confirmed by an enzyme linked immunosorbent assay (ELISA). Whole exome sequencing showed that this previously healthy girl carried a homozygous CARD9 mutation for c.820dupG (p.D274Gfs*61) that underlies invasive fungal and parasite infections. We chose glucocortieoid pulse therapy and anti-infective therapy based on the initial results of laboratory examination and cranial MRI images. With the aggravation of the disease and the evidence of the subsequent etiologic test, the combination of antifungal antiparasitic treatments (voriconazole, fluorocytosine and amphotericin B) were actively used. Unfortunately, the girl finally died due to severe systemic infection. mNGS performs a potential value for diagnosing rare CNS infections, and autosomal recessive CARD9 deficiency should be considered in patient with fatal invasive fungal infections.
Collapse
Affiliation(s)
- Na Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China
| | - Yufei Zhao
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Mingze Tang
- Department of Scientific Affairs, Hugobiotech Co., Ltd., No. 1 Disheng East Road, Beijing 100176, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., No. 1 Disheng East Road, Beijing 100176, China.
| | - Deyuan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China.
| | - Guoyan Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China.
| |
Collapse
|
11
|
Zoqi H, Schmidt D, Sedlacek L, Rath PM, Steinmann J, Kirchhoff L. Establishment of a Novel Short Tandem Repeat Typing Method for Exophiala dermatitidis. Mycopathologia 2024; 189:5. [PMID: 38231292 PMCID: PMC10794339 DOI: 10.1007/s11046-023-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
The opportunistic black yeast-like fungus Exophiala dermatitidis frequently colonizes the respiratory tract of cystic fibroses (CF) patients. Additionally, it can cause superficial, systemic, and cerebral forms of phaeohyphomycoses. The objective of this study was to develop and apply a microsatellite or short tandem repeat (STR) genotyping scheme for E. dermatitidis. In total, 82 E. dermatitidis isolates from various geographic origins (environmental = 9, CF = 63, invasive isolates = 9, melanin-deficient mutant = 1) were included in this study. After next-generation sequencing of a reference strain and sequence filtering for microsatellites, six STR markers were selected and amplified in two multiplex PCR reactions. The included isolates were discriminated in a genetic cluster analysis using the Pearson algorithm to reveal the relatedness of the isolates. The E. dermatitidis isolates clustered on basis of both, their source and their origin. The invasive isolates from Asia were unrelated to isolates from CF. Nearly all environmental isolates were grouped separately from patients' isolates. The Simpson index was 0.94. In conclusion, we were able to establish a STR genotyping scheme for investigating population genomics of E. dermatitidis.
Collapse
Affiliation(s)
- Hamide Zoqi
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Dirk Schmidt
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Ludwig Sedlacek
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover (MHH), Hannover, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
- Institute of Clinical Microbiology, Infectious Diseases and Infection Control, Klinikum Nürnberg, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
12
|
Grandhay C, Prétot E, Klaba V, Celle H, Normand AC, Bertrand X, Grenouillet F. Yeast Biodiversity of Karst Waters: Interest of Four Culture Media and an Improved MALDI-TOF MS Database. MICROBIAL ECOLOGY 2024; 87:26. [PMID: 38175217 PMCID: PMC10766713 DOI: 10.1007/s00248-023-02336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Karst aquifers are a significant source of drinking water and highly vulnerable to pollution and microbial contamination. Microbiological regulations for the quality of drinking water mostly focus on bacterial levels and lack guidance concerning fungal contamination. Moreover, there is no standardised microbial analysis methodology for identifying fungi in water. Our main objective was to establish the most effective culture and identification methodology to examine yeast diversity in karst waters. We assessed the comparative efficacy of four culture media (CHROMagar Candida, dichloran glycerol 18% [DG18], dichloran rose Bengal chloramphenicol [DRBC], and SYMPHONY agar) for yeast isolation from karst water samples. Furthermore, we investigated the comprehensiveness of databases used in MALDI-TOF mass spectrometry (MALDI-TOF MS) for identifying environmental yeast species. In total, we analysed 162 water samples, allowing the identification of 2479 yeast isolates. We demonstrate that a combination of four culture media, each with distinct specifications, more efficiently covers a wide range of yeast species in karst water than a combination of only two or three. Supplementation of a MALDI-TOF MS database is also critical for analysing environmental microbial samples and improved the identification of yeast biodiversity. This study is an initial step towards standardising the analysis of fungal biodiversity in karst waters, enabling a better understanding of the significance of this environmental reservoir in relation to public health.
Collapse
Affiliation(s)
- Clément Grandhay
- Université de Franche-Comté, CHU Besançon, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Emma Prétot
- Université de Franche-Comté, CHU Besançon, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Victor Klaba
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Hélène Celle
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Anne-Cécile Normand
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie, 75013, Paris, France
| | - Xavier Bertrand
- Université de Franche-Comté, CHU Besançon, CNRS, Chrono-environnement, F-25000, Besançon, France
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Frédéric Grenouillet
- Université de Franche-Comté, CHU Besançon, CNRS, Chrono-environnement, F-25000, Besançon, France.
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25000, Besançon, France.
| |
Collapse
|
13
|
Jenks JD, Prattes J, Wurster S, Sprute R, Seidel D, Oliverio M, Egger M, Del Rio C, Sati H, Cornely OA, Thompson GR, Kontoyiannis DP, Hoenigl M. Social determinants of health as drivers of fungal disease. EClinicalMedicine 2023; 66:102325. [PMID: 38053535 PMCID: PMC10694587 DOI: 10.1016/j.eclinm.2023.102325] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Disparities in social determinants of health (SDOH) play a significant role in causing health inequities globally. The physical environment, including housing and workplace environment, can increase the prevalence and spread of fungal infections. A number of professions are associated with increased fungal infection risk and are associated with low pay, which may be linked to crowded and sub-optimal living conditions, exposure to fungal organisms, lack of access to quality health care, and risk for fungal infection. Those involved and displaced from areas of armed conflict have an increased risk of invasive fungal infections. Lastly, a number of fungal plant pathogens already threaten food security, which will become more problematic with global climate change. Taken together, disparities in SDOH are associated with increased risk for contracting fungal infections. More emphasis needs to be placed on systematic approaches to better understand the impact and reducing the health inequities associated with these disparities.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, NC, United States of America
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States of America
| | - Juergen Prattes
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Sebastian Wurster
- Division of Internal Medicine, Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, United States of America
| | - Rosanne Sprute
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Danila Seidel
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
| | - Matteo Oliverio
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Carlos Del Rio
- Emory Center for AIDS Research, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hatim Sati
- Department of Global Coordination and Partnership on Antimicrobial Resistance, World Health Organization, Geneva, Switzerland
| | - Oliver A. Cornely
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Koln), University of Cologne, Cologne, Germany
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
14
|
Yoshinouchi T, Yamamoto K, Migita M, Yokoyama T, Nakamura T, Matsuoka M. Diagnosis and clinical management of Exophiala dermatitidis pneumonia in a patient with anorexia nervosa: A case report. Med Mycol Case Rep 2023; 42:100617. [PMID: 38022890 PMCID: PMC10661607 DOI: 10.1016/j.mmcr.2023.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
We report a patient with anorexia nervosa without bronchiectasis and cystic fibrosis who developed acute pneumonia caused by Exophiala dermatitidis (E. dermatitidis). The black fungus found in multiple sputum cultures was determined to be E. dermatitidis using mass spectrometry and identified using genetic analysis. Although the initiation of antifungal therapy was late, the pneumonia gradually improved with long-term treatment. This case highlights the need for early diagnosis and effective long-term treatment of the fungal etiologic agent.
Collapse
Affiliation(s)
- Tatsuya Yoshinouchi
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, 860-8556, Japan
| | - Keiichi Yamamoto
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, 860-8556, Japan
| | - Mitsuru Migita
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Yokoyama
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, 860-8556, Japan
| | - Tomofumi Nakamura
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, 860-8556, Japan
- Department of Hematology, Rheumatology, and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Masao Matsuoka
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, 860-8556, Japan
- Department of Hematology, Rheumatology, and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| |
Collapse
|
15
|
Osada H, Nagashima-Fukui M, Okazawa T, Omura M, Makimura K, Ohmori K. Case report: First isolation of Exophiala dermatitidis from subcutaneous phaeohyphomycosis in a cat. Front Vet Sci 2023; 10:1259115. [PMID: 37789870 PMCID: PMC10543274 DOI: 10.3389/fvets.2023.1259115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Phaeohyphomycosis, which is caused by the opportunistic black yeast-like fungus Exophiala dermatitidis, has been reported in humans and dogs. However, no previous studies describing E. dermatitidis infections in cats have been published. Herein, we report a case of subcutaneous phaeohyphomycosis caused by E. dermatitidis. A 12-year-old, castrated male Japanese domestic short-haired cat presented with a solitary subcutaneous abscess on the left side of the neck, where an esophageal tube for force-feeding had been placed previously. The cat was diagnosed with hepatitis and was treated with prednisolone. The subcutaneous abscess was incised using a scalpel blade and the pus was excreted. The cytology of the pus revealed hyphae with neutrophil and macrophage infiltration. Although the cat was treated with oral itraconazole or an infusion of topical ketoconazole cream applied to the lesion, it died. The fungal culture of the pus specimen developed dark-green, waxy, smooth, yeast-like colonies. Sequencing of the internal transcribed spacer 1-4 regions of the ribosomal DNA of the pus specimen showed 100% identity with that of the standard strains of E. dermatitidis. Based on these results, the cat was diagnosed with subcutaneous phaeohyphomycosis caused by E. dermatitidis. The antifungal susceptibility test revealed that the fungus showed low or moderate susceptibility to the antifungal drugs examined, except for amphotericin B, which exhibited high in vitro antifungal activity. This is the first case report to provide definitive evidence of E. dermatitidis infection in cats and antifungal susceptibility test results against clinically isolated E. dermatitidis.
Collapse
Affiliation(s)
- Hironari Osada
- Animal Medical Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Maiko Nagashima-Fukui
- Animal Medical Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Taiga Okazawa
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Miki Omura
- School of Medicine, Graduate School of Medicine, Teikyo University, Itabashi, Tokyo, Japan
- Mycolabo Co., Ltd, Mitaka, Tokyo, Japan
| | - Koichi Makimura
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Keitaro Ohmori
- Animal Medical Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
16
|
Kurbessoian T, Murante D, Crocker A, Hogan DA, Stajich JE. In host evolution of Exophiala dermatitidis in cystic fibrosis lung micro-environment. G3 (BETHESDA, MD.) 2023; 13:jkad126. [PMID: 37293838 PMCID: PMC10484061 DOI: 10.1093/g3journal/jkad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/26/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Individuals with cystic fibrosis (CF) are susceptible to chronic lung infections that lead to inflammation and irreversible lung damage. While most respiratory infections that occur in CF are caused by bacteria, some are dominated by fungi such as the slow-growing black yeast Exophiala dermatitidis. Here, we analyze isolates of E. dermatitidis cultured from two samples, collected from a single subject 2 years apart. One isolate genome was sequenced using long-read Nanopore technology as an in-population reference to use in comparative single nucleotide polymorphism and insertion-deletion variant analyses of 23 isolates. We then used population genomics and phylo-genomics to compare the isolates to each other as well as the reference genome strain E. dermatitidis NIH/UT8656. Within the CF lung population, three E. dermatitidis clades were detected, each with varying mutation rates. Overall, the isolates were highly similar suggesting that they were recently diverged. All isolates were MAT 1-1, which was consistent with their high relatedness and the absence of evidence for mating or recombination between isolates. Phylogenetic analysis grouped sets of isolates into clades that contained isolates from both early and late time points indicating there are multiple persistent lineages. Functional assessment of variants unique to each clade identified alleles in genes that encode transporters, cytochrome P450 oxidoreductases, iron acquisition, and DNA repair processes. Consistent with the genomic heterogeneity, isolates showed some stable phenotype heterogeneity in melanin production, subtle differences in antifungal minimum inhibitory concentrations, and growth on different substrates. The persistent population heterogeneity identified in lung-derived isolates is an important factor to consider in the study of chronic fungal infections, and the analysis of changes in fungal pathogens over time may provide important insights into the physiology of black yeasts and other slow-growing fungi in vivo.
Collapse
Affiliation(s)
- Tania Kurbessoian
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Alex Crocker
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Brito Devoto T, Hermida-Alva K, Posse G, Finquelievich JL, García-Effrón G, Cuestas ML. Antifungal susceptibility patterns for Aspergillus, Scedosporium, and Exophiala isolates recovered from cystic fibrosis patients against amphotericin B, and three triazoles and their impact after long-term therapies. Med Mycol 2023; 61:myad089. [PMID: 37591630 DOI: 10.1093/mmy/myad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023] Open
Abstract
In cystic fibrosis (CF) patients, fungal colonization of the respiratory tract is frequently found. Aspergillus fumigatus, Scedosporium genus, and Exophiala dermatitidis are the most commonly isolated moulds from the respiratory tract secretions of CF patients. The aim of this 5-year surveillance study was to identify trends in species distribution and susceptibility patterns of 212 mould strains identified as Aspergillus spp., Scedosporium spp., and Exophiala spp., isolated from sputum of 63 CF patients who received long-term therapy with itraconazole (ITR) and/or voriconazole (VRC). The Aspergillus isolates were identified as members of the sections Fumigati (n = 130), Flavi (n = 22), Terrei (n = 20), Nigri (n = 8), Nidulantes (n = 1), and Usti (n = 1). Among the 16 species of the genus Scedosporium, 9 were S. apiospermum, 3 S. aurantiacum, and 4 S. boydii. Among the 14 Exophiala species, all were molecularly identified as E. dermatitidis. Overall, 94% (15/16) of Scedosporium spp., 50% (7/14) of E. dermatitidis, and 7.7% (14/182) of Aspergillus spp. strains showed high MIC values (≥8 µg/ml) for at least one antifungal. Particularly, 8.9% (19/212) of isolates showed high MIC values for amphotericin B, 11.7% (25/212) for ITR, 4.2% (9/212) for VRC, and 3.3% (7/212) for posaconazole. In some cases, such as some A. fumigatus and E. dermatitidis isolates recovered from the same patient, susceptibility to antifungal azoles decreased over time. We show that the use of azoles for a long time in CF patients causes the selection/isolation of mould strains with higher MIC values.
Collapse
Affiliation(s)
- Tomás Brito Devoto
- Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Katherine Hermida-Alva
- Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Gladys Posse
- Laboratorio de Micología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Jorge L Finquelievich
- Centro de Micología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo García-Effrón
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina
| | - María L Cuestas
- Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
18
|
Rolon AM, Tolaymat LM, Sokumbi O, Bodiford K. The Role of Excision for Treatment of Chromoblastomycosis: A Cutaneous Fungal Infection Frequently Mistaken for Squamous Cell Carcinoma. Dermatol Surg 2023; 49:649-653. [PMID: 37093678 DOI: 10.1097/dss.0000000000003800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Chromoblastomycosis is an uncommon fungal infection of the skin caused by a variety of dematiaceous fungal species that is typically contracted through direct inoculation into the skin. OBJECTIVE To collect and examine data pertaining to the clinical presentation and management of patients with chromoblastomycosis. METHODS Through a retrospective study, a pathology medical record search was performed from January 2004 to December 2020 at a single institution. RESULTS A total of 9 patients were identified. Seven of 9 cases occurred in solid organ transplant recipients. All cases were located on the extremities. Six of 9 cases were clinically suspected to be squamous cell carcinoma. Seven of 9 cases were treated with surgical excision. Six of 9 patients were treated with oral antifungal medication. Four of 9 patients had received combination therapy. Eight of 9 patients had no recurrence of the disease after treatment. CONCLUSION Chromoblastomycosis presents as verrucous papules or nodules and may clinically and histopathologically mimic squamous cell carcinoma. Immunosuppression is likely a risk factor for the development of chromoblastomycosis. This study highlights the importance of clinical awareness of this disease's clinical presentation and prevalence in immunosuppressed patient populations.
Collapse
Affiliation(s)
| | | | - Olayemi Sokumbi
- Department of Dermatology, Mayo Clinic, Jacksonville, Florida
| | | |
Collapse
|
19
|
Jia G, Hu J, Tan L, Li L, Gao L, Sun Y. In Vitro and In Vivo Evaluation of Synergistic Effects of Everolimus in Combination with Antifungal Agents on Exophiala dermatitidis. Microbiol Spectr 2023; 11:e0530222. [PMID: 37140396 PMCID: PMC10269510 DOI: 10.1128/spectrum.05302-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/08/2023] [Indexed: 05/05/2023] Open
Abstract
To investigate the combined function of the novel oral mTOR inhibitor, everolimus, with antifungal agents and their potential mechanisms against Exophiala dermatitidis, the CLSI microliquid-based dilution method M38-A2, chequerboard technique, and disk diffusion testing were performed. The efficacy of everolimus was evaluated in combination with itraconazole, voriconazole, posaconazole, and amphotericin B against 16 clinically isolated strains of E. dermatitidis. The synergistic effect was determined by measuring the MIC and fractional inhibitory concentration index. Dihydrorhodamine 123 was used for the quantification of ROS levels. The differences in the expression of antifungal susceptibility-associated genes were analyzed following different types of treatment. Galleria mellonella was used as the in vivo model. While everolimus alone showed minimal antifungal effects, combinations with itraconazole, voriconazole, posaconazole, or amphotericin B resulted in synergy in 13/16 (81.25%), 2/16 (12.5%), 14/16 (87.75%), and 5/16 (31.25%) of isolates, respectively. The disk diffusion assay revealed that the combination of everolimus and antifungal drugs showed no significant increase in the inhibition zones compared with the single agent, but no antagonistic effects were observed. Combination of everolimus and antifungal agents resulted in increased ROS activity (everolimus + posaconazole versus posaconazole [P < 0.05], everolimus + amphotericin B versus amphotericin B [P < 0.002]). Simultaneously, compared to mono-treatment, the combination of everolimus + itraconazole suppressed the expression of MDR2 (P < 0.05) and the combination of everolimus + amphotericin B suppressed the expression of MDR3 (P < 0.05) and CDR1B (P < 0.02). In vivo, combinations of everolimus and antifungal agents improved survival rates, particularly the combination of everolimus + amphotericin B (P < 0.05). In summary, the in vivo and in vitro experiments performed in our study suggest that the combination of everolimus with azoles or amphotericin B can have synergistic effects against E. dermatitidis, potentially due to the induction of ROS activity and inhibition of efflux pumps, providing a promising new approach for the treatment of E. dermatitidis infections. IMPORTANCE Cancer patients with E. dermatitidis infection have high mortality if untreated. Clinically, the conventional treatment of E. dermatitidis is poor due to the long-term use of antifungal drugs. In this study, we have for the first time investigated the interaction and action mechanism of everolimus combined with itraconazole, voriconazole, posaconazole, and amphotericin B on E. dermatitidis in vitro and in vivo, which provided new ideas and direction for further exploring the mechanism of drug combination and clinical treatment of E. dermatitidis.
Collapse
Affiliation(s)
- Gengpei Jia
- Department of General Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Jing Hu
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Lihua Tan
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Longting Li
- Department of Reproductive Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Lujuan Gao
- Department of Dermatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
20
|
Salvador A, Veiga FF, Svidzinski TIE, Negri M. Case of Mixed Infection of Toenail Caused by Candida parapsilosis and Exophiala dermatitidis and In Vitro Effectiveness of Propolis Extract on Mixed Biofilm. J Fungi (Basel) 2023; 9:jof9050581. [PMID: 37233292 DOI: 10.3390/jof9050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Onychomycosis is a chronic fungal nail infection caused by several filamentous and yeast-like fungi, such as the genus Candida spp., of great clinical importance. Black yeasts, such as Exophiala dermatitidis, a closely related Candida spp. species, also act as opportunistic pathogens. Fungi infectious diseases are affected by organisms organized in biofilm in onychomycosis, making treatment even more difficult. This study aimed to evaluate the in vitro susceptibility profile to propolis extract and the ability to form a simple and mixed biofilm of two yeasts isolated from the same onychomycosis infection. The yeasts isolated from a patient with onychomycosis were identified as Candida parapsilosis sensu stricto and Exophiala dermatitidis. Both yeasts were able to form simple and mixed (in combination) biofilms. Notably, C. parapsilosis prevailed when presented in combination. The susceptibility profile of propolis extract showed action against E. dermatitidis and C. parapsilosis in planktonic form, but when the yeasts were in mixed biofilm, we only observed action against E. dermatitidis, until total eradication.
Collapse
Affiliation(s)
- Alana Salvador
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| | - Flávia Franco Veiga
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| | - Terezinha Inez Estivalet Svidzinski
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| | - Melyssa Negri
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| |
Collapse
|
21
|
Cheng K, Tong M, Cai Z, Jong MC, Zhou J, Xiao B. Prokaryotic and eukaryotic microbial communities associated with coral species have high host specificity in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161185. [PMID: 36581277 DOI: 10.1016/j.scitotenv.2022.161185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Reef-building corals are well known for their obligate association with Symbiodiniaceae, and an array of other microbes, including bacteria, fungi, and symbiotic algae (i.e., total microbiome), which together form the coral holobiont. The total microbiome plays an intricate part in maintaining the homeostasis of the coral holobiont and is closely associated with host health. However, the composition of the coral associated microbiome and interaction between its different members remains elusive because few analyses have bridged taxonomically disparate groups. This research gaps have prevented a holistic understanding of the total microbiome. Thus, to simultaneously characterize the bacterial, fungal and symbiotic algal communities associated with different coral species, and explore the relationship between these symbionts and coral health, healthy and bleached tissues from four coral species, Acropora muricata, Galaxea fascicularis, Platygyra daedalea, and Pavona explanulata, were collected from the Xisha Islands of the South China Sea. Using high throughput sequencing, a high degree of host-specificity was observed among bacterial, fungal, and algal groups across coral species. There were no obvious changes in the microbial community structure of apparently healthy and bleached corals, but host bleaching allowed colonization of the holobionts by diverse opportunistic microbes, resulting in a significant elevation in the α-diversity of microbial communities. In addition, co-occurrence analysis of the coral microbiota also identified more complex microbial interactions in bleached corals than in healthy ones. In summary, this study characterized the structure of coral-associated microbiomes across four coral species, and systematically studied microbiome differences between healthy and bleached corals. The findings improve our understanding of the heterogeneity of symbiotic microorganisms and the impact of coral's physiological status on its associated microbial communities composition.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mui Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, PR China.
| |
Collapse
|
22
|
Pulmonary phaeohyphomycosis due to Exophiala dermatitidis in a patient with pulmonary non-tuberculous mycobacterial infection. J Infect Chemother 2023; 29:615-619. [PMID: 36921763 DOI: 10.1016/j.jiac.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
A 65-year-old Japanese woman repeatedly withdrew and resumed antibiotics against pulmonary non-tuberculous mycobacterial infection caused by Mycobacterium intracellulare for more than 10 years. Although she continued to take medications, her respiratory symptoms and chest computed tomography indicated an enlarged infiltrative shadow in the lingular segment of the left lung that gradually worsened over the course of a year or more. Bronchoscopy was performed and mycobacterial culture of the bronchial lavage fluid was negative, whereas Exophiala dermatitidis was detected. After administration of oral voriconazole was initiated, the productive cough and infiltrative shadow resolved. There are no characteristic physical or imaging findings of E. dermatitidis, and it often mimics other chronic respiratory infections. Thus, when confronting refractory non-tuberculous mycobacterial cases, it might be better to assume other pathogenic microorganisms, including E. dermatitidis, and actively perform bronchoscopy.
Collapse
|
23
|
Nakatani R, Ashiarai M, Yoshihara H, Yada K, Nozaki T, Ushigusa T, Mori N, Hasegawa D. Multidisciplinary management of disseminated Exophiala dermatitidis mycosis in an infant with mixed phenotype acute leukemia: a case report. BMC Infect Dis 2022; 22:797. [PMID: 36274136 PMCID: PMC9590134 DOI: 10.1186/s12879-022-07773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Exophiala dermatitidis is a dematiaceous fungus isolated from various environmental sources. Systemic E. dermatitidis infections can lead to fatal outcomes, and treatment has not yet been standardized. Although E. dermatitidis is also known to cause cutaneous infection, it has not been previously reported to appear as ecthyma gangrenosum (EG), an uncommon cutaneous lesion in neutropenic patients that is mainly caused by Pseudomonas aeruginosa. Case presentation A 2-month-old male infant with mixed-phenotype acute leukemia presented with prolonged fever unresponsive to antibacterial and antifungal agents during myelosuppression due to remission induction therapy. He also presented with skin lesions on the left wrist and left lower quadrant of the abdomen. The abdominal lesion gradually turned black and necrotic, which was consistent with the findings of the EG. E. dermatitidis was isolated from the blood, stool, wrist skin, and endotracheal aspirate. During hematopoietic recovery, consolidation in both lungs was evident. Multiagent antifungal treatment failed to eliminate E. dermatitidis from blood. In order to salvage the central venous catheter, ethanol lock therapy (ELT) was adopted, following which the blood culture became negative. The abdominal lesion that evolved as a necrotic mass connecting the small intestine and subcutaneous tissue adjacent to the skin was surgically resected. After these interventions, the general condition improved. Conclusion Disseminated E. dermatitidis mycosis in the neutropenic infant was successfully managed with a multidisciplinary treatment consisting of multiagent antifungal treatment, ELT, and surgery.
Collapse
|
24
|
Coelho RA, Alves GM, Figueiredo-Carvalho MHG, Almeida-Silva F, de Souza GR, Lourenço MCDS, Brito-Santos F, Amaral ACF, Almeida-Paes R. New possibilities for chromoblastomycosis and phaeohyphomycosis treatment: identification of two compounds from the MMV Pathogen Box® that present synergism with itraconazole. Mem Inst Oswaldo Cruz 2022; 117:e220089. [PMID: 36102413 PMCID: PMC9467274 DOI: 10.1590/0074-02760220089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Black fungi of the Herpotrichiellaceae family are agents of chromoblastomycosis and phaeohyphomycosis. There are few therapeutic options for these infections and it is common to associate antifungal drugs in their treatment. OBJECTIVES To investigate the Medicines for Malaria Venture (MMV) Pathogen Box® for possible compounds presenting synergism with antifungal drugs used to treat black fungal infections. METHODS An initial screening of the Pathogen Box® compounds was performed in combination with itraconazole or terbinafine at sub-inhibitory concentrations against Fonsecaea pedrosoi. Hits were further tested against eight Herpotrichiellaceae using the checkerboard method. FINDINGS No synergism was observed with terbinafine. MMV687273 (SQ109) and MMV688415 showed synergism with itraconazole against F. pedrosoi. Synergism of these compounds was confirmed with some black fungi by the checkerboard method. SQ109 and itraconazole presented synergism for Exophiala dermatitidis, F. pedrosoi, F. monophora and F. nubica, with fungicidal activity for F. pedrosoi and F. monophora. MMV688415 presented synergism with itraconazole only for F. pedrosoi, with fungicidal activity. The synergic compounds had high selectivity index values when combined with itraconazole. MAIN CONCLUSIONS These compounds in combination, particularly SQ109, are promising candidates to treat Fonsecaea spp. and E. dermatitidis infections, which account for most cases of chromoblastomycosis and phaeohyphomycosis.
Collapse
Affiliation(s)
- Rowena Alves Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | - Gabriela Machado Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | | | - Fernando Almeida-Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | - Gabriela Rodrigues de Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Plataforma de Bioensaios RPT 11B, Rio de Janeiro, RJ, Brasil
| | - Maria Cristina da Silva Lourenço
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Plataforma de Bioensaios RPT 11B, Rio de Janeiro, RJ, Brasil
| | | | - Ana Claudia Fernandes Amaral
- Fundação Oswaldo Cruz-Fiocruz, Farmanguinhos, Laboratório de Produtos Naturais e Derivados, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Almeida-Paes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
25
|
Maraki S, Katzilakis N, Neonakis I, Stafylaki D, Meletiadis J, Hamilos G, Stiakaki E. Exophiala dermatitidis Central Line-Associated Bloodstream Infection in a Child with Ewing's Sarcoma: Case Report and Literature Review on Paediatric Infections. Mycopathologia 2022; 187:595-602. [PMID: 35994217 DOI: 10.1007/s11046-022-00658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Exophiala dermatitidis is a dematiaceous, ubiquitous, dimorphic fungus, which can cause a wide range of invasive diseases in both immunocompromised and immunocompetent hosts. Bloodstream infections due to E. dermatitidis are rarely encountered in clinical practice, especially in pediatric patients. We describe a case of central line-associated bloodstream infection due to E. dermatitidis in a 4.5-year-old boy with Ewing's sarcoma. The fungus was isolated from blood specimens taken from the Hickman line. The isolate was identified by its phenotypic characteristics, by MALDI-TOF and by using molecular methods. The infection was successfully treated with voriconazole and catheter removal. The literature was also reviewed on pediatric infections caused by E. dermatitidis, focusing on clinical manifestations and challenges associated with diagnosis and management.
Collapse
Affiliation(s)
- Sofia Maraki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece.
| | - Nikolaos Katzilakis
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion and Laboratory of Blood Diseases and Childhood Cancer Biology, Medical School, University of Crete, Heraklion, Greece
| | - Ioannis Neonakis
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - Dimitra Stafylaki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Hamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion and Laboratory of Blood Diseases and Childhood Cancer Biology, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
26
|
Cai S, Snyder AB. Genomic characterization of polyextremotolerant black yeasts isolated from food and food production environments. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:928622. [PMID: 37746166 PMCID: PMC10512282 DOI: 10.3389/ffunb.2022.928622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 09/26/2023]
Abstract
Black yeasts have been isolated from acidic, low water activity, and thermally processed foods as well as from surfaces in food manufacturing plants. The genomic basis for their relative tolerance to food-relevant environmental stresses has not been well defined. In this study, we performed whole genome sequencing (WGS) on seven black yeast strains including Aureobasidium (n=5) and Exophiala (n=2) which were isolated from food or food production environments. These strains were previously characterized for their tolerance to heat, hyperosmotic pressure, high pressure processing, hypochlorite sanitizers, and ultraviolet light. Based on the WGS data, three of the strains previously identified as A. pullulans were reassigned as A. melanogenum. Both haploid and diploid A. melanogenum strains were identified in this collection. Single-locus phylogenies based on beta tubulin, RNA polymerase II, or translation elongation factor protein sequences were compared to the phylogeny produced through SNP analysis, revealing that duplication of the fungal genome in diploid strains complicates the use of single-locus phylogenetics. There was not a strong association between phylogeny and either environmental source or stress tolerance phenotype, nor were trends in the copy numbers of stress-related genes associated with extremotolerance within this collection. While there were obvious differences between the genera, the heterogenous distribution of stress tolerance phenotypes and genotypes suggests that food-relevant black yeasts may be ubiquitous rather than specialists associated with particular ecological niches. However, further evaluation of additional strains and the potential impact of gene sequence modification is necessary to confirm these findings.
Collapse
Affiliation(s)
| | - Abigail B. Snyder
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
27
|
Marques GN, Cota JB, Leal MO, Silva NU, Flanagan CA, Crosta L, Tavares L, Oliveira M. First Documentation of Exophiala spp. Isolation in Psittaciformes. Animals (Basel) 2022; 12:ani12131699. [PMID: 35804598 PMCID: PMC9264867 DOI: 10.3390/ani12131699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/19/2022] Open
Abstract
Several fungi species are reported to act as opportunistic agents of infection in avian species. After the isolation of Exophiala spp., a dematiaceous fungal pathogen associated with a mucosal lesion in a military macaw (Ara militar), samples were collected from another 24 birds of the order Psittaciformes to study the possibility of Exophiala spp. being part of the commensal microbiota of these animals or its possible association with other clinical conditions. Swab samples were collected from the trachea and/or choanae of the birds and inoculated in Sabouraud chloramphenicol agar for fungal isolation. After incubation, fungal species were identified through their macroscopic and microscopic morphology. The presence of Exophiala spp. was identified in 15 of the 25 birds sampled and no statistical association was found between the clinical record of the birds and the fungal isolation. Our results suggest that Exophiala spp. can colonize the upper respiratory airways of psittaciform birds and has a low pathogenic potential in these animals. To the authors’ knowledge, this is the first report of Exophiala spp. isolation from samples of the upper respiratory tract of Psittaciformes.
Collapse
Affiliation(s)
- Gonçalo N. Marques
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - João B. Cota
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477 Lisbon, Portugal; (J.B.C.); (L.T.)
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Miriam O. Leal
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - Nuno U. Silva
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - Carla A. Flanagan
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - Lorenzo Crosta
- AEZAVEC (Avian, Exotic and Zoo Animal Veterinary Consultants), 22040 Tirol, Italy;
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477 Lisbon, Portugal; (J.B.C.); (L.T.)
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477 Lisbon, Portugal; (J.B.C.); (L.T.)
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
28
|
Cupozak-Pinheiro WJ, Araújo de Almeida-Apolonio A, Sasaki MH, Maran NH, Pires de Araújo R, Silva DBDS, Víctor de Andrade Dos Santos J, Barufatti A, Chang MR, Pires de Oliveira KM. Candida species contamination in drinking groundwater from residence wells in three municipalities of midwestern Brazil and the potential human health risks. Microb Pathog 2022; 169:105660. [PMID: 35764189 DOI: 10.1016/j.micpath.2022.105660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Groundwater represents one of the largest safe drinking water sources worldwide; however, it has been threatened by increased human activities in recent years. Candida species express virulence factors that contribute to the establishment and worsening of infections, although little is known about the virulence profiles of these species in potable groundwater. The aim of this study was to detect the presence of yeasts in groundwater from residential wells and to evaluate the antifungal susceptibility profile, hydrolytic enzyme production, adhesion capacity, and biofilm formation of Candida spp. Fifty yeasts representing nine genera were isolated: Candida (48%), Meyerozyma (20%), Pichia (8%), Exophiala (8%), Clavispora (4%), Kodamaea (4%), Rhodotorula (4%), Hanseniaspora (2%), and Kazachstania (2%). Candida parapsilosis was the most commonly isolated species, and approximately 29% of the Candida isolates were resistant to at least one azole. All Candida isolates were able to produce hydrolytic enzymes and adhere to polystyrene, and most were classified as hydrophobic. Candida spp. can establish and form biofilms when cultivated in different media such as Sabouraud broth, water, and calcium hypochlorite. The use of contaminated groundwater for human consumption represents a possible route for the transmission of clinically relevant yeasts that can cause fungal infections, especially in immunocompromised individuals. Therefore, it is important to evaluate and establish effective measures for groundwater treatment to ensure the quality and safety for consumption.
Collapse
Affiliation(s)
| | | | - Melina Hatsue Sasaki
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, 79804-970, Brazil
| | - Nayara Halimy Maran
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, MS, 79804-970, Brazil
| | - Renata Pires de Araújo
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, MS, 79804-970, Brazil
| | | | | | - Alexeia Barufatti
- Faculty of Biological and Environmental Science, Federal University of Grande Dourados, Dourados, MS, 79804-970, Brazil
| | - Marilene Rodrigues Chang
- Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kelly Mari Pires de Oliveira
- Faculty of Biological and Environmental Science, Federal University of Grande Dourados, Dourados, MS, 79804-970, Brazil.
| |
Collapse
|
29
|
Li Z, Tang J, Zhu J, Xie M, Huang S, Li S, Zhan Y, Zeng W, Xu T, Ye F. The convoluted process of diagnosing pulmonary mycosis caused by Exophiala dermatitidis: a case report. BMC Infect Dis 2022; 22:433. [PMID: 35509001 PMCID: PMC9069750 DOI: 10.1186/s12879-022-07399-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Background Etiological diagnosis is a key step in the treatment of patients with rare pulmonary mycosis, and the lack of understanding of this disease and lack of specific markers for the detection of rare species, such as Exophiala dermatitidis, add to the difficulty in diagnosing the condition. Therefore, improving the diagnostic strategies for this disease is very important. Case presentation A 52-year-old man presented with cough, sputum production and hemoptysis; chest computed tomography (CT) revealed multiple bilateral lesions. The pathogen was unable to be identified after three biopsies. Subsequently, we performed combined tissue metagenomic next-generation sequencing (mNGS). The results of mNGS and a good therapeutic response helped to identify the causative pathogen as Exophiala dermatitidis. Finally, the patient was diagnosed with Exophiala dermatitidis pneumonia. Conclusions Combining molecular techniques, such as mNGS, with clinical microbiological tests will improve the rate of positivity in the diagnosis of rare fungal infections, and the importance of follow-up should be emphasized. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07399-y.
Collapse
Affiliation(s)
- Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Jianli Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Jinping Zhu
- Department of Respiratory and Critical Care Medicine, Songgang People's Hospital, Shenzhen, 518105, China
| | - Mingzhou Xie
- Vision Medicals Co. Ltd., Guangzhou, 510663, China
| | - Shaoqing Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Shaoqiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Yangqing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Weiqi Zeng
- Vision Medicals Co. Ltd., Guangzhou, 510663, China
| | - Teng Xu
- Department of Respiratory and Critical Care Medicine, Songgang People's Hospital, Shenzhen, 518105, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
30
|
Ganci M, Suleyman E, Butt H, Ball M. Associations between self-reported psychological symptom severity and gut microbiota: further support for the microgenderome. BMC Psychiatry 2022; 22:307. [PMID: 35501777 PMCID: PMC9059404 DOI: 10.1186/s12888-022-03947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Research into the brain-gut-microbiota axis (BGMA) continues to reveal associations between gut microbiota (GM) and psychological symptom expression, inspiring new ways of conceptualising psychological disorders. However, before GM modulation can be touted as a possible auxiliary treatment option, more research is needed as inconsistencies in previous findings regarding these associations are prevalent. Additionally, the concept of the microgenderome, which proposes that GM may interact with sex hormones, has received limited attention in studies using human samples to date. However, such research has demonstrated sex specific associations between GM and psychological symptom expression. METHOD This cross-sectional retrospective study explores associations between GM species (identified through faecal microbial analysis) and symptom severity across four psychological domains (Depressive, Neurocognitive, Stress and Anxiety, and Sleep and Fatigue) for males (N = 1143) and females (N = 3467) separately. RESULTS GM species from several genera including Bifidobacterium, Clostridium, Enterococcus, and Leuconostoc were found to be differentially associated with psychological symptom severity for males and females. As such, the findings of the current study provide support for the concept of the microgenderome. CONCLUSION While further research is needed before their implementation in psychological treatment plans, the current findings suggest that modulation of GM at the species level may hold promise as auxiliary diagnostic or treatment options. These findings may give further insight into a client's presenting problem from a more holistic, multidisciplinary perspective. The clear sex divergence in associations between GM and symptoms give insight into sex discrepancies in susceptibility to psychological disorders.
Collapse
Affiliation(s)
- Michael Ganci
- Psychology Department, Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia.
| | - Emra Suleyman
- grid.1019.90000 0001 0396 9544Psychology Department, Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC 8001 Australia
| | - Henry Butt
- grid.1019.90000 0001 0396 9544Psychology Department, Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC 8001 Australia ,Bioscreen Yarraville (Aust) Pty Ltd, Melbourne, VIC Australia
| | - Michelle Ball
- grid.1019.90000 0001 0396 9544Psychology Department, Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC 8001 Australia
| |
Collapse
|
31
|
Ahamad A, Tehreem B, Farooqi M, Maramara B. Case report and literature review: double jeopardy – Exophiala dermatitidis and Mycobacterium canariasense central line-associated bloodstream infection in a patient. Access Microbiol 2022; 4:000347. [PMID: 35812706 PMCID: PMC9260090 DOI: 10.1099/acmi.0.000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Central line-associated bloodstream infection (CLABSI) is the most common nosocomial-acquired infection, affecting 38 000 patients in the USA annually. Approximately 8–10 % of inserted catheters lead to bloodstream infections, and ~25–30 % of infections are associated with mortality. Although proper line maintenance is essential to prevent infection, it is quite a challenge to avoid infection in patients with a long-term catheter. We present a case of a female in her 40s with a previous history of irritable bowel syndrome (IBS) who has had a central line for total parenteral nutrition for the past 2 years. The patient recently visited the emergency room with fever and generalized fatigue. Blood cultures sent to microbiology were positive for black mould, Exophiala dermatitidis. However, after a few days, microbiology reported an additional micro-organism, Mycobacterium canariasense, a pathogen rarely associated with bacteraemia. The patient was administered voriconazole and moxifloxacin for black mould and mycobacterium infection, respectively. We present an unusual case of rare opportunistic organisms causing bacteraemia and fungaemia in a patient with a long-term catheter. CLABSI remains a serious challenge for clinical facilities. Implementation and monitoring of effective strategies can prevent catheter-related bloodstream infections in patients with long-term catheters and can reduce the morbidity and mortality associated with CLABSI.
Collapse
Affiliation(s)
- Afrinash Ahamad
- Clinical Laboratory Sciences Program, School of Health Professions, Stony Brook University, Stony Brook, NY, USA
- Department of Neuroscience and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Bushra Tehreem
- Neonatal-Perinatal Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Maaz Farooqi
- Medical Informatics, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Bennadette Maramara
- Divison of Infectious Disease, Stony Brook Medical Center, Stony Brook, NY, USA
| |
Collapse
|
32
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
33
|
Ayling-Smith J, Speight L, Dhillon R, Backx M, White PL, Hood K, Duckers J. The Presence of Exophiala dermatitidis in the Respiratory Tract of Cystic Fibrosis Patients Accelerates Lung Function Decline: A Retrospective Review of Lung Function. J Fungi (Basel) 2022; 8:jof8040376. [PMID: 35448607 PMCID: PMC9031959 DOI: 10.3390/jof8040376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022] Open
Abstract
Exophiala dermatitidis is increasingly isolated from cystic fibrosis (CF) respiratory samples. The decision to treat is hampered by limited evidence demonstrating the clinical significance of isolating E. dermatitidis. The objective was to assess the impact of E. dermatitidis isolation on the lung function of CF patients. The rate of lung function decline in the local CF population was calculated using historic lung function data. A control population who had never had E. dermatitidis cultured from the respiratory tract was compared with the E. dermatitidis group, calculating their rate of lung function decline before and after the first isolation of the organism. A total of 1840 lung function measurements were reviewed between the 31 E. dermatitidis group patients and 62 control patients. Their demographics were similar. The control group declined at a rate of −0.824 FEV1%/year. The rate of decline in the E. dermatitidis group prior to infection was −0.337 FEV1%/year (p = 0.2). However, post infection with E. dermatitidis, there was a significant increase in the rate of decline in lung function (−1.824 FEV1%/year, p < 0.01). The results suggest E. dermatitidis has a temporal relationship with accelerated rate of lung function decline. It is not clear if this is a cause or effect, but this accelerated rate of decline indicates a need for further investigation.
Collapse
Affiliation(s)
- Jonathan Ayling-Smith
- University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff CF14 4XW, UK
- College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AT, UK;
- Correspondence: (J.A.-S.); (J.D.)
| | - Lorraine Speight
- All Wales Adult Cystic Fibrosis Centre, University Hospital Llandough, Penarth CF64 2XX, UK;
| | - Rishi Dhillon
- Public Health Wales, Cardiff CF10 4BZ, UK; (R.D.); (M.B.); (P.L.W.)
| | - Matthijs Backx
- Public Health Wales, Cardiff CF10 4BZ, UK; (R.D.); (M.B.); (P.L.W.)
| | | | - Kerenza Hood
- College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Jamie Duckers
- All Wales Adult Cystic Fibrosis Centre, University Hospital Llandough, Penarth CF64 2XX, UK;
- Correspondence: (J.A.-S.); (J.D.)
| |
Collapse
|
34
|
Watanabe Y, Sano H, Konno S, Kamioka Y, Hariu M, Takano K, Yamada M, Seki M. Sinobronchial Syndrome Patients with Suspected Non-Tuberculous Mycobacterium Infection Exacerbated by Exophiala dermatitidis Infection. Infect Drug Resist 2022; 15:1135-1141. [PMID: 35340672 PMCID: PMC8948093 DOI: 10.2147/idr.s359646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Exophiala dermatitidis is an environmental black fungus that rarely causes respiratory infections, yet its pathophysiological features and treatment regimens have not been established. Case Series Two cases of exacerbations of chronic bronchitis and sinusitis due to E. dermatitidis infection in Japan are presented. Both patients were women, and non-tuberculous Mycobacterium (NTM) infection was suspected based on chest radiological findings, but E. dermatitidis was detected from bronchial lavage fluid and nasal mucus, respectively. Both cases were successfully treated by antifungal agents such as liposomal amphotericin B, voriconazole, and itraconazole, but clarithromycin, rifampicin, ethambutol, and sitafloxacin for NTM were not effective. Conclusion E. dermatitidis can become a respiratory pathogen, especially in patients with chronic sinobronchial syndrome.
Collapse
Affiliation(s)
- Yuji Watanabe
- Division of Infectious Diseases and Infection Control, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai City, Miyagi, Japan
- Laboratory for Clinical Microbiology, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Shuichi Konno
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Yasuhiro Kamioka
- Division of Infectious Diseases and Infection Control, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai City, Miyagi, Japan
- Division of Pharmacy, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Maya Hariu
- Division of Infectious Diseases and Infection Control, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai City, Miyagi, Japan
- Laboratory for Clinical Microbiology, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Kazuki Takano
- Division of Infectious Diseases and Infection Control, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai City, Miyagi, Japan
- Laboratory for Clinical Microbiology, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Masafumi Seki
- Division of Infectious Diseases and Infection Control, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai City, Miyagi, Japan
- Correspondence: Masafumi Seki, Division of Infectious Diseases and Infection Control, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai City, Miyagi, 983-8612, Japan, Tel +81-22-259-1221, Fax +81-22-290-8956, Email ;
| |
Collapse
|
35
|
|
36
|
Oliva A, Garner RE, Walsh D, Huot Y. The occurrence of potentially pathogenic fungi and protists in Canadian lakes predicted using geomatics, in situ and satellite-derived variables: Towards a tele-epidemiological approach. WATER RESEARCH 2022; 209:117935. [PMID: 34915335 DOI: 10.1016/j.watres.2021.117935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Eukaryotic pathogens including fungi and enteroparasites infect humans, animals and plants. As integrators of landscape catchment, lakes can reflect and record biological and geochemical events or anthropogenic changes and provide useful knowledge to formulate public health, food security and water policies to manage and prevent diseases. In this context, potentially pathogenic fungi and parasites were sampled using 18S rRNA gene amplicon sequencing in 382 lakes displaying a broad range of sizes and human impact on the watershed in 10 ecozones across Canada. Based on pathogen classifications from the ePATHogen database published by the Public Health Agency of Canada, we identified 23 health-relevant genera for human and animal hosts, including Cryptococcus and Cryptosporidium. Our study investigated the potential of remote sensing and geomatics to predict microbial contamination in a tele-epidemiological approach. We used boosted regression tree modeling to evaluate the probability of occurrence of the most common genera found in our dataset based on 10 satellite-derivable, geomatics and field survey variables which could be potential sources or transport mechanisms through the watershed or survival factors in the water. We found that southern ecozones that possess the highest agricultural and pasture activities tend to contain lakes with the largest number of potential pathogens including several fungi associated with plant diseases. Bio-optical factors, such as colored dissolved organic matter, were highly related to the occurrence of the genera, potentially by protecting against damage from ultraviolet light. Our results demonstrate the capability of tele-epidemiology to provide useful information to develop government policies for recreational and drinking water regulations as well as for food security.
Collapse
Affiliation(s)
- Anaïs Oliva
- Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; CARTEL - Centre d'applications et de recherche en télédétection, Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Département de Sciences Biologiques, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada.
| | - Rebecca E Garner
- GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Département de Sciences Biologiques, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada; Department of Biology, Concordia University, Montréal QC H4B 1R6, Canada
| | - David Walsh
- GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Département de Sciences Biologiques, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada; Department of Biology, Concordia University, Montréal QC H4B 1R6, Canada
| | - Yannick Huot
- Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; CARTEL - Centre d'applications et de recherche en télédétection, Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Département de Sciences Biologiques, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
37
|
Hiruta R, Sato N, Ishikawa T, Endo K, Endo Y, Kikuta H, Bakhit M, Kojima T, Fujii M, Ota M. Mechanical Thrombectomy for Acute Ischemic Stroke Caused by Prosthetic Aortic Valve Endocarditis Due to Exophiala dermatitidis Infection: A Case Report. NMC Case Rep J 2022; 8:835-840. [PMID: 35079556 PMCID: PMC8769430 DOI: 10.2176/nmccrj.cr.2021-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Prosthetic valve endocarditis (PVE) can cause large cerebral vessel occlusion. Many reports suggested that mechanical thrombectomy (MT) is effective and useful for early diagnosis from the histopathological findings of thrombus. We present the case of a 62-year-old man, with a history of prosthetic aortic valve replacement and pulmonary vein isolation for his atrial fibrillation, who developed a high fever and an acute neurological deficit, with left hemiplegia and speech disorder. He was diagnosed as having an acute right middle cerebral artery embolism and underwent an MT. The embolic source was found to be a PVE vegetation. However, histopathological analysis of the thrombus could not detect the actual diagnosis. Although he was treated for bacterial endocarditis, his blood culture revealed a rare fungal infection with Exophiala dermatitidis not until >3 weeks after admission. Subsequently, a ß-D-glucan assay also indicated elevated levels. Although he underwent an aortic valve replacement on day 36, MRI showed multiple minor embolic strokes till that day. Early diagnosis of fungal endocarditis and detection of the causative pathogen are still challenging, and the disease has a high risk of occurrence of early and repeated embolic stroke. In addition to clinical findings and pathological studies, ß-D-glucan assay might be a good tool for the diagnosis and evaluation of fungal endocarditis.
Collapse
Affiliation(s)
- Ryo Hiruta
- Department of Neurosurgery, Masu Memorial Hospital, Nihonmatsu, Fukushima, Japan.,Department of Neurosurgery, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Naoki Sato
- Department of Neurosurgery, Masu Memorial Hospital, Nihonmatsu, Fukushima, Japan
| | - Toshihito Ishikawa
- Department of Neurosurgery, Masu Memorial Hospital, Nihonmatsu, Fukushima, Japan
| | - Katsuhiro Endo
- Department of Neurosurgery, Masu Memorial Hospital, Nihonmatsu, Fukushima, Japan
| | - Yuji Endo
- Department of Neurosurgery, Masu Memorial Hospital, Nihonmatsu, Fukushima, Japan
| | - Haruhiko Kikuta
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Fukushima, Japan.,Department of Neurosurgery, Hoshi General Hospital, Koriyama, Fukushima, Japan
| | - Mudathir Bakhit
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Takao Kojima
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Mamoru Ota
- Department of Neurosurgery, Masu Memorial Hospital, Nihonmatsu, Fukushima, Japan
| |
Collapse
|
38
|
Brackin AP, Hemmings SJ, Fisher MC, Rhodes J. Fungal Genomics in Respiratory Medicine: What, How and When? Mycopathologia 2021; 186:589-608. [PMID: 34490551 PMCID: PMC8421194 DOI: 10.1007/s11046-021-00573-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Respiratory infections caused by fungal pathogens present a growing global health concern and are a major cause of death in immunocompromised patients. Worryingly, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome has been shown to predispose some patients to airborne fungal co-infections. These include secondary pulmonary aspergillosis and mucormycosis. Aspergillosis is most commonly caused by the fungal pathogen Aspergillus fumigatus and primarily treated using the triazole drug group, however in recent years, this fungus has been rapidly gaining resistance against these antifungals. This is of serious clinical concern as multi-azole resistant forms of aspergillosis have a higher risk of mortality when compared against azole-susceptible infections. With the increasing numbers of COVID-19 and other classes of immunocompromised patients, early diagnosis of fungal infections is critical to ensuring patient survival. However, time-limited diagnosis is difficult to achieve with current culture-based methods. Advances within fungal genomics have enabled molecular diagnostic methods to become a fast, reproducible, and cost-effective alternative for diagnosis of respiratory fungal pathogens and detection of antifungal resistance. Here, we describe what techniques are currently available within molecular diagnostics, how they work and when they have been used.
Collapse
Affiliation(s)
- Amelie P. Brackin
- MRC Centre for Global Disease Analysis, Imperial College London, London, UK
| | - Sam J. Hemmings
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Johanna Rhodes
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
39
|
Usuda D, Higashikawa T, Hotchi Y, Usami K, Shimozawa S, Tokunaga S, Osugi I, Katou R, Ito S, Yoshizawa T, Asako S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Oba J, Nomura T, Sugita M. Exophiala dermatitidis. World J Clin Cases 2021; 9:7963-7972. [PMID: 34621853 PMCID: PMC8462220 DOI: 10.12998/wjcc.v9.i27.7963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/03/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Exophiala is a genus comprising several species of opportunistic black yeasts, which belongs to Ascomycotina. It is a rare cause of fungal infections. However, infections are often chronic and recalcitrant, and while the number of cases is steadily increasing in both immunocompromised and immunocompetent people, detailed knowledge remains scarce regarding infection mechanisms, virulence factors, specific predisposing factors, risk factors, and host response. The most common manifestations of Exophiala infection are skin infections, and the most frequent type of deep infection is pulmonary infection due to inhalation. The invasive disease ranges from cutaneous or subcutaneous infection to systemic dissemination to internal organs. The final identification of the causative organism should be achieved through a combination of several methods, including the newly introduced diagnostic analysis, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, together with sequencing of the ribosomal ribonucleic acid internal transcribed spacer region of the fungi, and histological and culture findings. Regarding treatment, because anti-infective agents and natural compounds exhibited poor antibiofilm activity, few treatments have ultimately been found to be effective for specific antifungal therapy, so the optimal antifungal therapy and duration of therapy for these infections remain unknown. Therefore, most forms of disease caused by Exophiala dermatitidis require aggressive combination therapies: Both surgical intervention and aggressive antifungal therapy with novel compounds and azoles are necessary for effective treatment.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Toshihiro Higashikawa
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi-shi 935-8531, Toyama-ken, Japan
| | - Yuta Hotchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Kenki Usami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Shungo Tokunaga
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Risa Katou
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Toshihiko Yoshizawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Suguru Asako
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Jiro Oba
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| |
Collapse
|
40
|
Answer to July 2021 Photo Quiz. J Clin Microbiol 2021; 59:e0219520. [PMID: 34142858 DOI: 10.1128/jcm.02195-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Boero E, Mnich ME, Manetti AGO, Soldaini E, Grimaldi L, Bagnoli F. Human Three-Dimensional Models for Studying Skin Pathogens. Curr Top Microbiol Immunol 2021; 430:3-27. [PMID: 32601967 DOI: 10.1007/82_2020_219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin is the most exposed surface of the human body, separating the microbe-rich external environment, from the sterile inner part. When skin is breached or its homeostasis is perturbed, bacterial, fungal and viral pathogens can cause local infections or use the skin as an entry site to spread to other organs. In the last decades, it has become clear that skin provides niches for permanent microbial colonization, and it actively interacts with microorganisms. This crosstalk promotes skin homeostasis and immune maturation, preventing expansion of harmful organisms. Skin commensals, however, are often found to be skin most prevalent and dangerous pathogens. Despite the medical interest, mechanisms of colonization and invasion for most skin pathogens are poorly understood. This limitation is due to the lack of reliable skin models. Indeed, animal models do not adequately mimic neither the anatomy nor the immune response of human skin. Human 3D skin models overcome these limitations and can provide new insights into the molecular mechanisms of microbial pathogenesis. Herein, we address the strengths and weaknesses of different types of human skin models and we review the main findings obtained using these models to study skin pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Luca Grimaldi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | |
Collapse
|
42
|
Yazdi Z, Griffin MJ, Pierezan F, Eetemadi A, Shahin K, Soto E. Quantitative PCR for detection and quantification of Veronaea botryosa in fish and environmental samples. DISEASES OF AQUATIC ORGANISMS 2021; 144:175-185. [PMID: 33955855 DOI: 10.3354/dao03582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Systemic phaeohyphomycosis, aka 'fluid belly', is one of the most important emergent diseases in sturgeon Acipenser spp. aquaculture. The etiologic agent is the saprobic, dematiaceous fungus Veronaea botryosa. Effective vaccines and chemotherapeutic treatments are currently unavailable. Additionally, the fungus is a slow-growing organism, taking from 10-15 d for colonies to be observed in agar media. To this end, a specific quantitative PCR (qPCR) targeting the V. botryosa β-tubulin gene was developed and validated. The specificity of the assay to V. botryosa was initially confirmed in silico and in vivo against common fungal fish pathogens, including closely related members of the order Chaetothyriales (Exophiala spp.) and other black pigmented fungi (Alternaria spp. and Cladosporium spp.), as well as tissues from uninfected sturgeon. The assay possessed high clinical specificity (100%) and clinical sensitivity (74%) in detecting V. botryosa DNA in splenic tissues from laboratory-infected sturgeon. Using V. botryosa genomic DNA as a template, the limit of detection was equivalent to 10 conidia, and the method was found suitable for the detection of fungal DNA in fresh and formalin-fixed tissues. In addition, the presence of non-target DNA from white sturgeon did not influence assay sensitivity. The developed qPCR assay is a sensitive, specific, and rapid diagnostic method for the detection and quantification of V. botryosa DNA from white sturgeon tissues.
Collapse
Affiliation(s)
- Zeinab Yazdi
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616-5270, USA
| | | | | | | | | | | |
Collapse
|
43
|
Itoh N, Murakami H, Ishibana Y, Matsubara Y, Yaguchi T, Kamei K. Challenges in the diagnosis and management of central line-associated blood stream infection due to Exophiala dermatitidis in an adult cancer patient. J Infect Chemother 2021; 27:1360-1364. [PMID: 33888421 DOI: 10.1016/j.jiac.2021.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Exophiala (Wangiella) dermatitidis is a clinically relevant black yeast. Although E. dermatitidis rarely causes human infection, it can cause superficial and deep-seated infections, and cutaneous and subcutaneous diseases. Cases of fungemia and central line-associated bloodstream infections due to E. dermatitidis are extremely uncommon, and their clinical manifestations and prognosis are still not well-known. Herein, we report a case of central line-associated bloodstream infections in a patient with cancer. These infections were caused by melanized yeast that was finally identified as E. dermatitidis via internal transcribed spacer sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. CASE PRESENTATION A 75-year-old man with thoracic esophageal cancer and early gastric cancer presented with a 1-day history of fever during his hospitalization at our hospital. A central venous port was placed in the patient for total parenteral nutrition. Two E. dermatitidis isolates were recovered from two blood samples drawn at different times from a peripheral vein and this central venous port. The isolate was identified as E. dermatitidis by internal transcribed spacer sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The central venous port was removed, and the patient was administered micafungin and voriconazole. Although the minimum inhibitory concentrations of E. dermatitidis for voriconazole and minimum effective concentrations for micafungin were 2 μg/mL and 4 μg/m, respectively, the bacteremia was successfully treated. CONCLUSIONS Although no clear treatment guidelines have been proposed for E. dermatitidis infections, immediate removal of central venous catheters is the key to improving central line-associated bloodstream infections.
Collapse
Affiliation(s)
- Naoya Itoh
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan; Collaborative Chairs Emerging and Reemerging Infectious Diseases, National Center for Global Health and Medicine, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Hiromi Murakami
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yuichi Ishibana
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yuki Matsubara
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| |
Collapse
|
44
|
Dishwashers as an Extreme Environment of Potentially Pathogenic Yeast Species. Pathogens 2021; 10:pathogens10040446. [PMID: 33917934 PMCID: PMC8068352 DOI: 10.3390/pathogens10040446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022] Open
Abstract
The study aimed to compare the yeast species diversity in the specific environment of dishwashers, taking into account the potential risk for users. Yeasts were isolated from ten dishwashers and from tap water supplied to the appliances. Samples were collected for mycological analyses at the beginning of each month, from February to May 2016. Four dishwasher sites (rubber seals, detergent dispensers, sprinklers, and water drains) were analyzed. The microfungi were identified by the standard procedures applied in mycological diagnostics. To confirm species identification, molecular analysis was performed based on the sequences of the D1/D2 region. The presence of microfungi was detected in 70% of the investigated appliances. Rubber seals, detergent dispensers, and water drains were the most frequently colonized elements. Thirty-five yeast strains were isolated in this study, of which twenty-seven were obtained from dishwashers and eight from tap water. The strains belonged to six genera and six species (Candida parapsilosis, Clavispora lusitaniae, Dipodascus capitatus, Exophiala dermatitidis, Meyerozyma guilliermondii, and Rhodotorula mucilaginosa). Most of the strains came from rubber seals. In this way, it was demonstrated that the dishwashers’ condition is sufficient as an ecological niche for microfungi.
Collapse
|
45
|
Inherited CARD9 Deficiency in a Child with Invasive Disease Due to Exophiala dermatitidis and Two Older but Asymptomatic Siblings. J Clin Immunol 2021; 41:975-986. [PMID: 33558980 DOI: 10.1007/s10875-021-00988-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Autosomal recessive CARD9 deficiency predisposes patients to invasive fungal disease. Candida and Trichophyton species are major causes of fungal disease in these patients. Other CARD9-deficient patients display invasive diseases caused by other fungi, such as Exophiala spp. The clinical penetrance of CARD9 deficiency regarding fungal disease is surprisingly not complete until adulthood, though the age remains unclear. Moreover, the immunological features of genetically confirmed yet asymptomatic individuals with CARD9 deficiency have not been reported. METHODS Identification of CARD9 mutations by gene panel sequencing and characterization of the cellular phenotype by quantitative PCR, immunoblot, luciferase reporter, and cytometric bead array assays were performed. RESULTS Gene panel sequencing identified compound heterozygous CARD9 variants, c.1118G>C (p.R373P) and c.586A>G (p.K196E), in a 4-year-old patient with multiple cerebral lesions and systemic lymphadenopathy due to Exophiala dermatitidis. The p.R373P is a known disease-causing variant, whereas the p.K196E is a private variant. Although the patient's siblings, a 10-year-old brother and an 8-year-old sister, were also compound heterozygous, they have been asymptomatic to date. Normal CARD9 mRNA and protein expression were found in the patient's CD14+ monocytes. However, these cells exhibited markedly impaired pro-inflammatory cytokine production in response to fungal stimulation. Monocytes from both asymptomatic siblings displayed the same cellular phenotype. CONCLUSIONS CARD9 deficiency should be considered in previously healthy patients with invasive Exophiala dermatitidis disease. Asymptomatic relatives of all ages should be tested for CARD9 deficiency. Detecting cellular defects in asymptomatic individuals is useful for diagnosing CARD9 deficiency.
Collapse
|
46
|
Lu JJ, Lo HJ, Lee CH, Chen MJ, Lin CC, Chen YZ, Tsai MH, Wang SH. The Use of MALDI-TOF Mass Spectrometry to Analyze Commensal Oral Yeasts in Nursing Home Residents. Microorganisms 2021; 9:microorganisms9010142. [PMID: 33435490 PMCID: PMC7828027 DOI: 10.3390/microorganisms9010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid and accurate method to identify microorganisms in clinical laboratories. This study isolates yeast-like microorganisms in the oral washes that are collected from non-bedridden nursing home residents, using CHROMagar Candida plates, and identifies them using Bruker MALDI-TOF MS. The ribosomal DNA sequences of the isolates are then examined. Three hundred and twenty yeast isolates are isolated from the oral washes. Candida species form the majority (78.1%), followed by Trichosporon/Cutaneotrichosporon species (8.8%). Bruker MALDI-TOF MS gives a high-level confidence, with a log(score) value of ≥1.8, and identifies 96.9% of the isolates. There are six inconclusive results (1.9%), and those sequences are verified as rare clinical species, including Candida ethanolica, Cutaneotrichosporon jirovecii, Exophiala dermatitidis, and Fereydounia khargensis. Almost all of the isolates have a regular color on the CHROMagar Candida plates. If the colonies are grouped by color on the plates, a specific dominant yeast species is present in each color group, except for purple or orange isolates. In conclusion, MALDI-TOF MS is verified as a fast, accurate and practical method to analyze oral yeasts in elderly subjects.
Collapse
Affiliation(s)
- Jang-Jih Lu
- Department of Laboratory Medicine, Chang-Gung Memorial Hospital Linkou, Taoyuan City 333, Taiwan; (J.-J.L.); (C.-H.L.); (M.-J.C.)
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 350, Taiwan; (H.-J.L.); (C.-C.L.); (Y.-Z.C.)
- School of Dentistry, China Medical University, Taichung City 404, Taiwan
| | - Chih-Hua Lee
- Department of Laboratory Medicine, Chang-Gung Memorial Hospital Linkou, Taoyuan City 333, Taiwan; (J.-J.L.); (C.-H.L.); (M.-J.C.)
| | - Mei-Jun Chen
- Department of Laboratory Medicine, Chang-Gung Memorial Hospital Linkou, Taoyuan City 333, Taiwan; (J.-J.L.); (C.-H.L.); (M.-J.C.)
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin County 638, Taiwan;
| | - Chih-Chao Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 350, Taiwan; (H.-J.L.); (C.-C.L.); (Y.-Z.C.)
| | - Yin-Zhi Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 350, Taiwan; (H.-J.L.); (C.-C.L.); (Y.-Z.C.)
| | - Ming-Horng Tsai
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin County 638, Taiwan;
| | - Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City 600, Taiwan
- Correspondence: ; Tel.: +886-5-2717225; Fax: +886-5-2717831
| |
Collapse
|
47
|
García-Carnero LC, Martínez-Álvarez JA, Salazar-García LM, Lozoya-Pérez NE, González-Hernández SE, Tamez-Castrellón AK. Recognition of Fungal Components by the Host Immune System. Curr Protein Pept Sci 2021; 21:245-264. [PMID: 31889486 DOI: 10.2174/1389203721666191231105546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.
Collapse
Affiliation(s)
- Laura C García-Carnero
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A Martínez-Álvarez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Luis M Salazar-García
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Nancy E Lozoya-Pérez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - Alma K Tamez-Castrellón
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
48
|
Renner S, Nachbaur E, Jaksch P, Dehlink E. Update on Respiratory Fungal Infections in Cystic Fibrosis Lung Disease and after Lung Transplantation. J Fungi (Basel) 2020; 6:381. [PMID: 33371198 PMCID: PMC7766476 DOI: 10.3390/jof6040381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis is the most common autosomal-recessive metabolic disease in the Western world. Impaired trans-membrane chloride transport via the cystic fibrosis transmembrane conductance regulator (CFTR) protein causes thickened body fluids. In the respiratory system, this leads to chronic suppurative cough and recurrent pulmonary infective exacerbations, resulting in progressive lung damage and respiratory failure. Whilst the impact of bacterial infections on CF lung disease has long been recognized, our understanding of pulmonary mycosis is less clear. The range and detection rates of fungal taxa isolated from CF airway samples are expanding, however, in the absence of consensus criteria and univocal treatment protocols for most respiratory fungal conditions, interpretation of laboratory reports and the decision to treat remain challenging. In this review, we give an overview on fungal airway infections in CF and CF-lung transplant recipients and focus on the most common fungal taxa detected in CF, Aspergillus fumigatus, Candida spp., Scedosporium apiospermum complex, Lomentospora species, and Exophiala dermatitidis, their clinical presentations, common treatments and prophylactic strategies, and clinical challenges from a physician's point of view.
Collapse
Affiliation(s)
- Sabine Renner
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Edith Nachbaur
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Eleonora Dehlink
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| |
Collapse
|
49
|
All Treatment Parameters Affect Environmental Surface Sanitation Efficacy, but Their Relative Importance Depends on the Microbial Target. Appl Environ Microbiol 2020; 87:AEM.01748-20. [PMID: 33097504 PMCID: PMC7755260 DOI: 10.1128/aem.01748-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Environmental sanitation in food manufacturing plants promotes food safety and product microbial quality. However, the development of experimental models remains a challenge due to the complex nature of commercial cleaning processes, which include spraying water and sanitizer on equipment and structural surfaces within manufacturing space. Although simple in execution, the physical driving forces are difficult to simulate in a controlled laboratory environment. Here, we present a bench-scale bioreactor system which mimics the flow conditions in environmental sanitation programs. We applied computational fluid dynamic (CFD) simulations to obtain fluid flow parameters that better approximate and predict industrial outcomes. According to the CFD model, the local wall shear stress achieved on the target surface ranged from 0.015 to 5.00 Pa. Sanitation efficacy on six types of environmental surface materials (hydrophobicity, 57.59 to 88.61°; roughness, 2.2 to 11.9 μm) against two different microbial targets, the bacterial pathogen Listeria monocytogenes and Exophiala species spoilage fungi, were evaluated using the bench-scale bioreactor system. The relative reduction ranged from 0.0 to 0.82 for Exophiala spp., which corresponded to a 0.0 to 2.21 log CFU/coupon reduction, and the relative reduction ranged from 0.0 to 0.93 in L. monocytogenes which corresponded to a 0.0 to 6.19 log CFU/coupon reduction. Although most treatment parameters were considered statistically significant against either L. monocytogenes or Exophiala spp., contact time was ranked as the most important predictor for L. monocytogenes reduction. Shear stress contributed the most to Exophiala spp. removal on stainless steel and Buna-N rubber, while contact time was the most important factor on HDPE (high-density polyethylene), cement, and epoxy.IMPORTANCE Commercial food manufacturers commonly employ a single sanitation program that addresses both bacterial pathogen and fungal spoilage microbiota, despite the fact that the two microbial targets respond differently to various environmental sanitation conditions. Comparison of outcome-based clusters of treatment combinations may facilitate the development of compensatory sanitation regimes where longer contact time or greater force are applied so that lower sanitizer concentrations can be used. Determination of microbiological outcomes related to sanitation program efficacy against a panel of treatment conditions allows food processors to balance tradeoffs between quality and safety with cost and waste stream management, as appropriate for their facility.
Collapse
|
50
|
Sun Y, Gao L, Yuan M, Yuan L, Yang J, Zeng T. In vitro and in vivo Study of Antifungal Effect of Pyrvinium Pamoate Alone and in Combination With Azoles Against Exophiala dermatitidis. Front Cell Infect Microbiol 2020; 10:576975. [PMID: 33194816 PMCID: PMC7649562 DOI: 10.3389/fcimb.2020.576975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Infections of Exophiala dermatitidis are often chronic and recalcitrant. Combination therapies with novel compounds and azoles could be an effective solution. Previously, we have demonstrated that pyrvinium pamoate exerted antifungal activity alone and favorable synergy with azoles against planktonic E. dermatitidis. Herein, the underlying antifungal mode of action were investigated. Pyrvinium alone showed sessile MIC50 (SMIC50) of 8->16 μg/ml against E. dermatitidis biofilms. However, synergism of PP with itraconazole, voriconazole, and posaconazole were observed against 16 (88.9%), 9 (50%), and 13 (72.2%) strains of E. dermatitidis biofilms. In accordance with in vitro susceptibilities, pyrvinium alone at concentration of 2 μg/ml resulted in significant growth restriction of planktonic E. dermatitidis. Pyrvinium alone resulted in reduction of biofilm formation. Higher concentration of pyrvinium was associate with more progressive reduction of biofilm mass. The in vivo activity of pyrvinium alone and combined with azoles was evaluated using Galleria mellonella model. Pyrvinium alone significantly improved the survival rate of larvae (P < 0.0001). The combination of pyrvinium and voriconazole or posaconazole acted synergistically in vivo (P < 0.05). Fungal burden determination revealed significant reduction of numbers of colony forming unit (CFU) in larvae treated with pyrvinium-itraconazole and pyrvinium-posaconazole compared to itraconazole or posaconazole alone group, respectively. The effect of pyrvinium on apoptosis, expression of TOR and HSP90, and drug efflux reversal were evaluated by PI/Annexin V staining, Real-Time Quantitative PCR and Rhodamine 6G assay, respectively. Pyrvinium alone or combined with azoles significantly (P < 0.05) increased late apoptosis or necrosis of E. dermatitidis cells. Pyrvinium combined with posaconazole significantly decreased the expression of TOR and Hsp90 compared to posaconazole alone group (P < 0.05). Pyrvinium resulted in significant (P < 0.05) decrease of the efflux of Rhodamine 6G. These findings suggested pyrvinium could be a promising synergist with azoles. The underlying mechanisms could be explained by inducing apoptosis/necrosis, inhibition of drug efflux pumps, and signaling pathways related with stress response and growth control.
Collapse
Affiliation(s)
- Yi Sun
- Department of Dermatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Lujuan Gao
- Department of Dermatology, Zhongshan Hospital Fudan University (Xiamen Branch), Xiamen, China
- Department of Dermatology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Mingzhu Yuan
- Department of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Lu Yuan
- Department of Pathology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital Fudan University (Xiamen Branch), Xiamen, China
- Department of Dermatology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Tongxiang Zeng
- Department of Dermatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| |
Collapse
|